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Abstract: Forest disturbances in central Europe caused by fungal pests may result in 

widespread tree mortality. To assess the state of health and to detect disturbances of entire 

forest ecosystems, up-to-date knowledge of the tree species diversity is essential. The German 

state Mecklenburg–Vorpommern is severely affected by ash (Fraxinus excelsior)  

dieback caused by the fungal pathogen Hymenoscyphus pseudoalbidus. In this study,  

species diversity and the magnitude of ash mortality was assessed by classifying seven 

different tree species and multiple levels of damaged ash. The study is based on a 

multispectral WorldView-2 (WV-2) scene and uses object-based supervised classification 

methods based on multinomial logistic regressions. Besides the original multispectral 

image, a set of remote sensing indices (RSI) was derived, which significantly improved the 

accuracies of classifying different levels of damaged ash but only slightly improved tree 

species classification. The large number of features was reduced by three approaches, of 

which the linear discriminant analysis (LDA) clearly outperformed the more commonly 

used principal component analysis (PCA) and a stepwise selection method. Promising 

overall accuracies (83%) for classifying seven tree species and (73%) for classifying four 

different levels of damaged ash were obtained. Detailed tree damage and tree species maps 

were visually inspected using aerial images. The results are of high relevance for forest 

OPEN ACCESS 

mailto:Kai.Juette@lfoa-mv.de
mailto:Theresia.Stampfer@lfoa-mv.de


Remote Sens. 2014, 6 4516 

 

managers to plan appropriate cutting and reforestation measures to decrease ash dieback 

over entire regions.  

Keywords: ash dieback; variable selection; multispectral remote sensing; object-based 

image analysis; remote sensing indices; tree species; tree mortality 

 

1. Introduction 

In-depth knowledge on tree species diversity and tree mortality is required to assess disturbances 

and state of health of forest ecosystems and to perform monitoring and protection tasks. Widespread 

tree damage can be caused by hurricanes, insects or fungal pests, which are the most significant 

disturbances to forest ecosystems in central Europe [1]. They have increased recently due to human 

impact and climate change [2].  

Recent severe tree damage in the German state Mecklenburg–Vorpommern is caused by the fungal 

pathogen Hymenoscyphus pseudoalbidus and has expanded rapidly over the last few years  

in the northern part. It is currently ravaging trees in Europe, killing Fraxinus excelsior and  

Fraxinus angustifolia trees of all age classes [3]. Ash trees are important locally not only from an 

economic perspective, but also from an aesthetic one; they are also valuable for biodiversity. Both the 

immediate impact and the long-term consequences of the disease on the forest ecosystems in the 

disturbed areas are likely to be serious. Thus, an assessment of the extent of ash damage is required for 

evaluating the possible impact on tree species diversity in this area. 

Assessing forest disturbance is mainly based on analyses of changes in chlorophyll content,  

leaf water content, and detection based on structural changes in damaged forests. The detection of 

gaps, deadwood or tree mortality has been carried out using optical airborne data e.g., [4,5]  

or spaceborne data e.g., using RapidEye [6], Quickbird [7–9] and IKONOS [10]. Airborne laser 

scanning (ALS) has been used to map live and dead forest biomass [11], to detect defoliation [12] and 

mortality [13] of coniferous trees. A general overview of the existing approaches for assessing impacts 

on aboveground biomass and canopy structure is given in [14]. 

These studies all show that it is now feasible to detect areas with tree mortality, in particular 

distinguishing between healthy and dead trees. To estimate the severity of forest disturbances, multiple 

levels of tree damage or tree mortality at the individual tree level are required. For example, 

multispectral digital aerial images have been used to detect multiple levels of coniferous tree mortality [4], 

hyperspectral technology to assess various levels of ash decline [15], or to map bark beetle-induced 

tree mortality [16], and multitemporal Quickbird and WV-2 data to quantify tree mortality of  

pinyon-juniper woodland [17]. Tree mortality resulting from insect outbreaks was assessed using 

multitemporal Landsat data in combination with multitemporal indices, e.g., enhanced wetness 

difference index (EWDI) [18,19]. Moreover, in [20,21] biophysical forest variables such as LAI and 

chlorophyll content obtained from image spectroscopy were successfully used to detect tree reflectance 

changes and tree stress. An overview of currently used techniques to detect tree mortality is given  

in [17]. However, to improve tree mortality detection, i.e., by quantifying different levels of tree 

damage, additional spectral information besides the original bands of multispectral images is essential. 
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Meanwhile, several remote sensing indices (RSI) have been developed and successfully applied to 

fully explore vegetation covers. In many studies, the normalized difference vegetation index (NDVI), 

or variations thereof, are used as valuable damage indicators. For example, [4,7,9] have shown that 

NIR, NDVI and band ratios are appropriate for differentiating between live green trees that have 

turned red or gray after a pine beetle attack. However, there is a lack of studies aiming at the detection 

of multiple levels of tree damage in European forests due to human impacts and global warming. 

During the past decade, considerable effort has been invested in assessing tree species diversity 

using high-resolution optical satellite data e.g., [22–25], digital aerial images e.g., [26], hyperspectral 

images e.g., [27], ALS e.g., [28], or aerial images in combination with ALS e.g., [29]. Contemporary 

new satellites such as WorldView-2 (WV-2) offer new perspectives as they have greatly increased 

geometric, radiometric, and spectral (up to eight bands) resolution for processing and analytic 

methods. According to, for instance, [30–32], the new spectral bands of WV-2 coastal blue, yellow, 

RedEdge and NIR2 enable gaps to be filled with detection of different types of vegetation such as tree 

species or tree mortality. Some recently published studies on tree species mapping used the eight bands 

of WV-2 data and produced promising results [33,34]. However, few attempts [25] have been made to 

classify tree species for the specific conditions of European forests using WV-2 data.  

The use of very high spatial resolution (VHR) imagery poses a new methodological challenge, 

because the spectral response of an individual tree is influenced by variation in canopy illumination 

and background effects [34]. Using object-based image analysis (OBIA) may therefore be the best 

approach [25,35,36]. Besides modern machine learning algorithms (e.g., [16,25]), OBIA  

in combination with e.g., linear discriminant analysis (LDA) for feature selection [25] and regression 

techniques, such as e.g., generalized linear models (GLM) have proven to be particularly useful for 

assessing the spatial distribution of tree species based on remotely sensed explanatory  

variables [26,37–39]. GLMs enable easy and experienced feature selection procedures and model 

diagnostics, as well. Moreover, the growing need for sensitive tools to predict spatial and temporal 

patterns of species or communities is reflected by an increasing usage of predictive spatial modeling 

over the past 20 years [36,38]. 

The main focus of this study was to explore the potential of new WV-2 satellite imagery for  

semi-automatically classifying tree species and multiple levels of damaged ash in a German study area. 

Both classification approaches use a priori information from a forest data base and aerial image 

interpretation as reference data, and include OBIA in combination with multinomial logistic regression 

models. We therefore explored and compared: (1) the use of original WV-2 image bands; (2) the 

additional use of existing RSIs and the development of new indices to detect different levels of 

damaged ash; and (3) the production of area-wide detailed tree damage and tree species maps.  

