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SUPPORTING INFORMATION 1 

Appendix 1. Bayesian GLMs for non-wood ecosystem services (ES) 2 

1. Description of models for three non-wood ecosystem services 3 

The projections of the modelled non-wood ESError! Bookmark not defined. levels were 4 

obtained as follows: first, the relationships between ES and forest/climate covariates were 5 

estimated by fitting three separate Bayesian hierarchical Generalized Linear Models (GLMs; 6 

Gelman et al., 2004). Second, these relationships were used to project ES levels under Climate 7 

Change Mitigation Solutions (CCMS) and climate scenarios for all National Forest Inventory 8 

(NFI) plots (representing all productive forest) over the 21st century. We fitted hierarchical 9 

GLMs to acknowledge the hierarchical higher tract level variability of the climate variables 10 

and the lower plot-level variability of the forest variables in the NFI data. The NFI uses a 11 

randomly planned regular sampling grid and includes 29,892 permanent and temporary tracts. 12 

Each tract has been surveyed once every 5 years. The tracts, rectangular in shape and of 13 

different dimensions in different parts of the country, contain from 8 (in the north) to 4 (in the 14 

south) circular sample plots (each plot 314 m2, Fältinstruktion, 2021). 15 

In the building of the non-wood ESError! Bookmark not defined. models, we 16 

investigated including the following forest related predictors (Table S1): stand age, soil 17 

moisture, presence of peat in the parental soil, biomass of the main tree species (spruce, pine, 18 

and birch), their squared terms for modelling possible non-linear relationships, and 19 

interactions between terms. All the ES and forest predictors were measured at the NFI plots 20 

for the years 1999-2002, hereafter referred to year 2000. We further investigated including 21 

temperature and precipitation sums affecting the dynamics of the plants forming these non-22 

wood ES. They were defined as the yearly sums of mean daily temperatures and precipitations 23 

for the growing season, i.e., for all the days in the year when mean daily temperature was 24 

higher than 5 °C for at least four consecutive days, and obtained as grids with a spatial 25 
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resolution of 5 x 5 km2 from the Swedish Meteorological and Hydrological Institute. Starting 26 

temperature and precipitation sums for the Constant Climate scenario were calculated as 27 

means for the period 1989-2010 based on the RCP4.5 scenario (see paragraph 2.4 for details 28 

on the climate scenarios). 29 

The models fitted for the three non-wood ES were different to the models fitted for 30 

Gamfeldt et al (2013) in that they only included forest predictors whose dynamics can be 31 

projected with the Heureka forest simulator. For example, we excluded pH whose dynamics 32 

cannot be projected by Heureka. However, the effect of pH changes through the forest 33 

succession was captured indirectly by stand age. Other important predictors that could not be 34 

projected but could be assumed constant through the projection period, such as soil moisture, 35 

were retained and part of the model selection. We also excluded nitrogen deposition because 36 

we lack long-term projections for this variable. 37 

We modelled each non-wood ES as a function of the forest and climate predictors . For 38 

each ES, we modelled the mean (μ), transformed by the link function g (), on plot p = 1, …, 8, 39 

on tract t = 1, …, 1,394 as 40 

(eq. 1)  𝑔(𝜇𝑝,𝑡) = 𝛼𝑡 + ∑ 𝛽𝑛
𝑁
𝑛=1 𝑋𝑝,𝑡 + 𝜖𝑝,𝑡 , 41 

where 𝑋𝑝,𝑡 is a design matrix of n plot-level explanatory variables, and 𝛽𝑛 is a vector of 42 

associated effect-size parameters. Predictor variables were centered and standardized for each 43 

of the five Swedish NFI regions (Fältinstruktion, 2021). The tract-level intercept parameters 44 

𝛼𝑡 were modelled as 𝛼𝑡~𝜇𝛼𝑡
, where 𝜇𝛼𝑡

= 𝛾 + ∑ 𝜌𝑚
𝑀
𝑚=1 𝑍𝑡. 𝑍𝑡 is a design matrix of m = 1, 45 

…, M ≤ 2 tract-level, centered and standardized explanatory predictors (Tsum and Psum), 46 

𝜌𝑚 is a vector of associated effect-size parameters, and 𝛾 is an intercept parameter. 47 

The presence-absence of bilberry was modelled with a Bernoulli distribution, with a mean 48 

(μ) and a logit link function. The values of bilberry cover and wildfood plant cover larger than 49 

