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Abstract

Passive acoustic methods are increasingly used in biodiversity research and

monitoring programs because they are cost-effective and permit the collection

of large datasets. However, the accuracy of the results depends on the bioacou-

stic characteristics of the focal taxa and their habitat use. In particular, this

applies to bats which exhibit distinct activity patterns in three-dimensionally

structured habitats such as forests. We assessed the performance of 21 acoustic

sampling schemes with three temporal sampling patterns and seven sampling

designs. Acoustic sampling was performed in 32 forest plots, each containing

three microhabitats: forest ground, canopy, and forest gap. We compared bat

activity, species richness, and sampling effort using species accumulation curves

fitted with the clench equation. In addition, we estimated the sampling costs to

undertake the best sampling schemes. We recorded a total of 145,433 echoloca-

tion call sequences of 16 bat species. Our results indicated that to generate the

best outcome, it was necessary to sample all three microhabitats of a given for-

est location simultaneously throughout the entire night. Sampling only the for-

est gaps and the forest ground simultaneously was the second best choice and

proved to be a viable alternative when the number of available detectors is lim-

ited. When assessing bat species richness at the 1-km2 scale, the implementation

of these sampling schemes at three to four forest locations yielded highest labor

cost-benefit ratios but increasing equipment costs. Our study illustrates that

multiple passive acoustic sampling schemes require testing based on the target

taxa and habitat complexity and should be performed with reference to cost-

benefit ratios. Choosing a standardized and replicated sampling scheme is par-

ticularly important to optimize the level of precision in inventories, especially

when rare or elusive species are expected.

Introduction

Species richness is a widely used variable in ecological

research (Purvis and Hector 2000) and a key indicator of

biological diversity in monitoring programs (Yoccoz et al.

2001). However, a species count often underestimates the

true number of species present (Kery and Schmid 2006),

in particular, in rare, elusive, and nocturnal taxa.

In the past three decades, acoustic survey methods have

become increasingly popular in faunistic biodiversity

studies. Today, a wide range of terrestrial animals

that produce sounds may be acoustically sampled, most

prominently bats (Obrist et al. 2004), insects (Chesmore

and Ohya 2004), amphibians (Huang et al. 2009). and

birds (Wimmer et al. 2013). Apart from being noninva-

sive and cost-effective, acoustic sampling is superior

to other methods, such as capturing, which is difficult to

implement in cluttered habitats as forests and tends to

underestimate species richness (MacSwiney et al. 2008).

With passive acoustic sampling techniques (researcher

absent), considerable quantities of data about species

presence, abundance, and species behavior at large

spatiotemporal scale can be collected. Thus, acoustic

methods can be used to estimate population density

(Marques et al. 2013), study animal behavior (Lynch

et al. 2013), or assess and track changes in species com-

position in a context of habitat modification and climate

change (Blumstein et al. 2011).
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Recent technological advancements have allowed acous-

tic studies of bats to be more effective and accurate.

Employing new technologies, several new bat detectors

have emerged which are increasingly sensitive and include

omnidirectional microphones, thus improving overall bat

detection (Britzke et al. 2013). In parallel with improve-

ment in ultrasonic detectors, different types of software

for bat species identification based on specific algorithms

have been developed to deal with the interspecific conver-

gence in bat call design and intraspecific structural varia-

tion (Vaughan et al. 1997; Russo and Jones 1999; Parsons

and Jones 2000; Obrist et al. 2004; Preatoni et al. 2005).

While some applications help ecologists to analyze bat

echolocation calls with automated extraction of call fea-

tures, others allow an automatic classification and identi-

fication of bat echolocation call recordings by statistically

associating unknown calls with reference calls. Despite

constantly improving methods for bat detection and spe-

cies identification, extrinsic factors may still bias the

acoustic sampling. These factors include habitat features

such as cluttered forests which induce bats to change the

echolocation call structure and reduce call intensity (Brig-

ham et al. 1997; Schnitzler and Kalko 2001), thereby

reducing detection and making species identification

more difficult.

To enhance acoustic sampling in forests, effects of posi-

tion, orientation, and number of detectors on bat detec-

tion must be accounted for. While Weller and Zabel

(2002) highlighted the importance of deploying detectors

well above ground level and orienting microphones

toward cluttered space, Duchamp et al. (2006) showed

the need to laterally deploy at least two detectors in heter-

ogeneous forest stands. The vertical stratification of bat

activity in forests has been demonstrated for communities

in North America (Kalcounis et al. 1999), Australia

(Adams et al. 2009), and Europe (M€uller et al. 2013).