These maps shed light on dynamics in stand structure and how species diversity may be affected by 

tree mortality. Our study demonstrates the potential of RSIs derived from eight band WV-2 data in 

distinguishing multiple levels of damaged ash. The transferability of the developed methods to other 

regions, pros and cons of the reference data sampling method, alternative sensors and the ideal time of 

image acquisition are also discussed. 
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2. Material 

2.1. Study Area 

Mixed forest areas in the German state Mecklenburg–Vorpommern close to Schuenhagen (54°15′N, 

12°50′E) were selected as a test site for this study, covering approx. 60 km
2
. The selection was based 

on the requirements by the forest department and the availability of detailed reference information on 

damaged ash. Geographically, the study area belongs to the Baltic coast (Figure 1), with an elevation 

ranging from 70 to 100 m above sea level. The climate is continental with an average precipitation of 

around 700 mm per year and a mean annual air temperature of around 8.5 °C, with daily means of 0 °C  

in January and 18 °C in July. Forests cover approximately 40%, and the rest is used for agriculture 

(crops and pastures) and settlements.  

Figure 1. Location (left) and WorldView-2 scene (right) of the study area Schuenhagen in 

the German state Mecklenburg–Vorpommern. 

 

The forest is highly diverse and has a heterogeneous species composition, with many different age 

classes and multilayered stands. The dominant tree species are: ash (Fraxinus excelsior), beech  

(Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), larch (Larix decidua), Norway spruce  

(Picea abies), poplar (Populus sp.) and oak (Quercus pedunculata).  

2.2. Remote Sensing Data 

2.2.1. WorldView-2 Image and Preprocessing  

High spatial resolution digital imagery was acquired on 4 June 2011 from a WV-2 satellite.  

The satellite scene was ordered as multispectral (MS) and panchromatic (PAN) with spectral information 

coded in units of digital numbers (DN). The main sensor specifications are given in Table 1. 

  

http://dict.leo.org/#/search=Pseudotsuga&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/#/search=menziesii&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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Table 1. Technical specifications of the WV-2 imagery. 

Sensor Specifications 

Data acquisition 
Study area 1: 4 June 2011 

10:25:18 UTC 

Spectral Resolution [nm] 

Panchromatic: 450–800 

Coastal: 400–450 

Blue: 450–510 

Green: 510–580 

Yellow: 585–625 

Red: 630-690 

RedEdge: 705–745 

NIR1: 770–895 

NIR2: 860–1040 

Spatial Resolution 0.5 m PAN and 2.0 m MS 

Radiometric Resolution 11 bits per pixel 

Since the single usage of dehazing and in combination with atmospheric correction (ATCOR 2) 

produced many artifacts in the forest parts, only the original multispectral image was pan-sharpened by 

fusing the coarse spatial resolution data with the higher spatial resolution panchromatic band using the 

modified IHS (intensity, hue, saturation) resolution merge algorithm [40]. Then, the 0.5 m  

pan-sharpened multispectral image was orthorectified using a 5 m digital terrain model (DTM).  

The coordinates of the control points were taken from an orthoimage (recorded in summer 2011,  

0.5 m pixel size) resulting in a RMSE of 0.8 pixels on the 0.5 m WV-2 imagery. The pan-sharpened 

WV-2 image served as a basis for all investigations of this study. 

2.2.2. Digital Aerial Images 

A set of Nikon D300s RGB/CIR aerial stereo-images was used as a reference to delineate the 

crowns of damaged ash (Table 2) and the seven tree species (Table 3). The 8-Bit aerial images were 

acquired on 10 July 2011 by State Forest Department of Mecklenburg–Vorpommern using a  

Comco Ikarus C42 aircraft. The images have a side overlap of 80%–90% and 30%–60% between 

strips and include three visible bands and one near-infrared band at a 0.2 m spatial resolution.  

2.3. Reference Data  

2.3.1. Damaged Ash 

Ash dieback has rapidly expanded in recent years in the northern part of  

Mecklenburg–Vorpommern. Fraxinus excelsior is being killed by Hymenoscyphus pseudoalbidus, 

which is a virulent fungal pathogen that attacks ash trees and causes ―chalara ash dieback‖  

(see e.g., [41]). The pathogen affects the bark, crown, branches and leaves, and causes different levels 

of leaf loss, crown dieback, and also a certain degree of leaf discoloring. It usually leads to tree death. 

Reference data to assess ash damage was collected in two steps.  
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First, 385 differently damaged individual ash trees belonging to the upper story were selected from 

the data storage forest (DSW-2) (see Table 2). The DSW-2 is an information system with a database 

from the three German states Mecklenburg–Vorpommern (present study), Brandenburg and Thüringen 

with information on the current state of the forest, data for future forest planning and management, and 

the effectiveness of management measures. It is managed by the three state forest departments and 

consists of over 200 different tree and forest parameters that are continuously updated; relevant for this 

study were tree species and health (ash mortality).  

Table 2. Levels 1–4 of damaged ash with the number of digitized polygons and image 

segments. The assessment is based on the overall crown condition. Number of polygons 

are the delineated reference polygons, whereas the number of segments are the 

corresponding segments in the WV-2 orthoimage. 

Damage 

Level 
% Damaged Characteristics 

Number of 

Delineated Polygons 

Number of Assigned 

Image Segments 

1 <25 
slight decline 

(<25% of crown damaged) 
105 109 

2 25–<50 
moderate decline 

(<50% of crown damaged) 
90 92 

3 50–<75 
moderate—severe decline 

(>50% of crown damaged) 
88 91 

4 75–100 
severe decline 

(>75% of crown damaged) 
102 107 

∑ samples   385 399 

Second, the corresponding sunlit tree crowns of the selected ashes from the DSW-2 records were 

delineated on the Nikon D300s RGB/CIR stereo images. Due to the time gap between these records 

and the aerial images (up to several months), the degree of damage had to be manually checked. Thus, 

each delineated ash crown was thoroughly inspected on the aerial images by experts. For each ash 

crown, density was estimated and the resulting damage level was checked and, if necessary, adapted. 

The visual inspection of different levels of damaged tree crowns was done on the base of false-color 

aerial images. The crowns of non-damaged ash appear in bright red colors whereas slightly damaged 

tree crowns are pink and heavily damaged are gray (Figure 2). Since damage rating is based on an 

assessment and quantification of the condition of canopy, i.e., the percentage of crown decline and 

transparency, expert knowledge of the correlation of tree mortality and crown densities was essential. 

Thus, to train and recheck the entire interpretation of the ash damages, 60 randomly selected and 

differently damaged ash trees were additionally visited in the field by experts and by the local foresters 

and also inspected from above using a mobile crane. Ash damage was separated into four levels, 

ranging from: (a) level 1 trees with slight damage (<25% of crown damaged); (b) level 2 trees with 

moderate damage (25%–<50% of crown damaged); (c) level 3 trees with moderate to severe damage 

(50%–<75% of crown damaged); to (d) level 4 trees with severe damage (75%–100% of crown 

damaged). Level 4 trees with 100% destroyed foliage were much rarer since they had mostly been 

removed by the foresters. An overview and the criteria for the damaged ash are given in Table 2. 
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Examples of the four damage levels are given in Figure 2, and delineated crowns on the WV-2 

orthoimage are illustrated in Figure 3. 

Figure 2. Examples of the four different levels: (a) (<25%); (b) (25%–<50%);  

(c) (50%–<75%): and (d) (>75%) (clockwise) of damaged ash. Parts of the crane used for 

the training is visible in the right upper image. 