0 were assumed to follow beta distributions (logit link function), with two shape parameters 50 
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phi (φ) and mean (μ), and residual contributions 𝜖𝑝,𝑡, where 𝜖𝑝,𝑡 ~ N(0, σ), which means 51 

normally distributed with mean = 0 and s.d. = σ.  52 

The values of understory plant richness were assumed to follow a Poisson distribution (log 53 

link function) with overdispersion contributions 𝜖𝑝,𝑡 ~ N(0, σ). 54 

The final model for each non-wood ESError! Bookmark not defined. was selected based 55 

on the Deviance Information Criterion (DIC, Spiegelhalter et al., 2002), on the posterior 56 

distribution of the effect size parameters (𝛽𝑛 and 𝜌𝑚), and on knowledge of the biological 57 

system studied. We first assessed the predictive power of each predictor variable separately 58 

based on the DIC and on the posterior distributions of 𝛽𝑛 and 𝜌𝑚. Next, we fitted a full model 59 

containing the retained predictor variables. Finally, we simplified this full model with a 60 

backward stepwise procedure. Parameter estimates (means and ranges of the posterior 61 

distributions) for the final model for each ES are presented in Table S1. 62 

We assumed uninformative prior distributions for all parameters (Table S2). The models 63 

were fitted using the software MultiBUGS (Goudie et al., 2020) based on the BUGS program 64 

(Gilks et al., 1993). 65 

  66 
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 67 

Table S1. Estimates of parameters associated with predictors in the final model for each non-68 

wood ESError! Bookmark not defined.. The means and the outer limits of 95% Bayesian 69 

confidence intervals (in parentheses) of the posterior distributions of the parameters (𝛽𝑛, 𝜌𝑚 𝛾 70 

and φ) are shown for each ES (bilberry presence/absence, bilberry cover, wildfood plant 71 

cover, understory plant species richness). Terms not included in the final main model are 72 

labelled as NS (Not Significant). 73 

 74 

 75 

  76 

Predictor Bilberry presence/absence Bilberry cover Wildfood plant cover Plant richness

Stand age 0.329 (0.0723;0.592) 0.391 (0.313;0.467) 0.0557 (0.0209;0.0922) -0.0400 (-0.0400;-0.0390)

Stand age^2 NS -0.0942 (-0.147;-0.0427) NS 0.00900 (0.00890;0.00910)

Soil moisture -0.0170 (-0.202;0.167) -0.0436 (-0.0937;0.00120) 0.0212 (-0.0125;0.0539) 0.106 (0.106;0.106)

Soil moisture^2 -0.0386 (-0.161;0.0818) -0.0694 (-0.102;-0.0389) -0.0390 (-0.0619;-0.0180) NS

Peat soil (Y/N) -0.320 (-0.960;0.336) -0.226 (-0.399;-0.0363) -0.282 (-0.409;-0.159) -0.189 (-0.189;-0.189)

Spruce biomass -0.104 (-0.110;0.320) -0.198 (-0.268;-0.130) -0.469 (-0.517;-0.422) -0.0180 (-0.0181;-0.0179)

Pine biomass 1.03 (0.0718;1.37) 0.122 (0.0626;0.180) NS -0.0450 (-0.0451;-0.0449)

Birch biomass -0.220 (-0.378;-0.0639) NS -0.0818 (-0.116;-0.0496) 0.0310 (0.0309;0.0311)

Spruce biomass * stand age 0.840 (0.519;1.17) 0.108 (0.0489;0.170) 0.244 (0.205;0.283) 0.0470 (0.0469;0.0471)

Pine biomass * stand age NS -0.115 (-0.166;-0.0596) NS 0.0100 (0.00990;0.0101)

Birch biomass * stand age 0.361 (0.0907;0.637) NS 0.0467 (-0.00220;0.0938) -0.0130 (-0.0131;-0.0129)

Temperature sum -0.481 (-0.840;-0.131) -0.100 (-0.193;-0.00370) -0.0528 (-0.0891;-0.0178) -0.0280 (-0.0281;-0.0279)

Precipitation sum 0.252 (-0.0874;0.610) 0.0433 (-0.0521;0.136) NS NS

trak-level intercept 2.77 (2.25;3.32) -1.61 (-1.68;-1.54) -1.49 (-1.54;-1.45) 2.42 (2.42;2.47)

phi - 9.24 (8.29;10.2) 16.2 (14.8;17.6) -
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 77 