This means that sampling forests require detectors at both

the ground layer and higher strata up to the canopy (Brit-

zke et al. 2013). Despite evidence that bats use three-

dimensions of forest space to forage (Jung et al. 2012),

no acoustic sampling scheme has been specifically evalu-

ated for the ability to inventory forest bats. Given that

forests provide both roosting and foraging habitats for a

majority of bat species (Dietz et al. 2007), there is strong

incentive for scientists, wildlife managers, and agencies to

know the type of acoustic sampling methods that best suit

project-specific goals regarding forest bat inventories.

The aims of our study were (1) to compare activity

patterns of bat guilds among forest microhabitats; (2) to

evaluate the utility of different acoustic sampling schemes

(i.e., number of bat species detected) and effectiveness

(i.e., number of nights invested) by testing different sam-

pling designs (i.e., spatial positions of the bat detectors)

associated with various temporal sampling patterns (i.e.,

time windows to sample during a night); and (3) to assess

the time and cost of assessing bat species richness in for-

ests by implementing the best sampling schemes at differ-

ent forest locations. Forest microhabitat preferences of

bats depend on foraging strategy and ecomorphological

traits (Norberg and Rayner 1987). Consequently, we

hypothesized to detect more species when employing a

sampling protocol that takes vertical and horizontal strati-

fication of forest habitats into account. Furthermore, as

bat activity varies temporally during the night and among

species (Hayes 1997; Skalak et al. 2012), we hypothesized

to detect more species by extending the sampling pattern

from 4 h to full-night recordings. Finally, we hypothe-

sized to find a trade-off between material and labor costs

depending on the spatiotemporal requirements of the

respective sampling schemes.

Material and Methods

Study area and site selection

The study was conducted in the Canton of Aargau

(47°140–47°620N, 7°710–8°460E; 1404 km2), in northwest-

ern Switzerland. The area lies in the biogeographical

regions of the Swiss lowlands and Jura Mountains, with

altitudes ranging from 260 to 910 m a.s.l. More than

one-third of the area (37%) is covered by mixed decidu-

ous and coniferous forests, of which 80% are managed

for wood production and the remaining 20% for other

purposes, such as biodiversity conservation or recreation.

The most abundant tree species are Fagus sylvatica (32%),

Picea abies (26%), and Abies alba (14%) (Departement

Bau, Verkehr und Umwelt 2010).

We implemented a stratified random sampling design

(Fig. 1) to select eight cells of 1 km2 (mean distance

between cells: 13.6 km), based on the national mapping

grid. We considered only cells with at least 50% forest

cover, as delineated by the digital mapping product VEC-

TOR25 (Swisstopo 2013), and randomly selected cells

with respect to the altitudinal gradient. To avoid potential

biases arising from foraging areas other than forests, can-

didate cells were at least 100 m from any bodies of water.

In each cell, we randomly selected four plots that were

entirely located within forests. In each plot, we identified

three sites each representing a particular microhabitat:

two were located in the forest interior: (1) the forest

ground and (2) the respective canopy above; and (3) one

in the center of a nearby forest gap.

To minimize confounding edge effects, we selected sites

with minimal distances of 50 m and 20 m from forest

edges and forest roads, respectively. Within the 1-km2

cells, plots were 145–800 m (mean 429 m) apart, and
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within plots, forest and gap sites were located 46–140 m

(mean 81 m) from each other. Only deciduous and

mixed forests were considered. The area of forest gaps

ranged from 450 to 3950 m2 (mean 1318 m2).

Acoustic sampling

To record bat echolocation calls, we used 12 ultrasound

detectors (Batlogger; Elekon AG, Lucerne, Switzerland).

Detectors contained water-resistant and omnidirectional

microphones sensitive from 10 to 150 kHz (�5 dB). Each

detector was placed in a Strongbox (Elekon AG, Lucerne,

Switzerland), which provided protection from weather,

and augmented energy autonomy to about 135 h using

three Li-ion cells.

Bat activity was recorded on 71 full nights between 4

June and 29 August 2013. No sampling was undertaken

on nights with rainfall and minimum temperatures below

7°C. Detectors were programmed to record sounds auto-

matically between 21:30 and 05:30, triggered by tonal

ultrasound signals. Using 12 ultrasound detectors, 1 km2

could be sampled per night (Fig. 1). We sampled each

square km for three or four consecutive nights before

moving to the next square km. The detectors were ran-

domly switched between sites after each rotation to avoid

possible bias. Each cell was sampled 6–12 nights during

the field session.

