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Abstract

European grasslands face strong declines in extent and quality. Many grassland

types are priority habitats for national and European conservation strategies.

Countrywide, high spatial resolution maps of their distribution are often lacking.

Here, we modelled the spatial distribution of 20 permanent grassland habitats at

the level of phytosociological alliances across Switzerland at 10x10 m resolution.

First, we applied ensemble models to provide distribution maps of the individual

habitat types, using training data from various sources. Copernicus Sentinel

satellite imagery and variables describing climate, soil and topography were used

as predictors. The performance of these models was assessed based on the true

skill statistics with a split-sampling of the data. Second, the individual maps

were combined into countrywide maps of the most and second most likely habi-

tat type, respectively, using an expert-based weighting approach. The perfor-

mance of the combined map for the most likely habitat type was assessed via an

independent testing dataset and a comparison of the predicted habitat-type pro-

portions with extrapolations from field surveys. Most individual maps had useful

to excellent predictive performance (TSS ≥ 0.6). For most grid cells in the com-

bined maps, the most and second most likely habitat types were either ecologi-

cally closely related or representing two grassland types along a nutrient

gradient. The same was true for omission errors. We found good agreement

between the predicted and estimated proportions from field surveys. The area of

raised bogs appears to be underestimated, while dry grasslands showed highest

agreement. This work highlights the potential of earth observation data at fine

spatial and temporal resolution to map habitats at broad scales, thereby provid-

ing the foundation for diverse conservation applications. A particular challenge

remains in capturing the transition from nutrient-poor to nutrient-rich grass-

lands, which is highly important for biodiversity conservation.

Introduction

Permanent grasslands cover a substantial share of the present-

day vegetation of Europe (17.4%; EUROSTAT, 2021) and are

shaped by climatic, edaphic and topographic conditions as

well as human management and disturbances (Davies

et al., 2004; Devillers et al., 1991; Feurdean et al., 2018).

Grasslands host a considerably high diversity of species,

particularly vascular plants (Boch et al., 2021; Willems

et al., 1993), arthropods (Soderstrom et al., 2001), inverte-

brates (Standen, 2000) or grassland-adapted birds (Soder-

strom et al., 2001). Yet, grassland habitats face strong declines

in their extent and quality, predominantly due to land use

change, agricultural intensification and abandonment, drai-

nage or eutrophication (Bergamini et al., 2009; Gillet

et al., 2016; Kuhn et al., 2021; Peppler-Lisbach et al., 2020).
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Hence, many European grasslands are listed as priority habi-

tats in the Habitats Directive of the European Union and the

Swiss Ordinance on the Protection of Nature and Cultural

Heritage, which both call for urgent protection.

The protection of grassland habitats in both the short

and long term requires detailed mapping for effective

maintenance and monitoring as well as for the establish-

ment of buffer and connectivity zones (i.e., ecological net-

works; Jongman et al., 2011). This is particularly

important in mountainous countries where highly frag-

mented and diverse habitat matrices result from high vari-

ability in site conditions as well as management practices.

Switzerland features a diverse small-scale habitat structure

and hosts a high number of grassland habitat types includ-

ing many rare and endangered ones (Delarze et al., 2016).

So far, information concerning the spatial distribution of

vegetation types has primarily been provided by expert

floristic field surveys (e.g., Eggenberg et al., 2001). How-

ever, such surveys are spatially restricted and highly time-

consuming (Vanden Borre et al., 2011). Moreover, their

informative value may be short-lived due to, for example,

changes in land use, management practices or eutrophica-

tion (Bollens et al., 2001; Gillet et al., 2016; Graf

et al., 2010; Rion et al., 2018). Habitat distribution models

(Guisan & Zimmermann, 2000) have long been applied to

analyze and predict habitat patterns, predominantly across

large geographical extents. These models are primarily

based on spatially explicit variables describing climate,

geology or topography (e.g., Zimmermann & Kien-

ast, 1999) and thus predict potential rather than existing

vegetation. Yet, due to recent advances in remote sensing,

high-resolution spatial, temporal and spectral information

has become increasingly available for mapping and moni-

toring habitats (Corbane et al., 2015; Turner et al., 2003).

The inclusion of remotely sensed variables of increasing

resolution in addition to other environmental variables has

shown great potential for refining distribution models and

improving their performance (He et al., 2015).

Functional types of vegetation can be separated from

each other relatively well with the help of remotely sensed

data (Corbane et al., 2015). Yet, the distinction of phy-

tosociological units, that is, plant alliances, is still chal-

lenging, particularly for grassland habitats. Challenges

arise largely due to their spectral similarity (Ali

et al., 2016; Wright & Wimberly, 2013), their spectral

variability over time and space (Marcinkowska-Ochtyra

et al., 2019; Tarantino et al., 2021), their potentially small

spatial extent and their complex spatial structure (Diaz

Varela et al., 2008; K€uchler et al., 2004; Mehner

et al., 2004), or the limited availability of high-quality

field samples (Ali et al., 2016). Hence, at the level of phy-

tosociological units, most recent studies have focused on

the discrimination of few grassland habitat types in

protected areas (e.g., Natura 2000 sites; Tarantino

et al., 2021, Marcinkowska-Ochtyra et al., 2019, Bhatna-

gar et al., 2020). Yet, focusing on protected areas alone

does not provide a comprehensive overview of the distri-

bution of ecologically valuable habitats and their rem-

nants (Maiorano et al., 2007) and thus constrains further

modelling and biodiversity conservation efforts.

Here, we map 20 permanent grassland habitat types

(including fens, bogs and various meadows and pastures)

across Switzerland at high spatial resolution (10 9 10 m).

To cover a wide range of potential conservation applica-

tions, we provide a comprehensive set of mapping prod-

ucts, including (1) individual habitat maps, (2) combined

grassland habitat maps, and (3) basic uncertainty maps.

