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the microbial gene potential for
C and N cycling in soils but
enhances detoxification gene
abundance
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WSL, Birmensdorf, Switzerland, 2FGCZ Functional Genomics Center Zurich, ETH Zürich and
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Soil microorganisms are key transformers of mercury (Hg), a toxic and

widespread pollutant. It remains uncertain, however, how long-term exposure

to Hg affects crucial microbial functions, such as litter decomposition and

nitrogen cycling. Here, we used a metagenomic approach to investigate the

state of soil functions in an agricultural floodplain contaminated with Hg for

more than 80 years. We sampled soils along a gradient of Hg contamination

(high, moderate, low). Hg concentrations at the highly contaminated site

(36 mg kg−1 dry soil on average) were approximately 10 times higher than

at the moderately contaminated site (3 mg kg−1 dry soil) and more than

100 times higher than at the site with low contamination (0.25 mg kg−1 dry

soil; corresponding to the natural background concentration in Switzerland).

The analysis of the CAZy and NCyc databases showed that carbon and

nitrogen cycling was not strongly affected with high Hg concentrations,

although a significant change in the beta-diversity of the predicted genes

was observed. The only functional classes from the CAZy database that

were significantly positively overrepresented under higher Hg concentrations

were genes involved in pectin degradation, and from the NCyc database

dissimilatory nitrate reduction and N-fixation. When comparing between low

and high Hg concentrations the genes of the EggNOG functional category

of inorganic ion transport and metabolism, two genes encoding Hg transport

proteins and one gene involved in heavy metal transport detoxification were

among those that were highly significantly overrepresented. A look at genes

specifically involved in detoxification of Hg species, such as the mer and

hgc genes, showed a significant overrepresentation when Hg contamination

was increased. Normalized counts of these genes revealed a dominant

role for the phylum Proteobacteria. In particular, most counts for almost

all mer genes were found in Betaproteobacteria. In contrast, hgc genes
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were most abundant in Desulfuromonadales. Overall, we conclude from this

metagenomic analysis that long-term exposure to high Hg triggers shifts in

the functional beta-diversity of the predicted microbial genes, but we do not

see a dramatic change or breakdown in functional capabilities, but rather

functional redundancy.

KEYWORDS

shotgun metagenomics, mercury, mer genes, hgcAB genes, biogeochemical cycling,
CAZy (carbohydrate-active enzymes), EggNOG, soil

Introduction

Mercury (Hg) is a non-essential heavy metal with no known
biological functions (Nies, 1999). It is a toxic pollutant found
in all environments due to long-range atmospheric transport.
Globally, it has been estimated that more than 7,500 Mg of Hg is
emitted to the atmosphere every year, about one-third of which
is derived from anthropogenic sources (Pirrone et al., 2010).
Geogenic Hg emissions come mainly from volcanic eruptions,
other geothermal activities, and from rock weathering, while
anthropogenic Hg emissions come mainly from fossil-fuel-fired
power plants, small-scale gold mining for gold amalgamation,
non-ferrous metal manufacturing, cement production, and
waste disposal (Pirrone et al., 2010). Industrial waste disposal
in particular is a major source of Hg contamination, with
approximately 187 Mg emitted per year (Pirrone et al., 2010).

In the soils, the toxicity of Hg is highly dependent on
its chemical speciation. Mercury is transformed biotically and
abiotically into several major forms, including elemental Hg0,
mercuric Hg2+, and methylmercury (MeHg), with MeHg being
the most prevalent organo-Hg and a potent neurotoxin (Date
et al., 2019). In particular, MeHg has a high affinity for
sulfhydryl ligands in amino acids, leading to changes in protein
structure and loss of function (Nies, 2003). Therefore, MeHg
bioaccumulates in the food web, and humans are exposed to
this neurotoxin through their diet, particularly by consuming
Hg-contaminated animals Diez (2009).

Bacteria and Archaea possess various mechanisms to cope
with high Hg concentrations in soils. The mer operon system
in Bacteria and Archaea codes for the detoxification of proteins
and is a known bacterial resistance system against Hg (Boyd
and Barkay, 2012). The central gene for Hg resistance in
the mer operon system is merA. This gene codes for the
mercuric reductase enzyme, a flavoprotein located in the
cytoplasm and using NADPH as electron donor; it catalyzes
the conversion of Hg2+ to volatile Hg0 (Barkay et al., 2003).
The conversion of Hg2+ to MeHg is mainly carried out
by certain anaerobic Bacteria and Archaea. However, the
physiological role of microbial MeHg production is unclear, as
Hg methylation apparently does not confer resistance to Hg

toxicity. Interestingly, several Hg methylators have been shown
to simultaneously methylate Hg and demethylate MeHg (Date
et al., 2019).

Bacterial species currently known to methylate Hg include
Desulfovibrio spp. and Geobacter spp., and archaeal species
known to methylate Hg include species of Methanomicrobia
(Gilmour et al., 2018). In addition, some bacterial and archaeal
species carry hgcAB genes and, thus, are suspected to produce
MeHg as well (e.g., Bacteroidetes, Chloroflexi, Nitrospirae,
Thermoplasmata; Gilmour et al., 2018). The gene hgcA encodes
a corrinoid-dependent protein that presumably functions as
part of a methyltransferase, and hgcB encodes an associated
ferredoxin protein that potentially reduces the corrinoid center
of hgcA (Gilmour et al., 2013). Both hgcA and hgcB occur in
bacterial and archaeal taxa. However, the hgcAB gene pair is
relatively rare, occurring in only ∼1.4% of sequenced microbial
genomes (Podar et al., 2015). Nevertheless, microorganisms
carrying these genes are distributed worldwide in highly diverse
anaerobic settings, including soils, sediments, invertebrate
digestive tracts, and various extreme environments. It is not
known why microorganisms methylate Hg, but this process is
generally not thought to be a Hg detoxification mechanism, as
microorganisms harboring hgcAB genes are apparently no less
susceptible to Hg toxicity than those lacking them (Gilmour
et al., 2011; Cooper et al., 2020).

A recent review stated that exposure to Hg is a threat to
microbial soil functions involved in C and N cycles (Durand
et al., 2020). However, the majority of studies have been carried
out shortly after Hg contamination (e.g., Frey and Rieder, 2013;
Frossard et al., 2017). Thus, it remains uncertain whether crucial
soil functions, such as litter decomposition and N cycling, are
hampered after long periods of exposure to high Hg levels.
Here, we aimed to investigate a Swiss agricultural floodplain
soil, contaminated by the Hg waste of a chemical plant for
about a decade, by studying the condition of soil functions
using a metagenomic approach. The Hg contamination started
in 1917, when Hg was used as a catalyst during the production
of acetaldehyde, vinyl acetate and vinyl chloride, as well as in
chlor-alkali electrolysis, and then released as chemical waste
into a water channel (Osterwalder et al., 2019). The sediment
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of that channel was then regularly dredged from 1935 to 1975
and spread as fertilizer on agricultural soils or as fill material
in settlement areas along the channel (ForumUmwelt, 2011).
In 2012, the environmental agency of the canton of Valais
required soil investigation to assess the extent of the polluted
area, because the Hg concentrations drastically exceeded the
critical limit of 0.5 mg kg−1 soil (VBBO, 1998). In Switzerland,
soils with Hg contamination ≥20 mg kg−1 soil require disposal
(Portmann et al., 2013). Since 2012, several scientific studies
have been conducted to investigate chemical and physical
parameters at the site (Gilli et al., 2018; Gygax et al., 2019;
Osterwalder et al., 2019; Gfeller et al., 2021), as well as microbial
parameters and communities (Frossard et al., 2018).