In the forest ground and the forest gap, detectors were

mounted on a pole 1.35 m above the ground. For the

canopy sites, we selected deciduous trees representative of

the forest stand and used a slingshot, ropes, and a pulley

system to install the detectors in the upper canopy. The

height of the detectors ranged from 13.5 to 30 m (mean

18.9 m), which corresponds to 85% of the mean stand

(30 9 30 m) height, as calculated from a digital surface

model (C. Ginzler, pers. comm.).

Echolocation analysis

To identify bat echolocation calls to the species, we used

the software BatScope (Boesch and Obrist 2013). BAT-

SCOPE cuts every recorded series of echolocation calls

(here after simply termed “sequence”) into single calls

and processes them into spectrograms (0.31 kHz 9

0.16 ms resolution), from which it extracts 23 numeric

variables. Based on three different classification algorithms

– support vector machine (SVM), K nearest neighbor

(KNN), and quadratic discriminant analysis (QDA) – calls

are then classified to species, taking into consideration

the respective variable values from 19,636 reference calls

from 28 European species (Obrist et al. 2004). The cor-

rect classification rate of calls reaches 95.7% when only

considering calls classified to the same species by all three

classifiers. By doing so, 23.6% of all calls are being

rejected from classification as being too ambiguous to

identify (see Table 1 in Boesch and Obrist 2013).

After automatic classification of calls, we performed a

semiautomatic identification of bat sequences with differ-

ent filter combinations (e.g., the sequence contains >10
calls, and >80% of the calls are classified with >70% con-

fidence to a single species) to associate sequences to the

best taxonomic level possible: species, species groups,

genus, and genus groups.

A manual control with BatScope and RavenPro (Charif

et al. 2004) was used (1) at the call level to avoid misclas-

sification of background noises to bat echolocation calls

and to bring in expert knowledge to distinguish obvious

calls (e.g., social calls); (2) at the sequence level to test

each filter for errors in the semiautomatic verification

process. To that end, we manually verified 10% of the

sequences that were automatically classified to species

with easy discernibility (e.g., Pipistrellus pygmaeus, Pipi-

strellus pipistrellus, Myotis myotis) and 33% of the

sequences from species that are easily confused with oth-

ers (e.g., Pipistrellus nathusii, Pipistrellus kuhlii or Myotis

brandtii, Myotis mystacinus, etc.).

As echolocation calls are similar between some species

(Obrist et al. 2004), we grouped (1) Plecotus auritus and

Plecotus austriacus into Plecotus sp.; (2) Nyctalus noctula

and Nyctalus leisleri into Nyctalus sp.; and (3) Eptesicus

serotinus and Eptesicus nilssoni into Eptesicus sp. We further

classified bats into three different guilds, according to their

clutter resistance and echolocation range (Schnitzler and

Kalko 2001): short-range echolocators (SRE), middle-range

echolocators (MRE), and long-range echolocators (LRE)

(for details, see Frey-Ehrenbold et al. 2013).

Figure 1. Stratified random sampling design: sampling sites (●),
within plots (○) in a sample of km2 cells (□) located in the Canton of

Aargau, northwestern Switzerland (not to scale).
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Statistical analyses

All statistical analyses were undertaken using R 2.15 (R

Development Core Team 2013). We assessed the activity

of the three guilds by taking into account sequences from

all taxonomic levels assignable to a guild. As a single bat

may forage around a microphone for extended periods,

we quantified activity by counting the number of 5-min

intervals containing sequences of a given species per

night. Thus, the maximum activity per night for a given

species was 96 (8 h 9 60 min/5 min). As data on activity

were not normally distributed even after transformations

but followed a Poisson distribution, we used generalized

linear mixed models (GLMMs) (function glmer, R pack-

age lme4) with a Poisson distribution to analyze the dif-

ferences between the guilds’ activities as a function of

microhabitat. Ambient temperature and type of micro-

habitat were considered as fixed effects, whereas the num-

ber of sites (32 per microhabitat) and nights (6 to 12)

were implemented as random effects to avoid pseudo-

replications. We applied a stepwise regression method to

select the best models using the Akaike information crite-

rion (Burnham and Anderson 2004), choosing the model

with the fewest parameters when models were considered

equivalent (DAIC < 2).