We chose a two-step approach (Fig. 1), where ensemble

modeling outputs of the individual habitats were assem-

bled into combined maps of the most and second most

likely habitat type, respectively, using an expert-based

weighting approach. The performance of the individual

habitat maps was assessed based on the True Skill Statistic

with a 10-fold split-sampling of the data. The perfor-

mance of the ensemble maps of the individual habitat

types as well as the performance of the combined map

for the most likely habitat type were assessed via an inde-

pendent testing dataset. In addition, the latter was evalu-

ated via a comparison of the predicted proportions of

each habitat type with extrapolations from field surveys.

Materials and Methods

Unless otherwise stated, all analyses were performed in

the statistical software R (v4.0.3; R Core Team, 2018) and

the geographic information system ArcGIS (v10.8.1,

ESRI).

Data

Modelled habitat types

The Swiss habitat typology (TypoCH) of Delarze

et al. (2015) underlies the national Red List of Habitats

(Delarze et al., 2016) and is widely used to distinguish

habitat types in Switzerland. The classification features

nine habitat classes (1st level) subdivided into habitat

groups (2nd level), further partitioned into habitat types

(3rd level) typically corresponding to phytosociological

alliances. According to this classification, grassland habitat

types are either part of the habitat class 2 (Riparian areas,

banks and wetlands) or 4 (Grasslands).

Here, we modelled 20 permanent grassland habitat types

(3rd level; Table 1) belonging to the following habitat

groups (2nd level): fens, wet meadows, raised bogs, re-

seeded and heavy fertilized grasslands, dry grasslands,
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Individual grassland maps Combined grassland maps

Dataset 1

Presence/absence
selec�on

Predictors

Pre-selec�on of
predictors

Modelling dataset Pre-selected
predictors

Ensemble modelling
(4 algorithms, 10-fold split

sampling)

Predic�on maps
(N = 4 x 10)

Median map
of the predicted probability of

occurrence

Aggrega�on
SD map

of the predicted probability of
occurrence

Presence/absence
map

Median maps
of the individual habitat types

Presence/absence
maps*

of the individual habitat types

Restricted median 
maps

of the individual habitat types

Expert-based
weigh�ng

Weighted median 
maps

of the individual habitat types

Combina�on and
masking

M1 M2

M1_P M2_P

MRM1F

Assessment
1. with modelling dataset

2. with independent dataset 2

Assessment
with independent dataset 2

Assessment
1. with independent dataset 2

2. with extrapola�ons from
field surveys

Figure 1. Overview of the modeling procedure. M1_P/M2_P: maps of the weighted median of the predicted probability of occurrence of the

most/second most likely grassland habitat type, respectively; M1/M2: map denoting the most/second most likely habitat type, respectively; M1F:

final combined map of the most likely habitat type (i.e., M1 after regional corrections); MR: map of the ratio of the probabilities of occurrence

of the most and second most likely grassland habitat types. *For rare wet grassland habitat types (all except for 2.3.2/3), presence/absence

maps derived from a threshold applied to the median maps of the predicted probability of occurrence were used in the combination

procedure.
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nutrient-poor alpine and subalpine grasslands, nutrient-

rich pastures and meadows as well as fallow grasslands

(non-permanent types and those typically occurring only

in scattered patches are excluded). In the following, the

term ‘wet grasslands’ is used to refer to habitat types from

the habitat class 2 (i.e., fens, wet meadows and raised bogs).

Data collection and preparation

In a two-step approach to data preparation, first, we col-

lected various datasets from all over Switzerland, for

which a habitat type classification was assigned by the

data provider (for details, see Table 2). For the samples

(i.e., point locations) of the 20 permanent grassland

habitat types to be modelled, we required a classification

to the 3rd TypoCH level. In addition, we compiled sam-

ples from non-grassland habitat types, such as pioneer

vegetation, shrubs or bushes, which served as further

absences in the modelling of the individual grassland

habitat types. For non-grassland samples, classification to

the 3rd level was not a prerequisite. Overall, the compiled

dataset (Fig. S2 in Supporting Information) included

50,096 samples, of which 35,566 and 14,530 were samples

of grassland and non-grassland habitats, respectively.

In a second step, we performed a thorough selection of

samples from the compiled dataset to derive both a train-

ing and a quasi-independent testing dataset, in the follow-

ing referred to as dataset 1 and dataset 2, respectively.

Table 1. Overview of the modelled permanent grassland habitat types. Abbreviation: abbreviation used throughout the manuscript to refer to

the 20 modelled grassland habitat types. TypoCH: habitat typology according to Delarze et al. (2015); EUNIS: EUropean Nature Information Sys-

tem taxonomies. This classification corresponds only partially to TypoCH, except if bold is used. NHV: Natural habitats worthy of protection in

accordance with the Swiss Federal Ordinance on the Protection of Nature and Cultural Heritage. Short names for habitat groups (2nd level) used

in the manuscript are given in round brackets.

Habitat types Abbreviation TypoCH EUNIS NHV

Fens

Magnocaricion elatae W. Koch 26 2.2.1 2.2.1.1 C3.29, D5.21 x

Cladietum marisci All. 22 (Magnocaricion p.p) 2.2.1 2.2.1.2 C3.28, D5.24 x

Caricion fuscae W. Koch 26 em. Klika 34 2.2.2 2.2.2 D2.21, D2.22, D2.26 x

Caricion davallianae Klika 34 2.2.3 2.2.3 D4.1 x

Wet meadows

Molinion caerulea W. Koch 26 2.3.1 2.3.1 E3.5 x

Calthion palustris T€uxen 37 2.3.2/3 2.3.2 D5.3, E3.4 x

Filipenulion ulmariae Lohmeyer 67 2.3.2/3 2.3.3 E5.42 x

Raised (open) bogs

Spagnion magellanici K€astner et Fl€ossner 33 2.4.1 2.4.1 D1.111, D1.12, X04 x

Re-seeded and heavy fertilized grasslands (Re-seeded grasslands)