In an initial study we focused on the altered diversity
of microbial communities under high Hg exposure over long
periods (Frossard et al., 2018). Here, we focused on the
functional gene potential of the microbial communities and how
it is characterized in soils that are contaminated with Hg over
many years. In particular for highly long-term contaminated
soils, we hypothesized that: (1) general physiological processes
assessed by the presence of genes from the EggNOG database
are strongly modified, (2) C- and N-cycling processes assessed
by the presence of genes of the CAZy and NCyc databases are
strongly affected, (3) Hg detoxification processes assessed by the
presence of mer and hgc genes are strongly influenced.

Materials and methods

Study site and soil samples

Soils were collected in October 2015 from a pasture
in an agricultural floodplain near the town of Raron (CH;
46◦18′10.6′′N, 7◦48′34.2′′E), where high Hg contamination
had been detected (ForumUmwelt, 2011). The Hg
contamination originated from the sediment of a water
channel (“Grossgrundkanal”) into which large quantities of
Hg (estimated at 50–250 t) were discharged from 1917 on by
a chemical plant located upstream. The sediment was then
dredged and spread on the pastures between approximately
1935 and 1975 (Osterwalder et al., 2019). This resulted in a
gradient of contamination, with the highest Hg concentration in
soil occurring near the channel and decreasing concentrations
with increasing distance from the channel. Soil samples were
taken along this gradient at sites with different levels of Hg
concentration (low contamination level at 100 m distance
from the water channel, moderate contamination level at 30 m
distance, high contamination level at 5 m distance). Four
replicated samples, positioned 20 m apart from each other,
were used for each of the Hg levels, resulting in a total of 12
soil samples (see also Frossard et al., 2018). Soils were collected
from a depth of 0–10 cm (A horizon) using a soil corer with
a diameter of 7 cm. The fresh soil samples were mixed and

sieved (2 mm) and then split for storage, with one subsample
kept at 4◦C in the dark for one week for chemical, physical and
biological analysis and the other at−20◦C for DNA extraction.

Soil physico-chemical parameters

Soil samples were dried overnight at 105◦C to measure
their gravimetric water content. Soil texture was determined
with the hydrometer technique according to Gee and Bauder
(1986). The soil pH was measured in ultrapure water with
a soil to water ratio of 1:2 using a glass electrode linked
to a pH meter (FEP20-FiveEasy Plus, Mettler-Toledo GmbH,
Switzerland). Around 2 g of well-homogenized soil was milled
with a Teflon ball mill, and around 40 mg of soil was
subsequently weighed into tin caps for measurement of the
total C (TC) and total N (TN) concentrations with a CN
elemental analyzer (NC2500, CE Instruments, Italy). Organic
C (Corg) was separated from inorganic C and was quantified
according to Walthert et al. (2010). Water extractable Hg was
extracted with milli-Q water for 16 h in a slurry at a ratio of
1:10 g soil ml−1 (Lazzaro et al., 2006; Rieder and Frey, 2013).
Total Hg concentrations in soils were analyzed using a direct
Hg analyzer (AMA 254 Mercury Analyzer, LECO Corporation,
St. Joseph, MI, USA; detection limit 0.001 µg Hg g−1 dw),
and water-extractable Hg concentrations were determined using
an Inductively Coupled Plasma Mass Spectrometer (ICP-MS,
7700x, Agilent Technologies, Japan).

Soil microbiological parameters

Basal respiration was measured in a closed soil-chamber
system connected to a Li-8100 infrared gas analyzer (LI-COR
Inc., Lincoln, NE, USA). The soil containers were connected
to the CO2 analyzer. CO2-free air flowed at a rate of about
0.16 L min−1 through the containers, and entrained the CO2

just released from the soil to the infrared gas analyzer. After
13 d of incubation, the gas flow and CO2 concentration were
recorded with three measurements within 6 h. The basal
respiration was then calculated according to Rieder and Frey
(2013) and the fluxes reported as µg CO2 d−1 g−1 dry soil.
Potential nitrification rate was determined using the shaken
slurry method (Hart et al., 1994). Nitrification potential was
calculated by linear regression of accumulated nitrate over time
and expressed as ng NO3

− h−1 g−1 dry soil (Frey et al., 2020).

DNA extraction and relative
abundances of taxonomic and
functional genes

DNA was extracted from all twelve soil samples using the
PowerSoil DNA Isolation Kit (Qiagen, Hilden, Germany) and
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was quantified using the high-sensitivity Qubit assay (Thermo
Fisher Scientific, Reinach, Switzerland). The amount of DNA
extracted from soils was used as a proxy for the microbial
biomass, as a previous study has shown that the amount of DNA
extracted from soils can be used as an approximation (Frey et al.,
2022).

Relative abundances of the bacterial 16S rRNA gene, fungal
ITS, nifH (nitrogen fixation), bacterial amoA and archaeal amoA
(nitrification)-DNA copies were determined with quantitative
real-time PCR (qPCR) on an ABI7500 Fast Real-Time PCR
system (Applied Biosystems, Foster City, CA, USA) according
to Frey et al. (2020). qPCR amplifications of Hg reductase
(merA) gene copies were performed with the MerAF and MerAR
primers (Larose et al., 2013). The initial DNA denaturation
was conducted at 95◦C for 15 min. Each of the following 40
amplification cycles involved a denaturation step at 95◦C for
30 s, primer annealing at 60◦C for 45 s and an extension
phase for 45 s at 72◦C. A final cycle included a denaturation
step at 95◦C for 15 s. Primer annealing was done at 60◦C
for 1 min followed by denaturation at 95◦C for 15 s. qPCR
analyses were performed using 2.5 ng DNA in a total volume of
25 µL containing 0.5 µm of each primer, 0.2 mg mL−1 of bovin
serum albumin (BSA), and 12.5 µL of QuantiTect SYBR Green
PCR master mix (Qiagen, Hirlen, Germany). Three standard
curves per target region (correlations ≥0.997) were obtained
using tenfold serial dilutions (10−1 to 10−9 copies) of plasmids
generated from cloned targets (Frey et al., 2011). Data were
converted to represent the average copy number of targets per
g dry soil.

Shotgun sequencing

Both library preparation and shotgun sequencing of eluted
DNA of nine soil samples (three Hg levels, three replicates)
were performed at Microsynth AG (Balgach, Switzerland). The
canonical analysis of principal coordinates (CAP) of Frossard
et al. (2018) indicated that the microbial community structures
of the four replicates were very close to each other for each
of the Hg contamination levels, which is why three instead of
four replicates were considered sufficient for the metagenomic
analysis. Library preparation was performed using the Illumina
TruSeq DNA Library Prep Kit, and shotgun sequencing was
performed using the Illumina NextSeq 2500 System (2× 150 bp;
Illumina Inc., San Diego, CA, USA). Raw sequences were
deposited in the NCBI Sequence Read Archive under the
accession number PRJNA794054.

Metagenome assembly

Pre-processing of metagenomic reads, assembly of reads
into contigs, contig binning, and functional and phylogenetic

annotation of contigs and bins were achieved using a customized
pipeline. Briefly, raw reads were quality checked using FastQC1.
They were quality filtered and trimmed (i.e., pre-processed
reads) using Trimmomatic v0.36 (Q = 20, minimum read
length = 40; Bolger et al., 2014). Pre-processed read pairs were
assembled into contigs (>200 bp) by iteratively building de
Bruijn graphs using k-mers of increasing size with the de novo
assembler MEGAHIT v1.1.3 (–k-min 27, –k-step 10; Li et al.,
2015).