We estimated bat species richness and evaluated the

minimum sampling effort required to achieve a complete

inventory of bats using species accumulation curves (Mo-

reno and Halffter 2000; Gotelli and Colwell 2001). For

species grouped together in the same genus (i.e., Plecotus

sp., Nyctalus sp., and Eptesicus sp.), a group was consid-

ered to be one taxon in the analysis. We used the func-

tion specaccum in the R package vegan to calculate curves

for single microhabitats and for combinations of micro-

habitats belonging to the same plot, thereby evaluating

three different temporal sampling patterns: (1) recording

over the full night, (2) recording for only the first 4 h

after sunset (21:30–01:30), and (3) recording for 4 h split

into two sessions, the first after sunset (21:30–23:30) and

the second before sunrise (03:30–05:30). The number of

sampling nights was considered as the sampling effort.

Sampling order was randomized 1000 times to avoid pos-

sible order specific bias and to produce smooth rarefac-

tion curves. To account for potentially unequal numbers

of sampling repetitions (e.g., due to low temperature)

and at the same time allow for extrapolating and compar-

ing species accumulation curves, we fitted the Clench

equation (Soberon and Llorente 1993) to our data:

SðtÞ ¼ at=ð1þ btÞ (1)

where S(t) is the predicted number of species at sampling

effort t, a is the rate of increase at the beginning of sam-

pling, and b is a parameter related to the shape of the

accumulation of new species during the sampling. The

Clench equation is appropriate to use when the probabil-

ity of adding new species decreases with the number of

species already detected, but increases over time (Soberon

and Llorente 1993). Model parameters a and b were

Table 1. Number of sequences per bat species recorded in each microhabitat.

Species Guild

Forest gap Forest ground Canopy Total

No. of sequences % No. of sequences % No. of sequences % No. of sequences %

Eptesicus spec. LRE 241 0.46 22 0.05 26 0.07 289 0.22

Hypsugo savii MRE 7 0.01 0 0.00 3 0.01 10 0.01

Myotis brandtii SRE 33 0.06 33 0.08 29 0.08 95 0.07

Myotis bechsteinii SRE 1 0.00 2 0.00 3 0.01 6 0.00

Myotis daubentonii SRE 211 0.40 570 1.36 280 0.79 1061 0.82

Myotis emarginatus SRE 47 0.09 228 0.54 137 0.38 412 0.32

Myotis myotis SRE 221 0.42 578 1.38 24 0.07 823 0.63

Myotis mystacinus SRE 19 0.04 132 0.32 19 0.05 170 0.13

Myotis nattereri SRE 4 0.01 13 0.03 0 0.00 17 0.01

Nyctalus spec. LRE 223 0.42 13 0.03 13 0.04 249 0.19

Pipistrellus kuhlii MRE 1420 2.70 436 1.04 413 1.16 2269 1.75

Pipistrellus nathusii MRE 8954 17.04 1271 3.04 773 2.17 10,998 8.46

Pipistrellus pipistrellus MRE 41,111 78.24 38,402 91.76 33,827 94.94 113,340 87.17

Pipistrellus pygmaeus MRE 38 0.07 130 0.31 75 0.21 243 0.19

Plecotus spec. SRE 13 0.02 20 0.05 8 0.02 41 0.03

Vespertilio murinus LRE 4 0.01 0 0.00 0 0.00 4 0.00

Total 52,547 41,850 35,630 130,027

LRE, long-range echolocators; MRE, middle-range echolocators; SRE, short-range echolocators.
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obtained by fitting nonlinear least square procedures

(function nls) using the R package stats. Finally, we fitted

species accumulation curves for distinct microhabitats

and for combinations of microhabitats for the three

temporal sampling patterns, by averaging the correspond-

ing model’s parameters. Because reaching 100% species

richness in forests requires a large sampling effort

(Moreno and Halffter 2000), the sampling effort was

considered satisfactory when 90% of the estimated species

richness (asymptote of the curve), occurring either at the

site level or at the plot level, was reached (Skalak et al.

2012).

To establish the number of sampling plots required for

a complete species inventory at the 1-km2 scale, we per-

formed the same procedure using data resulting from the

best sampling schemes to calculate the species richness

occurring at the plot level. We built species accumulation

curves for different numbers of sampling plots and con-

sidered the number of nights as the sampling effort.