Ornamental lawns, football turfs, golf lawns, etc. 4.0.2 4.0.2

Dry grasslands

Stipo-Poion carniolicae Br.-Bl. 61 + Stipo-Poion xerophilae Br.-Bl. et T€uxen 43 4.2a 4.2.1.1 E1.24 x

Cirsio-Brachypodion Had. Et Klika 44 4.2a 4.2.1.2 E1.23 x

Xerobromion Br.-Bl. et Moor 38 4.2a 4.2.2 E1.27 x

Diplachnion serotinae Br.-Bl. 61 4.2a 4.2.3 E1.2 x

Mesobromion Br.-Bl. et Moor 38 4.2.4 4.2.4 E1.26 x

Nutrient-poor alpine and subalpine grasslands (Alpine/subalpine grasslands)

Seslerion caeruleae Br.-Bl. 26 4.3.1 4.3.1 E4.431

Caricion firmae Gams 36 4.3.2/4 4.3.2 E4.433

Caricion ferrugineae H€ohn 36 4.3.3 4.3.3 E4.41 x

Elynion myosuroides Gams 36 4.3.2/4 4.3.4 E4.42 x

Nardion strictae Br.-Bl. 26 4.3.5 4.3.5 E4.31

Festucion variae Br.-Bl. 25 4.3.6 4.3.6 E4.33

Caricion curvulae Br.-Bl. 26 4.3.7 4.3.7 E4.34

Nutrient-rich pastures and meadows (Nutrient-rich pastures/meadows)

Arrhenatherion elatioris W. Koch 26 4.5.1 4.5.1 E2.2

Polygono-Trisetion flavescentis Br.-Bl. et Tx 47 4.5.2 4.5.2 E2.3

Cynosurion cristati T€uxen 47 4.5.3 4.5.3 E2.11, X09

Poion alpinae Oberdorfer 50 4.5.4 4.5.4 E4.52

Fallow grasslands

Convolvulo-Agropyrion G€ors 66 4.6 4.6.1 -

Abandoned grasslands with Brachypodium pinnatum 4.6 4.6.2 -
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Dataset 1 was used for the distribution modelling of the

individual grassland habitat types, while dataset 2 was

retained to assess the performance of the ensemble maps

of the individual habitat types as well as the combined

habitat map. To account for spatial autocorrelation (Dor-

mann et al., 2007; Guisan et al., 2017; Ploton

et al., 2020), we ensured that both datasets included only

samples at least 300 m apart from each other across data-

sets. To this end, a data thinning routine was developed,

iteratively selecting the most reliable samples based on a

weighting following these criteria: (1) the number of sam-

ples within 300 m (‘conflicting samples’) of the respective

sample, (2) year of observation, (3) habitat type, and, in

the case of the TWW data (National inventory of dry

meadows and pastures), (4) the compactness index.

Thereby, samples featuring no or few conflicting samples

were favored over samples with a high number of con-

flicting samples. Since habitat types may change over

time, more recent samples were preferred over older sam-

ples. Further, rare grassland habitat types were favored

over frequent ones to retain them in the thinned datasets

(habitat type criterion). In the case of the TWW data,

samples from compact polygons were given a higher

weight in the selection routine than samples from narrow

polygons because the first ones feature a purer remote

sensing signal. For further details, see Figure S3.

The thinning routine was first applied to derive dataset

1, for which 8,140 samples of grassland habitats and

3,523 samples of non-grassland habitats were selected.

The median year of observation was 2013 (Fig. S4). For

dataset 2, only grassland samples were considered. Sam-

ples being part of dataset 1, and all samples of the same

habitat type within a radius of 300 m of a dataset 1 sam-

ple were excluded (Ploton et al., 2020). Lastly, the thin-

ning routine was applied to the remaining samples,

selecting 2,281 samples with a median year of observation

of 2012 for dataset 2.

Spatial predictors

We compiled 134 climatic, edaphic, topographic and

Sentinel-based predictors covering various groups of eco-

physiologically essential parameters (Mod et al., 2016),

from which, in a subsequent step, the most important

were selected for each habitat type, excluding highly colli-

near variables (see Pre-selection of spatial predictors).

We prepared 17 climatic variables calculated by Zim-

mermann and Kienast (1999). In addition, we used conti-

nentality and maps of local soil properties (i.e., pH,

nutrients, moisture, and soil moisture variability) gener-

ated by modelling ecological indicator values across

Switzerland (Descombes et al., 2020). Topographic pre-

dictors included curvature, topographic position and

wetness indices, roughness as well as slope and aspect

information (i.e., aspect sinus and cosinus; Baltensweiler

et al., 2020).

From the Sentinel-1 Synthetic Aperture Radar (SAR)

backscatter imagery (Torres et al., 2012), we applied two

predictors based on composite c0 backscatter in vertical-

vertical and vertical-horizontal polarization mode (Small

et al., 2022; Waser et al., 2021).

From the Sentinel-2 imagery (Drusch et al., 2012), we

used the orthorectified bottom-of atmosphere Level 2A

data of the growing season (March-November) in the

years 2017-2020. Processing was done in Google Earth

Engine (Gorelick et al., 2017). We applied a two-step

cloud masking procedure based on Sentinel-2 metadata

and an additional cloud and shadow masking procedure

based on a machine learning algorithm (s2cloudless algo-

rithm) and sun elevation and azimuth, respectively (Paz�ur

et al., 2022; Zupanc, 2017). Further, we clipped each

acquisition by an inside buffer of 1,000 m to avoid noise

in the predictors caused by the overlapping acquisition

pathways of Sentinel-2 (Fig. S5). We calculated a set of

multi-annual predictors: (1) the medians of the individual

bands (i.e., Blue, Green, Red, NIR, SWIR1 and SWIR2)

over the whole studied time period (multiple growing

seasons); (2) the medians, standard deviations, kurtosis,

skewness and a set of percentiles of the NDVI and NDWI

(normalized difference vegetation and water index,

respectively) over the whole studied time period; and (3)

seasonal medians and standard deviations of the NDVI

and NDWI. The SWIR bands were resampled in Google

Earth Engine with the default setting of nearest neighbor.