Functional annotation and taxonomic
classification

Protein-coding sequences contained in the assembled
contigs were predicted with MetaGeneMark v3.38 (Zhu et al.,
2010). To uncover the potential metabolic capabilities of the soil
metagenomes, protein-coding genes were assigned to functions
(i.e., functional genes). About 50% of the predicted genes
were assigned to general metabolic and cellular functions
using EggNOG v4.5 (evolutionary genealogy of genes: non-
supervised orthologous groups), which classifies the genes
into clusters of orthologous groups (COGs) of proteins and
organizes the COGs into general functional categories (Jensen
et al., 2008; Huerta-Cepas et al., 2016). Annotation to EggNOG
v4.5 was performed using the EggNOG-mapper v1.0.3 with
the DIAMOND search mode against all protein sequences
(Huerta-Cepas et al., 2017). About 1% of the protein-coding
genes were annotated to carbohydrate-active enzymes using
the CAZy database (carbohydrate-active enzymes: release of
July 2017 version; Cantarel et al., 2009). About 0.2% of the
genes were annotated to N-cycling families using the NCyc
database (syn. NCycDB: curated integrative database for fast and
accurate metagenomic profiling of N-cycling genes; Tu et al.,
2019). Annotations against the CAZy and NCyc databases were
performed using SWORD v1.0.3 (Vaser et al., 2016) (−v 10−6;
Anwar et al., 2019). In addition to the categorization by enzyme
classes implemented in CAZy, a manual categorization of CAZy
genes into different C substrates was performed as previously
outlined (Perez-Mon et al., 2021; Frey et al., 2022).

Kaiju v1.7.4, a program for sensitive taxonomic classification
of high-throughput sequencing reads from metagenomic whole
genome sequencing (Menzel et al., 2016), was used for the
taxonomic classification of the protein-coding genes using
default settings and the prebuilt “nr_euk” database (version
2021-02-24) containing bacterial, archaeal, viral, fungal and
microbial eukaryotic protein sequences from the NCBI BLAST
non-redundant protein database. The helper program kaiju-
addTaxonNames was utilized to convert NCBI taxon IDs to
taxonomy.

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Identification of mer and hgc genes

The presence of mer and hgc genes among protein-
coding sequences was determined by aligning the sequences
against known mer and hgc sequences. Available nucleotide
and protein sequences of mer and hgc genes were downloaded
from NCBI protein and nucleotide database in December 2021
utilizing the Entrez Direct v15.4 (Kans, 2022). Protein-coding
sequences were aligned against downloaded protein sequences
using BLASTP 2.11.0+ (Camacho et al., 2009) with standard
parameters. All sequences with an alignment that had an e-value
<10−6 to a mer or hgc gene were considered a match.

For merA, also primer-specific protein-coding sequences
were identified. The merA nucleotide sequences downloaded
from NCBI were filtered for MerAF and MerAR (Larose et al.,
2013) primer binding sites. Nucleotide sequences were blasted
against a sequence consisting of the MerAF primer sequence,
50 “N” characters, and the reverse complement sequence of
the MerAR primer using BLASTX v2.11.0+ with the following
parameters: -task blastn -word_size 11 -dust no -evalue 1000.
Nucleotide sequences were considered to contain a primer-
binding site if they had a match with a maximum of two
mismatches. Protein-coding sequences that aligned with any
of the primer binding-site filtered nucleotide sequences were
considered a primer-specific merA gene.

Normalized counts of the abundance
of protein-coding genes

Pre-processed read-pairs from each of the samples were
mapped to the assembled contigs, using the BWA aligner v0.7.15
(bwa-mem; Li, 2013). The function “featureCounts” from the
package Subread v1.5.1 (-minOverlap 10, Q = 10, -primary; Liao
et al., 2014) was used to count the read-pairs that mapped to
the assembled protein-coding gene sequences to obtain gene
abundances.

Statistical analyses

Results from all statistical tests performed in this study were
considered significant at P < 0.05 unless indicated otherwise.
Statistical significances of observed differences were assessed
by applying factorial analyses of variance (ANOVA) with
Fisher’s protected least significant difference using StatView
(v5.0, SAS Institute, Cary, NC, United States), and by applying
permutational analyses of variance (PERMANOVA) with 105

permutations and Monte Carlo approximated P-value using
PRIMER v7 (Clarke and Gorley, 2015). For all other analyses
RStudio and R v4.1.0 (R Core Team, 2019) were utilized.

Read counts were normalized to the protein-coding gene
length in kilobases (kb) for intra-sample comparisons between

different genes. For inter-samples comparisons, counts were
normalized using the scaling with ranked subsampling (SRS)
method, as implemented in the function “SRS” of the R
package SRS v02.2 (Beule and Karlovsky, 2020). Normalization
methods were combined for simultaneous intra- and inter-
sample comparisons, unless specified otherwise.

The function “diversity” of the R package vegan v2.5-7
(Oksanen et al., 2020) was used to calculate Shannon’s diversity
index. The beta-diversity of samples was assessed on Bray–
Curtis dissimilarity matrix, produced with function “vegdist” of
the R package vegan. Classical multidimensional scaling (MDS)
was performed using the function “cmdscale” of the R package
stats.

Pairwise DESeq2 analyses, using non-normalized read
counts as input and standard parameters, were used to
determine differentially abundant genes for all possible
combinations of Hg contamination levels (function “DESeq”
of the R package DESeq2 v1.26.0; Love et al., 2014). Genes
with read counts <10 over all samples of pairwise comparison
were excluded prior to analysis to speed up computation. The
reported number of genes after DESeq2 filtering corresponds
to the genes that passed the simple read count filtering
just described. Genes were considered as significantly over-
or underrepresented only for pairwise comparisons with an
adjusted P-value <0.01; P-values were adjusted for multiple
testing using the Benjamini–Hochberg method.

Additional R packages that were used for the analyses
were: tidyverse v1.3.1 (Wickham et al., 2019), data.table v1.14.0
(Dowle et al., 2021), readxl v1.3.1 (Wickham et al., 2020), and
ggpubr v0.4.0 (Kassambara, 2020).

Results

Soil and microbial properties varied
only slightly with Hg contamination

Total Hg concentrations averaged 36,097 µg Hg kg−1 dry
soil ( = 36.1 mg Hg kg−1 dry soil) at the highly contaminated
site closest to the channel, with values approximately 10-fold
higher than at the moderately contaminated Hg site and 100-
fold higher than at the site with low Hg contamination farthest
from the channel (P < 0.001; Table 1). The Hg concentration
at the high contamination site is about two times higher than
the recommended clean-up level of 20,000 µg Hg kg−1 for
Switzerland (Portmann et al., 2013), and the Hg concentration
at the low contamination site (251 µg Hg kg−1 dry soil)
corresponds approximately to the natural background level
in Switzerland (Rieder et al., 2011). Concentrations of water-
extractable Hg were relatively low compared with total Hg,
because only about 0.2% of the total Hg from the highly and
moderately contaminated sites was extractable with water and
only about 0.6% from the low contaminated site. However,
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soluble Hg showed a decrease along the gradient similar to
that observed for total Hg: values in the highly contaminated
site were about 14 times higher than in the site with moderate
contamination and about 44 times higher than in the site with
low contamination (P = 0.002; Table 1).

Soil pH decreased slightly across the sampled gradient
from low to high Hg contamination, but differences were
not significant (Table 1). Total C and N concentrations
both increased toward the water channel (increasing Hg
contamination level) but only Ntot increased significantly
(P = 0.041), resulting in a significant decrease in the C:N ratio
(P = 0.013). Similarly, the soil texture changed significantly
along the gradient: the percentage of sand decreased (P = 0.008),
while that of silt (P = 0.023) and clay increased (P = 0.023) with
decreasing distance to the channel (higher Hg contamination;
Table 1).

