
341

Syst. Biol.  ( ): – ,  

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 1 1–16

Syst. Biol. 0(0):1–16, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://doi.org/10.1093/sysbio/syac048
Advance Access Publication 9 July 2022

Temperature-Dependent Evolutionary Speed Shapes the Evolution of Biodiversity
Patterns Across Tetrapod Radiations

A. SKEELS1,2,∗ , W. BACH1,2, O. HAGEN1,2,3 , W. JETZ4,5 AND L. PELLISSIER1,2,∗
1Department of Environmental Systems Sciences, Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich 8092, Switzerland; 2Swiss
Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; 3German Centre for Integrative Biodiversity Research

(iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany; 4Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, and
5Center for Biodiversity and Global Change, Yale University, New Haven, CT 06520, USA

∗Correspondence to be sent to: Ecosystems and Landscape Evolution Group, Department of Environmental Systems Sciences, Landscape Ecology, Institute of
Terrestrial Ecosystems, ETH Zürich, Zurich 8092, Switzerland. Email : alexander.skeels@gmail.com (AS); loic.pellissier@usys.ethz.ch (LP)

Received 8 October 2021; reviews returned 21 June 2022; accepted 5 July 2022
Associate Editor: Luke Harmon

Abstract.—Biodiversity varies predictably with environmental energy around the globe, but the underlaying mechanisms
remain incompletely understood. The evolutionary speed hypothesis predicts that environmental kinetic energy shapes
variation in speciation rates through temperature- or life history-dependent rates of evolution. To test whether variation
in evolutionary speed can explain the relationship between energy and biodiversity in birds, mammals, amphibians, and
reptiles, we simulated diversification over 65 myr of geological and climatic change with a spatially explicit eco-evolutionary
simulation model. We modeled four distinct evolutionary scenarios in which speciation-completion rates were dependent on
temperature (M1), life history (M2), temperature and life history (M3), or were independent of temperature and life-history
(M0). To assess the agreement between simulated and empirical data, we performed model selection by fitting supervised
machine learning models to multidimensional biodiversity patterns. We show that a model with temperature-dependent
rates of speciation (M1) consistently had the strongest support. In contrast to statistical inferences, which showed no
general relationships between temperature and speciation rates in tetrapods, we demonstrate how process-based modeling
can disentangle the causes behind empirical biodiversity patterns. Our study highlights how environmental energy has
played a fundamental role in the evolution of biodiversity over deep time. [Biogeography; diversification; machine learning;
macroevolution; molecular evolution; simulation.]

Environmental energy is a fundamental requirement
for the growth and persistence of organisms and often
a positive predictor of terrestrial biodiversity at broad
spatial scales (Currie 1991; Waide et al. 1999; Allen
et al. 2012). As such, the relationship between energy
and organismal biology, including metabolism and
growth rate, has been proposed as a key feature of
a unified theory of biodiversity (Brown 2004; Stegen
et al. 2009; Brown et al. 2014). However, the way in
which environmental energy shapes the evolution of
biodiversity is still debated. The evolutionary speed
hypothesis (ESH) (Rensch 1959; Rohde 1992) proposes
that different rates of biological processes, including
molecular and phenotypic evolution, result in different
speciation rates between environments with high- and
low kinetic energy (temperature; Allen et al. 2007), such
as between tropical and temperate biomes, leading to
an uneven distribution of biodiversity across the globe.
There are multiple possible pathways predicted by the
ESH (Fig. 1): a direct temperature dependency of the
origin of biological variation through mutation (M1);
a direct life-history dependency of the rate in which
variation passes between generations through time, or
in other words the nucleotide generation time (Martin
and Palumbi 1993) (M2); and an interacting effect of
temperature and life history, such that rates are highest
in lineages with faster life histories occupying warmer
areas (M3). Faster rates in one of these pathways could
accelerate the formation of reproductive barriers or eco-
logical differentiation in diverging populations, leading
to speciation. It is expected that multiple biodiversity
patterns, including the distribution of speciation rates

across phylogenies or throughout geographic space, will
emerge from variation in evolutionary speed through
space and time (Fig. 1), and this could additionally
be influenced by major fluctuations in environmental
energy and temperature over the deep time scales
(Condamine et al. 2013; Meseguer and Condamine 2020).
Therefore, a holistic integration of patterns and processes
in the context of a dynamic Earth history may provide
mechanistic support for the role of environmental energy
in the evolution of life on Earth and the establishment of
biodiversity patterns.

The kinetic energy of the environment could shape
evolutionary speed via different pathways, but it has
been difficult to find consistent support for the micro-
evolutionary processes underpinning the ESH. Environ-
mental energy can increase mutation rates from degen-
erative effects of UV radiation (reviewed in Hua and
Bromham 2017) or from increased oxidation from free
radicals associated with elevated metabolic rates (Martin
and Palumbi 1993; Gillooly et al. 2005; Gillooly and Allen
2007). If mutations are fixed within a population, then
energy will drive the rate at which populations diverge
and phenotypes change in the absence of gene flow. The
nature of the relationship between energy (or proxies
thereof) and rates of molecular evolution is mixed. A
positive relationship is supported across a broad range
of taxa, including fish (Wright et al. 2011), amphibians
(Wright et al. 2010), birds (Gillman et al. 2012), and
mammals (Gillman et al. 2009), lizards (Ivan et al. 2022),
turtles (Lourenço et al. 2013), angiosperms (Davies et al.
2004; Bromham et al. 2015), and foraminifera (Allen et al.
2006). However, these relationships are not universal
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FIGURE 1. The evolutionary speed hypothesis (ESH) predicts alternative pathways for variation in the rate of population divergence and
speciation, driven by temperature (as a measure of environmental kinetic energy) or body size (as a proxy for life history speed). a) Alternative
models of population divergence under the ESH: M0—population divergence is a function of time from initial divergence; M1—population
divergence is a function of time and the average temperature across each population’s geographic range; M2—population divergence is a
function of time and the average body size of each population (as a proxy for life history); M3—population divergence is a function of time,
temperature, and body size. b) Predictions for variation in speciation rates with respect to temperature and body size based on alternative models
of the ESH.

(Bromham and Cardillo 2003; Orton et al. 2019) and in
some cases may be explained by covariation between
temperature and life-history traits such as longevity
(Hua et al. 2015). The underlying mechanism, such as
metabolic rates, also show inconsistent relationships
with rates of molecular evolution (Lanfear et al. 2007;
Santos 2012). These alternative results could be related
to the choice of active or resting metabolic rate as the
dependent variable (Gillman and Wright 2013), or may
instead be because enhanced DNA repair mechanisms
are selected for in harsh environments, compensating
for increased mutation rates (Ries et al. 2000; Lynch
2010; Hua et al. 2015; Svetec et al. 2016; Hua and
Bromham 2017). Temperature can further drive faster
growth rates and shorter generation times, which lead to
more cell divisions and recombination events, resulting
in a greater turnover of genetic material per unit of
time (Rohde 1992; Martin and Palumbi 1993; Dowle
et al. 2013). High rates of molecular evolution are
associated with fast life-history syndromes (e.g. small
body sizes, shorter generation times) in a number of
clades (Bromham et al. 1996; Bromham 2002; Qiu et al.
2014; Barrera-Redondo et al. 2018) and with high rates
of cell division (Lanfear et al. 2013) (but see [Weir and
Schluter 2008a]). If life-history, temperature, or both
together can drive rates of molecular evolution, then they
may directly influence rates of diversification (reviewed
in Dowle et al. 2013; Hua and Bromham 2017).

The ESH links microevolutionary processes con-
trolling the origin and fixation of biological variation

to macroevolutionary patterns of lineage diversifica-
tion and biodiversity gradients throughout geological
history. However, the relationship is complex and integ-
rates several interacting ecological and evolutionary
processes. Mutations that are fixed in a population
can drive speciation based on a Bateson–Dobzhansky–
Muller model of divergence in which reproductive isol-
ation results from incompatible genomes in genetically
differentiated populations (Dobzhansky 1982; Coyne
and Orr 2004). Alternatively, higher mutation rates might
increase the standing genetic variation in a population
for natural selection to act upon, driving ecological spe-
ciation (Schluter and Conte 2009). Therefore, although
the specific mechanisms are debated, the core prediction
of the ESH is that faster rates of speciation occur in
high-temperature environments. Higher diversification
rates have been found in several clades occupying
lower latitudes and high-temperature environments
(Cardillo 1999), but there is also mounting evidence
that diversification rates are dynamic in both space and
time (Meseguer and Condamine 2020), reflecting major
changes in Earth’s climate and geology (Condamine
et al. 2013). In some cases, diversification rates are
decoupled or even negatively related to environmental
energy (Rabosky et al. 2015, 2018; Quintero and Jetz 2018;
Economo et al. 2019). There is also evidence that the
formation of reproductive isolation is not the limiting
factor in the formation of new species on deep time-
scales (Rabosky and Matute 2013). This has led to the
view that there is currently no unambiguous evidence
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that the ESH drives biodiversity patterns such as the
latitudinal diversity gradient (Rabosky 2021). To gain
insight into the factors that shape variation in evol-
utionary speed, we must consider microevolutionary
drivers of diversification in the context of a dynamic
Earth history and alongside other potential drivers of
speciation. Although this is difficult to achieve with
empirical data on present day biodiversity, simulation
models that can integrate complementary biological,
ecological, and evolutionary mechanisms over deep-
time could offer a key tool to contrast alternative path-
ways and generate predictions regarding the formation
of biodiversity gradients (Descombes et al. 2018; Rangel
et al. 2018; Pontarp et al. 2019; Saupe et al. 2019; Hagen,
Flück et al. 2021).

Here, we assessed how variation in evolutionary speed
shapes emergent biodiversity patterns in tetrapods
(birds, mammals, amphibians, and reptiles) using a
simulation-based inference approach (Fig. 2), which
provides a new angle to investigate a challenging
hypothesis. We implemented alternative ESH models
(Fig. 1) in a spatial, macroevolutionary simulation engine
(Hagen, Flück et al. 2021), accounting for temporal and
spatial variation in environmental kinetic energy via
paleo-reconstructions of temperature over the Cenozoic
period (Hagen et al. 2019; Hagen, Flück et al. 2021).
The simulations followed the diversification of lineages
on a gridded landscape based on paleoenvironmental
reconstructions of global temperature, aridity, and plate
tectonics (Fig. 2a), where variation in speciation rates
emerges from the speed in which populations diverge
in allopatry (Fig. 2b). We contrasted four models (Fig. 1)
where the rate of population divergence is driven by tem-
perature (M1), body size (as a proxy for life history speed;
M2), and both temperature and body size together (M3),
as well as a null model in which divergence is unrelated
to body size or temperature (M0). We evaluated model
support in tetrapods using supervised machine learning
tools based on multiple spatial, phylogenetic, and trait-
based biodiversity metrics. These alternative models
provided a nested framework to test the interacting effect
of temperature and life history on divergence, which is
important for distinguishing between drivers of vari-
ation in evolutionary speed. For example, the metabolic
theory of ecology predicts support for a body-size-only
model of divergence (M2) for endotherms, whose body
temperature is independent of environmental temperat-
ure, but support for a temperature and body-size model
of divergence (M3) for ectotherms, who regulate body
temperature externally. Specifically, we asked: (i) are
there general, empirical correlations between environ-
mental temperature, species richness, body size, and
speciation rates in tetrapods that might support the ESH?
(ii) How do biodiversity metrics differ between simu-
lated ESH models? (iii) Using simulation-based infer-
ence, what is the relative support for the ESH in tetrapods
based on multidimensional biodiversity patterns?
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FIGURE 2. Simulation-based inference framework for testing
the evolutionary speed hypothesis (ESH). Diversification is modeled
over macroevolutionary timescales on a dynamic gridded landscape
using the gen3sis simulation engine. a) Paleo-temperature and paleo-
aridity reconstructions at ∼170 kyr intervals from 65 Ma to the present
day are used as the domain for the simulation. b) Speciation begins
when populations of a species become geographically isolated (i).
These populations diverge from one another through time. The rate
of divergence is a function of time (M0), time and temperature (M1),
time and body size (M2), or time, temperature, and body size (M3;
ii). Diverging populations become distinct species after a threshold of
differentiation is reached (iii). c) Biodiversity patterns emerge from the
distribution of species, phylogenetic relationships, and the evolution
of traits and are summarized using different summary statistics. d)
Empirical biodiversity patterns in tetrapods are summarized using
the same set of summary statistics as for the simulated data based on
species distributions, phylogenetic relationships, and functional traits.
e) Supervised machine learning classification algorithms are trained
on the simulated summary statistics from four different population
divergence models (M0–M3) and are used to perform model selection
on the empirical summary statistics.
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FIGURE 1. The evolutionary speed hypothesis (ESH) predicts alternative pathways for variation in the rate of population divergence and
speciation, driven by temperature (as a measure of environmental kinetic energy) or body size (as a proxy for life history speed). a) Alternative
models of population divergence under the ESH: M0—population divergence is a function of time from initial divergence; M1—population
divergence is a function of time and the average temperature across each population’s geographic range; M2—population divergence is a
function of time and the average body size of each population (as a proxy for life history); M3—population divergence is a function of time,
temperature, and body size. b) Predictions for variation in speciation rates with respect to temperature and body size based on alternative models
of the ESH.

(Bromham and Cardillo 2003; Orton et al. 2019) and in
some cases may be explained by covariation between
temperature and life-history traits such as longevity
(Hua et al. 2015). The underlying mechanism, such as
metabolic rates, also show inconsistent relationships
with rates of molecular evolution (Lanfear et al. 2007;
Santos 2012). These alternative results could be related
to the choice of active or resting metabolic rate as the
dependent variable (Gillman and Wright 2013), or may
instead be because enhanced DNA repair mechanisms
are selected for in harsh environments, compensating
for increased mutation rates (Ries et al. 2000; Lynch
2010; Hua et al. 2015; Svetec et al. 2016; Hua and
Bromham 2017). Temperature can further drive faster
growth rates and shorter generation times, which lead to
more cell divisions and recombination events, resulting
in a greater turnover of genetic material per unit of
time (Rohde 1992; Martin and Palumbi 1993; Dowle
et al. 2013). High rates of molecular evolution are
associated with fast life-history syndromes (e.g. small
body sizes, shorter generation times) in a number of
clades (Bromham et al. 1996; Bromham 2002; Qiu et al.
2014; Barrera-Redondo et al. 2018) and with high rates
of cell division (Lanfear et al. 2013) (but see [Weir and
Schluter 2008a]). If life-history, temperature, or both
together can drive rates of molecular evolution, then they
may directly influence rates of diversification (reviewed
in Dowle et al. 2013; Hua and Bromham 2017).

The ESH links microevolutionary processes con-
trolling the origin and fixation of biological variation

to macroevolutionary patterns of lineage diversifica-
tion and biodiversity gradients throughout geological
history. However, the relationship is complex and integ-
rates several interacting ecological and evolutionary
processes. Mutations that are fixed in a population
can drive speciation based on a Bateson–Dobzhansky–
Muller model of divergence in which reproductive isol-
ation results from incompatible genomes in genetically
differentiated populations (Dobzhansky 1982; Coyne
and Orr 2004). Alternatively, higher mutation rates might
increase the standing genetic variation in a population
for natural selection to act upon, driving ecological spe-
ciation (Schluter and Conte 2009). Therefore, although
the specific mechanisms are debated, the core prediction
of the ESH is that faster rates of speciation occur in
high-temperature environments. Higher diversification
rates have been found in several clades occupying
lower latitudes and high-temperature environments
(Cardillo 1999), but there is also mounting evidence
that diversification rates are dynamic in both space and
time (Meseguer and Condamine 2020), reflecting major
changes in Earth’s climate and geology (Condamine
et al. 2013). In some cases, diversification rates are
decoupled or even negatively related to environmental
energy (Rabosky et al. 2015, 2018; Quintero and Jetz 2018;
Economo et al. 2019). There is also evidence that the
formation of reproductive isolation is not the limiting
factor in the formation of new species on deep time-
scales (Rabosky and Matute 2013). This has led to the
view that there is currently no unambiguous evidence
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that the ESH drives biodiversity patterns such as the
latitudinal diversity gradient (Rabosky 2021). To gain
insight into the factors that shape variation in evol-
utionary speed, we must consider microevolutionary
drivers of diversification in the context of a dynamic
Earth history and alongside other potential drivers of
speciation. Although this is difficult to achieve with
empirical data on present day biodiversity, simulation
models that can integrate complementary biological,
ecological, and evolutionary mechanisms over deep-
time could offer a key tool to contrast alternative path-
ways and generate predictions regarding the formation
of biodiversity gradients (Descombes et al. 2018; Rangel
et al. 2018; Pontarp et al. 2019; Saupe et al. 2019; Hagen,
Flück et al. 2021).