  

(a) (b) 

  

(c) (d) 

Figure 3. Example of delineated tree damage (levels 1–4) for ash using the CIR aerial 

images. Slightly damaged crowns of ash appear pink (1) and heavily damaged ones gray (4). 
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2.3.2. Tree Species 

In addition to the damaged ash trees, reference data for six other tree species (beech, larch, Norway 

spruce, poplar, Douglas fir and oak) was collected based on the DSW-2 information (tree position and 

species code) and a delineation of the correspondingly sunlit tree crowns (in total 995) using the Nikon 

D300s RGB/CIR stereo images. Assigning the correct species code (from the DSW records) was not 

problematic since each tree crown could be 100% identified. Possible time differences between the 

DSW-2 species information and the aerial images are not critical for species classification since the 

status of health was not assessed. The sample for ash is large since it consists of the previously selected 

ash trees (see Section 2.3.1). Table 3 gives an overview of the tree species included in this analysis. 

The focus was laid on the main tree species, which were selected by the forest department. 

Table 3. Tree species sampled. Number of polygons are the delineated reference  

polygons, whereas the number of segments are the corresponding image segments in the  

WV-2 orthoimage. 

Scientific Name Common Name 
Number of  

Delineated Polygons 

Number of Assigned  

Image Segments 

Fagus sylvatica 

Fraxinus excelsior 

Larix decidua 

Picea abies 

Populus sp. 

Pseudotsuga menziesii 

Quercus pedunculata 

Beech 

Ash 

Larch 

Norway spruce 

Poplar 

Douglas fir 

Pedunculate oak 

92 

385 

109 

105 

121 

82 

101 

143 

399 

113 

105 

128 

104 

141 

∑ samples 995 1133 

3. Methods 

The main steps in processing the input data are: (a) shadow masking; (b) image segmentation to 

extract individual tree crowns or clusters of trees; (c) assignment of reference data to image segments; 

(d) calculation of explanatory variables for each image segment; (e) selection and reduction of 

variables using three approaches; and (f) performing supervised classifications of each image segment 

(tree species and damaged ash). The methodological workflow is given in Figure 4. 

3.1. Shadow Masking and Image Segmentation 

Shadowed image pixels were excluded to guarantee that only sunlit tree crowns would be used in 

the classification approaches. The sunlit areas were separated using intensity values I[RGB] from an  

IHS-transformation of the RGB bands (5-3-2), where values smaller than 0.10 were assigned to 

shadows. The threshold was determined by first checking the histogram of the intensity image and 

based on visual inspection to separate shadowed and non-shadowed areas. Pixels belonging to this 

shadow mask were excluded from further processing steps. 

  

http://dict.leo.org/#/search=Pseudotsuga&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/#/search=menziesii&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/#/search=Quercus&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/#/search=pedunculata&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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Figure 4. Methodological workflow of the ash damage and tree species classification approach.  

 

The sunlit WV-2 orthoimages were subdivided into patches through multiresolution segmentation 

using the eCognition Developer 64 8.7 software [42,43]. The size of the objects was adjusted to the 

scale of the investigation (tree crowns and tree clusters) for each segmentation level. The optimal 

segmentation parameters depend on the scale and nature of the tree crowns to be detected, which differ 

considerably between coniferous and deciduous trees. The segmentation quality was therefore 

evaluated on the sunlit tree crown polygons of the reference data. Segmentation was iteratively 

optimized using several levels of detail and adapted to shape and compactness parameters until the 

crowns and segmented polygons became almost congruent. The final segmentation consists of  

669,700 objects and yielded individual trees and tree clusters with similar shapes and spectral 

properties. The pan-sharpened WV-2 orthoimage was used as input dataset, with a scale parameter of 

20, and homogeneity criterions of 0.7 for both shape and compactness. 

3.2. Assignment of Reference Data to Segments  

The aerial image-based crown delineations of the ash damage levels and the tree species were 

transformed to the WV-2 orthoimage, and their positions were all visually checked. However, since the 

crown delineations (polygons) from the aerial images were rarely congruent with the automatically 

generated segments of the WV-2 orthoimage, the corresponding image segments had to be selected 

manually. Then the damage or species code were assigned to each corresponding segment. Since the 
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tree crowns in the WV-2 orthoimage often consist of two or more image segments, the numbers of 

assigned crown segments (in Tables 2 and 3) are often larger than the delineated crown polygons of the 

reference data, especially for deciduous trees. In total, 399 segments of the four different levels of ash 

damage and 1133 segments of the seven tree species were assigned. 

3.3. Explanatory Variables  

A total of 33 variables were extracted from the WV-2 orthoimage and were calculated. For each 

image segment, both the mean and standard deviation of these variables were recorded resulting in 

66 explanatory variables. Prior to variable selection, the variables were grouped into three sets: (1) the 

eight original multispectral WV-2 bands and six derivations from them; (2) the 19 (see Section 3.3.2) 

Remote Sensing Indices (RSI); and (3) all variables.  

3.3.1. WV-2 Image Bands 

The inclusion of RGB- and NIR-related explanatory variables is based on studies dealing with 

image processing [44–47]. The eight bands of the pan-sharpenedWV-2 orthoimage (Table 1) are used 

as the basic spectral variables. Additionally, the bands RGB and RGNIR1 were color transformed to 

IHS into the channels intensity (I), hue (H), and saturation (S) to separate the effect of illumination to 

the quantity of intensity. These six new variables are: I[RGB], H[RGB], S[RGB], I[RGNIR1], H[RGNIR1], and 

S[RGNIR1]. Thus, 14 features were derived from the image bands. Including the means and standard 

deviations gives a total of 28 explanatory variables. 

3.3.2. Remote Sensing Indices 

Remote Sensing Indices (RSI) have been extensively used since the 1970s, according to [48], to 

explore vegetation’s spectral signature characteristics, both in the visible and near-infrared part of the 

spectrum [49]. Implementing green channel-based indices has been found beneficial (e.g., [50]), as has 

RedEdge [51], and yellow and NIR2 (both WV-2) [32]. Many studies have focused on evaluating 

spectral indices in terms of their sensitivity to vegetation biophysical parameters, as well as to external 

factors affecting canopy reflectance [52]. Moreover, spectral RSIs have been widely adopted to 

monitor forest states and canopy processes, e.g., [48] for general forest applications, and [34] for tree 

species. A general overview of RSIs is given in the ENVI user’s guide [53] of Exelis Visual 

Information Solutions and sensor specific by the [54]. 

The inclusion of 19 RSIs was mainly based on these studies, on ENVI, and on the visual analysis of 

the vitality of the damaged ash on the orthoimage. Empirical testing including histogram analysis and 

visual inspection revealed that RSIs based on the spectral bands green, red, RedEdge, NIR1 and NIR2 

could detect different levels of tree mortality particularly well. Additionally, in situ spectral 

measurements on healthy and different levels of damaged ash were performed using a FieldSpec
®

 

HandHeld 2 in [55]. Based on the visual inspections and the spectral measurements, three additional 

RSIs were developed and empirically tested, including one with the blue band. Calculating the means 

and standard deviations, 38 explanatory variables were derived from these 19 RSIs. An overview of all 

RSIs used in this study is given in Table 4 [32,49,50,53,56–65]. 



Remote Sens. 2014, 6 4525 

 

Table 4. Applied remote sensing indices (RSI) adapted to the WV-2 bands in (band number in 

parentheses). B = Blue (2), G = Green (3), Y = Yellow (4), R = Red (5), RE = RedEdge (6), 

NIR1 = Near Infrared (7), NIR2 = Near Infrared (8). 