Microbial biomass, measured as µg DNA g−1 soil,
was significantly enhanced with moderate and high Hg
contamination levels (P = 0.005; Table 1). Basal respiration
and nitrification rate, measured as CO2 and NO3 emissions
from soils, respectively, tended to increase at the high
Hg contamination level, but no significant differences were
observed among the sites (Table 1). Overall, the number of

16S rRNA gene copies increased significantly (P = 0.035)
with increasing Hg contamination level, whereas the number
of ITS gene copies did not change significantly (Table 1).
Genes involved in the N cycle, such as N-fixation genes (nifH)
and ammonia-oxidizing genes (amoA) were not significantly
affected by increasing Hg contamination level. In contrast,
Hg reductase genes (merA) were significantly enhanced with
increasing Hg contamination levels (P = 0.004; Table 1; compare
also values in Frossard et al., 2018).

Metagenomic sequencing

Metagenome sequencing of triplicate soil samples from the
three Hg contamination levels (low, moderate, high) yielded, on
average, 86 million raw reads per sample (Table 2). The total
number of assembled reads into contigs was 17.7 × 106, with a
total size of 12.4× 109 base pairs (bp) (Supplementary Table 1).
Contig length ranged from 200 bp to 207,300 bp with a N50 of
782 bp. Using MetaGeneMark, a total of 26.2 × 106 genes were
predicted to be present in the assembly.

Approximately 74% of the raw reads per sample were
aligned to contigs, and about 78% of the aligned reads were

TABLE 1 Mean values of soil chemical, physical and biological properties ( ± SE) for the three Hg contamination levels low, moderate, and high Hg
(n = 4) (compare also with Frossard et al., 2018).

Low Hg Moderate Hg High Hg P+

Soil chemical properties:

Hgtot (µg kg−1 soil) 251 (± 46.3) 3,019 (± 945) 36,097 (± 2,398) < 0.001

Hgwater extractable (µg kg−1 soil) 1.54 (± 0.35) 4.95 (± 1.61) 67.7 (± 17.5) 0.002

Corg (%) 1.63 (± 0.24) 2.76 (± 0.52) 2.18 (± 0.38) 0.19

Ctot (%) 2.71 (± 0.16) 3.78 (± 0.43) 3.88 (± 0.47) 0.10

Ntot (%) 0.17 (± 0.02) 0.29 (± 0.04) 0.31 (± 0.04) 0.041

C:N ratio 16.5 (± 1.16) 13.1 (± 0.33) 12.7 (± 0.57) 0.013

pH (H2O) 8.30 (± 0.10) 8.13 (± 0.11) 7.98 (± 0.04) 0.08

Soil physical properties:

Sand (%) 44.4 (± 6.22) 22.8 (± 1.29) 29.4 (± 1.60) 0.008

Silt (%) 48.7 (± 6.03) 66.4 (± 2.16) 61.2 (± 1.00) 0.023

Clay (%) 7.0 (± 0.58) 10.8 (± 1.01) 9.5 (± 0.73) 0.023

Soil biological properties:

Microbial biomass (µg DNA g−1 soil) 19.1 (± 2.57) 57.4 (± 7.98) 57.7 (± 8.65) 0.005

Basal respiration (µg CO2 d−1 g−1 soil) 9.9 (± 1.81) 15.0 (± 2.79) 19.1 (± 2.92) 0.09

Nitrification rate (ng NO3 h−1 g−1 soil) 68.0 (± 2.91) 69.6 (± 3.06) 68.8 (± 1.61) 0.91

Abundance of gene copies (assessed by qPCR)*:

16S (x1010) (g−1 soil) 2.85 (± 0.44) 5.61 (± 0.91) 4.92 (± 0.47) 0.035

ITS (x108) (g−1 soil) 0.75 (± 0.14) 2.23 (± 0.85) 2.89 (± 1.10) 0.21

nifH (x108) (g−1 soil) 2.52 (± 0.67) 8.50 (± 1.55) 8.53 (± 2.53) 0.06

amoA Bacteria (x107) (g−1 soil) 0.37 (± 0.27) 1.42 (± 0.67) 1.48 (± 0.45) 0.25

amoA Archaea (x107) (g−1 soil) 2.50 (± 0.46) 4.04 (± 0.81) 2.75 (± 0.41) 0.20

merA (x107) (g−1 soil) 0.71 (± 0.17) 1.52 (± 0.34) 2.45 (± 0.24) 0.004

+Effect of Hg contamination assessed by analysis of variance (ANOVA); significant values (P < 0.05) are in bold. *16S: bacterial 16S gene, ITS: fungal ITS gene, nifH: nitrogenase iron
protein gene, amoA: ammonia monooxygenase subunit A gene, merA: mercuric reductase gene.
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TABLE 2 Mean number of sequences and percentage of protein-coding genes (CDS genes), and the relative abundance of CDS assigned to taxa at
the domain level for the three Hg contamination levels.

Low Hg Moderate Hg High Hg P+

Raw reads (× 106) 99.2 85.8 82.7 0.34

High-quality reads (× 106) 97.2 84.1 81.1 0.34

Reads aligned to contigs (%) 77.5 72.8 72.1 0.05

Aligned reads mapped to CDS genes (%) 78.6 77.1 77.6 0.24

Bacteria (%) 58.7 58.2 57.6 0.07

Archaea (%) 0.90 0.81 0.89 0.78

Eukarya (%) 0.23 0.23 0.23 0.54

Viruses (%) 0.03 0.03 0.03 0.91

Unclassified (%) 40.1 40.8 41.2 0.04

+Effect of Hg contamination assessed by analysis of variance (ANOVA); significant values (P < 0.05) are in bold.

mapped to protein-coding genes (CDS genes; Table 2). About
58% of the genes were assigned to bacterial taxa, whereas less
than 1% were assigned to Archaea, Eukarya or Viruses. Around
40% of the genes remained unclassified. All these parameters
remained unchanged across the Hg contamination levels,
except the unclassified group, which significantly increased with
increasing Hg level (P = 0.04; Table 2).

The number of predicted genes annotated against the
EggNOG database was 12.5× 106 (47.5%), whereas the number
of predicted genes annotated against the CAZy and NCyc
databases was considerably smaller at 262.2 × 103 (1.00%) and
42.9× 103 (0.16%), respectively (Supplementary Table 1).

Diversity and differential abundance of
predicted genes changed with Hg
levels

The alpha-diversity of predicted genes and for genes of the
EggNOG, CAZy and NCyc databases, as expressed by richness
and the Shannon index, was between 11.6 and 12.5 × 106

genes (Supplementary Table 2), and the Shannon index was
between 15.6 and 15.8, but both were not significantly different
across the three Hg-contamination levels (Supplementary
Table 3). In contrast, beta-diversity changed significantly with
Hg contamination levels for all predicted genes, as well as
for genes annotated against the EggNOG, CAZy, or NCyc
database (P = 0.011 to 0.016; Supplementary Table 3). Pairwise
comparisons of the Hg contamination levels revealed significant
differences between low Hg and moderate Hg for all predicted
genes and for the genes annotated against all three databases
(P = 0.021 to 0.041; Table 3). Significant differences between
low Hg and high Hg were present for all predicted genes
(P = 0.041) and for the genes annotated against the NCyc
database (P = 0.042). No significant differences were present
between moderate Hg and high Hg (Table 3). Non-metric
multidimensional scaling (MDS) ordination of functional beta-
diversity of all predicted genes and of genes annotated against

the three databases showed a clear separation of the samples
from the low Hg contamination levels from the samples from
the moderate Hg and high Hg levels, with goodness of fit (GOF)
values between 0.505 and 0.789 (Figure 1).

To investigate changes in the abundance of functional genes
with the Hg contamination we calculated log2-fold changes
for the genes annotated with the EggNOG, CAZy, and NCyc
databases (Table 4). The genes annotated against the EggNOG,
CAZy and the NCyc databases showed the largest number of
over- and underrepresented genes in the comparison between
the low Hg and the high Hg contamination levels (between
16 and 127). In contrast, the comparison between moderate
Hg and high Hg showed the smallest number of over- and
underrepresented genes for the genes annotated against the
three databases (between 0 and 15; Table 4). Total counts were
61,591 for EggNOG, 39,632 for CAZy, and 8,210 for NCyc
database.