Table S2. Prior distributions for the parameters of the ES models (eq. 1 and following 78 

description). 79 

 80 

a For understory plant species richness, σ denotes the standard deviation of the plot-level 81 

overdispersion contributions. 82 

b For explanatory predictors, see Supplementary Table S1. 83 

c Uniform distribution with minimum 0 and maximum 25. 84 

d Normal distribution with mean 0 and variance 0.001. 85 

e The precision (= σ-2) followed a Gamma distribution with shape and scale equal to 0.00001. 86 

 87 

  88 

Parameter Description Bilberry presence/absence Bilberry cover Wildfood plant cover Plant richness

σp Standard deviation of the plot-level residual variationa Uniform(0, 25)c Uniform(0, 15)c Uniform(0, 20)c Gamma(0.00001,0.00001)e

β Effect-size (slope) parameter for the plot-level explanatory variables Normal(0,0.001)d Normal(0,1)d Normal(0,1)d Normal(0,0.001)d

σt Standard deviation of the tract-level residual variation Uniform(0, 15)c Uniform(0, 15)c Uniform(0, 20)c Uniform(0, 1)c

ρ Effect-size (slope) parameter for the tract-level explanatory variablesb Normal(0,0.0001)d Normal(0,1)d Normal(0,1)d Normal(0,0.001)d

γ Intercept parameter Normal(0,0.0001)d Normal(0,1)d Normal(0,1)d Normal(0,0.001)d

φ Phi parameter for the beta distribution - Gamma(1,1)e Gamma(1,1)e -
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 89 

We validated the models for non-wood ESError! Bookmark not defined. by comparing 90 

our predictions with the values observed and used for model fitting, specifically NFI data 91 

from 2000 as for Gamfeldt et al. (2013). All the three models showed a good level of 92 

predictive performance, in terms of variance explained by the model, with a classical R2 sensu 93 

Gelman et al. (2019) equal to 0.82 for bilberry presence/absence, 0.66 for bilberry cover, 0.76 94 

for wildfood plant cover, and 0.54 for understory plant richness. These estimators were 95 

confirmed by plots of observed and fitted ES fitted values (Figure S1). However, all the three 96 

models showed a limited performance in predicting high and low ES values (Figure S2).  97 

 98 

Figure S1. Histograms of actually observed and fitted values of non-wood ESError! 99 

Bookmark not defined.. 100 

 101 

 102 

  103 
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Figure S2. Plots of actually observed vs. fitted values (top row) and residuals vs. fitted values 104 

(bottom row) using models for non-wood ESError! Bookmark not defined. models. Red 105 

straight lines with equation y ~ x are provided as reference. 106 

 107 

 108 

  109 
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Appendix 2. Formulation and projection of CCMS and climate scenarios at EU and 110 

national scales 111 

 112 

1. Building the CCMS scenarios 113 

1.1 The GLOBIOM modelling framework 114 

The quantitative projections of wood and energy use for the European Union countries was 115 

conducted using the GLOBIOM integrated modelling framework (Havlik et al., 2015). 116 

GLOBIOM is a partial equilibrium model designed to investigate the impacts of policies 117 

concerning use of biomass, resource efficiency, timber production, the forest-based industry 118 

sector, bioenergy development, and land use development. In essence, it is an economic 119 

model that jointly covers the forest, forest industries, bioenergy, agriculture, and livestock 120 

sectors, and this allows considering a full range of direct and indirect effects of sustainability 121 

policies related to the use of wood and consumption of wood product. GLOBIOM has been 122 

used to investigate the impact of EU policies to enhance the bioeconomy and mitigate climate 123 

change in terms of their direct and indirect impacts on production and consumption of wood 124 

materials, international trade and future harvest levels in different countries. 125 

GLOBIOM has a detailed biophysical basis (G4M and EPIC) which ensures that the 126 

processes of biomass production, and environmental and sustainability constraints are 127 

accounted for in terms of their effects on forests. GLOBIOM further has a state-of-the-art 128 

representation of the forest industries, demand representation of wood categories, and the 129 

bioenergy sector allowing for detailed representation of the flow of wood from harvest to 130 

consumption and allowing for detailed representation of the development of new products. 131 

GLOBIOM has previously e.g., been used to assess the impacts on resource efficiency of 132 

future EU demand for bioenergy (Forsell et al., 2016), and the development of the EU level 133 

Reference Scenario for the forest and land use sectors (Capros et al., 2013). 134 
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 135 

1.2 Climate Change Mitigation Solutions scenarios for Sweden 136 

To provide an integrated assessment of the ES provision within Sweden, we couple the 137 