Sampling costs estimation

Considering only the number of sampling nights as effort

when using passive acoustic methods drastically underes-

timates the total effort invested. We thus compared the

time and labor cost required for implementing the best

sampling schemes in different sampling plots to assess bat

species richness at the 1-km2 scale. We added equipment

costs to determine total costs. We associated the number

of nights (Nn) and the number of plots (Np) required in

the sampling schemes previously evaluated to be optimal

to (1) the time related to the fieldwork (Tf) (see details in

Table S1, Supporting Information) and (2) the time

required for the echolocation analysis (Ta). To estimate

Ta, we calculated the mean number of sequences recorded

per night and per plot (Xs) according to the sampling

scheme used. Then, we estimated the average time

required to identify a certain number of bat sequences to

the species level, by quantifying the mean number of

workdays required for three users of BATSCOPE. Here, we

took into account the time needed for the manual species

identification and for developing filters, which allowed for

automatic identification. The results were converted into

time/sequence (A). Finally, we measured the total time

invested (Tt):

Tt ¼ Tf :Nn:Np þ Ta:Nn:Np with Ta ¼ A:Xs (2)

Given an average salary for skilled technicians of 50 €

per hour and for scientific experts of 100 € per hour, we

estimated the labor costs of forest bat inventories, and the

total cost, by adding the cost of detectors (Batlogger:

1645 €/unit).

Results

Using 12 detectors during 71 nights at 96 sampling sites,

we recorded 145,433 bat sequences containing a total of

2,064,188 bat calls. We identified 129,671 sequences

(89.2%) to the species level, 10,948 sequences (7.5%) to a

species group, 4128 sequences (2.8%) to the genus level,

and 168 sequences (0.1%) to a genus group. A total of

518 sequences contained only one bat call, or calls that

were unidentifiable. Thus, we assigned them to the order

Chiroptera (0.4%).

In total, 16 of 20 bat species recorded for the Canton

of Aargau were detected in our study (Table 1). Among

these 16 bat species, three belonged to the LRE guild, five

to the MRE guild, and eight to the SRE guild. The most

frequent species identified belonged to the genus Pipistrel-

lus, with 87.2% of all sequences assigned to Pipistrellus

pipistrellus, 8.5% to Pipistrellus nathusii, and 1.8% to Pipi-

strellus kuhlii. As Pipistrellus pipistrellus was present in all

sites and dominant in each microhabitat, we excluded this

species from the analyses of activity to have a better

understanding of the other species belonging to the MRE

guild.

Bat activity

The activity of the LRE and the MRE guilds was best

explained by models that included the effect of the micro-

habitat (Table 2). While the activity of the SRE guild did

not differ among microhabitats, the LRE and MRE guilds

showed a preference for forest gaps (Fig. 2). Within

guilds, activity did not differ between the forest ground

and the canopy.

Species richness

Site-specific estimates of bat species richness proved high-

est in gaps, followed by forest ground, and canopy

(Fig. 3; Appendix S1, Supporting Information). At the

plot level, we found bat species richness to be highest

when all three sites were combined (Fig. 4). However,

when considering only two sites, the best site combina-

tion for assessing bat species richness within a plot was

the “Forest gap + Forest ground” combination, in which

we recorded 90% of the full species assemblage, albeit

with considerable effort of 33 sampling nights.

Bat species richness increased when the sampling dura-

tion was extended, regardless of the microhabitats or

their combination (Figs. 3 and 4). Full-night sampling

was necessary to make a good estimate of the number of

species present. Further, by comparing 4-h sampling

(first half of the night) to the double 2-h sampling (2 h

after dusk and 2 h before dawn), we found that species
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richness was on average higher during the first part of

the night (Fig. 3).

Sampling effort

The minimum sampling effort required to record 90% of

the species occurring at a site varied between the micro-

habitats and the temporal sampling patterns (Fig. 3). We

found that the sampling effort needed was lowest in the

forest gap (17 nights), followed by the forest ground (18

nights), and the canopy (20 nights). Only with full-night

sampling was it possible to reach 90% of the total species

richness.

To reach 90% of the total bat species richness at the

plot scale, only two sampling schemes proved to be ade-

quate: full-night sampling either in the three microhabi-

tats (12 nights) or in the “Forest gap + Forest ground”

combination (33 nights) (Fig. 4). With the other schemes,

90% of the total bat species richness could not be

achieved or required an effort of more than 50 nights.