C- and N-cycling genes are not or only
slightly affected by Hg

The classification of the functional potential genes of the
EggNOG database was conducted via COG analysis. The
results are summarized into four clusters (I–IV): information
storage and processing (I); cellular processes and signaling
(II); metabolism (III); and poorly characterized function (IV).
The dominant known functions (> 1.2 × 106 counts) among
the 23 categories were replication, combination and repair
(category L), and translation and ribosomal structure (category
J) of cluster I, and energy production and conversion (category
C), amino acid transport and metabolism (category E), and
inorganic ion transport and metabolism (category P) of cluster
III (Table 5). Overall, an increase in Hg contamination level
had a significant positive effect on eight functional categories,
as indicated by an over-represented number of genes. These
functional categories were mainly genes of cluster II, such
as those involved in cell wall/membrane/envelope biogenesis
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TABLE 3 Pairwise comparison of the functional gene beta-diversity of all predicted genes and of the genes annotated with the EggNOG, CAZy, and
NCyc databases of soils with different Hg contamination levels (low, moderate, high).

All predicted
genes

EggNOG CAZy NCyc

Pairwise comparison* T+ P T P T P T P

Low Hg vs. moderate Hg 2.03 0.035 1.85 0.041 2.09 0.021 2.12 0.037

Low Hg vs. high Hg 1.97 0.041 1.73 0.05 1.84 0.06 1.94 0.042

Moderate Hg vs. high Hg 1.55 0.11 1.30 0.12 1.51 0.11 1.48 0.12

*Pairwise permutational multivariate analysis of variance (PERMANOVA) test. +Values represent the T-value (T) and the level of significance (P); significant values (P < 0.05) are in bold.

FIGURE 1

Non-metric multidimensional scaling (MDS) ordination of functional beta-diversity of all predicted genes (A) and of genes of the EggNOG
database (B), the CAZy database (C), and the NCyc database (D) at sites with the three Hg contamination levels (low, moderate, high).

TABLE 4 Pairwise comparison and number of significantly (P < 0.01) over- and underrepresented differentially abundant genes annotated with the
EggNOG, CAZy, and NCyc databases of soils with different Hg contamination levels (low, moderate, high). Total counts: EggNOG 61,591, CAZy
39,632, and NCyc 8,210.

Pairwise comparison EggNOG CAZy NCyc

Overrep. Underrep. Overrep. Underrep. Overrep. Underrep.

Low Hg vs. moderate Hg 53 63 35 24 8 6

Low Hg vs. high Hg 103 103 127 87 31 16

Moderate Hg vs. high Hg 0 8 0 15 0 4
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(category M; P < 0.001) and in intracellular trafficking,
secretion, and vesicular transport (category U; P = 0.007),
or genes of cluster III, such as those involved in coenzyme
transport and metabolism (category H; P = 0.019) and in
inorganic ion transport and metabolism (category P; P = 0.028;
Table 5).

The most abundant genes of the CAZy database were those
involved in anabolic processes, and for the NCyc database genes
involved in organic degradation and synthesis (Ods; Table 6).
The only functional types that were positively significantly
influenced by the increasing Hg contamination levels were those
involved in pectin degradation for the CAZy database, and in
dissimilatory nitrate reduction (Dnr) and N fixation (Nif) for
the NCyc database (Table 6).

In the comparisons of genes between low Hg and high
Hg levels for genes of the EggNOG functional category P
(inorganic ion transport and metabolism), two genes coding for
Hg transport proteins (0Y4PA, 121ZH) and one gene for heavy
metal transport detoxification (0ZVIV) were among those that
were highly significantly overrepresented (P < 0.01) with a log2

fold change >1.0 (Figure 2).

Hg enhances detoxification genes and
alters its abundance in proteobacterial
taxa

Some of the mer and hgc genes involved in detoxification
of the Hg ions showed a significant increase with increasing Hg
contamination levels. In particular, these were genes responsible
for regulation of the mer operon (merD), for Hg binding (merP),
for Hg transport across membranes (merC, merF, mer T), and
for Hg reduction (merA primer specific; Table 7). In addition,
the hgcB gene, involved in the methylation of Hg to MeHg, was
significantly enhanced, as was the merB gene, involved in the
lysis of MeHg (Table 7). The schematic pathway of the Hg2+

and the reduction to Hg0 in the bacterial cell is given in the
Supplementary Figure 1.

Normalized counts of mer and hgc genes at the sites with
different Hg contamination levels, itemized according to the
most dominant bacterial phyla or subphyla, revealed a dominant
role of the phylum Proteobacteria (syn. Pseudomonadota) and
its subphyla Alpha-, Beta-, Gamma-, and Deltaproteobacteria
(Figure 3). In particular, most counts for almost all mer
genes were found in Betaproteobacteria. Exceptions are merB
genes, which are most abundant in Alphaproteobacteria, and
merD genes, which are most abundant in Gammaproteobacteria.
In contrast, hgc genes (hgcA, hgcB) are most abundant in
Deltaproteobacteria. However, the Deltaproteobacteria have
recently been classified into the new phylum-like lineages
Thermodesulfobacteriota and Myxococcota (Oren and Garrity,
2021).

Significantly overrepresented orders of the Proteobacteria
carrying mer and hgc genes in soils with the highest Hg
contamination level are displayed in Figure 4. From the
15 listed orders, the most significantly overrepresented mer
genes were found in the Desulfuromonadales (merP, merT,
merA, merD). The Desulfuromonadales were also the only taxa
having significantly overrepresented hgc genes (hgcA, hgcB),
with the genus Geobacter carrying mainly hgcA and the genus
Desulfuromonas carrying mainly hgcB genes (data not shown).
Three significantly overrepresented mer genes were found in
Rhodocyclales (merP, merA, merR), Burkholderiales (merP, merF,
merR) and Maricaucales (merP, merF, merD). All other orders
had only one or two overrepresented mer genes (Figure 4).

Discussion

Microbial physiological processes
under high Hg contamination

Mercury has been reported to have deleterious effects on
microorganisms in short-term incubation experiments (a few
weeks or months), leading to shifts in soil microbial diversity
and community structure (Frey and Rieder, 2013; Frossard et al.,
2017). Studies on long-term exposure (> 10 years) to Hg are
relatively rare, but recent studies have indicated that it has strong
impacts on soil bacterial diversity and community structure (Liu
et al., 2014, 2018; Frossard et al., 2018). In the present study,
we found that Hg contamination over a period of >80 years
had a positive effect on the microbial biomass (DNA content)
and bacterial abundance in soils from an agricultural floodplain.
This result is in contrast to findings from a previous long-
term field experiment where a negative effect of Hg pollution
on bacterial abundance was found (Liu et al., 2018). The soils
examined by Liu et al. (2018) came from Hg-mining areas in
China that had been heavily contaminated with Hg and MeHg
for more than 600 years. The Hg concentrations in the highly
contaminated site in our study were approximately 36,000 µg
Hg kg−1 soil, which is in the range of the concentrations studied
by Liu et al. (2018). However, the soils investigated by Liu
et al. (2018) also contained high concentrations of MeHg, with
values of up to 8 µg MeHg kg−1. We did not measure MeHg
concentrations in the present investigation, but earlier studies
from the same highly contaminated area reported lower values
of up to 2 µg MeHg kg−1 soil and a MeHg:Hg ratio of 0.15%
(Gygax et al., 2019).