Abbreviation Name Formula Ref. 

ARVI Atmospherically Resistant Vegetation Index (NIR1 − (R − (B − R)))/(NIR1 + (R − (B − R))) [56,57] 

DD Difference Difference Vegetation Index (2 × NIR1−R)−(G−B) [58,59] 

GI2 Greenness Index 2 
(B × −0.2848 + G × −0.2434 + R × −0.5436 + NIR1 × 

0.7243 + NIR2 × 0.0840) × 5 
[32,50] 

GNDVI Green NDVI (NIR1 − G)/(NIR1 + G) [60] 

NDRE RedEdge NDVI (NIR1 − RE)/(NIR1 + RE) [61] 

NDVI Normalized Difference Vegetation Index (NIR1 − R)/(NIR1 + R) [49] 

NDVI3,5 Green–red ratio (G − R)/(G  + R) [50] 

NDVI8,4 NIR-yellow ratio (NIR2 − Y)/(NIR2 + Y) [32] 

NIRRY NIR-Red-yellow ratio (NIR1)/(R + Y) [32] 

NORM NIR Normalized NIR NIR1/(NIR1 + R + G) [53] 

PSRI Plant Senescence Reflectance Index (R − B)/RE [62] 

REY RedEdge yellow ratio (RE − Y)/(RE + Y) [32] 

RVI Ratio Vegetation Index NIR1/R [58] 

SA Surface Albedo ((Y + R) × 0.35)/2 + (0.7 × (NIR1 + NIR2))/2 − 0.69 [63] 

VI1 Vegetation Index based on RedEdge (10,000 × NIR1)/(RE)2 [64] 

VIRE Vegetation Index based on RedEdge NIR1/RE [65] 

BR Blue ratio (R/B) × (G/B) × (RE/B) × (NIR/B) self-developed 

GR Green–red ratio G/R self-developed 

RR Red ratio (NIR1/R) × (G/R) × (NIR1/RE) self-developed 

∑ RSIs 19 (38 means and standard deviations)  

3.4. Variable Selection and Reduction 

To reduce redundancy and intercorrelation among the 66 explanatory variables (66 = 19 means and 

19 standard deviations of the RSIs, and 14 means and 14 standard deviations of the original WV-2 

bands and IHS transformations), it was necessary to select the variables that contributed most prior to 

the object-based classification. Thus, a variable selection method was needed, which is fast, easy to 

reproduce, and requires only little additional arithmetic and processing effort. However, for practical 

data analysis, the function that should be used to fit the observed data is usually unknown (e.g., [66]). 

Many studies use familiar functions without knowing if they are better than other possible choices. 

According to [38,67], a small set of powerful variables has to be selected for the final model since a 

good fit to the given training data is not a sufficient condition for good predictive models.  

In the first approach, variable selection is based on regression models (e.g., [68]) by minimizing 

Akaike’s information criterion (AIC) [69]. As second and third approaches, linear discriminant 

analysis (LDA) and principal component analysis (PCA) are effective methods used to reduce variable 

space dimension and skip redundant and collinear variables; they have been successfully applied in, 

among others [25,29,47]. In the current study, these three techniques to select variables were tested 

using R version 2.15.1 [70] and the GUI of VEGEDAZ 2014 [71] where the R scripts are implemented. 
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3.4.1. Stepwise Variable Selection 

Automated forward and backward stepwise selection (R stats step) was applied for each tree species 

and ash damage level, using all 66 explanatory variables. The algorithm minimizes within-class 

variance while maximizing the between-class variance for a given significance level. It is a 

combination of backward elimination (starting with all candidate variables and deleting all  

not-significant variables by testing them one by one) and forward selection (all variables are tested one 

by one if their contribution is significant after a new variable has been added) based on the AIC as 

reduction criterion with a level of significance p < 0.01 (for details, see [68–70]). If and how often a 

variable was selected by R stats step is shown in Tables A1 and A2. 

3.4.2. Linear Discriminant Analysis 

LDA (R stats lda) was applied on the three sets of the variables to reduce variable space dimension 

and thus redundancy and intercorrelation among the variables. LDA is a supervised statistical method, 

which allows a classification of the samples by analyzing a set of descriptors, (see e.g., [72,73]). It is 

typically used as a feature extraction step before classification. The aim is to find optimal discriminant 

vectors (transformation) by maximizing the ratio of the between-class distance to the within-class 

distance, thus achieving a maximum class discrimination. In the ideal case, it is a linear combination 

that completely separates the classes. However, in most cases, no transformation provides a complete 

separation of classes, thus the goal was to find the transformation that minimizes the overlap of the 

transformed distributions. The linear discriminants of all three subsets of variables were tested as 

explanatory variables for classifying tree species and ash damages (see Table A3). 

3.4.3 Principal Component Analysis 

PCA (R stats prcomp) was applied on three subsets of the variables. PCA involves a mathematical 

procedure that transforms a number of (possibly) correlated variables into a (smaller) number of 

uncorrelated variables called principal components. The first principal component accounts for as 

much of the variability in the data as possible, and each succeeding component accounts for as much 

of the remaining variability as possible. For details on the PCA see [74]. The PCA axis for all three 

subsets of variables, which explain >95% of the variance (cumulative proportion of all components) 

were tested as explanatory variables for classifying tree species and ash damages and best results are 

shown in (Tables A4 and A5). 

3.5. Classification 

Object-based approaches for both tree species and damage level classification were applied using 

multinomial logistic regression techniques as the response variables are polychotomous (for details, 

see [68]). Multinomial logistic regression is a simple extension of binomial logistic regression that 

allows more than two categories of the response variable where one (one species or damage level) is 

chosen as the comparison category. Separate relative risk ratios are determined for each category of the 

response variable with the exception of the comparison category, which is omitted from the analysis. 

The formula of the multinomial logistic regression function is given in Equations (1) and (2): 
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𝑃 𝑦𝑖 = 𝑟 =
exp 𝑋𝑖𝛽𝑖 

1 +   exp 𝑋𝑖𝛽𝑟 
𝐽
𝑟=1

 (1) 

and 

𝑃 𝑦𝑖 = 0 =
1

1 +   exp(𝑋𝑖𝛽𝑟)𝐽
𝑟=1

 (2) 

where Yi is the observed outcome for the ith observation on the response variable (one of the tree 

species), Xi is a vector of the explanatory variables (image bands, derivatives, and RSIs), and βr is a 

vector of all the regression coefficients in the r th regression. βi is the unknown coefficient estimates 

for the explanatory variables (estimated by maximum likelihood). J is the number of categories  

(1–7 tree species or 1–4 damage levels, respectively) and r is the damage level or tree species or 

damage level tested. 

Like binomial logistic regression, multinomial logistic regression uses maximum likelihood 

estimates to evaluate the probability of categorical membership. Thus, the image segments were 

assigned to the species or damage levels, with the highest modeled probability. In R version 2.15.1, 

several functions for multinomial models are available. Of these, the R package nnet provides an 

implementation of multinomial logistic regression on the base of a neural network and is very robust 

with respect to redundant and collinear explanatory variables [75]. 

In the current study, the predictive power of the models using the explanatory variables provided by 

the three variable selection and reduction approaches was verified by ten-fold cross-validations.  

The statistical measures used to validate the classification results were: producer’s and user’s accuracy, 

overall accuracy (OA), and Cohen’s kappa coefficient (K) (see e.g., [76,77]). According to [78], a value of 

ten for k-fold cross-validation is popular for estimating the generalization error and, according to [79], 

is preferable over leave-one-out cross-validation.  