Here, we assessed how variation in evolutionary speed
shapes emergent biodiversity patterns in tetrapods
(birds, mammals, amphibians, and reptiles) using a
simulation-based inference approach (Fig. 2), which
provides a new angle to investigate a challenging
hypothesis. We implemented alternative ESH models
(Fig. 1) in a spatial, macroevolutionary simulation engine
(Hagen, Flück et al. 2021), accounting for temporal and
spatial variation in environmental kinetic energy via
paleo-reconstructions of temperature over the Cenozoic
period (Hagen et al. 2019; Hagen, Flück et al. 2021).
The simulations followed the diversification of lineages
on a gridded landscape based on paleoenvironmental
reconstructions of global temperature, aridity, and plate
tectonics (Fig. 2a), where variation in speciation rates
emerges from the speed in which populations diverge
in allopatry (Fig. 2b). We contrasted four models (Fig. 1)
where the rate of population divergence is driven by tem-
perature (M1), body size (as a proxy for life history speed;
M2), and both temperature and body size together (M3),
as well as a null model in which divergence is unrelated
to body size or temperature (M0). We evaluated model
support in tetrapods using supervised machine learning
tools based on multiple spatial, phylogenetic, and trait-
based biodiversity metrics. These alternative models
provided a nested framework to test the interacting effect
of temperature and life history on divergence, which is
important for distinguishing between drivers of vari-
ation in evolutionary speed. For example, the metabolic
theory of ecology predicts support for a body-size-only
model of divergence (M2) for endotherms, whose body
temperature is independent of environmental temperat-
ure, but support for a temperature and body-size model
of divergence (M3) for ectotherms, who regulate body
temperature externally. Specifically, we asked: (i) are
there general, empirical correlations between environ-
mental temperature, species richness, body size, and
speciation rates in tetrapods that might support the ESH?
(ii) How do biodiversity metrics differ between simu-
lated ESH models? (iii) Using simulation-based infer-
ence, what is the relative support for the ESH in tetrapods
based on multidimensional biodiversity patterns?
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FIGURE 2. Simulation-based inference framework for testing
the evolutionary speed hypothesis (ESH). Diversification is modeled
over macroevolutionary timescales on a dynamic gridded landscape
using the gen3sis simulation engine. a) Paleo-temperature and paleo-
aridity reconstructions at ∼170 kyr intervals from 65 Ma to the present
day are used as the domain for the simulation. b) Speciation begins
when populations of a species become geographically isolated (i).
These populations diverge from one another through time. The rate
of divergence is a function of time (M0), time and temperature (M1),
time and body size (M2), or time, temperature, and body size (M3;
ii). Diverging populations become distinct species after a threshold of
differentiation is reached (iii). c) Biodiversity patterns emerge from the
distribution of species, phylogenetic relationships, and the evolution
of traits and are summarized using different summary statistics. d)
Empirical biodiversity patterns in tetrapods are summarized using
the same set of summary statistics as for the simulated data based on
species distributions, phylogenetic relationships, and functional traits.
e) Supervised machine learning classification algorithms are trained
on the simulated summary statistics from four different population
divergence models (M0–M3) and are used to perform model selection
on the empirical summary statistics.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/2/341/6637530 by Lib4R

I Eaw
ag user on 28 June 2023



SYSTEMATIC BIOLOGY344 VOL. 72

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 4 1–16

4 SYSTEMATIC BIOLOGY

MATERIALS AND METHODS

Empirical Data and Biodiversity Summary Statistics

We selected independent evolutionary radiations of
tetrapods to test the ESH at the level of taxonomic
order for birds, mammals, and amphibians, as well
as for testudines and crocodilian reptiles. We divided
squamate reptiles, the most diverse terrestrial vertebrate
order, into six infraorders (hereafter referred to as orders)
as this group was significantly more diverse than other
orders and a taxonomic classification above the family-
level was available for this group (Meiri 2018). We
selected taxonomic orders as the unit of comparison
because the ages of these clades are mostly closely
distributed around 65 Ma allowing for a fair comparison
with simulated data (Supplementary Fig. S1) as well as
being readily biologically and ecologically interpretable.
Some clades, however, are significantly older than 65
Ma (Supplementary Fig. S1). To test whether our results
might be biased by the variance in clade age, we dissect
the maximum clade credibility (MCC) phylogenetic tree
for each taxonomic class at 65 Ma and repeat the
model selection procedure (see below) on all subtrees
(henceforth referred to as time-slice clades), ensuring
clade age was consistent in simulated and empirical
data. We found the results to be qualitatively similar
for the time-slice clade analyses and we present these
in Supplementary Appendix S4, whereas here focusing
on the order-level analysis.

We obtained matching data on the geographic dis-
tribution and phylogenetic position of extant species
of terrestrial vertebrates collected through the VertLife
project (vertlife.org) in association with Map of Life
(mol.org). Phylogenies were downloaded from VertLife
and follow (Jetz et al. 2012; Tonini et al. 2016; Jetz
and Pyron 2018; Upham et al. 2019; Colston et al.
2020). Distribution data for birds came from (Jetz et al.
2012) and for reptiles from the Global Assessment of
Reptile Distributions (Roll et al. 2017). For mammals and
amphibians, we modified distributions from the Interna-
tional Union for Conservation of Nature (International
Union for Conservation of Nature 2016) to match the
names of the respective phylogenies, and for squamate
reptiles, we matched names following (Skeels et al. 2019).
We performed this step manually for crocodilia and
testudines. We aggregated spatial distributions into 220
km × 220 km equal-area grid cells to match the spatial
resolution of the simulated dataset. We obtained body-
size data from a variety of sources for birds (Wilman
et al. 2014), mammals (Wilman et al. 2014; Faurby et al.
2018; Cooke et al. 2019; Etard et al. 2020), amphibians
(Oliveira et al. 2017; Etard et al. 2020), and reptiles
(Meiri 2008, 2010, 2018; Feldman et al. 2016; Colston et al.
2020). This dataset comprised of matching phylogenetic,
spatial, and body size data for 32,024 species including,
9991 species of birds, 6677 amphibians, 9859 reptiles,
and 5497 mammals. We then selected all orders (n=48),
and time-slice clades (n=164) with more than 20 species
for further analyses. We use 20 species as a threshold

because summary statistics calculated on small samples
may show spurious patterns. The retained orders varied
in their diversity between 20 and 5966 species (mean
=604).

There are many ways to summarize biodiversity
patterns, and we selected 54 different summary statistics
that capture phylogenetic, spatial, and functional trait-
based dimensions of biodiversity and can be assigned
as a single numeric value to each clade (Supplementary
Table S1). We focused on body size as a phenotypic
trait that is ecologically significant and covaries with
life history across taxa (Promislow et al. 1992). We also
acknowledge that the relationship between life-history
traits (such as generation time) and body size is variable
across taxa (Promislow et al. 1992); however, it remains
one of the best available proxies for a wide range of
species across vertebrate taxa. Body size might drive
variation in diversification rates independently of a
generation time effect (e.g., via metabolic rates [Gillooly
et al. 2005]). As such, support for body-size dependent
model would be suggestive of an effect of generation
time. Additionally, we estimated species’ temperature
niches using the mean value of mean annual temperature
(CHELSA; Karger et al. 2017) across all 220 km ×
220 km grid cells within a species’ geographic range.
The 54 biodiversity summary statistic metrics could be
broadly categorized into four classes: (i) species-specific
phylogenetic metric correlations, including correlations
between mean root distance (MRD) and body size;
(ii) spatial metric correlations, including correlations
between species richness, temperature, latitude, and
phylogenetic and phenotypic diversity across 220 km
× 220 km equal-area grid cells (see the Supplementary
Appendix SI for a discussion of spatial scale); (iii) trait
metric correlations and distributions, including proper-
ties of the frequency distribution of species’ temperature
niche or body size; (iv) phylogenetic tree size and
shape metrics, including clade size, tree imbalance, and
the distribution of node heights. For the order-level
analysis, phylogenetic metrics were calculated either
as the mean value across 50 trees sampled randomly
from the posterior distribution for each class, or as s
single value from the MCC tree, before subsequently
pruning species without matching spatial or trait data
for downstream analysis. We compared the impact of
these two methods on model selection (see below). For
the time-slice clade analysis, phylogenetic metrics were
only sampled on the MCC tree.

The ESH is associated with well-constrained predic-
tions about the distribution of biodiversity in space
and variation in diversification rates across lineages
(Fig. 1), and before exploring the support for the ESH
using the simulation-based approach, we asked to what
degree these predictions were supported in tetrapods
using a traditional correlative approach. We used meta-
analytical tools to test for general patterns in four
of these key summary statistics based on Spearman
correlations across tetrapod taxa: (i) coefficient of cor-
relation between species richness and latitude across
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grid-cells; (ii) correlation between species richness and
temperature across grid-cells; (iii) correlation between
speciation rate and body size across species; and (iv)
correlation between speciation rate and temperature
across species. We estimated speciation rates using the
DR statistic (Redding and Mooers 2006; Jetz et al. 2012),
which has been shown to be a good approximation of
recent speciation rates (Title and Rabosky 2019). We
transformed these Spearman correlation coefficients to
Z-scores and estimated 95% confidence intervals using
Fischer transformations in the R package DescTools
(Signorell 2021). To see if directional trends existed in the
correlations, we estimated the size of the average effect
for each correlation separately using random-effects
models and restricted maximum-likelihood estimation
in the R package metafor (Viechtbauer 2010). We repeated
this analysis using coefficients from phylogenetic or
spatial generalized least squares models which account
for the non-independence of observations based on
shared ancestry and spatial proximity, respectfully, and
we found similar results (Supplementary Appendix S4).

Simulation Model
We implemented four alternative models of diver-

sification using the spatially explicit general engine
for eco-evolutionary simulations, gen3sis, version 1.3
(Hagen, Flück et al. 2021). The simulations follow the
diversification of a clade from a single ancestral species
at the beginning of the Cenozoic (65 Ma; Supplementary
Fig. S2). The simulations track populations as they
disperse and diversify throughout 65 myr of reconstruc-
ted temperature, aridity, plate tectonic, and geomor-
phological changes across a gridded global landscape
at 220 km × 220 km resolution (Hagen et al. 2019).
Paleoenvironmental reconstructions allow us to account
for dynamic changes and fluctuations of temperature
over the Cenozoic, expressed via temperature, in driving
variation in evolutionary speed under the different
diversification models. Unlike previous simulation mod-
els testing the ESH (e.g., Hurlbert and Stegen 2014a,b),
this model inherently incorporates evolutionary inertia
of species environmental niches and geographical dis-
tributions in two-dimensional space, where speciation
and extinction are emergent properties rather than
determined probabilistically according to a birth–death
model. As such, the ESH is modeled alongside other
factors which may have been instrumental in shaping
contemporary biodiversity patterns, such as climate
change and stability (Dynesius and Jansson 2000a), or
changes in the available area of suitable habitat through
time (Jetz and Fine 2012). Biodiversity patterns emerge
from simulated phylogenetic trees, spatial distributions
of species, and trait distributions.

Following Hagen et al. (2019); Hagen, Flück et al.
(2021), and Scotese et al. (2021), paleoenvironmental tem-
perature was derived from reconstructions of Koeppen
climatic belts at 5 myr intervals during the Cenozoic
(Scotese et al. 2021). These belts were assigned a

temperature value based on present-day averages for
each belt. This temperature reconstruction approximates
the change in the steepness of the latitudinal temperature
gradient over deep-time (Scotese et al. 2021). To account
for global fluctuations in temperature, the temperature
values assigned to Koeppen climate belts were adjusted
according to global average temperature curves based
on oxygen isotope data (Scotese et al. 2021). Finally,
to account for local variation in temperature due to
topography, we applied a lapse rate to temperature
values at a rate of 6.5◦ per 1 km of altitude based on
elevation from a Paleo-digital elevation model sampled
at 1 myr intervals, which includes plate tectonic move-
ments (Scotese and Wright 2018). The final temperature
values at 1 myr intervals and 1-degree spatial resolution
were linearly interpolated to 170 kyr intervals and 220
km × 220 km equal area resolution using a Behrmann
projection. Aridity values were taken as the sub-tropical
arid Koeppen climate belt. Both temperature and aridity
values were standardized between 0 and 1 in the
simulation model.

At each time step (∼170 kyr), each population can
disperse into surrounding sites from a dispersal kernel
drawn from a Weibull distribution with a fixed shape
parameter (�=2.5) and variable scale parameter (�;
Supplementary Fig. S3). The size (N) of population
i in site j is fixed and constant at each time step
and determined by (i) environmental suitability based
on the species’ thermal niche, (ii) carrying capacity
based on aridity, and (iii) the presence of competitors.
Environmental suitability is a Gaussian function of the
thermal niche, which declines with increasing distance
between the temperature value in the site (Tj) and
the population’s temperature optimum (Ti), following
(McPeek 2007, 2008) (Supplementary Fig. S4):

Nij =K∗exp(−(Ti −Tj/ω)2), (1)

where ω is a parameter that determines the strength of
environmental filtering, with small values leading to a
sharper decline in abundance as the species temperature
niche optimum (Ti) becomes more different from the
temperature of the site (Tj). Nij equals K in the absence
of competitors if population i is perfectly adapted to the
site. The carrying capacity for each site (K) is entirely
independent of temperature but decreases exponentially
with the aridity index in each site (Aj), according to the
function:

K =Kc ∗exp(−1∗Aj), (2)

where Kc is a constant (30,000) determining the max-
imum carrying capacity in the grid cell (Supplementary
Fig. S5). The decision to limit the carrying capacity
of sites by aridity was based on the assumption that
water availability is one of the major limiting factors for
primary productivity and population size is a function of
productivity based on resource availability (Waide et al.
1999; Gillman and Wright 2006). We model a zero-sum
game where sites have finite resources available, which
places an ecological limit on the maximum number of
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MATERIALS AND METHODS

Empirical Data and Biodiversity Summary Statistics

We selected independent evolutionary radiations of
tetrapods to test the ESH at the level of taxonomic
order for birds, mammals, and amphibians, as well
as for testudines and crocodilian reptiles. We divided
squamate reptiles, the most diverse terrestrial vertebrate
order, into six infraorders (hereafter referred to as orders)
as this group was significantly more diverse than other
orders and a taxonomic classification above the family-
level was available for this group (Meiri 2018). We
selected taxonomic orders as the unit of comparison
because the ages of these clades are mostly closely
distributed around 65 Ma allowing for a fair comparison
with simulated data (Supplementary Fig. S1) as well as
being readily biologically and ecologically interpretable.
Some clades, however, are significantly older than 65
Ma (Supplementary Fig. S1). To test whether our results
might be biased by the variance in clade age, we dissect
the maximum clade credibility (MCC) phylogenetic tree
for each taxonomic class at 65 Ma and repeat the
model selection procedure (see below) on all subtrees
(henceforth referred to as time-slice clades), ensuring
clade age was consistent in simulated and empirical
data. We found the results to be qualitatively similar
for the time-slice clade analyses and we present these
in Supplementary Appendix S4, whereas here focusing
on the order-level analysis.

We obtained matching data on the geographic dis-
tribution and phylogenetic position of extant species
of terrestrial vertebrates collected through the VertLife
project (vertlife.org) in association with Map of Life
(mol.org). Phylogenies were downloaded from VertLife
and follow (Jetz et al. 2012; Tonini et al. 2016; Jetz
and Pyron 2018; Upham et al. 2019; Colston et al.
2020). Distribution data for birds came from (Jetz et al.
2012) and for reptiles from the Global Assessment of
Reptile Distributions (Roll et al. 2017). For mammals and
amphibians, we modified distributions from the Interna-
tional Union for Conservation of Nature (International
Union for Conservation of Nature 2016) to match the
names of the respective phylogenies, and for squamate
reptiles, we matched names following (Skeels et al. 2019).
We performed this step manually for crocodilia and
testudines. We aggregated spatial distributions into 220
km × 220 km equal-area grid cells to match the spatial
resolution of the simulated dataset. We obtained body-
size data from a variety of sources for birds (Wilman
et al. 2014), mammals (Wilman et al. 2014; Faurby et al.
2018; Cooke et al. 2019; Etard et al. 2020), amphibians
(Oliveira et al. 2017; Etard et al. 2020), and reptiles
(Meiri 2008, 2010, 2018; Feldman et al. 2016; Colston et al.
2020). This dataset comprised of matching phylogenetic,
spatial, and body size data for 32,024 species including,
9991 species of birds, 6677 amphibians, 9859 reptiles,
and 5497 mammals. We then selected all orders (n=48),
and time-slice clades (n=164) with more than 20 species
for further analyses. We use 20 species as a threshold

because summary statistics calculated on small samples
may show spurious patterns. The retained orders varied
in their diversity between 20 and 5966 species (mean
=604).

There are many ways to summarize biodiversity
patterns, and we selected 54 different summary statistics
that capture phylogenetic, spatial, and functional trait-
based dimensions of biodiversity and can be assigned
as a single numeric value to each clade (Supplementary
Table S1). We focused on body size as a phenotypic
trait that is ecologically significant and covaries with
life history across taxa (Promislow et al. 1992). We also
acknowledge that the relationship between life-history
traits (such as generation time) and body size is variable
across taxa (Promislow et al. 1992); however, it remains
one of the best available proxies for a wide range of
species across vertebrate taxa. Body size might drive
variation in diversification rates independently of a
generation time effect (e.g., via metabolic rates [Gillooly
et al. 2005]). As such, support for body-size dependent
model would be suggestive of an effect of generation
time. Additionally, we estimated species’ temperature
niches using the mean value of mean annual temperature
(CHELSA; Karger et al. 2017) across all 220 km ×
220 km grid cells within a species’ geographic range.
The 54 biodiversity summary statistic metrics could be
broadly categorized into four classes: (i) species-specific
phylogenetic metric correlations, including correlations
between mean root distance (MRD) and body size;
(ii) spatial metric correlations, including correlations
between species richness, temperature, latitude, and
phylogenetic and phenotypic diversity across 220 km
× 220 km equal-area grid cells (see the Supplementary
Appendix SI for a discussion of spatial scale); (iii) trait
metric correlations and distributions, including proper-
ties of the frequency distribution of species’ temperature
niche or body size; (iv) phylogenetic tree size and
shape metrics, including clade size, tree imbalance, and
the distribution of node heights. For the order-level
analysis, phylogenetic metrics were calculated either
as the mean value across 50 trees sampled randomly
from the posterior distribution for each class, or as s
single value from the MCC tree, before subsequently
pruning species without matching spatial or trait data
for downstream analysis. We compared the impact of
these two methods on model selection (see below). For
the time-slice clade analysis, phylogenetic metrics were
only sampled on the MCC tree.

The ESH is associated with well-constrained predic-
tions about the distribution of biodiversity in space
and variation in diversification rates across lineages
(Fig. 1), and before exploring the support for the ESH
using the simulation-based approach, we asked to what
degree these predictions were supported in tetrapods
using a traditional correlative approach. We used meta-
analytical tools to test for general patterns in four
of these key summary statistics based on Spearman
correlations across tetrapod taxa: (i) coefficient of cor-
relation between species richness and latitude across
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grid-cells; (ii) correlation between species richness and
temperature across grid-cells; (iii) correlation between
speciation rate and body size across species; and (iv)
correlation between speciation rate and temperature
across species. We estimated speciation rates using the
DR statistic (Redding and Mooers 2006; Jetz et al. 2012),
which has been shown to be a good approximation of
recent speciation rates (Title and Rabosky 2019). We
transformed these Spearman correlation coefficients to
Z-scores and estimated 95% confidence intervals using
Fischer transformations in the R package DescTools
(Signorell 2021). To see if directional trends existed in the
correlations, we estimated the size of the average effect
for each correlation separately using random-effects
models and restricted maximum-likelihood estimation
in the R package metafor (Viechtbauer 2010). We repeated
this analysis using coefficients from phylogenetic or
spatial generalized least squares models which account
for the non-independence of observations based on
shared ancestry and spatial proximity, respectfully, and
we found similar results (Supplementary Appendix S4).