In our study, the soluble Hg fraction was relatively low
compared to the total Hg concentrations, which can partly be
explained by the high soil pH (around 8.0). In general, the
solubility of Hg2+ decreases in soils with pH >7.0 and higher
contents of clay (Frey and Rieder, 2013; Frossard et al., 2017).
We assume that a major part of Hg2+ was adsorbed on the soil
matrix. However, the solubility of Hg2+ was considerably higher
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TABLE 5 Normalized counts of genes of the EggNOG database of soils with the three different Hg contamination levels (n = 3).

Functional categories Low Hg Moderate Hg High Hg P+

I) Information storage and processing:

RNA processing and modification (A) 2,960 3,070 3,037 0.77

Chromatin structure and dynamics (B) 1,821 1,969 1,839 0.62

Translation, ribosomal structure and b. (J) 1,508,524 1,560,644 1,639,956 0.028

Transcription (K) 1,206,550 1,213,370 1,259,839 0.23

Replication, combination and repair (L) 1,677,359 1,752,886 1,752,902 0.10

II) Cellular processes and signaling:

Cell cycle control, cell division, chrom. (D) 191,131 199,463 207,096 0.042

Cell wall/membrane/envelope biogen. (M) 1,115,342 1,172,191 1,161,652 < 0.001

Cell motility (N) 83,656 89,462 94,148 0.30

Posttranslational modification, prot. (O) 792,763 816,456 826,600 0.045

Signal transduction mechanisms (T) 752,226 763,031 765,452 0.40

Intracellular trafficking, secretion, and v. (U) 347,385 359,107 381,949 0.007

Defense mechanisms (V) 396,746 382,594 387,756 0.77

Extracellular structures (W) 822 673 720 0.40

Nuclear structure (Y) 13 21 21 0.80

Cytoskeleton (Z) 3,171 3,220 3,303 0.86

III) Metabolism:

Energy production and conversion (C) 1,652,084 1,760,398 1,779,031 0.09

Amino acid transport and metabolism (E) 1,228,039 1,269,264 1,280,520 0.17

Nucleotide transport and metabolism (F) 514,332 532,611 549,313 0.06

Carbohydrate transport and metabolism (G) 911,058 957,628 973,565 0.08

Coenzyme transport and metabolism (H) 656,485 689,321 686,603 0.019

Lipid transport and metabolism (I) 421,199 442,271 431,250 0.040

Inorganic ion transport and metabolism (P) 1,210,716 1,269,580 1,340,935 0.028

Secondary metabolites biosynthesis, tr. (Q) 192,976 197,890 196,003 0.61

IV) Poorly characterized:

Function unknown (S) 6,505,870 6,634,080 6,617,739 0.024

+Effect of Hg contamination assessed by analysis of variance (ANOVA); significant values (P < 0.05) are in bold.

in the Hg contaminated sites (Table 1). Soluble Hg was about 10
times higher in the high contaminated site than in the moderate
and about 35 times higher than in the low contaminated site.
We therefore assume that a combination of low solubility of Hg
in soils and enhanced bacterial cellular mechanisms to detoxify
soluble Hg in soils was responsible for the relatively low impact
of the high Hg contamination levels on microbial soil functions.

In the present study, we were interested in whether
high Hg contamination also affects the functional attributes
of microorganisms (e.g., relative abundance of functional
genes) in the long term and their biogeochemical potential
in processes such as litter decomposition and N cycling.
However, despite elevated concentrations of Hg in these soils,
microbial gene potential for C and N cycling were only slightly
hampered. In particular, genes of the CAZy functional types
for lignin, cellulose and hemicellulose degradation were not
affected significantly. The only functional type of the CAZy
database, which was significantly influenced by increasing Hg
contamination levels was pectin degradation.

Surprisingly, no major N-cycling process was found to be
negatively affected. In particular, genes related to functions
of dissimilatory nitrate reduction and N fixation showed an
overall increase in soils with the highest Hg level. However,
important functions of the N cycling were not significantly
affected by high Hg concentrations, such as assimilatory
nitrate reduction, nitrification, denitrification, and organic
degradation/synthesis. In contrast, increased Hg levels in
soils are known to negatively affect N-cycling microbial
communities in the short-term (Liu et al., 2010; Zhou et al.,
2012; Zhu et al., 2021). Similarly, in short-term incubation
experiments, nitrification driven by ammonia-oxidizers has
been shown to be sensitive to heavy metal stress (Frey et al.,
2008; Tipping et al., 2010). However, in our study of soils
exposed to long-term Hg contamination, neither the potential
nitrification activity nor the abundance of ammonia oxidizers,
measured as amoA gene copies, were negatively affected by
Hg. Overall, we provide novel evidence that the microbial
gene potential for major C- and N-cycling processes was not
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TABLE 6 Normalized counts of genes of the CAZy and NCyc databases of soils with the three different Hg contamination levels (n = 3).

Functional types Low Hg Moderate Hg High Hg P+

CAZy genes:

Anabolic processes 511,500 514,877 501,455 0.15

Cellulose 78,901 78,574 77,745 0.91

Chitin 111,756 108,830 108,018 0.06

Hemicellulose 49,114 52,270 52,532 0.16

Lignin 38,038 37,009 39,232 0.16

Multiple 79,202 79,781 79,042 0.81

Murein 29,104 29,334 29,383 0.87

Oligosaccharides 143,112 149,743 147,832 0.06

Pectin 46,743 49,564 49,414 0.018

Starch 56,922 56,278 61,245 0.18

Unknown/others 93,081 93,841 90,784 0.71

NCyc genes:

Anammox (Ana) 85 63 74 0.43

Assimilatory nitrate reduction (Anr) 11,528 12,266 11,963 0.30

Denitrification (Den) 12,332 12,623 14,335 0.08

Dissimilatory nitrate reduction (Dnr) 12,163 13,585 13,789 0.021

Den or Dnr 9,034 10,662 10,893 0.13

Nitrification (Nit) 1,692 1,699 1.776 0.97

Nitrogen fixation (Nif) 188 596 890 0.012

Organic degradation/synthesis (Ods) 136,475 137,641 141,614 0.20

Other 287 324 365 0.41

+Effect of Hg contamination assessed by analysis of variance (ANOVA); significant values (P < 0.05) are in bold.

FIGURE 2

Under- and overrepresented genes in the pairwise comparison of low vs. high Hg contamination level, for genes annotated against the
EggNOG database in the functional category of inorganic ion transport and metabolism (P). On the left side are the gene identification numbers,
and on the right side are the corresponding functional genes. Only significantly (P < 0.01) differentially abundant genes between the two Hg
contamination levels whose log2-fold change was lower than –1 or higher than +1 are displayed.

affected negatively by high Hg contamination levels in the long
term.

The relatively low responsiveness of the functional attributes
of C- and N-cycling to the higher Hg concentrations in soils
may be connected to the sorption of Hg2+ to iron oxides and

organic matter in the soil (Frey and Rieder, 2013). The tolerance
of soil microbial communities to Hg mainly depends on the Hg
solubility in the soil (Frossard et al., 2017), which is directly
influenced by the physical and chemical properties of the soil.
In short-term experiments, Frey and Rieder (2013) reported a
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TABLE 7 Normalized counts of mer and hgc genes of soils with the three different Hg contamination levels (n = 3).