All non-Sentinel-2 predictors were bilinearly resampled

to the 10 9 10 m spatial resolution of the Sentinel-2 pre-

dictors. For further details and a list of the predictors

selected for the modeling, please see Table S2.

Maps of the individual grassland habitat
types

Presence-absence data selection

For each habitat type, presences and absences were

extracted from dataset 1 (Fig. 1). As presences, all samples

allocated to the respective habitat type were used

(Table S3). As absences, a set of samples was selected

from all other samples (i.e., grassland and non-grassland

samples) within dataset 1. To ensure a diverse set of

absences with high discriminative power from both the

realized and fundamental niche (Lobo et al., 2010), three

types of absences were derived for each presence: (1) the

three closest absences; (2) three absences at similar eleva-

tion; and (3) three random absences from all absences in

dataset 1.
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Pre-selection of spatial predictors

With the aim of achieving an accurate and robust spatial

prediction per habitat type with a high discrimination

between the grassland types, the 15 most important pre-

dictors were pre-selected for each habitat type (Table S4),

avoiding multi-collinearity amongst the predictors in the

model (Dormann et al., 2013). We followed a statistical

approach (Guisan et al., 2017), where we assessed the

predictive power of each predictor for each habitat type

in a ten-fold split sampling of dataset 1 (training = 70%,

testing = 30%), maintaining the ratio of presences and

absences in each subset. Generalized linear models

(GLMs) were fitted with a linear and a quadratic term for

each predictor and the predictive power was assessed

based on the average out-of-bag true skill statistic (TSS;

Allouche et al., 2006). Predictors were iteratively selected

starting with the best performing one and subsequently

excluding highly correlated predictors (i.e., Pearson corre-

lation coefficient r > |0.7|). In a second step, predictors

with a variance inflation factor (VIF; Stine, 1995) > 5

were iteratively excluded (Guisan et al., 2017).

Habitat distribution modelling

To derive countrywide probability maps of the individual

grassland habitat types, we applied an ensemble modeling

approach (Araujo & New, 2007), which has been shown to

improve robustness over individual algorithms (Hao

et al., 2019; Seni & Elder, 2010). Here, we applied four

common algorithms: random forest (RF; Breiman, 2001;

using randomForest, Breimann et al., 2018), boosted regres-

sion trees (BRT; Elith et al., 2008; using gbm, Greenwell

et al., 2020), generalized additive model (GAM; Hastie &

Tibshirani, 1990; using mgcv, Wood, 2021), and GLMs

(Mccullagh & Nelder, 1989; using MuMIn, Barton, 2020).

Presences and absences were assigned equal weights in

model fitting (Barbet-Massin et al., 2012; Wisz &

Guisan, 2009). For RFs, we used 5,000 trees and a stratified

sampling to maintain the ratio of presences and absences.

BRTs were run with 5,000 trees, up to 2-way interactions

between predictors, at least 5 observations in the terminal

node of the trees, and a shrinkage parameter of 0.01. For

GAMs, a gamma value of 1.4 was applied. Binomial GLMs

were fitted with a logit link and both a linear and quadratic

term of each predictor. Thereby, we ensured a minimum

number of at least 10 observations per predictor by restrict-

ing the number of pre-selected predictors if necessary to

MaxP. Using the dredge function, all possible combinations

were fitted with 0.5*MaxP - MaxP predictors.

For each grassland habitat type (Fig. 1), we assessed

model performance and derived countrywide ensemble

maps by ten-fold split-sampling of dataset 1 (train-

ing = 70%, testing = 30%), maintaining the ratio of pres-

ences and absences in each subset. For each algorithm

and repeat, a model was fitted on the training data. To

assess model performance, this model was used to predict

the probability of occurrence for the held-out testing

data. Subsequently, these probabilities were transformed

into binary presence/absence predictions by optimizing

the threshold maximizing TSS (thresholdTSS_TestingData).

Lastly, TSS, sensitivity (proportion of correctly predicted

presences) and specificity (proportion of correctly pre-

dicted absences) were calculated on the held-out testing

data. On the other hand, the models fitted on the training

data were used to calculate the predicted probability of

occurrence across Switzerland. The resulting 40 (4 algo-

rithms * 10 CV runs) maps were aggregated into (1) a

map of the median of the predicted probability of occur-

rence, (2) a map of the standard deviation of the pre-

dicted probability of occurrence and (3) a binary

presence/absence map. To derive aggregated presence/ab-

sence maps, each prediction map was first converted into

an individual presence/absence map based on the thresh-

oldTSS_TestingData. For the subsequent use of the aggregated

map in the combination procedure, a presence was

assigned to a specific pixel if more than half of the indi-

vidual maps reported a presence, otherwise an absence

was assigned. To assess the performance of the ensemble

maps of the predicted probability of occurrence, and to

compare it to that of the individual algorithms, TSS was

calculated on dataset 2, which was not used for the mod-

eling.

Combined grassland maps

Combination procedure

The 20 grassland habitat types were combined into two

countrywide maps denoting the most likely (M1) and sec-

ond most likely (M2) habitat type for each 10 9 10 m

grid cell, respectively. For the combination procedure, we

developed a weighted maximum probability approach

based on iterative expert feedback (Figs. 1 and S6). In

essence, for M1/M2, the habitat type with the highest/sec-

ond highest weighted median of predicted probability of

occurrence was assigned to each grid cell, respectively.