Sampling costs

Based on the ideal sampling scheme at the plot scale, we

estimated the number of plots required to assess bat spe-

cies richness at the square km scale and the correspond-

ing temporal and financial resources needed. We found

two trends (Table 3). First, when increasing the number

of plots, the time for field management and analysis

decreased due to a lower number of sampling nights

required (Fig. 5). Second, considering material costs, the

costs turn out to be very similar between the different

scenarios. As sampling a single plot would never lead to

reaching the required total species richness, the costs for

this scenario were not calculated. By considering together

the labor costs with the detector costs, we found that

about 37 000 € (�1465 €) are needed when sampling in

the three microhabitats regardless of the number of plots

and 34 000 € (�633 €) when considering only the “Forest

gap + Forest ground” combination.

Discussion

We found that using passive acoustic methods to accurately

register species presence depends on the temporal and spa-

tial replication of a standardized sampling technique. Stud-

ies that restrict their surveys to a particular time window

during the night or a particular forest layer or microhabitat

(e.g., forest gap) will likely underestimate true species rich-

ness. The observed species richness deviates from the true

species richness N due to each species’ detection probability

p, which varies among the species present (MacKenzie and

Kendall 2002). With temporal and spatial replication, we

strived to compensate for detection probabilities that differ

between species. It is well known that detection probabili-

ties of bats are less than one: deviations usually stem from

observer biases, weather conditions, species characteristics,

and abundances, and habitat variability (Meyer et al.

2011). Observer biases can be excluded in our study

because we used an automated technique (MacSwiney et al.

Table 2. Predictors of GLMMs with AIC explaining differences in activity per guild.

Models No. of parameters

LRE MRE SRE

AIC DAIC AIC DAIC AIC DAIC

Temperature + microhabitat 6 699.5 0.0 8302.4 0.3 5259.4 0.1

Microhabitat 5 701.2 1.7 8302.0 0.0 5267.7 8.4

Temperature 4 749.0 49.5 8344.9 42.8 5259.0 0.0

Guilds: LRE, long-range echolocators; MRE, middle-range echolocators; SRE, short-range echolocators. Bold numbers indicates best fitting models

for each guild.

0
1

2
3

4

lo
g(
(a
ct
iv
ity

+1
),2

)

GR CA GA GR CA GA GR CA GA

***
***

***
***

NS
NS

LRE MRE SRE

Figure 2. Activity measures of different bat guilds (LRE: long-range

echolocators, MRE: middle-range echolocators without P. pipistrellus,

SRE: short-range echolocators) for the three microhabitats (GR: forest

ground, CA: canopy, and GA: forest gap). ***p < 0.001. NS, not

significant.
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2008). The influence of cold and rainy weather on the

activity of bats was controlled using only data from dry

nights with minimum temperature at or above 7°C. Habitat

variability was accounted for by the sampling design within

a plot and the replication within a square km. Thus, we

assume that the pronounced differences in species abun-

dances we calculated, rather than their detectability, have

had the dominant effect on detecting species. We believe

that our observed species richness value is a good proxy for

the true resident species richness (excluding sporadic

migrants), as we were able to record 16 species on only

1.5% of the total forested study area in the canton of Aar-

gau, for which, in total, 20 species have been documented

over the last decades.

Where to sample bats in forests? – Selection
of sampling design

Our results provide ample evidence that the three-dimen-

sional structure of forests must be sampled to adequately

record bat communities. These findings corroborate Jung

et al. (2012), which show that bat species exhibit micro-

habitat preferences depending on their echolocation type

and wing morphology (Norberg and Rayner 1987). As we

showed with the activity measurement of bat guilds, for-

est gaps constitute an important microhabitat for the

majority of bat species foraging on aerial insects: bats

with high flight speed, low maneuverability (e.g., Nyctalus

sp.) known to forage in open space or in open forests,

Figure 4. Averaged bat species accumulation curves for different temporal sampling patterns as function of sampling nights in different

combinations of two microhabitats: “Forest gap + Forest ground” (●), “Forest gap + Canopy” (□), and “Forest ground + Canopy” (▲). Open

circles (○) represent the combination of all three microhabitats. Horizontal doted lines represent the threshold of 90% (see Material and

Methods), and vertical dotted lines, the corresponding number of nights (sampling effort) when sampling in four (left line) or three plots (right

line), respectively. Grey bars correspond to the range of number of nights invested in the field. Parameters of the curves are described in the

Table S3, Supporting Information.