GLOBIOM model with that of the Heureka model via demand of wood. We first use 138 

GLOBIOM to project the national forest wood demand level for Sweden for each CCMS 139 

scenario. The national demand of wood is then used as an input to the Heureka model to 140 

project the detailed development of the forests within Sweden. Within Heureka, the three EU-141 

level Climate Change Mitigation Solutions (CCMS) scenarios described in paragraph 2.3 of 142 

the main text were projected for the Swedish forests through a combination of management 143 

regimes in variable proportion that aim to maximize Net Present Value (NPV) from timber 144 

extraction. At national level, forests are managed for maximizing Net Present Value (NPV) 145 

from timber extraction and with the constraint to deliver the wood demanded given by the 146 

three CCMS scenarios according to GLOBIOM.  147 

Using the Heureka system, forest dynamics and management were projected years 2010 to 148 

2100 in five-year time steps for the productive forest for all of Sweden, represented by the 149 

NFI plots. The projections were started with the forest conditions observed year 2010 150 

according to the NFI. Alternative development of the forest was projected in two steps. First, 151 

several alternative management regimes were generated for each spatial unit (in our case, NFI 152 

plots). Second, the most appropriate management regime for each spatial unit, based on the 153 

overall objective function and specified constraints was selected using the system’s built-in 154 

optimization tool. We specifically maximized NPV, constrained by wood demand given by 155 

GLOBIOM.  156 

The ES net biomass accumulation, carbon storage in trees and soil, and deadwood volume 157 

are output variables from Heureka. For calculating the ES bilberry cover, wildfood plants for 158 

game and plant species richness we instead applied the ES models fitted according to section 159 
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Appendix 1.1 above and with the predictors stand age, soil moisture, presence of peat in the 160 

parental soil, biomass of the main tree species (spruce, pine, and birch) output by Heureka.  161 

Eight management regimes were projected: Business As Usual (BAU: even-aged 162 

management, 10 retained trees/ha, 3 high stumps/ha, biofuel extraction at final felling, 163 

breeding is used); BAU Focus Bioenergy (like BAU, but biofuel thinning is used); 164 

Continuous Cover Forestry (CCF: uneven-aged management, only projected in spruce-165 

dominated forests); BAU Focus Bioenergy Stump Harvest (like BAU, but with extraction of 166 

spruce and pine stumps); Promoting Broadleaves (like BAU, but allowing a delay of ten five-167 

year periods in final felling, retaining birch and use them as seed trees, removing conifers at 168 

thinning and cleaning); BAU Prolonged Rotation (like BAU, but final felling is allowed 6-10 169 

periods after the lowest allowed final felling age), BAU No Thinning (like BAU, but no 170 

thinning treatment) and Set-Aside (No Management). 171 

The BAU regime was most frequently applied under the Constant Climate and under the 172 

Bioeconomy scenario (Figure S3). BAU Focus Bioenergy was frequently applied under 173 

RCP8.5 climate while BAU Focus Bioenergy Stump Harvest was instead more rarely applied 174 

in this climate. The application of BAU No Thinning and BAU Promoting Broadleaves was 175 

more frequent in RCP8.5, while BAU Prolonged Rotation and CCF were instead applied less 176 

frequently in this climate respect to climate scenarios of lower GHG concentrations. The 177 

regimes BAU Prolonged Rotation, CCF, and Promoting Broadleaves were frequently applied 178 

only under Current Policy. 179 
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Figure S3. Management regimes selected by the Heureka system for the productive Swedish forest land (represented by NFI plots), given 

combinations of Climate Change Mitigation Solutions and climate scenarios. The percentage of area is given by the frequency of application of 

the different management regimes among NFI plots. 

 



2. Building the climate scenarios 

The CCMS scenarios and forest dynamics and management were projected assuming three 

climate scenarios. The first one was Constant Climate, specifically averages of the climate 

predictors for the period 1983-1992 (the period on which the Heureka growth models are 

based, Fahlvik et al., 2014) maintained constant for the whole projection period. The other 

two scenarios were two IPCC radiative forcing scenarios, Representative Concentration 

Pathways (RCPs, van Vuuren et al., 2011), RCP4.5 and RCP8.5. Concerning forest 

projections, Heureka allows specifying using either of these scenarios in the software where 

the forest growth is affected. This further affects tree biomass, the output ES from Heureka 

(net biomass accumulation, carbon storage in trees and soil, deadwood volume) and the forest 

predictors of the models for the non-wood ES stand age and biomass of the main tree species 

(spruce, pine, and birch) and also the timing of management regimes. As climate predictors 

for the non-wood ESError! Bookmark not defined., we extracted temperature and 

precipitation sums and Psum for the projection period for the coordinates of the NFI plots, 

following the procedure in Mair et al. (2018). 