The weights were assigned to each habitat type (Table S5)

based on reviews by field experts. Thereby, the field

experts visually inspected sections of the combined maps

in an ArcMap Document in areas with which they were

familiar. The weighting allowed increasing the abundance

of underrepresented habitat types and decreasing the

abundance of overrepresented ones. A habitat type was

considered to be potentially present in a grid cell only if
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the aggregated presence-absence map indicated a potential

presence. For rare wet grassland habitat types, a stricter rule

for potential presence was applied, based on a threshold

applied to the median of the predicted probability of occur-

rence (Table S5). Lastly, regional adjustments were made to

M1 in very wet and (rather) dry bioregions (BAFU, 2020;

Swiss bioregions displayed in Figure 2) because large-scale

patterns in soil moisture led to overestimations of wet habi-

tats in wet bioregions and dry habitat types in dry bioregions

(for details, see Note S2 and Fig. S7). The resulting final

combined grassland map is referred to as M1F.

To analyze differences in the assignments to the grass-

land habitat types between M1 and M2, we further

derived a map of the ratio of the probabilities of occur-

rence of the most (M1_P) and second most likely

(M2_P) habitat types (MR). Values close to 1 indicate

that the most and second most likely habitat types are

almost equally likely to be present in the respective grid

cell, while values clearly <1 indicate that the most likely

habitat type is much more likely to be present than the

second most likely one. A visualization of these combined

maps is provided in Figures 2, 3 and S8.

In a last step, we masked out the following non-

grassland habitats from all combined maps: forests

(Waser et al., 2015), shrub forests (R€uetschi et al., 2021),

hedges and groves, dwarf shrubs, crop rotation areas

(Paz�ur et al., 2022), areas with pioneer vegetation, settle-

ments, roads, railways, areas with special use (e.g., allot-

ment garden-areas), glaciers as well as stagnant and

flowing waters (see Table S6 for mask dataset details).

Final combined map (M1F) evaluation

The accuracy of M1F was assessed in three ways. First, we

compared the predicted habitat types with the observed

habitat types of dataset 2, using confusion matrices. Sen-

sitivities and specificities as well as geometric mean (G-

Mean; squared root of the product of the sensitivity and

specificity; Kubat et al., 1998) were derived for each habi-

tat type, allowing an evaluation of the class-wise perfor-

mance even if the distribution of the samples across the

habitat types is skewed.

Second, we compared the predicted proportions of the

habitat types with the estimated proportions from field

J

J

P

P

NPA

WCA

ECA

SA

SA

SA SA

N 80 km

Fens
Wet meadows
Raised bogs
Re−seeded grasslands
Dry grasslands

Alpine/subalpine grasslands
Nutrient−rich pastures/meadows
Fallow grasslands
No prediction

J: Jura mountains
P: Swiss Plateau
NPA: Northern Pre−Alps
WCA: Western Central Alps
ECA: Eastern Central Alps
SA: Southern Alps

Figure 2. Habitat groups (2nd level) in the final combined map (M1F). For better visibility, the 20 grassland habitat types were colored according

to their higher-level groups and only settlements were masked out. Biogeographical regions according to Gonseth et al. (2001) are shown (©

FOEN). Lakes and rivers are mapped as white areas and grey lines, respectively. The black triangle marks the location of the small example map

section visualized in Figure 3.
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surveys in biotopes of national importance (WBS;

“Wirkungskontrolle Biotopschutz Schweiz”; Monitoring

the Effectiveness of Habitat Conservation in Switzerland;

Bergamini et al., 2013). WBS monitors plant species on

10m2 plots, which are randomly located within the bio-

topes of national importance. Data from the first survey

run (i.e. 2011-2017: 799, 473 and 2,453 plots from fens,

bogs and dry meadows and pastures, respectively) were

used to estimate the proportions of 3rd level TypoCH

habitat types within the national perimeters of respective

fens, bogs and dry meadows and pastures using design

based statistics (Till�e & Ecker, 2014).

Third, the predicted proportions of the habitat types were

compared with their estimated Swiss-wide proportions

based on data of the ALL-EMA program from 2015 to 2019

(Agricultural species and habitats’ monitoring program;

www.allema.ch). ALL-EMA samples species and habitat

data on 10 m2 plots located on a 50 9 50m-grid in the agri-

cultural area of 170 1 km2 squares distributed across

Switzerland. From this, Swiss-wide proportions were

derived by first calculating the proportion of each habitat

type with respect to all 361 plots per square, and then aver-

aging this proportion across all squares, taking into account

the different selection probabilities of the squares (Ecker

et al., in prep).

Results

The resulting maps are available for download on the

EnviDat platform under the following link (Huber et al.

2022): https://doi.org/10.16904/envidat.341.

Maps of the individual grassland habitat
types

Pre-selected spatial predictors

Except for two habitat types, the predictors selected per

habitat type covered all predictor groups (Fig. S9). The

majority of the predictors originated from remote sensing

(mean � SD of the pre-selected predictors per habitat

type: 6.9 � 1.6) and topographic predictors (2.8 � 2.2),

while the latter were particularly relevant for wet and cer-

tain alpine/subalpine grasslands (Table S4). From the

Sentinel-2 based indices, NDVI, NDWI, NIR and SWIR

referring to the entire growing season were selected fre-

quently (Table S4). Seasonal predictors were also fre-

quently included in the modeling, particularly spring and

summer medians and standard deviations of the NDVI,

and were found to have high variable importance

(assessed as the amount of accuracy the RF models lose

by excluding the respective variable; Fig. S10). From the

edaphic predictors, pH and soil nutrients were selected

most often.

Habitat model performance

According to the 10-fold split-sampling of dataset 1, for

most habitat types, the distribution models had useful to

excellent predictive performance (i.e., median TSS ≥ 0.6;

as in Coetzee et al., 2009; Fig. 4). The highest median

TSS values were reached for raised bogs (2.4.1: 0.83), re-

seeded (4.0.2: 0.85) and xeric grasslands (4.2a: 0.86). All

of these habitats expressed both sensitivity and specificity

values ≥0.88. Lowest median TSS values were found for

fallow grasslands (4.6), nutrient-rich pastures/meadows,

and two alpine/subalpine grasslands (i.e., 4.3.5 and 4.3.7).