3.6. Predictive Mapping 

Tree species maps and a map with the four different levels of damaged ash were produced for the 

entire extent of the WV-2 orthoimage showing the most probable classes if the modelled probability 

exceeded 90%. Since no external reference dataset was available, a visual quality control of the 

prediction for not-sampled trees was also applied. Thus, the seven predicted tree species and the  

four different levels of damaged ash were visually inspected using the Nikon D300s RGB/CIR  

aerial images.  

4. Results 

The accuracy assessment consists of both quantitative and qualitative aspects. The quantitative 

assessment was performed to categorize the delineated tree species and damaged ash polygons. The 

qualitative evaluation was carried out by visual inspection of the tree species and ash damage maps. 
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4.1. Classification Accuracy of the Seven Tree Species 

Table 5 shows that best OA and K were obtained when a LDA was run on all 66 explanatory 

variables. Classifications based on LDA variables clearly outperform (10% higher OA) the stepwise 

selected variables and the variable selection based on PCA. Lowest accuracies were obtained when 

classification is based on stepwise selected variables. But the differences were smaller and not 

significant. The stepwise selection methods seem therefore least appropriate.  

The statistical significance of the different classification accuracies based on the LDA and PCA was 

tested using the Wilcoxon rank sum test [80]. Each OA pair was chosen ten times randomly and 

independently. At the 0.05 significance level (p-value), the OAs yields of the WV-2 original bands and 

RSIs, and the RSIs and the combined variables were different. 

Table 5. Overall accuracies (OA) for the seven tree species as obtained by different sets of 

explanatory variables and different selection approaches based on 1133 crown polygons. 

The best model is marked in bold. 

Variable Selection and 

Reduction Approach 
Variable Sets 7 Tree Species 

  OA K p-value 

forward and backward stepwise all 0.661 0.602 - 

LDA 

original bands and IHS 0.765 0.673 - 

RSIs 0.778 0.689 0.001 

all 0.829 0.788 0.001 

PCA 

original bands and IHS 0.738 0.628 - 

RSIs 0.761 0.661 0.001 

all 0.772 0.731 0.001 

The confusion matrix in Table 6 summarizes the results of classifying the seven tree species using 

the classification model (based on the LDA of all variables) with best OA and K. 

The best agreements (highest producer’s accuracies) were obtained for poplar (95%), Norway 

spruce (92%), and Douglas fir (86%). Lowest accuracies were obtained for beech trees (69%), which 

are often misclassified as ash. Ash is often misclassified as one of the other deciduous trees  

(beech, oak) and less with poplar and coniferous trees. Larch trees (80%) were frequently misclassified 

as Norway spruce or Douglas fir. 

Table 6. Confusion matrix for tree species classification with the producer’s and user’s 

accuracy of the classified tree segments of different tree species (n = 1133), OA, and K.  

Reference Data Classified As 

 Ash Beech Oak Poplar Douglas Fir Larch Norway spruce ∑ 
Prod.’s 

Accuracy 

Ash 326 42 18 6 3 2 2 399 0.82 

Beech 39 99 3 2 0 0 0 143 0.69 

Oak 12 6 117 6 0 0 0 141 0.83 

Poplar 4 2 1 121 0 0 0 128 0.95 
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Table 6. Cont. 

Reference Data Classified As 

 Ash Beech Oak Poplar Douglas Fir Larch Norway spruce ∑ 
Prod.’s 

Accuracy 

Douglas fir 4 0 0 0 89 9 2 104 0.86 

Larch 2 0 0 0 10 90 11 113 0.80 

Norway spruce 2 0 0 0 3 3 97 105 0.92 

∑ 389 149 139 135 105 104 112 939  

User’s accuracy 0.84 0.66 0.84 0.90 0.85 0.87 0.87 1,133  

OA 0.83         

K 0.79         

4.2. Classification Accuracies of Different Levels of Damaged Ash 

Table 7 shows that the best OA and K were obtained when a LDA was run on all 66 explanatory 

variables. Classifications based on LDA variables clearly outperform the stepwise selected variables 

and the variable selection based on PCA. The classification performances and differences substantially 

increase if all RSIs are used instead of the single usage of original bands and IHS. The different levels 

of damaged ash were classified with around 30% lower accuracies when stepwise-selected variables 

are used. Both the stepwise selection methods and the PCA seem particularly weak.  

Table 7. Overall accuracies (OA) for the four different levels of damaged ash based on the 

different sets of explanatory variables and 326 crown polygons. The best models are 

marked in bold. 

Variable Selection and Reduction Approach Variable Sets 4 Damage Levels 

  OA K p-value 

Forward and Backward Stepwise all 0.571 0.475 - 

LDA 

original bands and IHS 0.573 0.434 - 

RSIs 0.741 0.641 0.001 

all 0.773 0.697 0.001 

PCA 

original bands and IHS 0.468 0.292 - 

RSIs 0.558 0.488 0.001 

all 0.592 0.501 0.001 

The statistical significance of the different classification accuracies based on the LDA and PCA was 

tested using the Wilcoxon rank sum test of the OAs. Each OA pair was independently and randomly 

chosen ten times. At the 0.05 significance level (p-value), the OAs yields of the WV-2 bands and the 

RSIs, and the RSIs and combined variables from both differed. 

The confusion matrix in Table 8 summarizes the results of classifying damaged ash (Table 7) using 

the models (based on the selected variables suggested by LDA) with the best OA and K. 

The best agreements (83%) were obtained for damage level 1 (<25% destroyed foliage), followed 

by damage levels 4 (80%) and 3 (76%). Damage level 2 (71%) had the lowest agreements. 

Misclassifications occurred particularly in damage levels 1 and 3, with less in level 4. Misclassification 
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of damage level 3 occurred in damage level 2 and 4, less in level 1. In contrast, damaged ashes 

belonging to level 4 are mostly confused with damage level 3.  

Table 8. Confusion matrix for the classification of damaged ash with the producer’s and 

user’s accuracy of the classified tree segments of different ash damages (n = 326), OA,  

and K. 

Reference Data Classified As 

Ash Damage Level 1 (<25%) 2 (<50%) 3 (<75%) 4 (<100%) ∑ Prod.’s Accuracy 

1 (<25%) 64 11 2 0 77 0.83 

2 (<50%) 12 60 8 5 85 0.71 

3 (<75%) 3 6 58 9 76 0.76 

4 (<100%) 3 6 9 70 88 0.80 

∑ 82 83 77 84 252  

User’s accuracy 0.78 0.72 0.75 0.83 326  

OA 0.77      

K 0.70      

4.3. Predictive Mapping 

In a GIS, the predicted tree species map based on the classification model producing the highest 

overall accuracies (see Table 6) was visually inspected and compared with the WV-2 orthoimage and 

also with the corresponding Nikon D300s RGB/CIR aerial images. Special attention was paid to forest 

borders, clearings and to dense forest parts. The inspections at well-known locations confirm that the 

seven tree species are generally well classified. In Figure 5 examples of reference crown segments are 

given. The classified and mapped tree species of this subset are shown in Figure 6.  

Figure 5. WV-2 CIR orthoimage (histogram-equalized) with reference crown segments of  

four different damage levels and three tree species. Shadows are masked out. The color of ash 

crowns (in the middle of the orthoimage) varies mostly due to different levels of ash mortality. 
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Figure 6. Subset of the corresponding tree species map with the selected reference crown 

segments. Shadows are masked out. 