Climate projections based on RCP 4.5 assume moderate GHG emission reduction (range 

2-4.5 °C by 2100 for Sweden), and the RCP 8.5 assumes no emission mitigation undertaken 

(range 4-7 °C for Sweden). The Swedish Meteorological and Hydrological Institute (SMHI) 

has developed a high-resolution database (EURO4M) of surface meteorological variables (5 

x 5 km2) covering the period 1989-2010 from which it is possible to calculate climate indices 

useful for prediction as in the current study. Both the RCP scenarios were ensembled across 

five different global climate models (CNRM-CM5, EC-EARTH, HADGEM2-ES, IPSL-

CM5A-MR, MPI-ESM-LR) from the CMIP5 archive (Taylor et al., 2012). To increase the 

spatial resolution in the climate scenarios, data from the global models were used to force the 

regional climate model RCA4 (Stralberg et al., 2015). To further increase the resolution and 
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reduce model biases, the results were bias adjusted using a distribution-based scaling (DBS) 

method (Yang et al., 2010a, b). 
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Appendix 3. GLMs for evaluation of the effects of climate and CCMS scenarios on ES 

We applied frequentist GLMs to evaluate separately the effect of climate and CCMS 

scenarios and their interactions on levels of ES and ES multifunctionalityError! Bookmark 

not defined. summarizing their values at the beginning (2020), in the middle (2060) and at 

the end (2100) of the considered projection horizon separately in production forests and in the 

Set-aside scenario (Tables S3-S4). 

When fitting GLMs to the output of the projections, mean estimated effects for the NFI 

plots were reported along with standard errors. t tests and relative p values were used to 

address the magnitude of the effect of each scenario and its p value, under the null hypothesis 

of no effect. Significance was set at p < 0.05. In the GLMs, we assumed a normal distribution 

and used an identity link function for net biomass accumulation, deadwood volume, tree C 

storage, soil C storage and ES multifunctionalityError! Bookmark not defined. (all log-

transformed). To account for the non-normal distribution of bilberry cover and wildfood plant 

cover, we assumed for both a normal distribution and an identity link function but with an 

arcsine transformation for the first and with a log transformation for the second. For the 

counts of understory richness, we assumed an over-dispersed Poisson distribution and a log 

link function. 
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Table S3. Generalized Linear Models (GLMs) summarizing the effects of Climate Change Mitigation Solutions scenarios (Current Policy, 

Bioenergy, and Bioeconomy) projected on production land, climate scenarios (Constant Climate, RCP4.5, and RCP8.5) and their interaction on 

future levels of ES and on Multifunctionality every 40 years over the 21st century. The Intercept refers to the mean and standard error in 

transformed level of the focal ES given the scenarios Current Policy and Constant Climate. The remaining Estimates and test statistics (t- and p-

values) concern difference in (transformed) ES levels compared to this scenario. The null hypothesis is no difference compared to this base 

scenario. Pr(>|t|) equal to 0 represent values lower than 0.001. 

 

  

Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

2020 Intercept -0.268 0.0412 -6.50 0 8.10 0.00720 113 0 8.81 0.00180 488 0 9.37 0.108 86.8 0 0.307 0.00130 235 0 -2 0.00470 -414 0 2.43 0.00200 122 0 -1.53 0.00100 -151 0

2020 Bioenergy 0.0300 0.0582 0.500 0.608 0.00400 0.0101 0.400 0.692 0 0.00260 0 0.941 0.0410 0.153 0.300 0.786 0.00100 0.00180 0.600 0.522 -0.00600 0.00660 -0.800 0.399 0.00200 0.00280 0.800 0.418 0.00100 0.00140 0.600 0.532

2020 Bioeconomy -0.0430 0.0582 -0.700 0.459 0.0120 0.0101 1.10 0.253 0 0.00260 -0.00100 0.931 -0.0680 0.153 -0.400 0.657 0.00300 0.00180 1.50 0.133 0 0.00660 0 0.966 -0.00400 0.00280 -1.30 0.209 0 0.00140 0.300 0.748