The assessment based on the independent dataset 2

revealed a similar pattern (Fig. S11), with raised bogs

(2.4.1: 0.86), re-seeded (4.0.2: 0.86) and one alpine/sub-

alpine grassland (4.3.2/4: 0.94) reaching the highest

ensemble TSS values. Lowest ensemble performance was

found for fallow grasslands (4.6) and the nutrient-rich

pasture 4.5.3. The best performing algorithm varied with

habitat type (ensemble TSS value compared to the med-

ian TSS values of the individual algorithms), whereby the

ensemble reached the highest or second highest perfor-

mance among the algorithms for 15 of the 20 habitat

types.

Countrywide maps for all modelled habitat types are

shown in Figure S12.

Combined grassland maps

Large-scale patterns in the combined grassland
map (M1F)

The final combined map featured distinct patterns across

the biogeographical regions of Switzerland (Fig. 2). The

Jura mountains and Swiss Plateau were predicted to be

dominated by nutrient-rich pastures/meadows. Dry grass-

lands occurred more frequently in the Jura mountains

than the Plateau. The mountainous regions were pre-

dicted to be dominated by alpine/subalpine grasslands

either with nutrient-rich pastures/meadows or dry grass-

lands in the valley bottoms. Dry grasslands were predomi-

nantly present in dry and continental biogeographical

regions. In contrast, the highest share of wet grasslands

was predicted in the Northern Pre-Alps.

Comparison of most likely (M1) and second most
likely (M2) habitat types

For most grid cells, the ratio of the predicted probability

of occurrence of the most to the second most likely habi-

tat type was high (i.e., mean of the medians = 0.895;

Fig. S13). For three of the wet grassland types, the second

most likely habitat type was most often another wet
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Figure 4. Model performance for the individual habitat types based on ensemble models with four algorithms and 10-fold split-sampling of data-

set 1 (N = 4*10) assessed by True Skill Statistic (TSS), sensitivity and specificity. For an overview of the modelled habitat types, see Table 1. Colors

according to the higher-level habitat groups (2nd level).

Figure 3. Visualization of three combined grassland mapping products for a small example map section. (A) Final combined map of the most

likely habitat type (M1F). TypoCH: habitat typology according to Delarze et al. (2015). For further details, see Table 1. (B) Map of the weighted

median of the predicted probability of occurrence (P) of the most likely grassland habitat type (M1_P). (C) Map of the ratio of the probabilities of

occurrence of the most and second most likely grassland habitat types (MR). (D) Orthophoto (SWISSIMAGE 25) of the example map section

Flumserberg © swisstopo. (E) Elevation (E; DHM25 L2 © swisstopo).
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grassland (Fig. 5, Table S7). For other wet grasslands,

alpine/subalpine grasslands (predominantly 4.3.5) as well

as nutrient-rich pastures/meadows covered a high share

of the second most likely habitat types. The second most

likely habitat types of dry grasslands were mostly

alpine/subalpine grasslands, nutrient-rich pastures/mead-

ows or fallow grasslands, but rarely the other dry grass-

land type. For alpine/subalpine grasslands, the second

most likely habitat type was mainly from the same group,

except for 4.3.5, for which approximately half of the sec-

ond most likely habitat and around 5% was assigned to

the nutrient-rich pasture 4.5.4 and wet grasslands, respec-

tively. In return, also for 4.5.4, around 50% of the second

most likely habitat was assigned to 4.3.5. For the other

nutrient-rich pastures/meadows, the second most likely

habitat was most often another nutrient-rich pasture/mea-

dow. The same was found for re-seeded grasslands

(4.0.2). For fallow grasslands, the second most likely habi-

tat types covered all groups except the ones belonging to

wet grasslands.

Performance of the combined habitat map (M1F)

The highest G-Mean values were achieved for re-seeded

grasslands as well as one dry and one alpine/subalpine

grassland (Table 3: first column). Low G-Mean values

below 0.5 were derived for three wet grasslands, one

alpine/subalpine grassland, two nutrient-rich pastures/

meadows and particularly for fallow grasslands.

Many omission errors occurred within the same habitat

group (2nd level) or at least the same habitat class (i.e.,

within wet grasslands; Table S8, Fig. S14). Omissions

across groups mainly concerned the following habitat

types: fen type 2.2.3, where more than half of the omis-

sions were assigned to wet meadows, and wet-meadow

type 2.3.2/3 and raised bogs, where omissions were often

allocated to fens. Omissions of re-seeded grasslands

(4.0.2) and the dry-meadow type 4.2.4 were predomi-

nantly assigned to nutrient-rich pastures/meadows, while

those of the nutrient-rich pastures/meadows-type 4.5.4

were largely allocated to alpine/subalpine grasslands (par-

ticularly to 4.3.5).

We found good agreement between the predicted pro-

portions of the habitat types in M1F and the estimated

proportions from the WBS and ALL-EMA data

(q = 0.905, 0.856, 0.818 and 0.846 for fens, bogs, dry

meadows and pastures and the estimated Swiss-wide pro-

portions, respectively; Table 3). The largest discrepancies

occurred for raised bogs, which featured a distinct under-

estimation.

The comparison of M1F with the projections from the

WBS for fens (Table 3: second column) indicated a slight

underestimation of wet habitats in areas of national

importance. The alpine/subalpine grassland 4.3.5 and the
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Figure 5. Comparison of the combined maps depicting the most and second most likely habitat type (M1/M2), respectively. Percent distributions

of the second most likely habitat groups (2nd level; %; color) for each habitat type in M1 (rows). For an overview of the modelled habitat types,

see Table 1.
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nutrient-rich pastures/meadows showed an overestimation

in M1F compared to the WBS projections, which was also

found for the national perimeter of bogs (Table 3: third

column). For bogs, it is further noticeable that the pre-

dicted share of the fen type 2.2.2 was distinctly overesti-

mated (20.33% vs. 3.42%). For the national inventory of

dry meadows and pastures (TWW; Table 3: fourth col-

umn), the two alpine/subalpine grasslands 4.3.1 and 4.3.6

featured strong overestimations. In contrast, the nutrient-

rich pastures/meadows, particularly 4.5.1, appeared to be

strongly underestimated.