Simulation Model
We implemented four alternative models of diver-

sification using the spatially explicit general engine
for eco-evolutionary simulations, gen3sis, version 1.3
(Hagen, Flück et al. 2021). The simulations follow the
diversification of a clade from a single ancestral species
at the beginning of the Cenozoic (65 Ma; Supplementary
Fig. S2). The simulations track populations as they
disperse and diversify throughout 65 myr of reconstruc-
ted temperature, aridity, plate tectonic, and geomor-
phological changes across a gridded global landscape
at 220 km × 220 km resolution (Hagen et al. 2019).
Paleoenvironmental reconstructions allow us to account
for dynamic changes and fluctuations of temperature
over the Cenozoic, expressed via temperature, in driving
variation in evolutionary speed under the different
diversification models. Unlike previous simulation mod-
els testing the ESH (e.g., Hurlbert and Stegen 2014a,b),
this model inherently incorporates evolutionary inertia
of species environmental niches and geographical dis-
tributions in two-dimensional space, where speciation
and extinction are emergent properties rather than
determined probabilistically according to a birth–death
model. As such, the ESH is modeled alongside other
factors which may have been instrumental in shaping
contemporary biodiversity patterns, such as climate
change and stability (Dynesius and Jansson 2000a), or
changes in the available area of suitable habitat through
time (Jetz and Fine 2012). Biodiversity patterns emerge
from simulated phylogenetic trees, spatial distributions
of species, and trait distributions.

Following Hagen et al. (2019); Hagen, Flück et al.
(2021), and Scotese et al. (2021), paleoenvironmental tem-
perature was derived from reconstructions of Koeppen
climatic belts at 5 myr intervals during the Cenozoic
(Scotese et al. 2021). These belts were assigned a

temperature value based on present-day averages for
each belt. This temperature reconstruction approximates
the change in the steepness of the latitudinal temperature
gradient over deep-time (Scotese et al. 2021). To account
for global fluctuations in temperature, the temperature
values assigned to Koeppen climate belts were adjusted
according to global average temperature curves based
on oxygen isotope data (Scotese et al. 2021). Finally,
to account for local variation in temperature due to
topography, we applied a lapse rate to temperature
values at a rate of 6.5◦ per 1 km of altitude based on
elevation from a Paleo-digital elevation model sampled
at 1 myr intervals, which includes plate tectonic move-
ments (Scotese and Wright 2018). The final temperature
values at 1 myr intervals and 1-degree spatial resolution
were linearly interpolated to 170 kyr intervals and 220
km × 220 km equal area resolution using a Behrmann
projection. Aridity values were taken as the sub-tropical
arid Koeppen climate belt. Both temperature and aridity
values were standardized between 0 and 1 in the
simulation model.

At each time step (∼170 kyr), each population can
disperse into surrounding sites from a dispersal kernel
drawn from a Weibull distribution with a fixed shape
parameter (�=2.5) and variable scale parameter (�;
Supplementary Fig. S3). The size (N) of population
i in site j is fixed and constant at each time step
and determined by (i) environmental suitability based
on the species’ thermal niche, (ii) carrying capacity
based on aridity, and (iii) the presence of competitors.
Environmental suitability is a Gaussian function of the
thermal niche, which declines with increasing distance
between the temperature value in the site (Tj) and
the population’s temperature optimum (Ti), following
(McPeek 2007, 2008) (Supplementary Fig. S4):

Nij =K∗exp(−(Ti −Tj/ω)2), (1)

where ω is a parameter that determines the strength of
environmental filtering, with small values leading to a
sharper decline in abundance as the species temperature
niche optimum (Ti) becomes more different from the
temperature of the site (Tj). Nij equals K in the absence
of competitors if population i is perfectly adapted to the
site. The carrying capacity for each site (K) is entirely
independent of temperature but decreases exponentially
with the aridity index in each site (Aj), according to the
function:

K =Kc ∗exp(−1∗Aj), (2)

where Kc is a constant (30,000) determining the max-
imum carrying capacity in the grid cell (Supplementary
Fig. S5). The decision to limit the carrying capacity
of sites by aridity was based on the assumption that
water availability is one of the major limiting factors for
primary productivity and population size is a function of
productivity based on resource availability (Waide et al.
1999; Gillman and Wright 2006). We model a zero-sum
game where sites have finite resources available, which
places an ecological limit on the maximum number of
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individuals in a site across populations of all species
present (Nj). In saturated communities (Nj ≥K), when
new species colonize or become locally extinct from a
site, abundances of all species are reapportioned accord-
ing to the environmental suitability of each species, such
that well-adapted species obtain a higher abundance
than poorly adapted species, following (Hurlbert and
Stegen 2014c):

N̂ij =Nij ∗min(Nj,K)/Nj. (3)

Local extinction occurs deterministically if N̂ij =0 or
stochastically as a sigmoidal function of N̂ij:

1/(1+exp(−�d ∗(�t −N̂ij))), (4)

where �t is the population size threshold below which
extirpation in site j becomes more likely and �d is the rate
of decay of the function (Supplementary Fig. S6). �t and
�d parameters were fixed across simulations. Extinction
of a species occurs when it no longer occupies any sites.

Evolution of the temperature niche trait (Ti) and body
size (Bi) for each independently evolving population
approximates a bounded Brownian motion model of trait
evolution. The traits drift randomly though time but are
bound between values of 0 and 1. The value of the trait
at increasing time intervals of �t is equal to the value
of the trait at time t plus a value drawn from a normal
distribution with a mean of 0 and standard deviation of�.
We model separate rates for temperature evolution (�T)
and body size evolution (�B; Supplementary Fig. S7).

Speciation is based on an allopatric model of speci-
ation, and populations of a species that become geo-
graphically isolated from each other diverge genetically
at each time step. Under the null model (M0), where
population divergence is independent of temperature
and body size, the amount of genetic divergence (g) at
each time step is drawn from a uniform distribution (0.01,
1). Diverging populations become distinct species once
genetic divergence has crossed threshold S (2, 10). We
model the effect of migration on genetic differentiation
as, if populations have secondary contact (i.e., they
return to within-dispersal distance of one another), they
coalesce toward genetic homogeneity at a rate of 1
per time step. We additionally model three alternative
scenarios in which rates of population divergence
are temperature-dependent (M1), body-size dependent
(M2), or temperature and body-size dependent (M3).
Under M1, the genetic divergence of populations i and k
(gi,k) is a function of the sum of the average temperatures
(T̂) experienced by diverging populations i and k
across all sites within their geographic range, scaled
exponentially with the parameter � (Supplementary
Fig. S8):

gi,k = ((T̂I +T̂k)/2)�. (5)

As temperature values are standardized between 0
and 1, the maximum value of g at each time step is
equal to 1, and � determines the rate of exponential

decline toward 0 as species inhabit cooler grid cells.
Under M2, gi,k is a function of the sum of the average
standardized body sizes (B̂) of diverging populations i
and k, scaled exponentially with the parameter � (2, 5)
(Supplementary Fig. S7):

gi,k = ((1−B̂I +1−B̂k)/2)�. (6)

Here, genetic divergence exponentially approaches
a value of 1 as body size decreases, at a rate of �.
Finally, under M3, gi,k is a function of the average of
1−B̂ and T̂ (hereafter B̂T̂), scaled exponentially with
the parameter �, such that genetic divergence is faster
in small-bodied populations in warmer regions and
decreases exponentially as species increase in body size
and occupy cooler sites (Supplementary Fig. S7):

gi,k = ((B̂T̂I +B̂T̂k)/2)�. (7)

We ran the simulation model 500 times under each
of the four scenarios, varying six key parameters: the
divergence threshold [S, parameter range = (2, 10)], the
rate scaling factor for the rate of population divergence
under M1–M3 [�, (2, 5)], the strength of environmental
filtering for the temperature niche trait [ω, (0.01, 0.035)],
the rate of body-size evolution under Brownian motion
[�B, (0.001, 0.02)], the rate of temperature niche evolution
[�T , (0.001, 0.015)], and the dispersal kernel [�, (330,
880)]. These parameter ranges were determined via
preliminary examination of the simulation model to
broadly cover a range of conditions while consistently
generating clades of comparable size to the empirical
data (∼20–6000 species; Supplementary Fig. S9). The
model is computationally intensive, which restricts the
number of replicates possible. To accommodate this
limitation, we used a quasi-random sampling technique
to select parameter combinations that evenly cover
the six-dimensional parameter space (approximating a
uniform distribution for each parameter) using Sobol
sequences (Burhenne et al. 2011) and assessed the
subsequent parameter sensitivity. It has been shown that
strategies that sample parameters broadly and evenly
across multidimensional parameter space are efficient
for exploring stochastic simulation models (Prowse et al.
2016).

Model Validation and Sensitivity Analysis
We estimated the same 54 biodiversity summary

statistics on the simulated data as calculated for the
empirical data (Supplementary Table S1). We then
assessed the validity of the model by comparing the
univariate distributions of the simulated and empirical
summary statistics (Supplementary Fig. S10), as well
as the overlap in multivariate space using principal
component analysis (PCA; Supplementary Fig. S11).
We investigated model behavior and the relationships
between model parameters and summary statistics using
global sensitivity analysis, following the procedure of
(Prowse et al. 2016) (Supplementary Figs. S12–S14), as
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well as visualizing the relationships between model
parameters and summary statistics in multivariate space
using PCA (Supplementary Figs. S11 and S15). We
removed seven summary statistics which were not
well captured by the simulation model, as well as
23 variables that were highly collinear (Pearson’s r>
0.90; Supplementary Fig. S16), from the dataset, leading
to 26 summary statistics for downstream analyses.
For a detailed description of the simulation model,
experimental design, model validation, and sensitivity
analysis, please see the Supplementary Methods in
Appendix S3.

Model Discrimination
After characterizing how biodiversity patterns are

generated by the model parameters and checking the
validity of the model in capturing realistic biodiversity
patterns, we asked whether biodiversity patterns differ
between the population divergence models. We sub-
set the complete simulation dataset to include only
those simulations whose parameters led to complete
simulations under all four models of population diver-
gence (n=1384) to ensure equal sample sizes between
model classes. We used supervised machine learning
model classification tools with 10-fold cross-validation
repeated 10 times on a two-thirds training subset of
the simulated data (n=917). We then estimated reclas-
sification accuracy based on model predictions on the
withheld one-third test dataset (n=467). To investigate
the robustness of the results to different machine
learning algorithms, we used the R package Caret to
repeat this procedure for seven different classification
algorithms: linear discriminant analysis, three decision
tree algorithms (recursive partitioning and regression
trees, random forest, and a gradient-boosting machine
algorithm), naïve Bayes, support-vector machines, and
neural networks. We assessed model reclassification
accuracy (Supplementary Table S2) and ranked the
different classification algorithms using global accuracy
and Cohen’s � metrics (Supplementary Fig. S17). We
investigated which biodiversity summary statistics were
most important in separating the models of population
divergence by looking at the relative contribution of each
summary statistic using variable importance factors.

Model Selection
As a final step, we fitted the machine learning

classification models to the empirical data, estimated
the relative support for each population divergence
model using all seven machine learning algorithms,
and weighted these estimates using Cohen’s � to obtain
model-averaged support for each population divergence
model in each clade. To interrogate the role of clade
age in influencing the model selection results, we
repeated the model selection procedure on all time-
slice clades. Furthermore, although the range of clade
sizes was similar between simulated and empirical

datasets (Supplementary Fig. S9), the distribution was
different, with empirical data being far more right
skewed toward smaller sizes (simulated skewness =
0.23, empirical skewness =4.45; Supplementary Fig. S9).
To investigate whether this difference in clade size
distributions influenced the results, we repeated the
model selection procedure by training the machine
learning models on a subset of the simulated data
that produced clades with fewer than 1000 species and
repeated the predictions. Finally, to compare the impact
of the method of phylogenetic metric calculations, we
repeated the model selection procedure using phylo-
genetic metrics calculated on the MCC tree, or the
mean values from across a sample of 50 trees from
the posterior distribution. In all these analyses, the
results were qualitatively similar and are presented in
the Supplementary Appendix (Supplementary Table S3
and Fig. S18).

RESULTS

Empirical Biodiversity Patterns
Meta-analysis of Spearman correlation coefficients

between temperature and species richness and between
latitude and species richness, as measured across 220 km
× 220 km grid cells, showed that general effects were
directional, with temperature showing a positive net
effect on species richness (�=0.169±0.046,Z=3.688,P=
0.0002) and latitude showing a negative net effect
on species richness (�=−0.230±0.0581,Z=−3.951,P<
0.001; Fig. 3d). Meta-analysis of trends in the relation-
ship between species-specific estimates of speciation
rates, and body size and between speciation rates
(DR) and temperature, showed that, unlike the spatial
correlations, these species-level correlations did not
show any directional trends among tetrapods (temperat-
ure ∼ DR, �=−0.009±0.008,Z=−1.089,P=0.28; body
size ∼ DR, �=0.0003±0.0003,Z=0.972,P=0.331). These
results were also supported when considering the non-
independence of observations using spatial or phylogen-
etic generalized least squares models (Supplementary
Appendix S4).

Model Discrimination
Biodiversity patterns in the simulations varied

between population divergence models, leading to high
discrimination ability of machine learning classification
algorithms. Using 10-fold cross-validation repeated 10
times with 7 different model classification algorithms,
we found a high proportion of correctly identified popu-
lation divergence models, with classification considered
in moderate (McHugh 2012) to substantial (Cohen 1960)
agreement based on Cohen’s � (global accuracy [0.66,
0.78]; Cohen’s � [0.54, 0.71]). We found that different
model classification algorithms varied in their per-
formance, with models allowing complex relationships
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individuals in a site across populations of all species
present (Nj). In saturated communities (Nj ≥K), when
new species colonize or become locally extinct from a
site, abundances of all species are reapportioned accord-
ing to the environmental suitability of each species, such
that well-adapted species obtain a higher abundance
than poorly adapted species, following (Hurlbert and
Stegen 2014c):

N̂ij =Nij ∗min(Nj,K)/Nj. (3)

Local extinction occurs deterministically if N̂ij =0 or
stochastically as a sigmoidal function of N̂ij:

1/(1+exp(−�d ∗(�t −N̂ij))), (4)

where �t is the population size threshold below which
extirpation in site j becomes more likely and �d is the rate
of decay of the function (Supplementary Fig. S6). �t and
�d parameters were fixed across simulations. Extinction
of a species occurs when it no longer occupies any sites.

Evolution of the temperature niche trait (Ti) and body
size (Bi) for each independently evolving population
approximates a bounded Brownian motion model of trait
evolution. The traits drift randomly though time but are
bound between values of 0 and 1. The value of the trait
at increasing time intervals of �t is equal to the value
of the trait at time t plus a value drawn from a normal
distribution with a mean of 0 and standard deviation of�.
We model separate rates for temperature evolution (�T)
and body size evolution (�B; Supplementary Fig. S7).

Speciation is based on an allopatric model of speci-
ation, and populations of a species that become geo-
graphically isolated from each other diverge genetically
at each time step. Under the null model (M0), where
population divergence is independent of temperature
and body size, the amount of genetic divergence (g) at
each time step is drawn from a uniform distribution (0.01,
1). Diverging populations become distinct species once
genetic divergence has crossed threshold S (2, 10). We
model the effect of migration on genetic differentiation
as, if populations have secondary contact (i.e., they
return to within-dispersal distance of one another), they
coalesce toward genetic homogeneity at a rate of 1
per time step. We additionally model three alternative
scenarios in which rates of population divergence
are temperature-dependent (M1), body-size dependent
(M2), or temperature and body-size dependent (M3).
Under M1, the genetic divergence of populations i and k
(gi,k) is a function of the sum of the average temperatures
(T̂) experienced by diverging populations i and k
across all sites within their geographic range, scaled
exponentially with the parameter � (Supplementary
Fig. S8):

gi,k = ((T̂I +T̂k)/2)�. (5)

As temperature values are standardized between 0
and 1, the maximum value of g at each time step is
equal to 1, and � determines the rate of exponential

decline toward 0 as species inhabit cooler grid cells.
Under M2, gi,k is a function of the sum of the average
standardized body sizes (B̂) of diverging populations i
and k, scaled exponentially with the parameter � (2, 5)
(Supplementary Fig. S7):

gi,k = ((1−B̂I +1−B̂k)/2)�. (6)

Here, genetic divergence exponentially approaches
a value of 1 as body size decreases, at a rate of �.
Finally, under M3, gi,k is a function of the average of
1−B̂ and T̂ (hereafter B̂T̂), scaled exponentially with
the parameter �, such that genetic divergence is faster
in small-bodied populations in warmer regions and
decreases exponentially as species increase in body size
and occupy cooler sites (Supplementary Fig. S7):

gi,k = ((B̂T̂I +B̂T̂k)/2)�. (7)

We ran the simulation model 500 times under each
of the four scenarios, varying six key parameters: the
divergence threshold [S, parameter range = (2, 10)], the
rate scaling factor for the rate of population divergence
under M1–M3 [�, (2, 5)], the strength of environmental
filtering for the temperature niche trait [ω, (0.01, 0.035)],
the rate of body-size evolution under Brownian motion
[�B, (0.001, 0.02)], the rate of temperature niche evolution
[�T , (0.001, 0.015)], and the dispersal kernel [�, (330,
880)]. These parameter ranges were determined via
preliminary examination of the simulation model to
broadly cover a range of conditions while consistently
generating clades of comparable size to the empirical
data (∼20–6000 species; Supplementary Fig. S9). The
model is computationally intensive, which restricts the
number of replicates possible. To accommodate this
limitation, we used a quasi-random sampling technique
to select parameter combinations that evenly cover
the six-dimensional parameter space (approximating a
uniform distribution for each parameter) using Sobol
sequences (Burhenne et al. 2011) and assessed the
subsequent parameter sensitivity. It has been shown that
strategies that sample parameters broadly and evenly
across multidimensional parameter space are efficient
for exploring stochastic simulation models (Prowse et al.
2016).

