
Supplementary information 
A. Megatrend selection procedure 

Longlist of trends constructed using the STEEP framework 

Trend Social Technological Economic Environmental Political 
Demographic 
changes X  X   

Urbanization X  X   

Climate change 
impacts    X  

Climate change 
mitigation X X X X X 

Dietary changes   X  X 

biotechnology 
innovation  X    

Agricultural 
industrialization  X X   

Automation and 
mechanization  X X   

Digitalization  X    

Inequality   X  X 

Migration X    X 

Globalization   X  X 

Shifting societal 
values and 
lifestyles 

X   X X 

Natural resource 
scarcity   X   

Changing agri-
food value chains   X  X 

Financialization of 
agriculture      

Renewable 
energy 
developments 

 X X   

Consumerism X  X   

Global food 
security   X   

Global rush for 
land   X  X 



B. Mapping procedures for environmental action space 
Excess nutrients 

For excess nutrients, the Farm2Fork strategy aspires to cut this by 50% by 2030. We use results from 
a coupled biogeochemistry (DNDC) and agricultural economic (CARPI) model (unpublished follow-up 
work similar to (Leip et al., 2008). These results are valid for 2018 and show the soil surface surplus 
of nitrogen based on the total nitrogen input and the crop or vegetation nitrogen retention. While no 
baseline is specifically mentioned in the Farm2Fork goal, we calculated an aspirational 2030 per-
hectare target by summing the current excess nitrogen within the EU and dividing it by two. When 
this budget is evenly distributed across all current EU used agricultural land, a target of 45.7 kg ha-1yr-

1 is derived. In other words, if every hectare produces only 45.7 kg of excess nitrogen annually, the 
2030 target of -50% would be reached. This analysis does not take non-nitrogen nutrients into 
account. The resulting map shows, for each CAPRI farm soil unit, the level of exceedance compared 
to the target. The accompanying graph shows the percentage agricultural area exceeding the target 
by country. 

Pesticide use 

A similar aspirational target set out in the Farm2Fork strategy is to reduce the use and risk of 
pesticides by 50% by 2030. We engage with the use target, and use the PEST-CHEMGRIDS database 
(Maggi et al., 2019) to establish current pesticide use as well as a formal per-hectare target. Similar 
to the nutrient approach described above, we calculate a 2030 budget meeting the 50% reduction 
target by dividing the current total volume of pesticide use across all 20 active ingredients and all 20 
crop groups in the PEST-CHEMGRIDS database in the EU by 2. We use the more conservative low 
estimates in this database. Distributing the thus acquired 2030 budget volume evenly across all used 
agricultural land in the EU yields a target of 1.4 kg ha-1yr-1. The map shows, for each PEST-
CHEMGRIDS grid cell (5 arcmin cell size), the level of exceedance compared to the target. The 
accompanying graph shows the percentage agricultural area exceeding the target by country (taking 
into account within-cell shares of agricultural area). 

Antibiotic use 

The Farm2Fork strategy aims to reduce antibiotics use in livestock by 50% by 2030. However, we 
measure performance compared to a more widely recognized target of 50mg of antibiotics per 
population-corrected unit (Van Boeckel et al., 2017). A population-corrected unit corresponds to a 
kilogram of animal product. Current (2015) antibiotics use is mapped at the national scale, using data 
from the European Medicines Agency collated by Our World In Data (2021).  

Emission intensity, share, and progress 

Emission intensity is measured as the total 2016 CO2-equivalent emissions attributed to agriculture 
divided by used agricultural area (data: EUROSTAT (2021), gap-filled for Norway and Switzerland 
using numbers collated by Our World in Data (Ritchie et al., 2021).  

The share of agriculture in total emissions was obtained by dividing the country’s agricultural 
emissions by the total non-tradeable emissions. This denominator constitutes the Effort Sharing 
emissions, which are more relevant than total emissions because agricultural emissions cannot be 
traded in emissions trading schemes. Only binding targets set out in the Effort Sharing regulation 
therefore have bearing on agriculture.  



We measure to what extent recent emission reduction efforts in the Effort Sharing emissions are on- 
or off-track to meet binding 2030 targets by calculating the difference between the required annual 
emission cuts for each individual country to meet its 2030 target and the actually attained speed of 
emission reduction between 2005 and 2018 (data: European Environment Agency (2019b), gap-filled 
with Our World in Data (Ritchie et al., 2021)). We assume that large differences in attained versus 
required reduction speed imply that current strategies are insufficient and a contribution by 
agriculture is more likely to be demanded. Effort-sharing targets for Norway and Switzerland were 
derived from national policy documents (Federal Council, 2021; Norwegian Ministry of Climate and 
Environment, 2019). 

 

 

C. Horizon scanning 
 

1. Climate change 

 

 Mechanisms References Thresholds 

Potential 
yield 
trends 

Negative  marginalization 
Where climate change reduces biophysical suitability for 
the currently grown crop mix, in already suboptimal areas 

9, 10, 11, 12, 
24, 27, 30, 
38 

 
M: Marginalization 
C: Systemic Change 
P: Persistence 

Negative  systemic change 
Where climate change reduces biophysical suitability for 
the currently grown crop mix and significant adaptation is 
needed. Farmers may change the crop mix, apply climate-
smart solutions, build indoor or irrigation infrastructure, 
and improve their management strategies. 