2020 RCP4.5 0.160 0.0582 2.80 0.00600 0.0310 0.0101 3.10 0.00200 -0.00100 0.00260 -0.00200 0.810 -0.0190 0.153 -0.100 0.902 0.00400 0.00180 2.40 0.0170 0.00400 0.00660 0.600 0.522 0.00400 0.00280 1.60 0.111 0.00500 0.00140 3.70 0

2020 RCP8.5 0.171 0.0582 2.90 0.00300 0.0340 0.0101 3.30 0.00100 -0.00100 0.00260 -0.00300 0.774 -0.0620 0.153 -0.400 0.684 0.00300 0.00180 1.40 0.148 0.00100 0.00660 0.100 0.887 -0.00200 0.00280 -0.700 0.489 0.00300 0.00140 2.10 0.0390

2020 Bioenergy_RCP4.5 -0.0130 0.0823 -0.200 0.870 0.00100 0.0143 0 0.970 0 0.00360 0.00100 0.954 -0.00400 0.216 0 0.985 -0.00300 0.00260 -1.00 0.330 0.00900 0.00940 1.00 0.331 -0.00400 0.00400 -0.900 0.362 -0.00200 0.00200 -0.800 0.403

2020 Bioenergy_RCP8.5 -0.0370 0.0823 -0.400 0.653 -0.00100 0.0143 -0.100 0.960 0 0.00360 0.00100 0.908 -0.0240 0.216 -0.100 0.912 -0.00200 0.00260 -0.800 0.439 0.00200 0.00940 0.300 0.793 -0.00100 0.00400 -0.300 0.802 -0.00100 0.00200 -0.700 0.483

2020 Bioeconomy_RCP4.5 -0.0750 0.0823 -0.900 0.365 -0.0140 0.0143 -1.00 0.324 0.00200 0.00360 0.500 0.612 0.0160 0.216 -0.100 0.943 -0.00400 0.00260 -1.60 0.100 -0.00200 0.00940 -0.200 0.855 0.00300 0.00400 0.700 0.475 -0.00200 0.00200 -1.20 0.237

2020 Bioeconomy_RCP8.5 -0.0140 0.0823 -0.200 0.861 -0.0120 0.0143 -0.900 0.392 0.00200 0.00360 0.600 0.537 0.0610 0.216 0.300 0.778 -0.00300 0.00260 -1.20 0.218 -0.0120 0.00940 -1.30 0.204 0.00500 0.00400 1.20 0.245 -0.00200 0.00200 -1.10 0.278

2060 Intercept 0.109 0.0400 2.70 0.00600 8.28 0.00590 140 0 8.88 0.00180 496 0 12.4 0.0999 125 0 0.309 0.00130 238 0 -2.00 0.00480 -416 0 2.41 0.002 120 0 -1.52 0.00100 -152 0

2060 Bioenergy 0.007 0.0566 0.100 0.908 -0.0320 0.00840 -3.90 0 -0.00500 0.00250 -2.10 0.0370 -0.254 0.141 -1.80 0.0720 0 0.00180 0.200 0.867 0.00200 0.00680 0.300 0.795 0.00500 0.00280 1.80 0.0670 -0.00100 0.00140 -0.900 0.367

2060 Bioeconomy 0.111 0.0566 2.00 0.0500 -0.00200 0.00840 -0.200 0.820 -0.00500 0.00250 -2.10 0.0350 -0.889 0.141 -6.30 0 0.00600 0.00180 3.30 0.00100 -0.00300 0.00680 -0.400 0.705 0.00400 0.00280 1.30 0.208 0.00200 0.00140 1.70 0.0850

2060 RCP4.5 0.185 0.0566 3.30 0.00100 0.143 0.00840 17.1 0 0.0170 0.00250 6.60 0 2.44 0.141 17.3 0 0 0.00180 -0.100 0.920 -0.0300 0.00680 -4.40 0 -0.00400 0.00280 -1.40 0.164 0.00900 0.00140 6.50 0

2060 RCP8.5 0.305 0.0566 5.40 0 0.202 0.00840 24.1 0 0.0250 0.00250 9.80 0 3.47 0.141 24.6 0 -0.0140 0.00180 -7.60 0 -0.0630 0.00680 -9.30 0 -0.0200 0.00290 -6.90 0 0.00400 0.00140 2.60 0.0100

2060 Bioenergy_RCP4.5 0.0160 0.0800 0.200 0.839 0 0.01180 0 0.973 0.00200 0.00360 0.500 0.617 -0.0480 0.200 -0.200 0.812 0.00100 0.00260 0.300 0.762 0.00800 0.00960 0.800 0.431 0.002 0.00400 0.600 0.561 0.00200 0.00200 1.00 0.311