 

Figure 7. Subset of correspondingly damaged ash. Reference polygons are given for all 

four damage levels. The two falsely predicted segments are marked in blue. Shadows are 

masked out. 

 

Figure 6 shows the dominance of ash, followed by beech and oak. All reference crown segments 

were correctly classified. The classification of ash seems reasonable; poplar and larch are also well 

detected. It seems that few small poplar segments (red) are confused with beech. 

In addition to the tree species map, the predicted damages of ash based on the classification model 

producing highest overall accuracies (see Table 8) were also visually inspected and compared with the 

WV-2 orthoimage and also with the corresponding Nikon D300s RGB/CIR aerial images.  
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The inspections confirmed that the damage levels 1 (<25% destroyed foliage), also 3 (50%–<75%) and  

4 (75%–100%) are generally well classified when using the LDA of both the image bands and the RSIs 

as explanatory variables. Problems mainly occur when classifying damage level 2 (25%–<50%), where 

segments are more often misclassified as damage level 1 and level 3, though less as level 4. Thus, 

damage level 2 seems to have a higher in-class variance, but also to be rather similar to each other, 

possibly due to the slight under- or overestimation of the stereo-interpretation of the sampling, as 

discussed below. Examples of the mapped ash are given in Figure 7. 

5. Discussion 

5.1. Classification Accuracies 

The study reveals that WV-2 satellite data are highly suitable to separate seven tree species and  

four different levels of damaged ash. The achieved overall accuracies ranged between 83% for the 

seven tree species and 77% for four different levels of damaged ash.  

Errors in the tree species classification were mainly related to ash, beech, and larch. Whereas 

confusion mainly occurs between the deciduous tree species ash and beech, larch was often 

misclassified as Douglas fir or spruce. Crown segments of differently damaged ash and healthy beech 

seem particularly difficult to separate. The classification results reveal that the detection of the  

four different levels of damaged ash was challenging and class assignment in some cases more 

difficult. Analysis of the histograms of the selected ash crown segments in the WV-2 orthoimages 

revealed that damage level 2 (destroyed foliage 25%–<50%) varied most. Our results confirmed this 

finding since damage level 2 was particularly often confused with damage levels 1 and 3, and less with 4. 

The most probable reasons for these misclassifications are the similar spectral properties of a few 

sample crowns among the tree species, and also among the different damaged ash and other species. 

Less probable, but theoretically possible, are mixed crown segments from a neighboring tree of a 

different species or different level of damage. Visual inspection of the classification maps confirmed 

that few small crown segments might be confused with neighboring segments, which belong to a 

different and more dominant tree species (e.g., for poplar in Figure 6). 

The identification of seven different tree species in the WV-2 orthoimage incorporated ash with a 

varying mortality level. Thus, compared to the other tree species, the ash sample was relatively large  

(n = 399) and characterized by a high in-class variance. Besides this, there are other effects that can 

lead to misclassification of tree species, as well. For example, spectral variability can be considerable 

even within healthy tree species because of differences in illumination, the openness of the trees, 

shadowing effects and crown health, as well as natural variability. Another aspect is the fact that the 

spectrum of a tree species may change not only during the growing season but with tree age.  

These uncertainties related to the different levels of tree damages make statistical evaluations more 

difficult. Overall, the accuracies obtained for the seven tree species are in line with or higher than those 

reported in comparable studies, but a direct comparison is difficult because: (1) higher accuracies are 

obtained with fewer or different classes and when inappropriate or no cross-validation is applied;  

(2) classification is based on other sensors; and (3) the forest structure, composition and health  

(usually no mortality) are different. For a good overview of studies on tree species classification 
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accuracy within the last ten years, see [25] for both airborne and spaceborne sensors and [47] for 

airborne sensors. Research by [25] showed 82% overall accuracy when classifying ten tree species in a 

European study using WV-2 data, and [81] obtained 77% overall accuracy when classifying seven tree 

species using IKONOS images. Seven tree species were classified by [34] in urban areas using 

IKONOS or WV-2 imagery with overall accuracies up to 68%. 

Errors in the classification of different damage levels were mainly related to ash damage level 2 

(25%–<50% destroyed foliage), which was quite often misclassified as damage levels 1 or 3. 

However, direct comparisons with other studies are difficult since most studies only classify living and 

dead trees without further distinction. If different levels of damage or mortality are not distinguished,  

overall accuracies are usually higher. For example, [17] identified living and dead tree pixels of  

pinyon-juniper woodlands based on Quickbird and WV-2 images with 98% overall accuracies. 

Hyperspectral imagery was used by [16], which obtained high overall accuracies between 84 and 96% 

for detecting dead spruce, and separation between the healthy trees and the dead trees with a 94%–97% 

accuracy. Three different levels of tree mortality, i.e., green, red and gray trees were distinguished by [4]. 

The obtained producer’s accuracies vary between 86 and 89%—albeit including other land cover 

classes—and are based on spatially aggregated 2.4 m aerial imagery. Alternatively, overall accuracies 

of 84% for different levels of defoliation were obtained by [12] using first/last pulse ALS data. As long 

as models of the same datasets are compared, the results can be interpreted as in this study. However, 

comparisons with other studies or transferability to other regions should be handled with care and, to 

be on the safe side, be interpreted as qualitative. 

5.2. WorldView-2 Data and Pre-Processing 

The suitability of WV-2 data has been thoroughly tested in this study and was confirmed by the 

high overall accuracies of the results. Besides the high spectral and radiometric resolution, another 

advantage is the appropriate spatial resolution of the sensor. In many classification studies, according 

to [22], complications with increased spectral variability arise when the spatial resolution becomes too 

fine, e.g., when using aerial images.  

In this study, no atmospheric correction and dehaze reduction was used in the end since many 

artifacts were produced. Although, at first glance, a visually improved image was obtained, a band 

histogram analysis revealed that the original pixels were slightly altered, which also affected the visual 

inspections to separate the four damage levels for ash. Although atmospheric correction was not 

absolutely necessary for the current investigations, problems of transferability of this study will arise if 

investigations are based on different satellite scenes or on multitemporal datasets. 

Masking out shadowed tree elements was essential to minimize high in-class variance of the tree 

crowns, and has been recommended by e.g., [34]. Thus, focusing mainly on sunlit tree crowns greatly 

improved the accuracy of damage levels and tree species identification. Furthermore, since the 

performance of the object-based classifications strongly depends on the quality of the image segments, 

segmentation was iteratively optimized by empirically approximating the segments to the shapes of the 

tree crowns.  

  



Remote Sens. 2014, 6 4534 

 

5.3. Reference Data 

The procedure for selecting and preparing reference data samples in the framework of this study 

was labor-intensive and consisted of two different sources. It seems to be reliable, but some critical 

points need to be addressed, especially regarding the time difference between the DSW-2 records and 

the aerial images, and regarding the rating of the tree mortality levels. The time gap of approximately 

one month between the aerial images and the WV-2 orthoimage is not significant to a certain degree. 

Understanding the dynamics of tree mortality remains a crucial issue. Since the ash dieback is a 

continuous process, a narrow time-window between the reference data and the date of image 

acquisition might be of crucial importance. Thus, the degree of damage had to be manually checked in 

the aerial images by inspecting each delineated ash crown. Crown density was estimated and the 

resulting damage level was checked and, if necessary, adapted by experts. Since this checking and 

adapting of the damage level of a tree crown was done by image inspection, slight underestimation and 

overestimation of damages may have occurred as a consequence. Nevertheless, visual inspection is still 

the key for linking the on-ground traditional assessment strategies of the forest officials and the 

remotely sensed based approaches in many countries. 