Genes Coded protein* Low Hg Moderate Hg High Hg P+

mer genes:

merA Mercuric ion reductase 49,459 50,681 55,929 0.05

merA primer-specific# 5,790 5,773 7,250 0.013

merB Organomercurial lyase 7,654 7,958 8,891 < 0.001

merC Mercuric ion transport protein 14,230 14,889 18,634 0.014

merD Regulator protein, repression of mer operon 3,402 3,103 4,568 0.041

merE Methylmercury transport protein 656 580 623 0.63

merF Mercuric ion transport protein 6,832 7,021 9,743 0.037

merG Phenylmercury resistance protein 3,817 4,085 3.962 0.70

merP Periplasmatic mercuric ion binding protein 16,266 16,253 20,523 0.036

merR Regulator protein, activation of mer operon 66,768 65,615 71,758 0.16

merT Mercuric ion transport protein 7,269 7,148 11,290 0.025

hgc genes:

hgcA Transmembrane corrinoid-binding protein 135 313 211 0.09

hgcB Ferredoxin-like protein 66 178 146 0.036

*According to Dash and Das (2012) and Date et al. (2019). +Effect of Hg contamination assessed by analysis of variance (ANOVA); significant values (P < 0.05) are in bold. #Alignment
against nucleotide sequences containing primer-binding site (see Material & Methods).

FIGURE 3

Normalized counts of mer and hgc genes at the three sites with different Hg contamination levels (low, moderate, high), and itemized according
to the most dominant bacterial phyla or subphyla. Whereas Alpha-, Beta-, and Gammaproteobacteria belong to the phylum Proteobacteria,
Deltaproteobacteria now belong to the novel phylum-level lineage Thermodesulfobacteriota and Myxococcota (Oren and Garrity, 2021).

critical limit concentration for soluble Hg of 0.004 µg Hg kg−1

soil (4 mg Hg kg−1), which is considerable higher than the
water-extractable Hg concentration of 70 µg Hg kg−1) found
at our study site (Frossard et al., 2018).

The unchanged microbial functionality observed here
means that other bacterial groups have taken over the functions
that maintain biogeochemical cycling, i.e. there is functional
redundancy. This was also confirmed with physiological
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FIGURE 4

Significantly overrepresented orders of the phylum Proteobacteria (syn. Pseudomonadota; subphyla: Alpha(α)-, Beta(β)-, Gamma(γ)-,
Delta(δ)proteobacteria) carrying mer- and hgc-genes in soil with the highest Hg contamination level. Deltaproteobacteria are currently placed
in the novel phylum-level lineages Thermodesulfobacteriota (T) and Myxococcota (M) (Oren and Garrity, 2021). Mer and hgc genes correspond
to those listed in Table 2. Aps: merA_primer specific: Alignment against nucleotide sequences containing primer-binding site (see Material &
Methods). Purple squares: significantly overrepresented (P < 0.05); blue squares: not significantly overrepresented (P ≥ 0.05); yellow squares:
significantly underrepresented (P < 0.05); -: not present.

parameters, such a basal respiration and nitrification rate,
which were not significantly altered by the higher Hg levels.
The soil biota has a unique capacity to resist events that
cause disturbance or change, and some ability to recover
from these perturbations (Tibbett et al., 2020). Microbial
functional redundancy, where certain taxa contribute equally
to certain functions so that one taxon can replaces another, is
often considerable in soils (Louca et al., 2017, 2018). In our
study, it seems that the replacement of Hg-sensitive taxa with
functionally similar but Hg-tolerant taxa prevented a loss of
soil functions (Girvan et al., 2005; Tobor-Kaplon et al., 2005).
From a functional perspective, our analysis demonstrates that
taxonomic turnover along the Hg contamination gradient was
coupled with compensation of the functional attributes (i.e.
contribution to functional divergence) of the dominant species
that are considered as typical drivers of ecosystem processes
(Chen et al., 2022). Our results indicate that the lack of effect
of long-term Hg contamination on C- and N-cycling processes
is likely due to compensatory processes in which sensitive taxa
are replaced by functionally similar but tolerant taxa (Griffiths
and Philippot, 2013; Liess et al., 2017).

The toxicity of Hg, among other heavy metals, means
it has deleterious effects on microorganisms, causing
protein denaturation, cell envelope disruption, inhibition
of cell division and enzyme activities, DNA damage, and
transcriptional inhibition (Nies, 1999; Lemire et al., 2013;
Chen et al., 2018b). We therefore wanted to understand
how soil microorganisms adapt to high Hg levels in soils, as
Hg-tolerant taxa must have tolerance or detoxification coping
mechanisms. For this purpose, we evaluated the relationship
between Hg contamination and functional genes of Hg
detoxification and transformation (e.g., inorganic ion transport
and metabolism). Functional characterization via COG analysis
revealed significant differences in the genes involved in these
processes between soils with low and high Hg concentrations,
indicating that microbial communities have the capacity to
repair some of these cellular damages caused by Hg. Notably,
the relative abundance of metabolic genes related to ion
transport, such as inorganic ion transport and metabolism (P),
lipid transport and metabolism (I), and coenzyme transport and
metabolism (H), were significantly increased under higher Hg
concentrations. Similarly, metabolic genes in cluster II related
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to cellular processes such as cell wall/membrane/envelope
(M), intracellular trafficking, secretion, and vesicular transport
(U) and posttranslational modification (O), were significantly
enhanced in soils with higher Hg concentrations. In its oxidized
and monomethyl form, Hg has a strong affinity for the sulfur
atom of cysteine (Barkay et al., 2003; Nies, 2003) and interferes
with protein structure and function (Møller et al., 2014).
In our study, this was reflected in the higher abundance
of genes associated with DNA replication and repair (e.g.,
replication, recombination and repair inorganic) and with
sulfur metabolism (inorganic ion transport and metabolism) to
create sulfur starvation conditions for Hg tolerance (Hsu-Kim
et al., 2013). Furthermore, the relative abundance of genes
involved in membrane proteins tended to increase with higher
Hg levels, suggesting that Hg stress may stimulate the enzyme
activities responsible for Hg transportation through the cell
membrane (Barkay and Wagner-Döbler, 2005; Liu et al., 2018).

We also observed a significant increase in the relative
abundances of genes relevant to Hg transport (i.e., Hg transport
proteins). Previous studies have suggested that inorganic Hg2+

can be transported into microbial cells, probably through Hg
transport proteins (Schaefer et al., 2011) and the cellular Hg2+

is subsequently methylated to highly neurotoxic MeHg by the
methylating HgcAB proteins (Parks et al., 2013). Overall, these
gene predictors are associated with Hg transformations, which
are important biomarkers of soil Hg pollution. Moreover, our
study shows that the soil microbial community is able to
maintain intracellular homeostasis of essential heavy metals
even at high levels of Hg contamination and to normalize
resistance to the toxic, non-essential heavy metal Hg. This
is probably due to various resistance mechanisms through
chromosomal/plasmid-mediated efflux systems that pump the
toxic metal ions out of the microbial cells, through the enzymatic
biotransformation of metals to produce less toxic Hg-specimens,
or through incorporation of Hg into complexes by Hg-binding
proteins, making Hg less toxic to the cells (Nies, 1999; Hsu-Kim
et al., 2013; Chen et al., 2018a).