Model Validation and Sensitivity Analysis
We estimated the same 54 biodiversity summary

statistics on the simulated data as calculated for the
empirical data (Supplementary Table S1). We then
assessed the validity of the model by comparing the
univariate distributions of the simulated and empirical
summary statistics (Supplementary Fig. S10), as well
as the overlap in multivariate space using principal
component analysis (PCA; Supplementary Fig. S11).
We investigated model behavior and the relationships
between model parameters and summary statistics using
global sensitivity analysis, following the procedure of
(Prowse et al. 2016) (Supplementary Figs. S12–S14), as
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well as visualizing the relationships between model
parameters and summary statistics in multivariate space
using PCA (Supplementary Figs. S11 and S15). We
removed seven summary statistics which were not
well captured by the simulation model, as well as
23 variables that were highly collinear (Pearson’s r>
0.90; Supplementary Fig. S16), from the dataset, leading
to 26 summary statistics for downstream analyses.
For a detailed description of the simulation model,
experimental design, model validation, and sensitivity
analysis, please see the Supplementary Methods in
Appendix S3.

Model Discrimination
After characterizing how biodiversity patterns are

generated by the model parameters and checking the
validity of the model in capturing realistic biodiversity
patterns, we asked whether biodiversity patterns differ
between the population divergence models. We sub-
set the complete simulation dataset to include only
those simulations whose parameters led to complete
simulations under all four models of population diver-
gence (n=1384) to ensure equal sample sizes between
model classes. We used supervised machine learning
model classification tools with 10-fold cross-validation
repeated 10 times on a two-thirds training subset of
the simulated data (n=917). We then estimated reclas-
sification accuracy based on model predictions on the
withheld one-third test dataset (n=467). To investigate
the robustness of the results to different machine
learning algorithms, we used the R package Caret to
repeat this procedure for seven different classification
algorithms: linear discriminant analysis, three decision
tree algorithms (recursive partitioning and regression
trees, random forest, and a gradient-boosting machine
algorithm), naïve Bayes, support-vector machines, and
neural networks. We assessed model reclassification
accuracy (Supplementary Table S2) and ranked the
different classification algorithms using global accuracy
and Cohen’s � metrics (Supplementary Fig. S17). We
investigated which biodiversity summary statistics were
most important in separating the models of population
divergence by looking at the relative contribution of each
summary statistic using variable importance factors.

Model Selection
As a final step, we fitted the machine learning

classification models to the empirical data, estimated
the relative support for each population divergence
model using all seven machine learning algorithms,
and weighted these estimates using Cohen’s � to obtain
model-averaged support for each population divergence
model in each clade. To interrogate the role of clade
age in influencing the model selection results, we
repeated the model selection procedure on all time-
slice clades. Furthermore, although the range of clade
sizes was similar between simulated and empirical

datasets (Supplementary Fig. S9), the distribution was
different, with empirical data being far more right
skewed toward smaller sizes (simulated skewness =
0.23, empirical skewness =4.45; Supplementary Fig. S9).
To investigate whether this difference in clade size
distributions influenced the results, we repeated the
model selection procedure by training the machine
learning models on a subset of the simulated data
that produced clades with fewer than 1000 species and
repeated the predictions. Finally, to compare the impact
of the method of phylogenetic metric calculations, we
repeated the model selection procedure using phylo-
genetic metrics calculated on the MCC tree, or the
mean values from across a sample of 50 trees from
the posterior distribution. In all these analyses, the
results were qualitatively similar and are presented in
the Supplementary Appendix (Supplementary Table S3
and Fig. S18).

RESULTS

Empirical Biodiversity Patterns
Meta-analysis of Spearman correlation coefficients

between temperature and species richness and between
latitude and species richness, as measured across 220 km
× 220 km grid cells, showed that general effects were
directional, with temperature showing a positive net
effect on species richness (�=0.169±0.046,Z=3.688,P=
0.0002) and latitude showing a negative net effect
on species richness (�=−0.230±0.0581,Z=−3.951,P<
0.001; Fig. 3d). Meta-analysis of trends in the relation-
ship between species-specific estimates of speciation
rates, and body size and between speciation rates
(DR) and temperature, showed that, unlike the spatial
correlations, these species-level correlations did not
show any directional trends among tetrapods (temperat-
ure ∼ DR, �=−0.009±0.008,Z=−1.089,P=0.28; body
size ∼ DR, �=0.0003±0.0003,Z=0.972,P=0.331). These
results were also supported when considering the non-
independence of observations using spatial or phylogen-
etic generalized least squares models (Supplementary
Appendix S4).

Model Discrimination
Biodiversity patterns in the simulations varied

between population divergence models, leading to high
discrimination ability of machine learning classification
algorithms. Using 10-fold cross-validation repeated 10
times with 7 different model classification algorithms,
we found a high proportion of correctly identified popu-
lation divergence models, with classification considered
in moderate (McHugh 2012) to substantial (Cohen 1960)
agreement based on Cohen’s � (global accuracy [0.66,
0.78]; Cohen’s � [0.54, 0.71]). We found that different
model classification algorithms varied in their per-
formance, with models allowing complex relationships
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FIGURE 3. Empirical support based on 26 summary statistics for population divergence models (M0–M3) and the distribution of four
key summary statistics in tetrapod orders. a) Phylogenetic relationships of 48 orders of birds, mammals, amphibians, and reptiles (squamate
reptiles divided into six infraorders) with b) �-weighted averaged posterior support from seven different model classification algorithms for
each population divergence model and c) the best supported population divergence model shown in colored circles. Circle graph beneath this
column shows the proportion of clades with support for each model. d) Spearman correlation coefficients (�) between species richness and (1)
latitude and (2) temperature, measured at 220 km × 220 km grid cells. Circle graphs show the proportion of positive and negative correlations.
e) Spearman correlation coefficients (�) between speciation rate (measured using the DR statistic) and (3) body size and (4) and temperature
measured at species-level. Circle graphs show the proportion of positive and negative correlations.
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between variables (e.g., neural networks, gradient boost-
ing models, and support vector machines) having higher
global accuracy (Supplementary Fig. S17). We also found
that for all algorithms, there was variation in prediction
accuracy across model classes (Supplementary Table S2),
with M3, which combines the temperature-dependent
divergence of M1 and body-size-dependent divergence
of M2, having lower rates of true positives (sensitivity)
and true negatives (specificity; Supplementary Table S2).
We found that summary statistics contributing most to
the discrimination ability, based on variable importance
factors from each classification algorithm weighted by
the � value from each algorithm, represented several
different categories of summary statistic (Fig. 4a). For
example, the two summary statistics with the highest
variable importance scores were a correlation between
body size and the equal splits measure of evolutionary
distinctiveness (a proxy for speciation rate), and a correl-
ation between geographic range size and temperature,
which represent phylogenetic metric correlations and
trait metric correlations, respectively. In contrast, some
biodiversity summary statistics only weakly contrib-
ute to model discrimination, including a correlation
coefficient between species richness and temperature.
A negative correlation between absolute latitude and
species richness and a positive relationship between
temperature and species richness emerged with all
models (Fig. 4b).

Model Selection
Using seven model classification algorithms, we

estimated the population divergence model of best fit
(Fig. 3c) as well as the proportional support for each
model (Fig. 3b) across 48 tetrapod orders. We found
that under all seven algorithms, a population divergence
model that included temperature dependency (M1)
was the best fitting model in the largest number of
clades. This varied between 16 clades with the neural
network algorithm to 38 clades with the naïve Bayes
algorithm. To incorporate uncertainty between classi-
fication model algorithms, we took a model averaged
estimate of model support, by weighing model support
by � (Fig. 2b,c; Supplementary Table S4). We found M1
was best supported in the largest number of clades
(29 of 48), followed by the null model (M0; 9 clades),
the temperature- and body-size-dependent model (M3;
6 clades), and the body-size-dependent model (M2; 4
clades). Therefore, 35 clades (74.4%) had the strongest
support for a population divergence model that included
temperature dependency (M1 and M3), compared with
no dependency (M0) or body-size dependency only
(M2). This general support for M1 in the data was
stronger when considering time-slice clades, or when
training the model only using low diversity simulations
(Supplementary Table S2). Estimating the relative pro-
portion of model support across classes allowed us to
look at the uncertainty implicit in model selection and
we found that the strength of support for each model was
variable. In some clades, support was predominantly

attributed to a single model (e.g.„ M1 in the hornbills and
allies, Bucerotiformes; Fig. 3b), whereas in other clades,
support was more evenly distributed across population-
divergence models (e.g., support was split between M2
and M3 in the nightjars and allies, Caprimulgiformes;
Fig. 3b).

DISCUSSION

Temperature is thought to play an integral role in
shaping rates of speciation by driving rates of molecu-
lar evolution and subsequent speciation in diverging
populations (Rohde 1992). Despite a strong theoretical
underpinning (Allen et al. 2002; Brown 2004), a positive
link between environmental energy, in the form of
temperature (or otherwise), and rates of diversification
has rarely been observed in large comparative datasets
(Jetz et al. 2012; Rabosky et al. 2018). As such, current
evidence favors alternative mechanisms in shaping
biodiversity patterns, such as evolutionary time (Marin
and Hedges 2016; Miller et al. 2018), ecological limits
(Rabosky and Hurlbert 2015) (but see Harmon and
Harrison 2015), or an effect of geographic area over
time (Fine and Ree 2006; Jetz and Fine 2012). Yet,
tests of the ESH typically treat temperature as a static
feature of the present-day, rather than considering how
dynamic changes in temperature over deep-time scales
may influence diversification dynamics. Furthermore,
highly dimensional biodiversity patterns, integrating
traits, spatial distributions, and phylogeny are rarely
used to draw inferences on macroevolutionary patterns.
Contrary to findings from earlier studies, by combining
spatially explicit simulation models that incorporate
historical fluctuations in temperature and simulation-
based inference tools, we found common support for a
diversification model including temperature-dependent
divergence across tetrapods. This support was estimated
from a suite of commonly used biodiversity summary
statistics, reflecting spatial, trait, and phylogenetic pat-
terns, highlighting that a diverse array of summary
statistics is needed to diagnose models of population
divergence from commonly used biodiversity data.

A general effect of temperature (M1) was supported
across ecologically and geographically diverse tetrapod
clades with different thermoregulatory modes (ecto-
thermy and endothermy), whereas only weak support
for the role of body size was found (M2 and M3). The
ESH, as originally put forward by Rohde, argued that
evolutionary rates are dependent on both temperature
and life history (specifically generation time) (Rohde
1992). There is some empirical evidence for a relationship
between body size (and associated life history traits) and
substitution rates in vertebrates (Martin and Palumbi
1993), and we found support for a body-size-dependent
model of population divergence (M2 and M3) in several
large radiations, including skinks and allies (Scincoidea)
and frogs (Anura; Fig. 3c). However, more generally,
these models (M2 and M3) received only low support in
most clades (Fig. 3). This is partly because correlations
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FIGURE 3. Empirical support based on 26 summary statistics for population divergence models (M0–M3) and the distribution of four
key summary statistics in tetrapod orders. a) Phylogenetic relationships of 48 orders of birds, mammals, amphibians, and reptiles (squamate
reptiles divided into six infraorders) with b) �-weighted averaged posterior support from seven different model classification algorithms for
each population divergence model and c) the best supported population divergence model shown in colored circles. Circle graph beneath this
column shows the proportion of clades with support for each model. d) Spearman correlation coefficients (�) between species richness and (1)
latitude and (2) temperature, measured at 220 km × 220 km grid cells. Circle graphs show the proportion of positive and negative correlations.
e) Spearman correlation coefficients (�) between speciation rate (measured using the DR statistic) and (3) body size and (4) and temperature
measured at species-level. Circle graphs show the proportion of positive and negative correlations.
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between variables (e.g., neural networks, gradient boost-
ing models, and support vector machines) having higher
global accuracy (Supplementary Fig. S17). We also found
that for all algorithms, there was variation in prediction
accuracy across model classes (Supplementary Table S2),
with M3, which combines the temperature-dependent
divergence of M1 and body-size-dependent divergence
of M2, having lower rates of true positives (sensitivity)
and true negatives (specificity; Supplementary Table S2).
We found that summary statistics contributing most to
the discrimination ability, based on variable importance
factors from each classification algorithm weighted by
the � value from each algorithm, represented several
different categories of summary statistic (Fig. 4a). For
example, the two summary statistics with the highest
variable importance scores were a correlation between
body size and the equal splits measure of evolutionary
distinctiveness (a proxy for speciation rate), and a correl-
ation between geographic range size and temperature,
which represent phylogenetic metric correlations and
trait metric correlations, respectively. In contrast, some
biodiversity summary statistics only weakly contrib-
ute to model discrimination, including a correlation
coefficient between species richness and temperature.
A negative correlation between absolute latitude and
species richness and a positive relationship between
temperature and species richness emerged with all
models (Fig. 4b).

Model Selection
Using seven model classification algorithms, we

estimated the population divergence model of best fit
(Fig. 3c) as well as the proportional support for each
model (Fig. 3b) across 48 tetrapod orders. We found
that under all seven algorithms, a population divergence
model that included temperature dependency (M1)
was the best fitting model in the largest number of
clades. This varied between 16 clades with the neural
network algorithm to 38 clades with the naïve Bayes
algorithm. To incorporate uncertainty between classi-
fication model algorithms, we took a model averaged
estimate of model support, by weighing model support
by � (Fig. 2b,c; Supplementary Table S4). We found M1
was best supported in the largest number of clades
(29 of 48), followed by the null model (M0; 9 clades),
the temperature- and body-size-dependent model (M3;
6 clades), and the body-size-dependent model (M2; 4
clades). Therefore, 35 clades (74.4%) had the strongest
support for a population divergence model that included
temperature dependency (M1 and M3), compared with
no dependency (M0) or body-size dependency only
(M2). This general support for M1 in the data was
stronger when considering time-slice clades, or when
training the model only using low diversity simulations
(Supplementary Table S2). Estimating the relative pro-
portion of model support across classes allowed us to
look at the uncertainty implicit in model selection and
we found that the strength of support for each model was
variable. In some clades, support was predominantly

attributed to a single model (e.g.„ M1 in the hornbills and
allies, Bucerotiformes; Fig. 3b), whereas in other clades,
support was more evenly distributed across population-
divergence models (e.g., support was split between M2
and M3 in the nightjars and allies, Caprimulgiformes;
Fig. 3b).

DISCUSSION

Temperature is thought to play an integral role in
shaping rates of speciation by driving rates of molecu-
lar evolution and subsequent speciation in diverging
populations (Rohde 1992). Despite a strong theoretical
underpinning (Allen et al. 2002; Brown 2004), a positive
link between environmental energy, in the form of
temperature (or otherwise), and rates of diversification
has rarely been observed in large comparative datasets
(Jetz et al. 2012; Rabosky et al. 2018). As such, current
evidence favors alternative mechanisms in shaping
biodiversity patterns, such as evolutionary time (Marin
and Hedges 2016; Miller et al. 2018), ecological limits
(Rabosky and Hurlbert 2015) (but see Harmon and
Harrison 2015), or an effect of geographic area over
time (Fine and Ree 2006; Jetz and Fine 2012). Yet,
tests of the ESH typically treat temperature as a static
feature of the present-day, rather than considering how
dynamic changes in temperature over deep-time scales
may influence diversification dynamics. Furthermore,
highly dimensional biodiversity patterns, integrating
traits, spatial distributions, and phylogeny are rarely
used to draw inferences on macroevolutionary patterns.
Contrary to findings from earlier studies, by combining
spatially explicit simulation models that incorporate
historical fluctuations in temperature and simulation-
based inference tools, we found common support for a
diversification model including temperature-dependent
divergence across tetrapods. This support was estimated
from a suite of commonly used biodiversity summary
statistics, reflecting spatial, trait, and phylogenetic pat-
terns, highlighting that a diverse array of summary
statistics is needed to diagnose models of population
divergence from commonly used biodiversity data.

A general effect of temperature (M1) was supported
across ecologically and geographically diverse tetrapod
clades with different thermoregulatory modes (ecto-
thermy and endothermy), whereas only weak support
for the role of body size was found (M2 and M3). The
ESH, as originally put forward by Rohde, argued that
evolutionary rates are dependent on both temperature
and life history (specifically generation time) (Rohde
1992). There is some empirical evidence for a relationship
between body size (and associated life history traits) and
substitution rates in vertebrates (Martin and Palumbi
1993), and we found support for a body-size-dependent
model of population divergence (M2 and M3) in several
large radiations, including skinks and allies (Scincoidea)
and frogs (Anura; Fig. 3c). However, more generally,
these models (M2 and M3) received only low support in
most clades (Fig. 3). This is partly because correlations
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FIGURE 4. a) Scaled variable importance scores for 26 summary statistics based on model averaged variable importance factors from seven
machine learning algorithms (bottom panel). Distribution of mean ± standard error of 26 summary statistics across four population divergence
models (top panel). Different classes of summary statistics vary in their relative importance, for example, summary statistics based phylogenetic
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correlations and distributions relate to characteristics of species-level traits (body size, geographic range size, mean temperature). Phylogenetic
tree size and shape relates to clade size and the distribution of node heights (�) or imbalance (Sackin’s I). b) The distribution of species-specific
speciation rates (grid cell averaged DR across species, left hand column) and species richness (right hand column) across four population
divergence models incorporating historical paleoenvironmental changes (M0–M3). Grid cell averaged values from each simulation were fist
standardized to be between 0 and 1 before an overall mean was taken for all complete simulations. ED = evolutionary distinctiveness measured
using the fair proportion measure; ES = equal splits measure of ED; DR = diversification rates measured as the inverse of ES; MRD = mean root
distance, MNTD = mean nearest taxon distance; MPD = mean pairwise distance; PD = phylogenetic diversity.
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between body size and the equal splits measure of
evolutionary distinctiveness (Redding and Mooers 2006;
Jetz et al. 2012), the most important summary statistic for
model discrimination (Fig. 4), had higher values in M2
and M3 than the empirical data, which was more closely
matching M0 and M1. Instead, our results show the
greatest support for a predominant role of temperature
in shaping rates of divergence (M1). This was, in addition
to the ES-richness correlation, also strongly determined
by a more negative correlation between geographic
range size and temperature in both empirical and M1
data—the second most important summary statistic
(Fig. 4). This is expected if speciation is temperature-
dependent because, if allopatric speciation is a process
which divides species geographic ranges, and speciation
happens faster in warm places, then warm places should
have more species with overall smaller geographic
ranges. Therefore, our results suggest that temperature-
dependent speciation could contribute to Rapoport’s
rule—the observation that geographic ranges become
smaller toward the tropics (Stevens 1989)—and that this
phenomenon is not inconsistent with the ESH (Rohde
1992, 1996).