2060 Bioenergy_RCP8.5 0.0870 0.0800 1.10 0.277 0.0150 0.01180 1.20 0.218 0.00400 0.00360 1.10 0.257 -0.296 0.200 -1.50 0.139 0.00300 0.00260 1.00 0.319 0.00400 0.00960 0.400 0.679 -0.00100 0.00400 -0.200 0.857 0.00300 0.00200 1.30 0.188

2060 Bioeconomy_RCP4.5 -0.0140 0.0800 -0.200 0.864 0.0300 0.01180 2.60 0.0100 0.01200 0.00360 3.20 0.00100 -0.258 0.200 -1.30 0.196 0.00100 0.00260 0.200 0.820 0.00800 0.00960 0.900 0.390 -0.00400 0.00400 -1.10 0.266 0.00300 0.00200 1.60 0.117

2060 Bioeconomy_RCP8.5 0.0690 0.0800 0.900 0.391 0.0330 0.01180 2.80 0.00500 0.0170 0.00360 4.70 0 -0.662 0.200 -3.30 0.00100 0 0.00260 0 0.980 -0.0140 0.00960 -1.50 0.135 -0.00600 0.00400 -1.50 0.144 0.00200 0.00200 1.20 0.230

2100 Intercept 0.109 0.0457 2.40 0.0170 8.40 0.00620 135 0 8.89 0.00180 507 0 14.6 0.115 127 0 0.314 0.00130 245 0 -1.99 0.00500 -401 0 2.42 0.00210 118 0 -1.51 0.00100 -145 0

2100 Bioenergy -0.254 0.0646 -3.90 0 -0.123 0.00880 -14.1 0 -0.0190 0.00250 -7.60 0 -1.29 0.162 -7.90 0 -0.00300 0.00180 -1.80 0.0660 -0.00500 0.00700 -0.700 0.461 -0.00400 0.00290 -1.20 0.228 -0.0120 0.00150 -8.40 0

2100 Bioeconomy -1.45 0.0646 -22.0 0 -0.632 0.00880 -71.9 0 -0.00900 0.00250 -3.70 0 -3.47 0.162 -21.4 0 -0.0310 0.00180 -17.4 0 -0.0240 0.00700 -3.40 0.00100 -0.0150 0.00290 -5.20 0 -0.0520 0.00150 -35.1 0

2100 RCP4.5 0.701 0.0646 11.0 0 0.394 0.00880 44.9 0 0.0520 0.00250 21.1 0 6.30 0.162 38.8 0 0.00300 0.00180 1.40 0.149 -0.0650 0.00700 -9.20 0 -0.00200 0.00290 -0.800 0.408 0.0370 0.00150 25.1 0

2100 RCP8.5 1.27 0.0646 20.0 0 0.595 0.00880 67.8 0 0.0940 0.00250 38.1 0 10.8 0.162 66.8 0 -0.0210 0.00180 -11.8 0 -0.198 0.00700 -28.2 0 -0.0400 0.00290 -13.6 0 0.0400 0.00150 27.4 0

2100 Bioenergy_RCP4.5 -0.0160 0.0913 -0.200 0.860 0.0110 0.0124 0.90 0.392 0.00500 0.00350 1.30 0.180 0.434 0.230 1.90 0.0580 0.00200 0.00260 0.700 0.501 0.0290 0.00990 2.90 0.00300 0.0100 0.00410 2.50 0.0120 0.00500 0.00210 2.60 0.00900

2100 Bioenergy_RCP8.5 -0.0760 0.0913 -0.800 0.403 0.0300 0.0124 2.40 0.0160 0.00700 0.00350 2.00 0.0460 0.873 0.230 3.80 0 0.00300 0.00260 1.20 0.235 0.0510 0.00990 5.10 0 0.00700 0.00420 1.60 0.105 0.00700 0.00210 3.40 0.00100

2100 Bioeconomy_RCP4.5 0.0160 0.0914 0.200 0.859 0.161 0.0124 12.9 0 0.0370 0.00350 10.5 0 -0.171 0.230 -0.700 0.457 0.00800 0.00260 3.30 0.00100 -0.00400 0.00990 -0.400 0.665 -0.00700 0.00410 -1.70 0.0810 0.00700 0.00210 3.20 0.00100