The assignment of the crown delineations to the corresponding image segments might also be a 

source for errors. The few mixed-pixels at crown borders, which result from e.g., bare soil, or the 

branches or leaves of neighboring trees with a different level of damage, may affect the corresponding 

image segments of a tree crown and lead to different reflectance values quite similar to those of 

another damage level. 

Another issue is that the development of the classification method was restricted to the  

four different levels of damage used by the forest department, and the corresponding sample trees are 

stored in DSW-2. To overcome the problem of distinguishing between these different levels of tree 

damage, in future work, additional parameters for defining the same or other damage levels (e.g., age, 

general vitality, and crown diameter) should be included.  

5.4. Extraction of Explanatory Variables  

A key factor in this study was the use of original image bands as well as RSIs. Our results clearly 

demonstrated the usefulness of deriving RSIs to detect four different levels of tree damage and to a 

certain degree also to classify seven tree species. In this study, the implementation of adequate RSIs 

was based on literature research with a special focus on forests and less on agriculture, the index 

database and empirical testing. Three additional RSIs were developed, of which the BR (blue ratio) 

and GR (green–red ratio) seem particularly relevant for classifying different levels of damaged ash. 

Besides coastal, GNDVI, the additional RSIs GR, and RR (red ratio) are also useful for identifying tree 

species. The benefits of applying RSIs have been shown in several studies to detect tree stress and 

mortality, where most used NDVI or derivations of it, and ratios of red and green bands  

(e.g., [7,17,57,82]). Thus, also in this study, NIR, NDVI, RedEdge, and the green-related ratios and 

variables were the most important predictors for distinguishing between different damage levels.  

This was not the case for the tree species, for which the band ratios seemed most promising.  
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Since the three high-dimensional sets of explanatory variables may contain redundant information, 

feature extraction was applied prior to classification. In addition to stepwise variable selection 

methods, LDA or PCA can be used to create a set of predictors that are completely uncorrelated.  

These predictors can then be used as inputs to any subsequent regression model. The cross-validation 

of different sets of variables facilitated a straightforward interpretation of the classification models 

output (both species and damaged ash), tuning and performance. It indicated that principally each 

approach could discriminate between seven different tree species and four different levels of damaged ash, 

but the approach based on LDA generated the most significant models. 

To reduce the large number of 66 explanatory variables, a forward and backward stepwise variable 

selection was run on all variables as suggested by [68,69] by testing which of the variables were 

significant with an error probability of <5%. Although this method is often used, it turned out to be 

less effective in selecting a subset of the explanatory variables for discriminating the tree species and 

ash damage classes. Empirical tests showed that the variables with the four highest scores seem to be 

most appropriate. The biggest challenge with the first approach was the handling of the large number 

of 66 input variables [69], as it included, for each variable, the mean, standard deviation, square of the 

mean, and square of the standard deviation. Stepwise procedures are straightforward and thus 

relatively inexpensive computationally, but they might have some drawbacks. Since standard 

deviations and square of the standard deviations of the explanatory variables strongly depend on the 

segment and pixel size (varying crown diameter) their usage might be critical and not directly 

transferable to datasets from other sensors. Furthermore, according to [83] problems may  

also be related to redundant predictors (which is possible) and the one-at-a-time nature of  

adding/dropping variables.  

Thus, additional empirical effort was needed to assess the explanatory power of the variables and to 

determine a small set of powerful variables for the final classifications. Assorting the explanatory 

variables to different sets (e.g., [26]) is a relatively simple and straightforward method and gives an 

idea of the power of the variables derived from a specific sensor without performing a variable 

selection. To minimize the large numbers of explanatory variables of the three sets, reducing the 

variable space dimension by using a LDA was successfully tested. Other tree species and tree mortality 

classification studies (e.g., [17,25]) have also shown that a reduction of variables by LDA facilitates 

the straightforward interpretation of the classification model output, tuning and performance. 

Reduction of variable space dimension using PCA components, which explain >95% of the 

variance (cumulative proportion of all components), was less effective, especially for damaged ash. 

Although having been widely applied for feature extraction, PCA did not produce satisfactory 

classification accuracies for damaged ash in this study. However, comparable high overall accuracies 

for tree species classification were obtained by running a PCA for feature extraction. 

6. Conclusions 

In conclusion, this study tested novel methods for semi-automated classification of seven tree 

species and four different levels of damaged ash based on explanatory variables from WV-2 original 

bands and RSIs. It has been shown that LDA is a very effective method for extracting the most 

significant features. The accuracies of the tree species classification obtained in this study are in line 
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with those reported in comparable studies when based only on WV-2 bands, or even higher when 

based on RSIs. The most significant finding is that the additionally derived RSIs have a high potential 

for classifying the multiple levels of tree damages affected by fungal pathogens. The overall accuracies 

for detecting four different levels of ash damage are promising and, according to the feedback of the 

forest department, also appropriate to assess the magnitude of ash dieback of the entire area.  

In this approach, accurate and up-to-date information on the spatial distribution and health of tree 

species is provided, which is essential for forest managers. Thus, in the case of an impact, appropriate 

measures can be taken more effectively, also regarding future impacts such as storm events or possible 

insect outbreaks. For a rapid assessment of tree species diversity, the single usage of original WV-2 

bands and IHS transformations would be sufficient. Regarding the overall accuracies, we expect quite 

comparable results when applying our methods to other regions in European forests, even if alternative 

high-resolution satellite data is used. Although the results are very encouraging, the developed 

methods have several constraints, which are listed below.  

- A crucial point is the one-to-one transferability of this approach to other regions since no 

successful atmospheric correction was applied. Thus, robustness of the method (usage of RSIs 

to test classification performance) and overall accuracies might be different and likely lower.  

- The performance of an object-based classification depends on the quality of the segments, i.e., 

their approximation to the real tree crowns or parts of them. Thus, using additional 3D data 

from digital surface models may further improve the segmentation of tree crowns. Automatic 

individual tree crown delineation, as successfully applied in many studies, should also be 

further investigated. 

- Since the derivation of RSI is time consuming, simply using WV-2 bands and the band ratios 

to classify species is an efficient alternative. To distinguish different levels of damaged ash, 

alternative sensors, e.g., ALS or hyperspectral datasets should be tested. Possible modification 

of the signatures due to the pan-sharpening should be investigated as well. 

- To further improve the distinction between different levels of damaged ash or trees in general, 

the time gap between the collection of reference data and acquisition of images should be 

minimized to few weeks. Acquiring multitemporal imagery (e.g., yearly) from other  

high-resolution spaceborne sensors should also be considered. Another improvement could be to 

use a continuous approach, i.e., to give the probabilities of a damage level per crown or to predict 

the decline of foliage on a continuous scale (0–100%). Future work may also include the 

assessment of biophysical parameters based on image spectroscopy as suggested e.g., in [20,21]. 

- The usage of an independent reference dataset should be considered when applying on larger 

datasets, e.g., on the State level. 