The estimated support for a temperature-dependent
model of population divergence provides support for
the ESH; however, it remains an open question exactly
how temperature shapes rates of divergence in real
clades. As originally described by Rohde (1992), the
ESH makes predictions based on largely on variation in
rates of molecular evolution with temperature. Empir-
ical support for greater UV-damage-driven molecular
evolution is weak, as it should also apply to high-
elevation lineages, which have showed the opposite
pattern of lower rates (Wright et al. 2010). Although the
basal metabolic-pathway explanation makes separate
predictions for ectotherms and endotherms (which we
do not see in our results), as endotherms maintain a
constant body temperature across environmental tem-
perature gradients (Gillman et al. 2009). We therefore
find these explanations unlikely. On the other hand,
variation in annual metabolic rates, which are expected
to be lower in species occupying more seasonal climates
which undergo hibernation or torpor during colder
months (Gillman and Wright 2013), remains a plausible
explanation.

It is also possible that population divergence in real
clades may be accelerated by an unmeasured factor
that is correlated with temperature but uncorrelated
(or weakly correlated) with body size. For example,
some hypotheses and empirical data suggest popu-
lation sizes are expected to be smaller in warmer
regions because increased productivity drives negative
density-dependent population dynamics from greater
competition, predation, or trophic diversity (Paine 1966;
Janzen 1970; Connell and Orias 1964), leading to faster
rates of molecular evolution (Kimura 1983; Ohta 1992;
Woolfit 2009). Alternatively, greater productivity could
increase population sizes (Storch et al. 2018), leading
to more genetic diversity and standing variation for

selection to act upon (Fine 2015). Another theory, based
on the red queen hypothesis (Van Valen 1973), is that
lineages in high-energy environments have higher rates
of divergence as a result of strong divergent selection
from interactions with different species (Gillman et al.
2009; Schemske et al. 2009). Taken together, our results
suggest an integral role of temperature in driving rates of
population divergence and generating biodiversity pat-
terns. However, the exact mechanism differs from that
predicted by the original ESH (Rohde 1992), with rates
dependent on body size as a proxy for life history being
less supported. Further work disentangling the drivers
of faster rates of divergence in warm areas, whether from
population size effects related to productivity or biotic
interactions, is a key next step.

We found overall support for temperature-dependent
rates of population divergence in terrestrial vertebrates,
despite observing only weak support for that mechanism
from individual summary statistics. Meta-analyses of
correlation coefficients in tetrapods showed that, despite
an overall significant and positive effect of temperature
on species richness which is consistent with findings
from previous studies (Currie 1991; Belmaker and Jetz
2011; Skeels et al. 2019), there was no significant effect
of temperature on speciation rates (Fig. 3). In fact, using
PGLS, only 10 clades showed a significant positive cor-
relation between temperature and species-specific speci-
ation rates (DR statistic [Jetz et al. 2012]), compared with
13 clades showing a significant negative correlation—
with rates being higher in lineages occupying colder
regions (Supplementary Appendix S4). This result
matches several recent studies in which higher diver-
sification rates were found in higher-latitude regions
(with lower temperatures) (Weir and Schluter 2008b;
Rabosky et al. 2018). This may reflect a geographic bias
in how species are taxonomically described (Freeman
and Pennell 2021), an artifact of studying rate variation
over short timescales (Harmon et al. 2021), or it may
reflect genuinely different mechanisms operating across
latitudes (Cutter and Gray 2016). Our simulations help
to elucidate this point and can also explain why we
see support for temperature dependency, despite weak
or inconsistent individual patterns. Holding the rates
of population divergence constant, speciation in the
null model (M0) is only a function of the rate of
population isolation, and here we see the highest rates
at higher latitudes. When introducing a temperature-
dependent rate of population divergence (M1), we see
the distribution of high speciation rates becoming more
equatorial, with some of the highest values occurring
in the deserts and grasslands of the Afrotropics where
richness is often low (Fig. 4b). Yet even under M1,
correlations between speciation rates and temperature
were highly variable and often negative. This tells us
that rates of population isolation are greater in colder
regions, but this pattern can be counter-balanced by
rapid population divergence in warmer regions, high-
lighting a potentially very important effect of climatic
stability on the formation of biodiversity (Pianka 1966a;
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FIGURE 4. a) Scaled variable importance scores for 26 summary statistics based on model averaged variable importance factors from seven
machine learning algorithms (bottom panel). Distribution of mean ± standard error of 26 summary statistics across four population divergence
models (top panel). Different classes of summary statistics vary in their relative importance, for example, summary statistics based phylogenetic
metrics ES or MRD which relate to speciation rates (left hand column, b) tend to differ strongly between models and be highly informative, whereas
summary statistics based on spatial correlations, particularly species richness (right hand column, b), tend to be uninformative. Phylogenetic
metric correlations are correlation coefficients between phylogenetic tip metrics (MRD, ES, ED, DR) and species-level traits (geographic range
size, mean temperature, body size). Spatial correlations are correlation coefficients between grid-cell level properties of assemblages (species
richness, MPD, MNTD, PD, mean body size, standard deviation of body size) and environmental properties (latitude or temperature). Trait
correlations and distributions relate to characteristics of species-level traits (body size, geographic range size, mean temperature). Phylogenetic
tree size and shape relates to clade size and the distribution of node heights (�) or imbalance (Sackin’s I). b) The distribution of species-specific
speciation rates (grid cell averaged DR across species, left hand column) and species richness (right hand column) across four population
divergence models incorporating historical paleoenvironmental changes (M0–M3). Grid cell averaged values from each simulation were fist
standardized to be between 0 and 1 before an overall mean was taken for all complete simulations. ED = evolutionary distinctiveness measured
using the fair proportion measure; ES = equal splits measure of ED; DR = diversification rates measured as the inverse of ES; MRD = mean root
distance, MNTD = mean nearest taxon distance; MPD = mean pairwise distance; PD = phylogenetic diversity.
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between body size and the equal splits measure of
evolutionary distinctiveness (Redding and Mooers 2006;
Jetz et al. 2012), the most important summary statistic for
model discrimination (Fig. 4), had higher values in M2
and M3 than the empirical data, which was more closely
matching M0 and M1. Instead, our results show the
greatest support for a predominant role of temperature
in shaping rates of divergence (M1). This was, in addition
to the ES-richness correlation, also strongly determined
by a more negative correlation between geographic
range size and temperature in both empirical and M1
data—the second most important summary statistic
(Fig. 4). This is expected if speciation is temperature-
dependent because, if allopatric speciation is a process
which divides species geographic ranges, and speciation
happens faster in warm places, then warm places should
have more species with overall smaller geographic
ranges. Therefore, our results suggest that temperature-
dependent speciation could contribute to Rapoport’s
rule—the observation that geographic ranges become
smaller toward the tropics (Stevens 1989)—and that this
phenomenon is not inconsistent with the ESH (Rohde
1992, 1996).

The estimated support for a temperature-dependent
model of population divergence provides support for
the ESH; however, it remains an open question exactly
how temperature shapes rates of divergence in real
clades. As originally described by Rohde (1992), the
ESH makes predictions based on largely on variation in
rates of molecular evolution with temperature. Empir-
ical support for greater UV-damage-driven molecular
evolution is weak, as it should also apply to high-
elevation lineages, which have showed the opposite
pattern of lower rates (Wright et al. 2010). Although the
basal metabolic-pathway explanation makes separate
predictions for ectotherms and endotherms (which we
do not see in our results), as endotherms maintain a
constant body temperature across environmental tem-
perature gradients (Gillman et al. 2009). We therefore
find these explanations unlikely. On the other hand,
variation in annual metabolic rates, which are expected
to be lower in species occupying more seasonal climates
which undergo hibernation or torpor during colder
months (Gillman and Wright 2013), remains a plausible
explanation.

It is also possible that population divergence in real
clades may be accelerated by an unmeasured factor
that is correlated with temperature but uncorrelated
(or weakly correlated) with body size. For example,
some hypotheses and empirical data suggest popu-
lation sizes are expected to be smaller in warmer
regions because increased productivity drives negative
density-dependent population dynamics from greater
competition, predation, or trophic diversity (Paine 1966;
Janzen 1970; Connell and Orias 1964), leading to faster
rates of molecular evolution (Kimura 1983; Ohta 1992;
Woolfit 2009). Alternatively, greater productivity could
increase population sizes (Storch et al. 2018), leading
to more genetic diversity and standing variation for

selection to act upon (Fine 2015). Another theory, based
on the red queen hypothesis (Van Valen 1973), is that
lineages in high-energy environments have higher rates
of divergence as a result of strong divergent selection
from interactions with different species (Gillman et al.
2009; Schemske et al. 2009). Taken together, our results
suggest an integral role of temperature in driving rates of
population divergence and generating biodiversity pat-
terns. However, the exact mechanism differs from that
predicted by the original ESH (Rohde 1992), with rates
dependent on body size as a proxy for life history being
less supported. Further work disentangling the drivers
of faster rates of divergence in warm areas, whether from
population size effects related to productivity or biotic
interactions, is a key next step.

We found overall support for temperature-dependent
rates of population divergence in terrestrial vertebrates,
despite observing only weak support for that mechanism
from individual summary statistics. Meta-analyses of
correlation coefficients in tetrapods showed that, despite
an overall significant and positive effect of temperature
on species richness which is consistent with findings
from previous studies (Currie 1991; Belmaker and Jetz
2011; Skeels et al. 2019), there was no significant effect
of temperature on speciation rates (Fig. 3). In fact, using
PGLS, only 10 clades showed a significant positive cor-
relation between temperature and species-specific speci-
ation rates (DR statistic [Jetz et al. 2012]), compared with
13 clades showing a significant negative correlation—
with rates being higher in lineages occupying colder
regions (Supplementary Appendix S4). This result
matches several recent studies in which higher diver-
sification rates were found in higher-latitude regions
(with lower temperatures) (Weir and Schluter 2008b;
Rabosky et al. 2018). This may reflect a geographic bias
in how species are taxonomically described (Freeman
and Pennell 2021), an artifact of studying rate variation
over short timescales (Harmon et al. 2021), or it may
reflect genuinely different mechanisms operating across
latitudes (Cutter and Gray 2016). Our simulations help
to elucidate this point and can also explain why we
see support for temperature dependency, despite weak
or inconsistent individual patterns. Holding the rates
of population divergence constant, speciation in the
null model (M0) is only a function of the rate of
population isolation, and here we see the highest rates
at higher latitudes. When introducing a temperature-
dependent rate of population divergence (M1), we see
the distribution of high speciation rates becoming more
equatorial, with some of the highest values occurring
in the deserts and grasslands of the Afrotropics where
richness is often low (Fig. 4b). Yet even under M1,
correlations between speciation rates and temperature
were highly variable and often negative. This tells us
that rates of population isolation are greater in colder
regions, but this pattern can be counter-balanced by
rapid population divergence in warmer regions, high-
lighting a potentially very important effect of climatic
stability on the formation of biodiversity (Pianka 1966a;
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Dynesius and Jansson 2000b). The absence of ice-cover
in our model inputs may also affect this result, as
the only constraint on dispersal in polar regions is
the temperature niche of species. These processes also
lead to incongruence between regions of high species
richness, high temperatures, and high speciation rates
(Fig. 4b). Therefore, support for the ESH drawn from
the spatial distribution of speciation rates may be at risk
of misinterpreting the strong signal of recent population
fragmentation as an absence of evidence of temperature-
driven population divergence. Our results suggest that
the spatial distribution of speciation rates should be
interpreted cautiously, ideally with the simultaneous
assessment of multiple biodiversity patterns, before
drawing inferences.

Predictive models should match different patterns
simultaneously because evolutionary processes have
downstream impacts on a whole suite of biodiversity
patterns (Gallagher et al. 2021; Hagen, Flück et al.
2021). In this study, we used an uncorrelated subset
of 26 out of 54 different summary statistics to perform
inference, which covered a vast array of biodiversity
patterns. These included some of the most well-known
and ubiquitous macroecological patterns, including the
relationship between latitude and geographic range size
(Rapoport’s rule [Stevens 1989]), between body size and
temperature (Bergmann’s rule [Bergmann 1847]), and
between latitude and species richness (the latitudinal
diversity gradient [Hillebrand 2004]). These kinds of
macroecological patterns are not always considered
when testing macroevolutionary theories such as the
ESH. However, any evolutionary process that generates
biodiversity and operates over deep time should leave
detectable signatures not only in the shape of phylogen-
etic branching patterns and their correlates, but also in
spatial diversity patterns (McGill et al. 2019).

We found that most summary statistics showed
very high congruence between simulated and empir-
ical datasets, supporting the validity of the model in
generating realistic patterns. We also found that many
broadscale macroecological patterns differed between
population divergence models, for example, the correl-
ation between geographic range size and temperature
was considered the second most important explanatory
summary statistic (Fig. 4a), and the combination of
the most informative summary statistics considered
different dimensions of biodiversity (Fig. 4a). However,
some summary statistics, including correlations between
species richness and latitude or temperature, showed
little variation between population divergence models
(Figs. 2d and 4b). The ESH was originally formulated
as an explanation for the latitudinal diversity gradient
based on the premise that other explanations, such as
environmental stability (Pianka 1966b), biotic interac-
tions (Dobzhansky 1950), geographic area (Rosenzweig
1995), and evolutionary time (Fischer 1960), have weak
or partial explanatory power (Rohde 1992). Here, we
argue that although there is strong support for the role of

temperature-dependent evolutionary rates in the form-
ation of multiple biodiversity patterns, the ESH is not
necessarily the primary cause of the latitudinal diversity
gradient, as this pattern is indistinguishable between the
null and alternative models (Fig. 4). However, we note
that local abundances in our model were determined
by three factors, the match between environmental
temperature and the thermal niche of species, the aridity
of the site, and the presence of other species. Hence, the
potential species richness of a site at equilibrium would
be environmentally determined, which explain similar
patterns of species richness between models, despite
underlying differences in macroevolutionary rates. This
fits with the understanding that equilibrium effects can
mask historical dynamics for particular metrics, such as
species richness; however, notable differences between
other summary statistics suggest that historical effects
can be detected with a multivariate metric approach.

Caveats and Future Directions
The common support for a temperature-dependent

model was robust to several different analysis strategies,
including taxonomic and clade size sampling strategies
(Supplementary Appendix S4); however, there are fea-
tures of the simulation models and empirical data
that may still introduce biases to the results. The
simulations varied in the models of population diver-
gence yet had the same functions for dispersal, trait
evolution, and ecological interactions. Where possible,
we selected functions that have been used successfully
in the literature before. For example, models including
environmentally determined carrying capacities yield
a consistently better fit to empirical data across differ-
ent kinds of simulation models (Hurlbert and Stegen
2014b; Hagen, Flück et al. 2021). Yet some models may
incompletely represent real processes. For example, a
Brownian Motion model of trait evolution does not
always produce the right skew in body size distributions
of real clades (Kozłowski and Gawelczyk 2002), and
summary statistics of the frequency distribution of
body size in our study were some that showed the
least congruence with empirical data. The field of
spatially explicit simulation modeling is emerging and
exploration of different kinds of ecological models is
still in its infancy (Pontarp et al. 2019). As such, some
modeling decisions were not exhaustively explored in
this study, such as the starting time and distribution of
the initial species in the simulations, as well as alternative
paleoenvironmental reconstructions.

One specific process that may help to further elucidate
the mechanisms underlying observed support for the
temperature-dependent model is incorporating an effect
of population size on population divergence directly.
In this study, we model population size based on
the thermal niche requirements of the species and
limiting water availability, but for simplicity, we do
not model an interaction between population size and
population divergence. Population size may influence
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evolutionary speed via its effect on the rate in which
different kinds of mutations go to fixation (Lanfear et al.
2014; Hua and Bromham 2017), with the expectation
that beneficial mutations are fixed at a higher rate in
larger populations and slightly-deleterious mutations
are fixed at a higher rate in small populations, but the
rate of substitution for effectively neutral mutations is
independent of population size (Lanfear et al. 2014). This
means that if most mutations are slightly deleterious
the average rate of molecular evolution should decrease
with increasing population size (Lanfear et al. 2014),
such that smaller populations might diverge more
rapidly from one another, leading to faster rates of
speciation. Alternatively, the integrated ESH (Gillman
and Wright 2013) predicts that a greater efficiency of
fixing beneficial mutations in larger populations may
lead to greater adaptive potential, leading to local adapt-
ation and ecological divergence between populations,
driving more rapid speciation. A subsequent prediction
of the integrated ESH is that aridity not only effects
population size, but also might indirectly drive variation
in evolutionary speed, and this is supported in some
taxa (Goldie et al. 2010). These two models are amenable
to testing using the simulation-based approach taken
here and this possible future direction may help clarify
the most likely effect of population size on evolutionary
speed.

Another potential source of bias may arise from the
analysis of congruence between simulated and empirical
data. Simulated data represented a perfectly known his-
tory of a clade, whereas empirical data are incompletely
sampled and contains both measurement error in spatial
and trait data as well as potential biases in phylogenetic
reconstructions. If biases present in empirical sampling
are biased with respect to traits, such as body size,
then this may impact subsequent correlations with other
features such as diversification rates, particularly if these
features are intercorrelated (e.g., smaller body sized
organisms diversify faster). We used body size as a trait
representing life history as this trait is very well sampled
across tetrapods (Etard et al. 2020), but sampling for
this trait as well as molecular data used in phylogenetic
inference are more sparse in herptile clades than birds
and mammals (Jetz et al. 2012; Tonini et al. 2016; Jetz and
Pyron 2018; Upham et al. 2019; Etard et al. 2020). Herptile
clades have fundamentally different predictions under
the metabolic-theory interpretation of the ESH based
on their thermal regulatory mode, and potential biases
here might have important consequences. Nonetheless,
sampling of body size in herptile families is greater
than 80% (Etard et al. 2020) and we suspect the main
relationships should be robust to this taxonomic bias.
Sampling bias across taxa highlights the value of field-
based and data collection studies that support large
comparative studies such as this one.