Microbial cellular mechanisms to
detoxify Hg

The relatively small effect of the high Hg contamination
levels on the functional attributes of the C- and N-cycling
genes (see above) might be attributed to the efficient Hg
detoxification system of the microbial community. The high
Hg concentrations may be connected to the conversion of
Hg2+ to elemental Hg (Hg0) via the activities of members
of the microbial community possessing the Hg-resistant mer
gene (Barkay et al., 2003). This is because Hg0 evaporates
from the cells of Hg-resistant microorganisms. Therefore, we
looked specifically at the mer operon carrying a number of
genes and gene products closely related to Hg tolerance and

the reduction mechanism of these bacteria (Barkay et al., 2003).
The mer determinants are classified into two types: a narrow-
spectrum one that detoxifies only inorganic Hg through the
main merA gene and broad-spectrum one that detoxifies both
organic and inorganic Hg through merA and merB genes (Boyd
and Barkay, 2012). The mer operon is composed of the operator,
promoter, regulator genes, and functional genes such as merA to
merG, merP, merR, and merT. All these genes code for different
proteins that participate in the detection, scavenging, transport
and reduction of Hg (Barkay et al., 2003; Lin et al., 2011). At its
core, the mer operon encodes a homodimeric flavin-dependent
disulfide oxidoreductase, termed Hg reductase enzyme encoded
by merA, that functions to reduce Hg2+ to volatile Hg0 leading
to removal of the metal by passively diffuses out of the cell (Boyd
and Barkay, 2012). In our soils, the merA genes were slightly (but
significantly in the primer-specific analysis) enhanced under the
highest Hg concentrations. In fact, the quantitative PCR analysis
of merA genes was somewhat in accordance with the results
from shotgun metagenomics. The augmentation of merA gene
copy numbers in the highest Hg contaminated soils suggests
the occurrence of Hg resistance, which might be due either to a
transfer of this mobile genetic element among bacteria, induced
by the presence of Hg in the soil, or to a species sorting process
favoring bacterial cells containing the merA gene (Frossard et al.,
2018). Horizontal gene transfer of merA genes has been shown
to be enhanced in the presence of Hg (Puglisi et al., 2012).

Furthermore, merB genes were significantly increased in
the highest Hg contamination levels, indicating that the soil
microbiome showed the potential for demethylation of MeHg
even with severe contamination. This operon may code for
organo-Hg lyase (MerB), which catalyzes the protonolytic
cleavage of the C–Hg bond in organo-Hg compounds, among
them MeHg, making the Hg ion available for the reduction
(Barkay et al., 2003). Our data are also consistent with previous
findings that the abundance of merB genes was about 10 times
lower than that of merA and merR genes in Hg-contaminated
environments, according to metagenomic analysis (Christensen
et al., 2019). Hg demethylation is a typical process for alleviating
the toxicity of MeHg (Liu et al., 2018). It is mediated by
several enzymes, including the alkyl-Hg lyase protein (MerB)
that degrades MeHg to Hg2+ and subsequently reduced to Hg0

by the MerA reductase (Barkay et al., 2003; Zhou et al., 2020).
The combinatorial action of merA and merB allows the complete
detoxification of a broad spectrum of Hg compounds, providing
a major decontamination mechanism for various microbial
lineages in environments contaminated with Hg. In addition
to merA and merB, mer operons may code for a periplasmic
Hg ion scavenging protein (MerP) and one or more inner
membrane-spanning proteins (MerC, MerE, MerF, and MerT),
which transport Hg ions to the cytoplasmic MerA protein
(Barkay et al., 2003; Lin et al., 2011). Except for merE all these
functional genes were significantly enhanced in the highest Hg
contamination level in our study.
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Bacterial taxa involved in Hg
detoxification

We predominantly found mer genes in Acidobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, Proteobacteria
and Nitrospirae. The widespread taxonomic distribution of
mer genes is well known (Boyd and Barkay, 2012; Frossard
et al., 2017; Vigneron et al., 2021) which may explain the
wide taxonomic range of Hg-tolerant bacteria found in the
Hg contaminated soils. The highest number of normalized
counts of mer genes were found in Proteobacteria in particular
Betaproteobacteria, consistent with findings reported previously
for a gradient of Hg contamination in a short-term incubation
experiment (Frey and Rieder, 2013). We observed that merP,
a gene encoding a periplasmatic Hg-ion-binding protein, was
increased in soils with the highest Hg concentration. merP was
found in Desulfuromonadales, Rhodocyclales, Burkholderiales,
Xanthomonadales and Maricaulales, all known to contain
a periplasmic Hg-ion-scavenging protein (MerP), which
transports Hg ions to the cytoplasm transporter proteins, which
in turn enable Hg to enter the cytoplasm (Lin et al., 2011).

Normalized counts of HgcAB genes detected in this
study were low compared to mer genes. Hg methylators
often constitute a small proportion of the microbiome
in oxic soils (Schaefer et al., 2014; Bravo and Cosio,
2020). Mercury-methylating microorganisms thrive in oxygen-
deficient environments (e.g., rice paddies, wetlands, sediments,
anoxic waters) in which redox conditions play an important
regulating role for both the activity of Hg2+ methylating
microorganisms and the availability of Hg2+ for methylation
(Podar et al., 2015). MeHg concentrations were relatively low
(up to 2 µg MeHg kg−1 or MeHg:Hg ratio of 0.15 %) in the soils
considered here (Gygax et al., 2019), and therefore we expect
that Hg methylation is low in these relatively sandy soils (sand
content: 23–44%). Microorganisms are the primary driver of Hg
methylation through the activity of a corrinoid protein, hgcA,
and a ferredoxin, hgcB (Parks et al., 2013; Podar et al., 2015). We
found that the functional gene hgcB was enriched in soils with
the highest Hg concentration. HgcAB genes were most abundant
in Deltaproteobacteria, suggesting that Deltaproteobacteria were
likely the primary Hg methylators at this site. The capacity
to perform Hg methylation was historically associated with
certain sulfate- and iron-reducing Deltaproteobacteria and
methanogenic Archaea (Gilmour et al., 2013; Bravo and
Cosio, 2020; Capo et al., 2020). The hgcAB genes that were
detected were mainly found in the order of Desulfuromonadales.
Members of Desulfuromonadales are known to be potential
methylating organisms (Bravo et al., 2018a,b; Xu et al., 2019).
The diversity of known Hg methylators is expanding, however,
as increasing numbers of hgcAB sequences are being identified
from shotgun metagenomics, metagenome-assembled genomes
(MAGS), and hgcAB amplicon-specific sequencing (Jones et al.,
2019; McDaniel et al., 2020).

Interestingly, in our study, the relative abundance of the
phylum Nitrospirota, including the genus Nitrospira, based on
16S rRNA genes retrieved from the metagenomes, did not
change along the Hg contamination gradient. This result was
also confirmed by our recent amplicon sequencing dataset from
the same field experiment (Frossard et al., 2018). Members of
Nitrospirota (i.e. Nitrospirae) contained Hg detoxification genes
(Figure 3) and were therefore tolerant to Hg. We therefore
assume that Nitrospirota were not affected by Hg contamination,
which is in contrast to a recent study of Mahbub et al. (2020)
showing that Nitrospirae were sensitive to higher Hg levels
in soils and did not recover after four years of exposition.
We therefore concluded that this could be the reason why
the nitrification process and the genes involved in it were not
disturbed in our study.

Conclusion

Our shotgun metagenomic study of microbial communities
of soils contaminated with low to high levels of Hg for over
80 years demonstrated that microbial processes relevant for C
and N cycling were not significantly affected by higher levels
of Hg contamination. This is particularly the case for the
microbial gene potential for cellulose and lignin degradation,
assimilatory nitrate reduction, denitrification, nitrification,
organic degradation or organic synthesis. Although we observed
a significant change in the functional beta-diversity of the
predicted microbial genes with long-term Hg contamination, a
shift in the functional capabilities of the microbial communities
was not obvious. This means that Hg-tolerant microbial taxa
have taken over the functions that maintain biogeochemical
cycling. This process can be considered functional redundancy,
a property that is often observed in microbial soil communities
but was not expected here after long-term exposure to high
Hg levels. It therefore seems that microbial communities can
withstand considerable Hg stress and can even detoxify Hg.
A significant increase in the Hg-detoxifying mer and hgc genes
was observed, with the overrepresented genes being able to bind
Hg ions, to transport them across membranes, to methylate and
demethylate them, and to reduce them to volatile Hg. Overall,
we conclude that long-term exposure to high Hg contamination
is not harmful to the microbial community. Although we see
shifts in the functional beta-diversity of the predicted microbial
genes, we find functional redundancy rather than a dramatic
change or breakdown in functional capabilities.
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