Figure 3. Averaged bat species accumulation curves by microhabitat (n = 32) for the full-night sampling (●), the first 4 h sampling (□), and

double 2-h sampling after sunset and before sunrise (▲). Horizontal doted lines represent the species richness threshold of 90% (see Material

and Methods), and vertical dotted lines, the corresponding number of nights required (sampling effort). Grey bars correspond to the numbers of

nights invested in the field. Parameters of the curves are described in the Table S2, Supporting Information.
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used forest gaps like some species known to be edge spe-

cialists (e.g., Pipistrellus sp.) (Jung et al. 2012; Mehr et al.

2012). On the forest ground, however, bat species with

low flight speed and high maneuverability prevail (e.g.,

Myotis sp.) (Mehr et al. 2012; M€uller et al. 2013), of

which most are gleaning foragers (Schnitzler and Kalko

2001). Finally, both edge specialists and forest specialists

forage in the canopy (M€uller et al. 2013). For bats, the

canopy provides foraging opportunities along a horizontal

edge shaped by the roughness of the canopy (Jung et al.

2012).

Although sampling in all three microhabitats produced

the best results, surprisingly, sampling a combination of

only two microhabitats, the forest gap and the forest

ground, produced results similar to the ideal design,

enabling the recording of 90% of the total species richness

with a marginal increase in effort. As expected, there was

a high complementarity of species recorded in the forest

gap and those either in the forest ground or in the can-

opy. However, in contrast to our expectations, we found

a high similarity between the species detected in the can-

opy and those in the forest ground. This cannot be

explained by a possible bias of the detection because, even

though we installed the detectors in the upper part of the

canopy and not above, the high sensitivity of the detec-

tors (Adams et al. 2012) allowed us to detect both species

foraging within the canopy and species foraging on the

ground (e.g., forest specialist), as well as those foraging

above it (e.g., edge specialists and open space foragers)

(Adams et al. 2009; M€uller et al. 2013). The main reason

for this could arise from our canopy settings: the neigh-

boring density of vegetation was sometimes relatively

Table 3. Time investment and costs for different sampling schemes to reach 90% of the estimated bat species richness occurring at the km2

scale in a forest landscape.

Sampling scheme

No. of

plots

No. of nights

required

Field

management (h)

Time for

analysis (h)

Labor

cost (€)

Detector

cost (€)

Total

cost (€)

GA + GR + CA Full night [2069] 1 – – – – – –

2 11 14.8 252.9 26,030 9870 35,900

3 6 9.6 206.9 21,170 14,805 35,975

4 4 6.9 183.9 18,735 19,740 38,475

GA + GR Full night [1524] 1 – – – – – –

2 16 15.2 270.9 27,850 6580 34,430

3 9 8.7 228.6 23,295 9870 33,165

4 6 7.2 203.2 20,680 13,160 33,840

GA, Forest gap; GR, Forest ground, CA, Canopy.

The mean number of bat sequences recorded per night and per plot is given in square brackets. Field management included different field aspects

(Table S1, Supporting Information) and was based on the assumption that each field session lasts two nights. Costs are based on salaries of €50/h

for fieldwork and €100/h for acoustic analyses of the respectively recorded sequences.

Figure 5. Averaged bat species accumulation curves for the best sampling schemes as function of sampling nights for different numbers of

sampling plots to implement in a 1-km2 cell: one plot sampled (●), two plots sampled (□), three plots sampled (▲), and four plots sampled (○).
Horizontal doted lines represent the threshold of 90% (see Material and Methods) of the averaged total species richness occurring in a 1-km2

cell, and vertical dotted lines, the corresponding number of nights (i.e., the required sampling effort). Grey bars correspond to the number of

nights invested in the field. Parameters of the curves are described in the Table S4, Supporting Information.
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high, reducing maneuverability, and thus, the presence of

bats in the canopy.

When to sample bats in forests? – Choice of
temporal sampling pattern

Acoustic sampling of bats is commonly conducted in

either of three different ways: (1) at dusk only; (2) at

dusk and dawn with a break in between; or (3) for the

entire night. When sampling is performed during parts of

the night, the recording time window usually targets the

period with peak bat activity, thus assuming to record the

majority of species. However, the temporal variation of

bat activity is habitat and species-specific (Hayes 1997) as

is the time of the emergence of bats (Jones and Rydell

1994). Skalak et al. (2012) recently showed that sampling

the full night was essential to cover the bimodal peaks of

bat activity, but also to record rare species having low

detection probabilities. Our results fully support these

findings. We demonstrated that independent of micro-

habitat, sampling for the entire night resulted in the max-

imum number of bat species recorded. This means that

bat species richness is underestimated by sampling for

only 4 h per night, even when taking into account the

general bimodal peaks of bat activity.