The comparison with the Swiss-wide projections from

the ALL-EMA data (Table 3: last column) revealed good

agreement of the predicted shares for dry and most wet

grasslands. The wet meadows showed an underestimation

and most alpine/subalpine grasslands featured higher

shares in M1F than the ALL-EMA projection. Yet, the

most common 4.3.5 alpine/subalpine grassland showed

good agreement with the ALL-EMA projections (3.77%

vs. 2.74%) as well as 4.3.1 (1.43% vs. 1.31%), which was

strongly overestimated according to the WBS projections.

The nutrient-rich pastures/meadows appeared to be

underestimated.

Discussion

We successfully modelled the distribution of 20 perma-

nent grassland habitat types at the level of phytosociologi-

cal alliances across Switzerland using a large and unique

high-quality field inventory dataset and spatial data, in

particular, spatial and temporal indices from Copernicus

Sentinel satellite imagery. Our study provides a compre-

hensive set of high spatial resolution (10x10 m) maps of

the distribution of grassland habitats for a large area of

heterogeneous terrain, climate and land use, offering a

wide range of applications for biodiversity conservation.

Table 3. Evaluation of the final combined map (M1F) based on G-Mean (squared root of the product of the sensitivity and specificity for dataset

2) and a comparison with the projections for the biotopes of national importance (fens, bogs and dry meadows and pastures (TWW)) and the

entire area of Switzerland. The projections are based on the WBS (Monitoring the Effectiveness of Habitat Conservation in Switzerland) and ALL-

EMA (Switzerland’s agricultural species and habitats’ monitoring program) data. For the projections, the numbers are given in percentage of the

respective area.

G-Mean

M1F

Fens M1F /

WBS

Bogs M1F /

WBS

TWW M1F /

WBS

Switzerland

M1F / ALL-EMA

Fens

2.2.1 0.45 8.46 / 9.28 3.25 / 5.05 0.00 / 0.03 0.05 / 0.04

2.2.2 0.51 5.89 / 7.73 20.39 / 3.42 0.02 / 0.02 0.15 / 0.15

2.2.3 0.43 16.79 / 18.43 3.66 / 0.87 0.19 / 0.32 0.46 / 0.32

Wet meadows

2.3.1 0.39 4.49 / 5.96 0.82 / 0.21 0.00 / 0.27 0.03 / 0.09

2.3.2/3 0.61 27.13 / 25.83 5.24 / 4.45 0.02 / 0.50 0.70 / 1.2

Raised bogs

2.4.1 0.57 1.40 / 5.08 33.26 / 49.96 0.01 / 0.03 0.02 / 0.25

Re-seeded and heavy fertilized grassland

4.0.2 0.88 0.31 / 0 0.31 / 0 0.11 / 0.00 0.55 / 0

Dry grasslands

4.2a 0.53 0 / 0 0 / 0 3.65 / 4.14 0.12 / 0.04

4.2.4 0.74 0.36 / 0.21 0 / 0 25.49 / 26.65 1.03 / 0.97

Nutrient-poor alpine and subalpine grasslands

4.3.1 0.47 0.56 / 0 0.03 / 0 15.74 / 1.38 1.43 / 1.31

4.3.2/4 0.66 0 / 0 0 / 0 0.04 / 0.29 0.70 / 0.17

4.3.3 0.61 0.11 / 0 0 / 0 9.24 / 9.75 2.61 / 0.66

4.3.5 0.51 9.23 / 3.34 1.77 / 0.47 6.33 / 7.21 3.77 / 2.74

4.3.6 0.54 0.21 / 0 0.07 / 0 6.83 / 1.61 1.01 / 0.18

4.3.7 0.51 0.08 / 0.07 0.01 / 0 0.09 / 0.07 1.32 / 0.66

Nutrient-rich pastures and meadows

4.5.1 0.62 2.65 / 0.94 0.29 / 0 3.13 / 15.22 8.22 / 13.57

4.5.2 0.44 1.76 / 0.41 0.13 / 0 0.48 / 2.46 1.01 / 2.01

4.5.3 0.55 3.11 / 0.91 0.46 / 0 1.10 / 2.80 4.43 / 7.08

4.5.4 0.43 2.90 / 1.58 1.39 / 0 3.84 / 5.01 1.93 / 4.41

Fallow grasslands

4.6 0.16 0.16 / 0.22 0.09 / 0 0.37 / 0.12 0.16 / 0.27

Other habitat types 14.41 / 20.01 28.83 / 35.57 23.32 / 22.81 70.27 / 63.88
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The maps could (1) serve as input for further modelling,

that is, in the context of species distribution models,

ecosystem service mapping, the identification of transition

zones between habitat types, or connectivity analyses; (2)

be integrated into or combined with other habitat maps;

(3) be used in monitoring projects, for example, to

inform and plan field data collection campaigns; or (4)

be applied for conservation planning, for example, to

build ecological networks or extend conservation areas.