Finally, we acknowledge that our approach to assess-
ing the ESH hypothesis prevented us from and explicit
separation of, and comparison with, key alternative
hypotheses such as the past dynamics in the available
area of suitable habitat and productivity (Jetz and Fine

2012) and in climate (Dynesius and Jansson 2000a). These
hypotheses inherently include effects of temperature
and redeveloping the simulation methodology to cleanly
delineate these signals was outside the scope of this
work which had a focus on evolutionary speed. Studies
which include counter-factual case-studies provide a
potentially valuable method of separating confounding
effects. For example, some previous simulation studies
modified historical landscapes to remove the effects of
mountain building (Rangel et al. 2018), or aridification
(Hagen, Skeels et al. 2021), to explore how diversification
may have proceeded had these Earth history events
never occurred. In this vein, we propose that removing
historical climate and landscape changes or modifying
their velocities could offer a way to separate the effects.
We highlight this as a promising area for future work.

CONCLUSION

By explicitly considering evolutionary and ecolo-
gical mechanisms alongside dynamic changes in plate
tectonics and temperature over the Cenozoic using a
simulation-based inference approach, we found strong
support that temperature-dependent population diver-
gence shapes speciation rates and broad-scale biod-
iversity patterns across tetrapods. Counter-intuitively,
we show that a positive relationship between temper-
ature and species richness does not provide sufficient
evidence that temperature plays a generative role in
lineage diversification, whereas a negative relationship
between temperature and speciation rate does not
provide sufficient evidence to negate a generative role
of temperature in lineage diversification. Instead, model
support was derived from numerous summary statistics,
highlighting that multiple lines of evidence should
be combined before precluding specific mechanisms.
This has important implications; given that most real
clades show weak relationships between temperature
and diversification rates (Fig. 3e), dismissals in pre-
vious studies of the role of temperature in shaping
evolutionary speed must be reassessed. Simulation-
based approaches, such as the one used in this study,
allow us to compare complex and spatially-dynamic
models of evolution and place uncertainty intervals on
different evolutionary mechanisms. We can now ask, in
light of multidimensional biodiversity patterns, which
evolutionary mechanisms appear more probable. We
hope that future studies might extend this hypothesis
testing framework using spatial simulation models
to test more hypotheses for the formation of global
biodiversity patterns, enabling us to move toward a more
comprehensive assessment of the processes generating
the extraordinary diversity of life today.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.cnp5hqc71
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Dynesius and Jansson 2000b). The absence of ice-cover
in our model inputs may also affect this result, as
the only constraint on dispersal in polar regions is
the temperature niche of species. These processes also
lead to incongruence between regions of high species
richness, high temperatures, and high speciation rates
(Fig. 4b). Therefore, support for the ESH drawn from
the spatial distribution of speciation rates may be at risk
of misinterpreting the strong signal of recent population
fragmentation as an absence of evidence of temperature-
driven population divergence. Our results suggest that
the spatial distribution of speciation rates should be
interpreted cautiously, ideally with the simultaneous
assessment of multiple biodiversity patterns, before
drawing inferences.

Predictive models should match different patterns
simultaneously because evolutionary processes have
downstream impacts on a whole suite of biodiversity
patterns (Gallagher et al. 2021; Hagen, Flück et al.
2021). In this study, we used an uncorrelated subset
of 26 out of 54 different summary statistics to perform
inference, which covered a vast array of biodiversity
patterns. These included some of the most well-known
and ubiquitous macroecological patterns, including the
relationship between latitude and geographic range size
(Rapoport’s rule [Stevens 1989]), between body size and
temperature (Bergmann’s rule [Bergmann 1847]), and
between latitude and species richness (the latitudinal
diversity gradient [Hillebrand 2004]). These kinds of
macroecological patterns are not always considered
when testing macroevolutionary theories such as the
ESH. However, any evolutionary process that generates
biodiversity and operates over deep time should leave
detectable signatures not only in the shape of phylogen-
etic branching patterns and their correlates, but also in
spatial diversity patterns (McGill et al. 2019).

We found that most summary statistics showed
very high congruence between simulated and empir-
ical datasets, supporting the validity of the model in
generating realistic patterns. We also found that many
broadscale macroecological patterns differed between
population divergence models, for example, the correl-
ation between geographic range size and temperature
was considered the second most important explanatory
summary statistic (Fig. 4a), and the combination of
the most informative summary statistics considered
different dimensions of biodiversity (Fig. 4a). However,
some summary statistics, including correlations between
species richness and latitude or temperature, showed
little variation between population divergence models
(Figs. 2d and 4b). The ESH was originally formulated
as an explanation for the latitudinal diversity gradient
based on the premise that other explanations, such as
environmental stability (Pianka 1966b), biotic interac-
tions (Dobzhansky 1950), geographic area (Rosenzweig
1995), and evolutionary time (Fischer 1960), have weak
or partial explanatory power (Rohde 1992). Here, we
argue that although there is strong support for the role of

temperature-dependent evolutionary rates in the form-
ation of multiple biodiversity patterns, the ESH is not
necessarily the primary cause of the latitudinal diversity
gradient, as this pattern is indistinguishable between the
null and alternative models (Fig. 4). However, we note
that local abundances in our model were determined
by three factors, the match between environmental
temperature and the thermal niche of species, the aridity
of the site, and the presence of other species. Hence, the
potential species richness of a site at equilibrium would
be environmentally determined, which explain similar
patterns of species richness between models, despite
underlying differences in macroevolutionary rates. This
fits with the understanding that equilibrium effects can
mask historical dynamics for particular metrics, such as
species richness; however, notable differences between
other summary statistics suggest that historical effects
can be detected with a multivariate metric approach.

Caveats and Future Directions
The common support for a temperature-dependent

model was robust to several different analysis strategies,
including taxonomic and clade size sampling strategies
(Supplementary Appendix S4); however, there are fea-
tures of the simulation models and empirical data
that may still introduce biases to the results. The
simulations varied in the models of population diver-
gence yet had the same functions for dispersal, trait
evolution, and ecological interactions. Where possible,
we selected functions that have been used successfully
in the literature before. For example, models including
environmentally determined carrying capacities yield
a consistently better fit to empirical data across differ-
ent kinds of simulation models (Hurlbert and Stegen
2014b; Hagen, Flück et al. 2021). Yet some models may
incompletely represent real processes. For example, a
Brownian Motion model of trait evolution does not
always produce the right skew in body size distributions
of real clades (Kozłowski and Gawelczyk 2002), and
summary statistics of the frequency distribution of
body size in our study were some that showed the
least congruence with empirical data. The field of
spatially explicit simulation modeling is emerging and
exploration of different kinds of ecological models is
still in its infancy (Pontarp et al. 2019). As such, some
modeling decisions were not exhaustively explored in
this study, such as the starting time and distribution of
the initial species in the simulations, as well as alternative
paleoenvironmental reconstructions.

One specific process that may help to further elucidate
the mechanisms underlying observed support for the
temperature-dependent model is incorporating an effect
of population size on population divergence directly.
In this study, we model population size based on
the thermal niche requirements of the species and
limiting water availability, but for simplicity, we do
not model an interaction between population size and
population divergence. Population size may influence
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evolutionary speed via its effect on the rate in which
different kinds of mutations go to fixation (Lanfear et al.
2014; Hua and Bromham 2017), with the expectation
that beneficial mutations are fixed at a higher rate in
larger populations and slightly-deleterious mutations
are fixed at a higher rate in small populations, but the
rate of substitution for effectively neutral mutations is
independent of population size (Lanfear et al. 2014). This
means that if most mutations are slightly deleterious
the average rate of molecular evolution should decrease
with increasing population size (Lanfear et al. 2014),
such that smaller populations might diverge more
rapidly from one another, leading to faster rates of
speciation. Alternatively, the integrated ESH (Gillman
and Wright 2013) predicts that a greater efficiency of
fixing beneficial mutations in larger populations may
lead to greater adaptive potential, leading to local adapt-
ation and ecological divergence between populations,
driving more rapid speciation. A subsequent prediction
of the integrated ESH is that aridity not only effects
population size, but also might indirectly drive variation
in evolutionary speed, and this is supported in some
taxa (Goldie et al. 2010). These two models are amenable
to testing using the simulation-based approach taken
here and this possible future direction may help clarify
the most likely effect of population size on evolutionary
speed.

Another potential source of bias may arise from the
analysis of congruence between simulated and empirical
data. Simulated data represented a perfectly known his-
tory of a clade, whereas empirical data are incompletely
sampled and contains both measurement error in spatial
and trait data as well as potential biases in phylogenetic
reconstructions. If biases present in empirical sampling
are biased with respect to traits, such as body size,
then this may impact subsequent correlations with other
features such as diversification rates, particularly if these
features are intercorrelated (e.g., smaller body sized
organisms diversify faster). We used body size as a trait
representing life history as this trait is very well sampled
across tetrapods (Etard et al. 2020), but sampling for
this trait as well as molecular data used in phylogenetic
inference are more sparse in herptile clades than birds
and mammals (Jetz et al. 2012; Tonini et al. 2016; Jetz and
Pyron 2018; Upham et al. 2019; Etard et al. 2020). Herptile
clades have fundamentally different predictions under
the metabolic-theory interpretation of the ESH based
on their thermal regulatory mode, and potential biases
here might have important consequences. Nonetheless,
sampling of body size in herptile families is greater
than 80% (Etard et al. 2020) and we suspect the main
relationships should be robust to this taxonomic bias.
Sampling bias across taxa highlights the value of field-
based and data collection studies that support large
comparative studies such as this one.

Finally, we acknowledge that our approach to assess-
ing the ESH hypothesis prevented us from and explicit
separation of, and comparison with, key alternative
hypotheses such as the past dynamics in the available
area of suitable habitat and productivity (Jetz and Fine

2012) and in climate (Dynesius and Jansson 2000a). These
hypotheses inherently include effects of temperature
and redeveloping the simulation methodology to cleanly
delineate these signals was outside the scope of this
work which had a focus on evolutionary speed. Studies
which include counter-factual case-studies provide a
potentially valuable method of separating confounding
effects. For example, some previous simulation studies
modified historical landscapes to remove the effects of
mountain building (Rangel et al. 2018), or aridification
(Hagen, Skeels et al. 2021), to explore how diversification
may have proceeded had these Earth history events
never occurred. In this vein, we propose that removing
historical climate and landscape changes or modifying
their velocities could offer a way to separate the effects.
We highlight this as a promising area for future work.

CONCLUSION

By explicitly considering evolutionary and ecolo-
gical mechanisms alongside dynamic changes in plate
tectonics and temperature over the Cenozoic using a
simulation-based inference approach, we found strong
support that temperature-dependent population diver-
gence shapes speciation rates and broad-scale biod-
iversity patterns across tetrapods. Counter-intuitively,
we show that a positive relationship between temper-
ature and species richness does not provide sufficient
evidence that temperature plays a generative role in
lineage diversification, whereas a negative relationship
between temperature and speciation rate does not
provide sufficient evidence to negate a generative role
of temperature in lineage diversification. Instead, model
support was derived from numerous summary statistics,
highlighting that multiple lines of evidence should
be combined before precluding specific mechanisms.
This has important implications; given that most real
clades show weak relationships between temperature
and diversification rates (Fig. 3e), dismissals in pre-
vious studies of the role of temperature in shaping
evolutionary speed must be reassessed. Simulation-
based approaches, such as the one used in this study,
allow us to compare complex and spatially-dynamic
models of evolution and place uncertainty intervals on
different evolutionary mechanisms. We can now ask, in
light of multidimensional biodiversity patterns, which
evolutionary mechanisms appear more probable. We
hope that future studies might extend this hypothesis
testing framework using spatial simulation models
to test more hypotheses for the formation of global
biodiversity patterns, enabling us to move toward a more
comprehensive assessment of the processes generating
the extraordinary diversity of life today.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.cnp5hqc71

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/2/341/6637530 by Lib4R

I Eaw
ag user on 28 June 2023



SYSTEMATIC BIOLOGY354 VOL. 72

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 14 1–16

14 SYSTEMATIC BIOLOGY

ACKNOWLEDGMENTS

We thank the Keogh Lab, Moritz Lab, the Macro-
evolution and Macroecology Group at the Australian
National University, and members of the Ecosystem and
Landscape Evolution group at ETH and WSL, as well as
three anonymous reviewers for feedback. We are grateful
to Benjamin Flück at ETH Zurich for technical support
and to Melissa Dawes for feedback and proofing the
manuscript.

FUNDING

A.S., W.B., and L.P. were supported by the SNSF
project “Bigest” 310030_188550.

AUTHOR CONTRIBUTIONS

All authors made significant intellectual contributions
to the manuscript. A.S. and L.P. conceived the study.
A.S. performed all analyses. A.S., W.B., O.H., W.J., and
L.P. contributed to designing the study and writing the
manuscript. L.P. supervised the project.

DATA AND CODE AVAILABILITY STATEMENT

No new data were generated for this study and all
data used were from publicly available data sources. All
simulations and analyses were performed in R, version
4.0.3 (R Core Team 2020). All R scripts to replicate
the simulations and analyses from the empirical
data can be found on GitHub (www.github.com/
alexskeels/gen3sis_evolutionary_speed) and are
also available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.cnp5hqc71.

REFERENCES

Allen A.P., Brown J.H., Gillooly J.F. 2002. Global biodiversity, biochem-
ical kinetics, and the energetic-equivalence rule. Science 297:1545–
1548.

Allen A.P., Gillooly J.F., Brown J.H. 2012. Recasting the species–energy
hypothesis: the different roles of kinetic and potential energy in
regulating biodiversity. In: Storch D., Marquet P., Brown J., editors.
Scaling Biodiversity. Cambridge (UK): Cambridge University Press.
p. 283–299.

Allen A.P., Gillooly J., Brown J.H. 2007. Recasting the species-energy
hypothesis: the different roles of kinetic and potential energy in
regulating biodiversity. In: Storch D., Marquet P.A. and Brown
J.H., editors. Scaling biodiversity. Cambridge (UK): Cambridge
University Press. p. 283–299.

Allen A.P., Gillooly J.F., Savage V.M., Brown J.H. 2006. Kinetic effects
of temperature on rates of genetic divergence and speciation. Proc.
Natl. Acad. Sci. U. S. A. 103:9130–9135.

Barrera-Redondo J., Ramírez-Barahona S., Eguiarte L.E. 2018. Rates
of molecular evolution in tree ferns are associated with body size,
environmental temperature, and biological productivity. Evolution.
72:1050–1062.

Belmaker J., Jetz W. 2011. Cross-scale variation in species richness–
environment associations. Glob. Ecol. Biogeogr. 20:464–474.

Bergmann C. 1847. Ober die Verhaltnisse der Warmeokonomie der
Thiere zu ihrer Grosse. Gottinger Stud. 3:595–708.

Bromham L. 2002. Molecular clocks in reptiles: life history influences
rate of molecular evolution. Mol. Biol. Evol. 19:302–309.

Bromham L., Cardillo M. 2003. Testing the link between the latitudinal
gradient in species richness and rates of molecular evolution. J. Evol.
Biol. 16:200–207.

Bromham L., Hua X., Lanfear R., Cowman P. 2015. Exploring the
relationships between mutation rates, life history, genome size,
environment and species richness in flowering plants. Am. Nat.
185:507.

Bromham L., Rambaut A., Harvey P.H. 1996. Determinants of rate
variation in mammalian DNA sequence evolution. J. Mol. Evol.
43:610–621.

Brown J.H. 2004. Toward a metabolic theory of ecology. Ecology.
85:1771–1789.

Brown J.H., Banks J., Belt T., Von A., Hooker J.D., Darwin C. 2014.
Why are there so many species in the tropics? J. Biogeogr. 1905:
8–22.

Burhenne S., Jacob D., Henze G.P. 2011. Sampling based on sobol’
sequences for monte carlo techniques applied to building simula-
tions. Proceedings of Building Simulation 2011: 12th Conference of
International Building Performance Simulation Association; Nov.
14–16; Sydney. 1816–1823 p.

Cardillo M. 1999. Latitude and rates of diversification in birds and
butterflies. Proc. R. Soc. B Biol. Sci. 266:1221–1225.

Cohen J. 1960. A coefficient of agreement for nominal scales. Educ.
Psychol. Meas. 20:37–46.

Colston T.J., Kulkarni P., Jetz W., Pyron R.A. 2020. Phylogenetic and
spatial distribution of evolutionary isolation and threat in turtles
and crocodilians (non-avian archosauromorphs). BMC Evol. Biol.
20:1–16.

Condamine F.L., Rolland J., Morlon H. 2013. Macroevolutionary
perspectives to environmental change. Ecol. Lett. 16:72–85.

Connell J.H., Orias E. 1964. The ecological regulation of species
diversity. Am. Nat. 98(903):399–414.

Cooke R.S.C., Bates A.E., Eigenbrod F. 2019. Global trade-offs of
functional redundancy and functional dispersion for birds and
mammals. Glob. Ecol. Biogeogr. 28:484–495.

Coyne J.A., Orr H.A. 2004. Speciation. Sunderland (MA): Sinauer
Associates, Inc.

Currie D.J. 1991. Energy and large-scale patterns of animal- and plant-
species richness. Am. Nat. 137:27–49.

Cutter A.D., Gray J.C. 2016. Ephemeral ecological speciation and the
latitudinal biodiversity gradient. Evolution. 70:2171–2185.

Davies T.J., Savolainen V., Chase M.W., Moat J. 2004. Environmental
energy and evolutionary rates in flowering plants. Proc. Biol. Sci.
271:2195–2200.

Descombes P., Gaboriau T., Albouy C., Heine C., Leprieur F., Pellissier
L. 2018. Linking species diversification to palaeo-environmental
changes: a process-based modelling approach. Glob. Ecol. Biogeogr.
27:233–244.

Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38:209–211.
Dobzhansky T. 1982. Genetics and the origin of species. New York:

Columbia University Press.
Dowle E.J., Morgan-Richards M., Trewick S.A. 2013. Molecular evol-

ution and the latitudinal biodiversity gradient. Heredity (Edinb).
110:501–510.

Dynesius M., Jansson R. 2000a. Evolutionary consequences of
changes in species’ geographical distributions driven by Mil-
ankovitch climate oscillations. Proc. Natl. Acad. Sci. U. S. A.
97:9115–9120.

Dynesius M., Jansson R. 2000b. Evolutionary consequences of changes
in species’ geographical distributions driven by Milankovitch
climate oscillations. Proc. Natl. Acad. Sci. U. S. A. 97:9115–9120.

Economo E.P., Huang J.P., Fischer G., Sarnat E.M., Narula N., Janda
M., Guénard B., Longino J.T., Knowles L.L. 2019. Evolution of
the latitudinal diversity gradient in the hyperdiverse ant genus
Pheidole. Glob. Ecol. Biogeogr. 28:456–470.

Etard A., Morrill S., Newbold T. 2020. Global gaps in trait data for
terrestrial vertebrates. Glob. Ecol. Biogeogr. 29:2143–2158.

Faurby S., Davis M., Pedersen R.Ø., Schowanek S.D., Antonelli1 A.,
Svenning J.-C. 2018. PHYLACINE 1.2: the phylogenetic atlas of
mammal macroecology. Ecology. 99:2626.

Feldman A., Sabath N., Pyron R.A., Mayrose I., Meiri S. 2016. Body sizes
and diversification rates of lizards, snakes, amphisbaenians and the
tuatara. Glob. Ecol. Biogeogr. 25:187–197.

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 15 1–16

2022 SKEELS ET AL.—EVOLUTIONARY SPEED AND TETRAPOD BIODIVERSITY 15

Fine P.V.A. 2015. Ecological and evolutionary drivers of geographic
variation in species diversity. Annu. Rev. Ecol. Evol. Syst.
46:369–392.

Fine P.V.A., Ree R.H. 2006. Evidence for a time-integrated species-
area effect on the latitudinal gradient in tree diversity. Am. Nat.
168:796–804.

Fischer A.G. 1960. Latitudinal variations in organic diversity. Evolution
(N. Y). 14:64–81.

Freeman B.G., Pennell M.W. 2021. The latitudinal taxonomy gradient.
Trends Ecol. Evol. 1:1–9.

Gallagher C.A., Chudzinska M., Larsen-Gray A., Pollock C.J., Sells S.N.,
White P.J.C., Berger U. 2021. From theory to practice in pattern-
oriented modelling: identifying and using empirical patterns in
predictive models. Biol. Rev. Camb. Philos. Soc. 96:1868–1888.

Gillman L.N., Keeling D.J., Ross H.A., Wright S.D. 2009. Latitude,
elevation and the tempo of molecular evolution in mammals. Proc.
Biol. Sci. 276:3353–3359.

Gillman L.N., Mccowan L.S.C., Wright S.D. 2012. The tempo of genetic
evolution in birds: body mass and climate effects. J. Biogeogr.
39:1567–1572.

Gillman L.N., Wright S.D. 2006. The influence of productivity on the
species richness of plants: a critical assessment. Ecology 87:1234–
1243.

Gillman L.N., Wright S.D. 2013. Patterns of evolutionary speed: in
search of a causal mechanism. Diversity 5:811–823.

Gillooly J.F., Allen A.P. 2007. Linking global patterns in biodiversity
to evolutionary dynamics using metabolic theory. Ecology 88:1890–
1894.

Gillooly J.F., Allen A.P., West G.B., Brown J.H. 2005. The rate of DNA
evolution: effects of body size and temperature on the molecular
clock. Proc. Natl. Acad. Sci. U. S. A. 102:140–145.

Goldie X., Gillman L., Crisp M., Wright S. 2010. Evolutionary
speed limited by water in arid Australia. Proc. Biol. Sci. 277:
2645–2653.

Hagen O., Flück B., Fopp F., Cabral J.S., Hartig F., Pontarp M., Rangel
T.F., Pellissier L. 2021. gen3sis: a general engine for eco-evolutionary
simulations of the processes that shape Earth’s biodiversity. PLoS
Biol. 19:e3001340.

Hagen O., Skeels A., Onstein R.E., Jetz W., Pellissier L. 2021. Earth
history events shaped the evolution of uneven biodiversity across
tropical moist forests. Proc. Natl. Acad. Sci. U. S. A. 118: e2026347118.

Hagen O., Vaterlaus L., Albouy C., Brown A., Leugger F., Onstein
R.E., de Santana C.N., Scotese C.R., Pellissier L. 2019. Mountain
building, climate cooling and the richness of cold-adapted plants
in the Northern Hemisphere. J. Biogeogr. 46:1792–1807.

Harmon L.J., Harrison S. 2015. Species diversity is dynamic and
unbounded at local and continental scales. Am. Nat. 185:584–593.

Harmon L.J., Pennell M.W., Henao-Diaz L.F., Rolland J., Sipley B.N.,
Uyeda J.C. 2021. Causes and Consequences of apparent timescaling
across all estimated evolutionary rates. Annu. Rev. Ecol. Evol. Syst.
52:587–609.

Hillebrand H. 2004. On the generality of the latitudinal diversity
gradient. Am. Nat. 163:192–211.

Hua X., Bromham L. 2017. Darwinism for the genomic age: connecting
mutation to diversification. Front. Genet. 8:1–18.

Hua X., Cowman P., Warren D., Bromham L. 2015. Longevity is linked
to mitochondrial mutation rates in rockfish: a test using Poisson
regression. Mol. Biol. Evol. 32:2633–2645.

Hurlbert A.H., Stegen J.C. 2014a. When should species richness be
energy limited, and how would we know Ecol. Lett. 17:401–413.

Hurlbert A.H., Stegen J.C. 2014b. On the processes generating lat-
itudinal richness gradients: identifying diagnostic patterns and
predictions. Front. Genet. 5:1–9.

Hurlbert A.H., Stegen J.C. 2014c. When should species richness be
energy limited , and how would we know?? Ecol. Lett. 17:401–413.

International Union for Conservation of Nature. 2016. The
IUCN red list of threatened species. Available from:
https://www.iucnredlist.org/.

Ivan J., Moritz C., Potter S., Bragg J., Turakulov R., Hua X. 2022.
Temperature predicts the rate of molecular evolution in Australian
Eugongylinae skinks. Evolution 72:252–261.

Janzen D.H. 1970. Herbivores and the number of tree species in tropical
forests. Am. Nat. 104:501–528.

Jetz W., Fine P.V.A. 2012. Global gradients in vertebrate diversity pre-
dicted by historical area-productivity dynamics and contemporary
environment. PLoS Biol. 10:e1001292.

Jetz W., Pyron R.A. 2018. The interplay of past diversification
and evolutionary isolation with present imperilment across the
amphibian tree of life. Nat. Ecol. Evol. 2:850–858.

Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. 2012.
The global diversity of birds in space and time. Nature.
491:444–448.

Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-
Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. 2017.
Climatologies at high resolution for the earth’s land surface areas.
Sci. Data. 4:1–20.

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge
(UK): Cambridge University Press.

Kozłowski J., Gawelczyk A.T. 2002. Why are species’ body size
distributions usually skewed to the right? Funct. Ecol. 16:419–432.

Lanfear R., Ho S.Y.W., Davies T.J., Moles A. T. Aarssen L., Swenson
N.G., Warman L., Zanne A.E., Allen A.P. 2013. Taller plants have
lower rates of molecular evolution: the rate of mitosis hypothesis.
Nat. Commun. 4:1879.

Lanfear R., Kokko H., Eyre-Walker A. 2014. Population size and the rate
of evolution. Trends Ecol. Evol. 29:33–41.

Lanfear R., Thomas J.A., Welch J.J., Brey T., Bromham L. 2007. Metabolie
rate does not calibrate the molecular clock. Proc. Natl. Acad. Sci. U.
S. A. 104:15388–15393.

Lourenço J.M., Glémin S., Chiari Y., Galtier N. 2013. The determinants
of the molecular substitution process in turtles. J. Evol. Biol.
26:38–50.

Lynch M. 2010. Evolution of the mutation rate. Trends Genet.
26:345–352.

Marin J., Hedges S.B. 2016. Time best explains global variation in
species richness of amphibians, birds and mammals. J. Biogeogr.
43:1069–1079.

Martin A.P., Palumbi S.R. 1993. Body size, metabolic rate, generation
time, and the molecular clock. Proc. Natl. Acad. Sci. U. S. A. 90:4087–
4091.

McGill B.J., Chase J.M., Hortal J., Overcast I., Rominger A.J., Rosindell
J., Borges P.A.V., Emerson B.C., Etienne R., Hickerson M.J., Mahler
D.L., Massol F., McGaughran A., Neves P., Parent C., Patiño J.,
Ruffley M., Wagner C.E., Gillespie R. 2019. Unifying macroeco-
logy and macroevolution to answer fundamental questions about
biodiversity. Glob. Ecol. Biogeogr. 28:1925–1936.

McHugh M.L. 2012. Interrater reliability: the kappa statistic. Biochem.
Medica. 22:276–282.

McPeek M.A. 2007. The macroevolutionary consequences of ecological
differences among species. Palaeontology. 50:111–129.

McPeek M.A. 2008. The ecological dynamics of clade diversification
and community assembly. Am. Nat. 172:E270–E284.

Meiri S. 2008. Evolution and ecology of lizard body sizes. Glob. Ecol.
Biogeogr. 17:724–734.

Meiri S. 2010. Length weight allometries in lizards. J. Zool. 281:218–226.
Meiri S. 2018. Traits of lizards of the world: variation around a

successful evolutionary design. Glob. Ecol. Biogeogr. 27:1168–1172.
Meseguer A.S., Condamine F.L. 2020. Ancient tropical extinctions

at high latitudes contributed to the latitudinal diversity gradient.
Evolution. 74:1966–1987.

Miller E.C., Hayashi K.T., Song D., Wiens J.J. 2018. Explaining the
ocean’s richest biodiversity hotspot and global patterns of fish
diversity. Proc. Biol. Sci. 285:20181314.

Ohta T. 1992. The nearly neutral theory of molecular evolution. Annu.
Rev. Ecol. Syst. 23:263–286.

Oliveira B.F., São-Pedro V.A., Santos-Barrera G., Penone C., Costa G.C.
2017. AmphiBIO, a global database for amphibian ecological traits.
Sci. Data. 4:170123.

Orton M.G., May J.A., Ly W., Lee D.J., Adamowicz S.J. 2019. Is molecular
evolution faster in the tropics? Heredity (Edinb). 122:513–524.

Paine R.T. 1966. Food web complexity and species diversity. Am. Nat.
100:65–75.

Pianka E.R. 1966a. Latitudinal gradients in species diversity: a review
of concepts. Am. Nat. 100:33–46.

Pianka E.R. 1966b. Latitudinal gradients in species diversity: a review
of concepts. Am. Nat. 100:33–46.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/2/341/6637530 by Lib4R

I Eaw
ag user on 28 June 2023



SKEELS ET AL.—EVOLUTIONARY SPEED AND TETRAPOD BIODIVERSITY2023 355

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 14 1–16

14 SYSTEMATIC BIOLOGY

ACKNOWLEDGMENTS

We thank the Keogh Lab, Moritz Lab, the Macro-
evolution and Macroecology Group at the Australian
National University, and members of the Ecosystem and
Landscape Evolution group at ETH and WSL, as well as
three anonymous reviewers for feedback. We are grateful
to Benjamin Flück at ETH Zurich for technical support
and to Melissa Dawes for feedback and proofing the
manuscript.

FUNDING

A.S., W.B., and L.P. were supported by the SNSF
project “Bigest” 310030_188550.

AUTHOR CONTRIBUTIONS

All authors made significant intellectual contributions
to the manuscript. A.S. and L.P. conceived the study.
A.S. performed all analyses. A.S., W.B., O.H., W.J., and
L.P. contributed to designing the study and writing the
manuscript. L.P. supervised the project.

DATA AND CODE AVAILABILITY STATEMENT

No new data were generated for this study and all
data used were from publicly available data sources. All
simulations and analyses were performed in R, version
4.0.3 (R Core Team 2020). All R scripts to replicate
the simulations and analyses from the empirical
data can be found on GitHub (www.github.com/
alexskeels/gen3sis_evolutionary_speed) and are
also available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.cnp5hqc71.

REFERENCES

Allen A.P., Brown J.H., Gillooly J.F. 2002. Global biodiversity, biochem-
ical kinetics, and the energetic-equivalence rule. Science 297:1545–
1548.

Allen A.P., Gillooly J.F., Brown J.H. 2012. Recasting the species–energy
hypothesis: the different roles of kinetic and potential energy in
regulating biodiversity. In: Storch D., Marquet P., Brown J., editors.
Scaling Biodiversity. Cambridge (UK): Cambridge University Press.
p. 283–299.

Allen A.P., Gillooly J., Brown J.H. 2007. Recasting the species-energy
hypothesis: the different roles of kinetic and potential energy in
regulating biodiversity. In: Storch D., Marquet P.A. and Brown
J.H., editors. Scaling biodiversity. Cambridge (UK): Cambridge
University Press. p. 283–299.

Allen A.P., Gillooly J.F., Savage V.M., Brown J.H. 2006. Kinetic effects
of temperature on rates of genetic divergence and speciation. Proc.
Natl. Acad. Sci. U. S. A. 103:9130–9135.

Barrera-Redondo J., Ramírez-Barahona S., Eguiarte L.E. 2018. Rates
of molecular evolution in tree ferns are associated with body size,
environmental temperature, and biological productivity. Evolution.
72:1050–1062.

Belmaker J., Jetz W. 2011. Cross-scale variation in species richness–
environment associations. Glob. Ecol. Biogeogr. 20:464–474.

Bergmann C. 1847. Ober die Verhaltnisse der Warmeokonomie der
Thiere zu ihrer Grosse. Gottinger Stud. 3:595–708.

Bromham L. 2002. Molecular clocks in reptiles: life history influences
rate of molecular evolution. Mol. Biol. Evol. 19:302–309.

Bromham L., Cardillo M. 2003. Testing the link between the latitudinal
gradient in species richness and rates of molecular evolution. J. Evol.
Biol. 16:200–207.

Bromham L., Hua X., Lanfear R., Cowman P. 2015. Exploring the
relationships between mutation rates, life history, genome size,
environment and species richness in flowering plants. Am. Nat.
185:507.

Bromham L., Rambaut A., Harvey P.H. 1996. Determinants of rate
variation in mammalian DNA sequence evolution. J. Mol. Evol.
43:610–621.

Brown J.H. 2004. Toward a metabolic theory of ecology. Ecology.
85:1771–1789.

Brown J.H., Banks J., Belt T., Von A., Hooker J.D., Darwin C. 2014.
Why are there so many species in the tropics? J. Biogeogr. 1905:
8–22.

Burhenne S., Jacob D., Henze G.P. 2011. Sampling based on sobol’
sequences for monte carlo techniques applied to building simula-
tions. Proceedings of Building Simulation 2011: 12th Conference of
International Building Performance Simulation Association; Nov.
14–16; Sydney. 1816–1823 p.

Cardillo M. 1999. Latitude and rates of diversification in birds and
butterflies. Proc. R. Soc. B Biol. Sci. 266:1221–1225.

Cohen J. 1960. A coefficient of agreement for nominal scales. Educ.
Psychol. Meas. 20:37–46.

Colston T.J., Kulkarni P., Jetz W., Pyron R.A. 2020. Phylogenetic and
spatial distribution of evolutionary isolation and threat in turtles
and crocodilians (non-avian archosauromorphs). BMC Evol. Biol.
20:1–16.

Condamine F.L., Rolland J., Morlon H. 2013. Macroevolutionary
perspectives to environmental change. Ecol. Lett. 16:72–85.

Connell J.H., Orias E. 1964. The ecological regulation of species
diversity. Am. Nat. 98(903):399–414.

Cooke R.S.C., Bates A.E., Eigenbrod F. 2019. Global trade-offs of
functional redundancy and functional dispersion for birds and
mammals. Glob. Ecol. Biogeogr. 28:484–495.

Coyne J.A., Orr H.A. 2004. Speciation. Sunderland (MA): Sinauer
Associates, Inc.

Currie D.J. 1991. Energy and large-scale patterns of animal- and plant-
species richness. Am. Nat. 137:27–49.

Cutter A.D., Gray J.C. 2016. Ephemeral ecological speciation and the
latitudinal biodiversity gradient. Evolution. 70:2171–2185.

Davies T.J., Savolainen V., Chase M.W., Moat J. 2004. Environmental
energy and evolutionary rates in flowering plants. Proc. Biol. Sci.
271:2195–2200.

Descombes P., Gaboriau T., Albouy C., Heine C., Leprieur F., Pellissier
L. 2018. Linking species diversification to palaeo-environmental
changes: a process-based modelling approach. Glob. Ecol. Biogeogr.
27:233–244.

Dobzhansky T. 1950. Evolution in the tropics. Am. Sci. 38:209–211.
Dobzhansky T. 1982. Genetics and the origin of species. New York:

Columbia University Press.
Dowle E.J., Morgan-Richards M., Trewick S.A. 2013. Molecular evol-

ution and the latitudinal biodiversity gradient. Heredity (Edinb).
110:501–510.

Dynesius M., Jansson R. 2000a. Evolutionary consequences of
changes in species’ geographical distributions driven by Mil-
ankovitch climate oscillations. Proc. Natl. Acad. Sci. U. S. A.
97:9115–9120.

Dynesius M., Jansson R. 2000b. Evolutionary consequences of changes
in species’ geographical distributions driven by Milankovitch
climate oscillations. Proc. Natl. Acad. Sci. U. S. A. 97:9115–9120.

Economo E.P., Huang J.P., Fischer G., Sarnat E.M., Narula N., Janda
M., Guénard B., Longino J.T., Knowles L.L. 2019. Evolution of
the latitudinal diversity gradient in the hyperdiverse ant genus
Pheidole. Glob. Ecol. Biogeogr. 28:456–470.