Cost-benefit considerations

Efforts to track changes in biodiversity are subject to the

trade-off between the effort invested and the gain of

information (Duelli and Obrist 1998). Despite the fact

that sampling costs are a crucial argument for optimizing

spatiotemporal samplings, few studies have monetarily

valued the type of sampling used (Gardner et al. 2008).

Species richness estimates increase with sampling effort

up to reaching an asymptotic level representing true total

species richness present. In our study, increasing the

number of plots from three to four in a forest inventory

at the 1-km2 scale only marginally increased the estimated

total species richness (Fig. 5; Table S4), which leads us to

the conclusion that we have sampled the complete com-

munity. However, increasing the spatial replication to

four forest locations using the best sampling scheme

allowed us to reduce the number of sampling nights and

thus to save time and money to estimate bat species rich-

ness. This likely reflects higher spatial than temporal vari-

ance of bat activity among events. Nevertheless, by

adding the costs of devices required, the total costs tend

to be balanced. There is a trade-off between the number

of plots to sample for decreasing the time and consecu-

tive costs spent in the field and for the analysis, and

the number of detectors to implement, known to be

expensive.

By explicitly accounting for the time and the costs of

each step induced by the sampling effort required, we

demonstrate that the processing time required to identify

bat sequences remains the major constraint of the passive

acoustic method. As for birds (Wimmer et al. 2013), spe-

cies identification is challenging and time-consuming,

despite the recent emergence of software for automated

classification. To date, no software is robust enough to

identify at the species level all bat sequences collected in

the field. In this study, 10.8% of the total data recorded

(i.e., 15,762 sequences) were not identified to species,

leading to a slight underestimation of species richness

(e.g., the two Eptesicus species present in Switzerland were

grouped to only one taxa; numerous Myotis bat sequences

were identified as species complexes). Efforts to improve

the performance and availability of such software would

substantially alleviate inventory costs and could leverage

automated acoustic bat recording into the realm of broad

monitoring programs. Finally, we also highlight the sub-

stantial effort required to assess bat species richness in

forest habitat, even when deploying a large number of

detectors. Due to the scarcity and/or the low detectability

of some gleaning species (Meyer et al. 2011), a complete

inventory is very demanding.

Conclusion and recommendations

Adopting an effective sampling protocol to assess true

species richness in a complex environment is a challenge,

but at the same time it is a prerequisite for monitoring

trends of biodiversity across space and time (Yoccoz et al.

2001). Our findings constitute an important step toward

successfully implementing protocols that provide accurate

inventories of bats. This is important given that they are

known to be valuable bioindicators in times of global

change (Jones et al. 2009). We propose the following rec-

ommendations to optimize acoustic sampling of bats in

forests: (1) sample over the full night to achieve the most

accurate estimate of species richness; (2) sample repeat-

edly in different forest microhabitats (forest gap, ground

and canopy) reflecting the 3-D forest space used by bats;

and (3) sample different forest locations. Taken together,

this will allow us to determine species richness with less

effort and at lower cost. Our approach is applicable to

other fields such as ornithology (Digby et al. 2013), where

passive acoustic methods are beginning to be recognized

for their strengths and effectiveness to record rare species

or species with low detectability.
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Additional Supporting Information may be found in the

online version of this article:

Appendix S1. Species accumulation curve built by averag-

ing Clench model parameters (a and b) of each species

accumulation curve per site (grey points), exemplified for

the forest gap. Dotted lines represent standard errors.

Table S1. Time invested for the field management

required to sample one forest plot.

Table S2. Description of Clench equation parameters for

single microhabitats in relation to temporal sampling pat-

terns: a is the slope at the beginning of the sampling, b is

a parameter related to the shape of the accumulation of

new species during the sampling, t is the sampling effort,

a/b equals the asymptotic species richness.

Table S3. Description of Clench equation parameters for

combinations of micro-habitats in relation to temporal

sampling patterns: a is the slope at the beginning of the

sampling, b is a parameter related to the shape of the

accumulation of new species during the sampling, t is the

sampling effort, a/b equals the asymptotic species rich-

ness.

Table S4. Description of Clench equation parameters for

the best sampling schemes found for km2 cells in relation

to the number of plots: a is the slope at the beginning of

the sampling, b is a parameter related to the shape of the

accumulation of new species during the sampling, t is the

sampling effort, a/b equals the asymptotic species rich-

ness.
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