Overcoming these constraints will underscore the advantages of satellite-based approaches  

(large area coverage, less processing and operator interaction, more spectral information) and help to 

reduce the collection of costly a-priori information (reference data sampling and additional acquisition 

of aerial imagery). 
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Appendix 

In the first variable selection approach, both the forward and backward stepwise selection algorithm 

(R module stats) was run on the 33 explanatory variables (66 means and standard deviations of them) 

to separate the significant from non-significant variables. How often each explanatory variable was 

selected automatically was then counted. 

Table A1 shows how in the tree species classification, the four highest scores (9, 8, 7, 6) of the 

stepwise selected variables were obtained for the variables: 9 (coastal, GNDVI, GR, RR), 8 (NDRE, 

NORM NIR), 7 (I[RGB], I[RGNIR1], NDVI8,4, REY), and 6 (RedEdge, H[RGB], DD, NDVI).  

Table A2 shows how, in the classification of damaged ash, the three highest scores (6, 5, 4) of the 

stepwise selected variables were obtained for the variables: 6 (REY, BR), 5 (ARVI, GNDVI, GR), and 

4 (yellow, GI2, NDVI, RR). 

Table A3 shows the proportions of trace for the discriminant scores (six for the tree species and 

three for the ash damages) obtained by the LDAs. The first trace number indicates the percentage of 

between-group variance that the first discriminant function is able to explain from the total amount of 

between-group variance. All linear discriminants were used to assess the predictive power of the new 

classification models (see Tables 5 and 7). 

For the tree species classification based on all 33 explanatory variables (66 means and standard 

deviations of them), standard deviation (σ), proportion of variance (PV), and cumulative proportion 

(CP) of the first eight PCA components are shown in Table A4. The PCAs which explain >95% of the 
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variance (PCA axes 1–7) were used to assess the predictive power of a new classification model  

(see Table 5). 

For the classification of ash damage levels based on all 33 explanatory variables (66 means and standard 

deviations of them), standard deviation (σ), proportion of variance (PV), and cumulative proportion (CP) of 

the first eleven PCA components are shown in Table A5. The PCAs which explain >95% of the variance 

(PCA axes 1–7) were used to assess the predictive power of a new classification model (see Table 7). 

Table A1. Overview of the selected variables for the tree species classification. For each 

tree species, the number of variables (mean and standard deviation) from the stepwise 

selection are given. (--) are the non-significant or the non-selected. The total counts per 

variable is given in the last columns.  

Tree Species 

 Variable Ash Beech Douglas Fir Larch Norway Spruce Oak Poplar Total 

WV-2 

Image 

Bands 

coastal 2 2 1 -- -- 2 2 9 

blue -- 1 -- -- -- 1 1 3 

green 1 2 -- -- -- -- -- 3 

yellow 1 -- -- -- -- 1 -- 2 

red 1 1 -- -- -- -- -- 2 

RedEdge 2 -- 1 -- 1 1 1 6 

NIR1 1 1 -- -- -- -- 1 3 

NIR2 1 -- -- -- -- 1 1 3 

I[RGB] 2 2 -- -- -- 1 2 7 

H[RGB] 1 2 -- -- -- 2 1 6 

S[RGB] 1 1 -- -- -- 1 -- 3 

I[RGNIR1] 1 1 1 -- 1 1 2 7 

H[RGNIR1] 1 2 -- -- -- 1 -- 4 

S[RGNIR1] 1 1 -- -- -- 1 1 4 

Remote 

Sensing 

Indices 

ARVI -- 1 -- -- -- -- -- 1 

DD 1 1 1 -- -- 1 2 6 

GI2 2 -- -- -- -- 1 -- 3 

GNDVI 2 2 1 -- -- 2 2 9 

NDRE 2 1 1 -- 1 1 2 8 

NDVI 2 -- -- -- 1 1 2 6 

NDVI 3,5 1 -- -- -- 1 2 -- 4 

NDVI 8,4 2 2 -- -- -- 2 1 7 

NIRRY 1 1 -- -- -- -- 1 3 

NORM NIR 2 2 1 -- -- 2 1 8 

PSRI 1 1 -- -- -- -- 2 4 

REY 2 1 1 -- -- 2 1 7 

RVI 1 1 -- -- -- 1 1 4 

SA 1 1 -- -- -- 1 1 4 

VI1 1 1 -- -- -- 1 -- 3 

VIRE -- -- -- -- -- -- 1 1 

BR 1 1 -- -- -- 1 -- 3 

GR 2 2 -- -- 1 2 2 9 

RR 2 2 1 -- 1 1 2 9 
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Table A2. Overview of the selected variables for the classification of damaged ash.  

For each damage level, the number of variables (mean and standard deviation) from the 

stepwise selection are given. (--) are the non-significant or the non-selected. The total 

counts per variable is given in the two last columns. 

Damaged Ash 

Variable Level 1 Level 2 Level 3 Level 4 Total 

WV-2 

Image 

Bands 

coastal -- -- -- -- 0 

blue -- 1 1 1 3 

green -- -- -- -- 0 

yellow 1 1 1 1 4 

red 1 -- -- 1 2 

RedEdge -- -- -- 2 2 

NIR1 -- -- 1 -- 1 

NIR2 -- -- -- -- 0 

I[RGB] 1 1 1 -- 3 

H[RGB] -- -- -- -- 0 

S[RGB] 1 -- -- -- 1 

I[RGNIR1] 1 1 -- 1 3 

H[RGNIR1] -- -- 1 -- 1 

S[RGNIR1] -- -- -- -- 0 

Remote 

Sensing 

Indices 

ARVI 1 2 1 1 5 

DD 1 -- -- 1 2 

GI2 1 -- 1 2 4 

GNDVI 1 1 1 2 5 

NDRE 1 -- 1 1 3 

NDVI 1 1 1 1 4 

NDVI 3,5 2 -- 1 -- 3 

NDVI 8,4 1 -- 1 1 3 

NIRRY 1 1 -- 1 3 

NORM NIR 1 -- 1 -- 2 

PSRI 1 -- -- -- 1 

REY 2 2 1 1 6 

RVI 1 -- -- -- 1 

SA 1 -- 1 1 2 

VI1 -- -- 1 1 2 

VIRE 1 -- -- 1 2 

BR 2 1 1 2 6 

GR 2 1 2 -- 5 

RR 1 1 2 -- 4 

Table A3. Overview of the proportion of trace obtained by the LDAs based on all 33 

explanatory variables (66 means and standard deviations of them).  

 LD1 LD2 LD3 LD4 LD5 LD6 

Tree Species 0.891 0.056 0.041 0.009 0.003 0.001 

Damaged Ash 0.872 0.089 0.038 -- -- -- 
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Table A4. Overview of the first eight PCA components used for the classification of tree 

species. The measures are: standard deviation (σ), proportion of variance (PV), and 

cumulative proportion (CP). 

Tree Species PCA Components 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

σ 4.44 3.32 2.84 1.73 1.40 1.09 0.82 0.69 

PV 0.41 0.23 0.17 0.06 0.04 0.03 0.01 0.01 

CP 0.41 0.64 0.81 0.87 0.91 0.94 0.95 0.96 

Table A5. Overview of the first eight PCA components used for the classification of 

damaged ash. The measures are: standard deviation (σ), proportion of variance (PV), and 

cumulative proportion (CP).  

Damaged Ash PCA Components 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

σ 4.58 3.57 2.26 1.67 1.39 1.03 0.89 0.82 

PV 0.44 0.26 0.11 0.06 0.04 0.02 0.02 0.01 

CP 0.44 0.70 0.81 0.87 0.91 0.93 0.95 0.96 
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