2100 Bioeconomy_RCP8.5 0.0500 0.0914 0.500 0.587 0.257 0.0124 20.7 0 0.0460 0.00350 13.1 0 0.876 0.230 3.80 0 0.0170 0.00260 6.60 0 0.0180 0.00990 1.90 0.0630 -0.00600 0.00420 -1.50 0.131 0.0160 0.00210 7.90 0

Bilberry cover Wildfood cover Understory plant richness Multifunctionality
Year Scenario

Tree biomass accumulation Tree Carbon Soil Carbon Total dead wood
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Table S4. Generalized Linear Models (GLMs) summarizing the effects of climate scenarios (Constant Climate, RCP4.5, and RCP8.5) on future 

levels of ES and on Multifunctionality every 40 years over the 21st century in the Set-aside scenario (not varying among policy scenarios). The 

Intercept refers to the mean and standard error in transformed level of the focal ES given the scenarios Constant Climate. The remaining 

Estimates and test statistics (t- and p-values) concern difference in (transformed) ES levels compared to this scenario. The null hypothesis is no 

difference compared to this climate scenario. Pr(>|t|) equal to 0 represent values lower than 0.001. 

 

Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

2020 Intercept 0.899 0.0351 25.6 0 8.62 0.0282 305 0 8.64 0.0118 730 0 19.2 0.868 22.1 0 0.362 0.00800 48.3 0 -1.56 0.0268 -58.1 0 2.53 0.0139 182 0 -1.44 0.00730 -197 0

2020 RCP4.5 0.0680 0.0496 1.40 0.172 0.00900 0.0399 0.200 0.823 0 0.0168 0 0.998 -0.0750 1.23 -0.100 0.951 0.00500 0.0110 0.400 0.664 0.0230 0.0379 0.600 0.545 0.00600 0.0196 0.300 0.754 0.00800 0.0103 0.800 0.442

2020 RCP8.5 0.112 0.0496 2.20 0.0250 0.0140 0.0399 0.400 0.724 0 0.0168 0 0.998 0 1.23 -0.100 0.915 0.00200 0.0110 0.200 0.864 0.00200 0.0379 0.100 0.957 0.0280 0.0195 1.40 0.148 0.00800 0.0103 0.800 0.422

2060 Intercept 0.631 0.0270 23.4 0 9.06 0.0212 427 0 8.75 0.0122 717 0 31.6 1.14 27.8 0 0.367 0.00800 48.6 0 -1.23 0.0276 -44.6 0 2.66 0.0156 170 0 -1.32 0.00870 -151 0

2060 RCP4.5 0.189 0.0382 4.90 0 0.0780 0.0300 2.60 0.00900 0.0170 0.0173 1.00 0.314 0.816 1.61 0.500 0.612 -0.00900 0.0110 -0.800 0.423 0.00100 0.0390 0 0.976 -0.0280 0.0222 -1.30 0.201 0 0.0124 0 0.987

2060 RCP8.5 0.290 0.0382 7.60 0 0.115 0.0300 3.80 0 0.0250 0.0173 1.50 0.144 0.777 1.61 0.500 0.629 -0.0150 0.0110 -1.40 0.158 -0.0230 0.0390 -0.600 0.548 -0.0380 0.0223 -1.70 0.0850 0 0.0124 0 0.987

2100 Intercept 0.307 0.0153 20.0 0 9.23 0.0201 460 0 8.83 0.0121 733 0 47.4 1.56 30.4 0 0.332 0.00800 40.0 0 -0.920 0.0256 -36.0 0 2.79 0.0173 161 0 -1.23 0.00990 -124 0

2100 RCP4.5 0.149 0.0217 6.90 0 0.132 0.0284 4.60 0 0.0470 0.0170 2.70 0.00600 4.24 2.21 1.90 0.0540 0.00800 0.0120 0.700 0.496 -0.0120 0.0362 -0.300 0.739 -0.0200 0.0246 -0.800 0.419 0.0190 0.0140 1.40 0.163

2100 RCP8.5 0.291 0.0217 13.4 0 0.192 0.0284 6.80 0 0.0630 0.0170 3.70 0 3.70 2.21 1.70 0.0940 -0.0140 0.0120 -1.20 0.225 -0.0520 0.0362 -1.40 0.151 -0.0670 0.0249 -2.70 0.00800 0.00800 0.0140 0.500 0.590

Bilberry cover Wildfood cover Understory plant richness Multifunctionality
Year Scenario

Tree biomass accumulation Tree Carbon Soil Carbon Total dead wood