12, 20, 26, 
27, 38 

Positive  Persistence 
Where climate change increases biophysical suitability for 
the currently grown crops, the current system can 
become more competitive, reinforcing system resilience 
and removing incentives to change 

11, 12, 13, 
16, 17, 23, 
25, 29, 30 

Strongly positive  systemic change 
Where climate change makes the current system more 
competitive, this can enable investments and 
intensification 

16, 38 

Drought 
risk trends 

Positive  marginalization 
Where drought hazard increases and there is limited 
scope for adaptation  

9, 11, 12 >0.7 increase in drought 
events/decade in 2041-2070 
compared to 1981-2010 
AND >50% likelihood of 
impact 

 

 

 

 

 

 



 

 

2. Demographic changes 

Farmer demography 

Very young; or getting younger  systemic 
change 
Young farmers are more likely to make large 
changes in farm management 

23, 28, 39, 
40 

 
M: Marginalization 
C: Systemic Change 
P: Persistence 

Very old; or getting older  systemic change 
An ageing farmer population and limited 
succession can result in farm consolidation, 
scale enlargement, polarization, and 
automation 

23, 40 

Old; or very old and getting older  
persistence 
Older farmers are less likely to make large 
changes in farm management 

40 

Very old and getting older  marginalization 41 
Getting older  (sign of) marginalization 
An ageing farmer population with limited 
succession have a tendency to decrease 
management intensity or gradually abandon 
farming altogether. Ageing is also a sign of 
marginalization 

8, 9, 23 

Trends in working-
age population 

Decreasing  marginalization 
Low labor availability can make farm system 
unviable and is a driver of land abandonment 

7, 11, 28, 29 Annual working-age 
population change <1% 

 

3. Productivism and post-productivism shifts 

Economic farm size 
trends 

High-EFS dominated regions with increasing EFS 
ratio trends  sign of persistence 
The current system, characterized by 
productivism, continues 

 

 
M: Marginalization 
C: Systemic Change 
P: Persistence 

Low-EFS dominated regions with slowly 
increasing EFS ratio trends  sign of 
persistence 
Gradual, incremental changes 

 

Low-EFS dominated regions with rapidly 
increasing EFS ratio trends  sign of systemic 
change 
A reorientation towards productivism 

1, 3, 5, 28, 
30 

High-EFS dominated regions with decreasing 
EFS ratio trends  sign of systemic change 
A reorientation from productivism to 
multifunctionality (very few cases)  

30 

Decreasing EFS ratio trends  sign of 
marginalization 

33 

Emergence of very 
large livestock 
holdings 

Agglomeration of very large livestock holdings 
 sign of systemic change 

34, 35 Amount of livestock 
holdings with more than 
500 livestock units > 170 
(third quartile) 



Emergence of 
organic agriculture 

High share of farmland managed organically 
 sign of systemic change 

1, 2, 3, 29 % of used agricultural area 
farmed organically > 9% 
(third quartile) 

 

 

4. Environmental action space 

Tightening of excess 
nutrient generation, 
pesticide use, and 
antibiotic use 

High levels of exceedance relative to proposed 
target  systemic change 
Regions strongly exceeding announced targets 
are less able to meet targets using minor 
changes only and may instead need to 
drastically redesign their farm system 

36, 37 
 

C: Systemic change 
Excess nitrogen > 91.4 kg ha-

1yr-1 
Pesticide use > 2.8 kg ha-1yr-1 
Antibiotic sales > 100mg/PCU 
(Double exceedance of target) 

Greenhouse gas 
emission policies 

Countries with high pressure on agriculture to 
contribute to reduction progress  systemic 
change 
Regions in countries where the agricultural 
sector is characterized by a combination of high 
GHG intensity, a large contribution in total non-
tradeable emissions, and insufficiently fast 
emission reduction progress are likely to 
require farm system redesign to meet their 
targets. 

37 GHG reduction pressure score 
> 1.2 (third quartile) 

 

 

References in tables above:
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7. (Lasanta et al., 2016) 
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11. (Kuemmerle et al., 2016) 
12. (Holman et al., 2017) 
13. (van der Sluis et al., 2016) 
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30. (Stürck et al., 2018) 
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33. (Leal Filho et al., 2017) 
34. (Breeman et al., 2013) 
35. (de Bakker et al., 2012) 
36. (Stokstad, 2019) 
37. (van der Ploeg, 2020) 
38. (Bindi and Olesen, 2011) 
39. (Scherer et al., 2018) 
40. (Zagata and Sutherland, 2015) 
41. (Eistrup et al., 2019) 

   



D. Economic farm size: additional visualization 
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E. Environmental policy stringency through time 

 

Environmntal policy stringency index, as assessed by (OECD, 2016). The index is measures the 
environmental stringency, with scores ranging between 0 (not stringent) and 6 (highest degree of 
stringency).  
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