Spatial predictors

Predictors from all groups, that is, remote sensing, cli-

mate, soil and topography, were relevant for the vast

majority of habitat types indicating that they capture

complementary and ecophysiologically relevant aspects of

habitat distributions (Mod et al., 2016). Satellite-based

indices, especially those characterizing moisture content

as well as vegetation greenness/density and its seasonality,

were highly relevant for the modelling. The seasonal pre-

dictors likely allow a better discrimination of similar

grassland types by capturing relevant differences in their

phenology (Marcinkowska-Ochtyra et al., 2019; Tarantino

et al., 2021). Topographic predictors turned out to be

particularly relevant for wet grasslands and alpine/sub-

alpine grasslands occurring on special terrain features,

such as mountain ridges. These predictors were proxies

for small- and large-scale patterns of soil water availability

and topography-related energy (i.e., inducing erosion or

accumulation processes), which are highly variable in

landscapes with rugged topography (Scherrer &

Guisan, 2019). From the edaphic predictors, pH and soil

nutrients were selected most often and thus seem to be

key to determining habitat distributions, particularly in

areas with contrasting edaphic conditions (Dubuis

et al., 2013; Scherrer & Guisan, 2019).

Combining habitat maps

We used a two-step approach, where the ensemble mod-

eling outputs of the individual habitats were assembled

into combined maps by integrating weights derived from

an iterative expert elicitation process. This transparent

and flexible approach has a number of advantages. First,

in addition to the combined maps, maps of all individual

habitat types are available and can be used, analyzed and

updated independently. Furthermore, the combined maps

could be updated when improved maps of individual

habitat types become available. Third, expert weighting of

the predicted probabilities of occurrence allowed finding

more realistic thresholds between closely related habitat

types and thus adjusting the abundance of habitat types

in the combined map. Finally, we accounted for

uncertainties of the combination procedure by providing

maps of the most and second most likely habitat type,

respectively, as well as a map of the ratio of the probabili-

ties of the two alternatives.

Performances of the grassland maps

Although, the best performing algorithm varied with

habitat type, the ensemble represented the best or second

best algorithm for the majority of the habitat types. This

is in line with previous studies comparing different algo-

rithms (e.g., Bouska et al., 2014; Norberg et al., 2019)

and underlines the value of using ensembles.

For wet grasslands, most individual type maps per-

formed well, while their relative performance to the other

habitats dropped in the combined map M1F. Omissions

predominantly occurred with other wet grassland habitats.

This can be expected since wet habitats often occur in

small-scale mosaics (K€uchler et al., 2004). Of all wet

grassland habitats, the individual map for raised bogs per-

formed particularly well, but was challenging to integrate

in the combined maps, especially regarding transitions to

surrounding fens. Strict rules were required to avoid an

overestimation of this rare and highly protected habitat.

Moreover, a strict masking was applied to exclude shrub

and treed bogs, which at least partly explains the underes-

timation of raised bogs in comparison to the WBS and

ALL-EMA projections. Transitions between oligotrophic

fens (particularly 2.2.3: Caricion davallianae) and

nutrient-rich wet meadows (i.e., 2.3.2/3: Calthion/Filipen-

dulion) were challenging to map but are particularly rele-

vant for biodiversity conservation. Eutrophication

represents one of the biggest current threats to wetlands

(Rion et al., 2018), associated with transformations from

fens towards nutrient-rich wet meadows (Bergamini

et al., 2009).

For other permanent grasslands, performance was very

high for both the individual and combined maps of re-

seeded and heavy fertilized grasslands (4.0.2). Omissions

predominantly occurred with the mesic and nutrient-rich

Arrhenatherion (4.5.1), indicating the greatest similarity

with nutrient-rich meadows. The lowest performance was

for fallow grassland maps, potentially because they repre-

sent a spectrum of grassland types with lack of manage-

ment rather than an actual phytosociological unit

(Delarze et al., 2015). Performance of dry grassland maps

was medium to high. The four xeric types (modelled

together as 4.2a) separated well from the semi-dry Meso-

bromion (4.2.4), which, however, often featured transi-

tions to the nutrient-rich Arrhenatherion (4.5.1). The

comparison with ALL-EMA indicated that some

alpine/subalpine grasslands may be overestimated. How-

ever, this comparison is restricted due to the predominant
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focus of ALL-EMA on the agricultural area. The high

share of both mutual omissions and assignments to most

and second most likely habitat types of the extensively

managed alpine/subalpine grassland Nardion (4.3.5) and

the nutrient-rich pasture Poion alpinae (4.5.4) indicates

that the transition between these grassland types was diffi-

cult to map. On the one hand, Poion alpinae often co-

occurs in small-scale mosaics with nutrient-poor

alpine/subalpine grasslands and wetlands (Delarze

et al., 2015), while, on the other hand, Nardion pastures

gradually degrade into Poion alpinae when grazed inten-

sively (Kurtogullari et al., 2020). In contrast, Poion alpi-

nae was separated relatively well from the other nutrient-

rich pastures/meadows, likely because it occurs at higher

elevations. However, the other nutrient-rich pasture/mea-

dow types were more difficult to distinguish from each

other, likely because management drives their floristic

composition. Yet, mixed uses, such as cutting followed by

grazing, are common practice and may change between

years, resulting in intermediate habitat types (Delarze

et al., 2015).

Limitations

Prediction accuracies were assessed for all habitat types at

the national extent using a comprehensive set of measures.

Yet, accuracies likely differ across regions, particularly

towards extreme conditions (i.e., dry, wet or high elevation).

Additional measures, such as the area of applicability

(Meyer & Pebesma, 2021), could be used to identify regions

with particularly uncertain predictions. Region-specific

modeling efforts may improve the maps provided here,

however they likely require additional vegetation samples to

better capture the habitat-environmental relationships.

Alternatively, regional deficiencies (e.g., underestimations

of wet habitats in dry bioregions) may represent niche trun-

cations due to spatial sampling bias, which could be

addressed with transnational vegetation samples (Chevalier

et al., 2021).

As the vegetation samples were collected within different

surveys, the assignment of vegetation plots to specific habi-

tat types likely differed among data sources. This may, for

instance, explain the contradictory assessment of the two

projections (WBS, ALL-EMA) with regard to the percent

area of the alpine/subalpine grassland Seslerion (4.3.1).

Where available, homogenizing the assignment based on the

species’ presence and abundance could resolve this issue.
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