Etard A., Morrill S., Newbold T. 2020. Global gaps in trait data for
terrestrial vertebrates. Glob. Ecol. Biogeogr. 29:2143–2158.

Faurby S., Davis M., Pedersen R.Ø., Schowanek S.D., Antonelli1 A.,
Svenning J.-C. 2018. PHYLACINE 1.2: the phylogenetic atlas of
mammal macroecology. Ecology. 99:2626.

Feldman A., Sabath N., Pyron R.A., Mayrose I., Meiri S. 2016. Body sizes
and diversification rates of lizards, snakes, amphisbaenians and the
tuatara. Glob. Ecol. Biogeogr. 25:187–197.

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 15 1–16

2022 SKEELS ET AL.—EVOLUTIONARY SPEED AND TETRAPOD BIODIVERSITY 15

Fine P.V.A. 2015. Ecological and evolutionary drivers of geographic
variation in species diversity. Annu. Rev. Ecol. Evol. Syst.
46:369–392.

Fine P.V.A., Ree R.H. 2006. Evidence for a time-integrated species-
area effect on the latitudinal gradient in tree diversity. Am. Nat.
168:796–804.

Fischer A.G. 1960. Latitudinal variations in organic diversity. Evolution
(N. Y). 14:64–81.

Freeman B.G., Pennell M.W. 2021. The latitudinal taxonomy gradient.
Trends Ecol. Evol. 1:1–9.

Gallagher C.A., Chudzinska M., Larsen-Gray A., Pollock C.J., Sells S.N.,
White P.J.C., Berger U. 2021. From theory to practice in pattern-
oriented modelling: identifying and using empirical patterns in
predictive models. Biol. Rev. Camb. Philos. Soc. 96:1868–1888.

Gillman L.N., Keeling D.J., Ross H.A., Wright S.D. 2009. Latitude,
elevation and the tempo of molecular evolution in mammals. Proc.
Biol. Sci. 276:3353–3359.

Gillman L.N., Mccowan L.S.C., Wright S.D. 2012. The tempo of genetic
evolution in birds: body mass and climate effects. J. Biogeogr.
39:1567–1572.

Gillman L.N., Wright S.D. 2006. The influence of productivity on the
species richness of plants: a critical assessment. Ecology 87:1234–
1243.

Gillman L.N., Wright S.D. 2013. Patterns of evolutionary speed: in
search of a causal mechanism. Diversity 5:811–823.

Gillooly J.F., Allen A.P. 2007. Linking global patterns in biodiversity
to evolutionary dynamics using metabolic theory. Ecology 88:1890–
1894.

Gillooly J.F., Allen A.P., West G.B., Brown J.H. 2005. The rate of DNA
evolution: effects of body size and temperature on the molecular
clock. Proc. Natl. Acad. Sci. U. S. A. 102:140–145.

Goldie X., Gillman L., Crisp M., Wright S. 2010. Evolutionary
speed limited by water in arid Australia. Proc. Biol. Sci. 277:
2645–2653.

Hagen O., Flück B., Fopp F., Cabral J.S., Hartig F., Pontarp M., Rangel
T.F., Pellissier L. 2021. gen3sis: a general engine for eco-evolutionary
simulations of the processes that shape Earth’s biodiversity. PLoS
Biol. 19:e3001340.

Hagen O., Skeels A., Onstein R.E., Jetz W., Pellissier L. 2021. Earth
history events shaped the evolution of uneven biodiversity across
tropical moist forests. Proc. Natl. Acad. Sci. U. S. A. 118: e2026347118.

Hagen O., Vaterlaus L., Albouy C., Brown A., Leugger F., Onstein
R.E., de Santana C.N., Scotese C.R., Pellissier L. 2019. Mountain
building, climate cooling and the richness of cold-adapted plants
in the Northern Hemisphere. J. Biogeogr. 46:1792–1807.

Harmon L.J., Harrison S. 2015. Species diversity is dynamic and
unbounded at local and continental scales. Am. Nat. 185:584–593.

Harmon L.J., Pennell M.W., Henao-Diaz L.F., Rolland J., Sipley B.N.,
Uyeda J.C. 2021. Causes and Consequences of apparent timescaling
across all estimated evolutionary rates. Annu. Rev. Ecol. Evol. Syst.
52:587–609.

Hillebrand H. 2004. On the generality of the latitudinal diversity
gradient. Am. Nat. 163:192–211.

Hua X., Bromham L. 2017. Darwinism for the genomic age: connecting
mutation to diversification. Front. Genet. 8:1–18.

Hua X., Cowman P., Warren D., Bromham L. 2015. Longevity is linked
to mitochondrial mutation rates in rockfish: a test using Poisson
regression. Mol. Biol. Evol. 32:2633–2645.

Hurlbert A.H., Stegen J.C. 2014a. When should species richness be
energy limited, and how would we know Ecol. Lett. 17:401–413.

Hurlbert A.H., Stegen J.C. 2014b. On the processes generating lat-
itudinal richness gradients: identifying diagnostic patterns and
predictions. Front. Genet. 5:1–9.

Hurlbert A.H., Stegen J.C. 2014c. When should species richness be
energy limited , and how would we know?? Ecol. Lett. 17:401–413.

International Union for Conservation of Nature. 2016. The
IUCN red list of threatened species. Available from:
https://www.iucnredlist.org/.

Ivan J., Moritz C., Potter S., Bragg J., Turakulov R., Hua X. 2022.
Temperature predicts the rate of molecular evolution in Australian
Eugongylinae skinks. Evolution 72:252–261.

Janzen D.H. 1970. Herbivores and the number of tree species in tropical
forests. Am. Nat. 104:501–528.

Jetz W., Fine P.V.A. 2012. Global gradients in vertebrate diversity pre-
dicted by historical area-productivity dynamics and contemporary
environment. PLoS Biol. 10:e1001292.

Jetz W., Pyron R.A. 2018. The interplay of past diversification
and evolutionary isolation with present imperilment across the
amphibian tree of life. Nat. Ecol. Evol. 2:850–858.

Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. 2012.
The global diversity of birds in space and time. Nature.
491:444–448.

Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-
Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. 2017.
Climatologies at high resolution for the earth’s land surface areas.
Sci. Data. 4:1–20.

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge
(UK): Cambridge University Press.

Kozłowski J., Gawelczyk A.T. 2002. Why are species’ body size
distributions usually skewed to the right? Funct. Ecol. 16:419–432.

Lanfear R., Ho S.Y.W., Davies T.J., Moles A. T. Aarssen L., Swenson
N.G., Warman L., Zanne A.E., Allen A.P. 2013. Taller plants have
lower rates of molecular evolution: the rate of mitosis hypothesis.
Nat. Commun. 4:1879.

Lanfear R., Kokko H., Eyre-Walker A. 2014. Population size and the rate
of evolution. Trends Ecol. Evol. 29:33–41.

Lanfear R., Thomas J.A., Welch J.J., Brey T., Bromham L. 2007. Metabolie
rate does not calibrate the molecular clock. Proc. Natl. Acad. Sci. U.
S. A. 104:15388–15393.

Lourenço J.M., Glémin S., Chiari Y., Galtier N. 2013. The determinants
of the molecular substitution process in turtles. J. Evol. Biol.
26:38–50.

Lynch M. 2010. Evolution of the mutation rate. Trends Genet.
26:345–352.

Marin J., Hedges S.B. 2016. Time best explains global variation in
species richness of amphibians, birds and mammals. J. Biogeogr.
43:1069–1079.

Martin A.P., Palumbi S.R. 1993. Body size, metabolic rate, generation
time, and the molecular clock. Proc. Natl. Acad. Sci. U. S. A. 90:4087–
4091.

McGill B.J., Chase J.M., Hortal J., Overcast I., Rominger A.J., Rosindell
J., Borges P.A.V., Emerson B.C., Etienne R., Hickerson M.J., Mahler
D.L., Massol F., McGaughran A., Neves P., Parent C., Patiño J.,
Ruffley M., Wagner C.E., Gillespie R. 2019. Unifying macroeco-
logy and macroevolution to answer fundamental questions about
biodiversity. Glob. Ecol. Biogeogr. 28:1925–1936.

McHugh M.L. 2012. Interrater reliability: the kappa statistic. Biochem.
Medica. 22:276–282.

McPeek M.A. 2007. The macroevolutionary consequences of ecological
differences among species. Palaeontology. 50:111–129.

McPeek M.A. 2008. The ecological dynamics of clade diversification
and community assembly. Am. Nat. 172:E270–E284.

Meiri S. 2008. Evolution and ecology of lizard body sizes. Glob. Ecol.
Biogeogr. 17:724–734.

Meiri S. 2010. Length weight allometries in lizards. J. Zool. 281:218–226.
Meiri S. 2018. Traits of lizards of the world: variation around a

successful evolutionary design. Glob. Ecol. Biogeogr. 27:1168–1172.
Meseguer A.S., Condamine F.L. 2020. Ancient tropical extinctions

at high latitudes contributed to the latitudinal diversity gradient.
Evolution. 74:1966–1987.

Miller E.C., Hayashi K.T., Song D., Wiens J.J. 2018. Explaining the
ocean’s richest biodiversity hotspot and global patterns of fish
diversity. Proc. Biol. Sci. 285:20181314.

Ohta T. 1992. The nearly neutral theory of molecular evolution. Annu.
Rev. Ecol. Syst. 23:263–286.

Oliveira B.F., São-Pedro V.A., Santos-Barrera G., Penone C., Costa G.C.
2017. AmphiBIO, a global database for amphibian ecological traits.
Sci. Data. 4:170123.

Orton M.G., May J.A., Ly W., Lee D.J., Adamowicz S.J. 2019. Is molecular
evolution faster in the tropics? Heredity (Edinb). 122:513–524.

Paine R.T. 1966. Food web complexity and species diversity. Am. Nat.
100:65–75.

Pianka E.R. 1966a. Latitudinal gradients in species diversity: a review
of concepts. Am. Nat. 100:33–46.

Pianka E.R. 1966b. Latitudinal gradients in species diversity: a review
of concepts. Am. Nat. 100:33–46.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/2/341/6637530 by Lib4R

I Eaw
ag user on 28 June 2023



SYSTEMATIC BIOLOGY356 VOL. 72

Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:10 11/8/2022 Sysbio-OP-SYSB220048.tex] Page: 16 1–16

16 SYSTEMATIC BIOLOGY

Pontarp M., Bunnefeld L., Cabral J.S., Etienne R.S., Fritz S.A., Gillespie
R., Graham C.H., Hagen O., Hartig F., Huang S., Jansson R., Maliet
O., Münkemüller T., Pellissier L., Rangel T.F., Storch D., Wiegand T.,
Hurlbert A.H. 2019. The latitudinal diversity gradient: novel under-
standing through mechanistic eco-evolutionary models. Trends
Ecol. Evol. 34:211–223.

Promislow D., Clobert J., Barbault R. 1992. Life history allometry
in mammals and squamate reptiles: taxon-level effects. Oikos.
65:285–294.

Prowse T.A.A., Bradshaw C.J.A., Delean S., Cassey P., Lacy R.C., Wells
K., Aiello-Lammens M.E., Akçakaya H.R., Brook B.W. 2016. An
efficient protocol for the global sensitivity analysis of stochastic
ecological models. Ecosphere. 7:e01238.

Qiu F., Kitchen A., Burleigh J.G., Miyamoto M.M. 2014. Scombroid
fishes provide novel insights into the trait/rate associations of
molecular evolution. J. Mol. Evol. 78:338–348.

Quintero I., Jetz W. 2018. Global elevational diversity and diversifica-
tion of birds. Nature. 555:246–250.

R Core Team. 2020. R: a language and environment for statistical com-
puting. Vienna (Austria): R Foundation for Statistical Computing.
Available from: https://www.R-project.org/.

Rabosky D.L. 2021. Macroevolutionary thermodynamics: temperature
and the tempo of evolution in the tropics. PLOS Biol. 19:e3001368.

Rabosky D.L., Chang J., Title P.O., Cowman P.F., Sallan L., Friedman
M., Kaschner K., Garilao C., Near T.J., Coll M., Alfaro M.E. 2018.
An inverse latitudinal gradient in speciation rate for marine fishes.
Nature. 559:392–395.

Rabosky D.L., Hurlbert A.H. 2015. Species richness at contin-
ental scales Is dominated by ecological limits. Am. Nat. 185:
572–583.

Rabosky D.L., Matute D.R. 2013. Macroevolutionary speciation rates
are decoupled from the evolution of intrinsic reproductive isolation
in Drosophila and birds. Proc. Natl. Acad. Sci. U. S. A. 110:15354–
15359.

Rabosky D.L., Title P.O., Huang H. 2015. Minimal effects of latitude
on present-day speciation rates in New World birds. Proc. Biol. Sci.
282:20142889.

Rangel T.F., Edwards N.R., Holden P.B., Diniz-Filho J.A.F., Gosling
W.D., Coelho M.T.P., Cassemiro F.A.S., Rahbek C., Colwell R.K. 2018.
Modeling the ecology and evolution of biodiversity: Biogeograph-
ical cradles, museums, and graves. Science. 361:eaar5452.

Redding D.W., Mooers A.Ø. 2006. Incorporating evolutionary meas-
ures into conservation prioritization. Conserv. Biol. 20:1670–1678.

Rensch B. 1959. Evolution above the species level. London (UK):
Methuen.

Ries G., Heller W., Puchta H., Sandermann H., Seidlitz H.K., Hohn B.
2000. Elevated UV-B radiation reduces genome stability in plants.
Nature. 406:98–101.

Rohde K. 1992. Latitudinal gradients in species diversity: the search
for the primary cause. Oikos. 65:514–527.

Rohde K. 1996. Rapoport’s rule is a local phenomenon and cannot
explain latitudinal gradients in species diversity. Biodivers. Lett.
3:10–13.

Roll U., Feldman A., Novosolov M., Allison A., Bauer A.M., Bernard
R., Böhm M., Castro-Herrera F., Chirio L., Collen B., Colli G.R.,
Dabool L., Das I., Doan T.M., Grismer L.L., Hoogmoed M., Itescu
Y., Kraus F., Lebreton M., Lewin A., Martins M., Maza E., Meirte
D., Nagy Z.T., Nogueira C.D.C., Pauwels O.S.G., Pincheira-Donoso
D., Powney G.D., Sindaco R., Tallowin O.J.S., Torres-Carvajal O.,
Trape J.F., Vidan E., Uetz P., Wagner P., Wang Y., Orme C.D.L.,
Grenyer R., Meiri S. 2017. The global distribution of tetrapods
reveals a need for targeted reptile conservation. Nat. Ecol. Evol.
1:1677–1682.

Rosenzweig M.L. 1995. Species diversity in space and time. Cambridge
(UK): Cambridge University Press.

Santos J.C. 2012. Fast molecular evolution associated with high active
metabolic rates in poison frogs. Mol. Biol. Evol. 29:2001–2018.

Saupe E.E., Myers C.E., Townsend Peterson A., Soberón J., Singarayer J.,
Valdes P., Qiao H. 2019. Spatio-temporal climate change contributes
to latitudinal diversity gradients. Nat. Ecol. Evol. 3:1419–1429.

Schemske D.W., Mittelbach G.G., Cornell H. V., Sobel J.M., Roy K.
2009. Is there a latitudinal gradient in the importance of biotic
interactions? Annu. Rev. Ecol. Evol. Syst. 40:245–269.

Schluter D., Conte G.L. 2009. Genetics and ecological speciation. Proc.
Natl. Acad. Sci. U. S. A. 106:9955–9962.

Scotese C.R., Song H., Mills B.J.W., van der Meer D.G. 2021. Phanerozoic
paleotemperatures: the earth’s changing climate during the last 540
million years. Earth Sci. Rev. 215:103503.

Scotese C.R., Wright N. 2018. PALEOMAP Paleodigital Elevation
Models (PaleoDEMS) for the Phanerozoic. Available from:
https://www.earthbyte.org/paleodem-resource-scotese-and-
wright-2018.

Signorell A. 2021. DescTools: tools for descriptive statistics.
R package version 0.99.43. Available from: https://cran.r-
project.org/package=DescTools.

Skeels A., Esquerré D., Cardillo M. 2019. Alternative pathways to
diversity across ecologically distinct lizard radiations. Glob. Ecol.
Biogeogr. 29:454–469.

Stegen J.C., Enquist B.J., Ferriere R. 2009. Advancing the metabolic
theory of biodiversity. Ecol. Lett. 12:1001–1015.

Stevens G.C. 1989. The latitudinal gradient in geographical range: how
so many species coexist in the Tropics. Am. Nat. 133:240–256.

Storch D., Bodhalkova E., Okie J. 2018. The more-individuals hypo-
thesis revisited?: the role of community abundance in species
richness regulation and the productivity – diversity relationship.
Ecol. Lett. 21:920–937.

Svetec N., Cridland J.M., Zhao L., Begun D.J. 2016. The adaptive
significance of natural genetic variation in the DNA damage
response of Drosophila melanogaster. PLoS Genet. 12:1–18.

Title P.O., Rabosky D.L. 2019. Tip rates, phylogenies and diversification:
what are we estimating, and how good are the estimates? Methods
Ecol. Evol. 10:821–834.

Tonini J.F.R., Beard K.H., Ferreira R.B., Jetz W., Pyron R.A. 2016. Fully-
sampled phylogenies of squamates reveal evolutionary patterns in
threat status. Biol. Conserv. 204:23–31.

Upham N.S., Esselstyn J.A., Jetz W. 2019. Inferring the mammal tree:
species-level sets of phylogenies for questions in ecology, evolution,
and conservation. PLoS Biol. 17:e3000494.

Van Valen L. 1973. A new evolutionary law. Evol. Theory. 1:1–30.
Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor.

J. Stat. Softw. 36:1–48.
Waide R.B., Willig M.R., Steiner C.F., Mittelbach G., Gough L., Dodson

S.I., Juday G.P., Parmenter R. 1999. The relationship between
productivity and species richness. Annu. Rev. Ecol. Syst. 30:257–300.

Weir J.T., Schluter D. 2008a. Calibrating the avian molecular clock. Mol.
Ecol. 17:2321–2328.

Weir J.T., Schluter D. 2008b. The latitudinal gradient in recent
speciation and extinction rates of birds and mammals. Science.
319:1574–1576.

Wilman H., Belmaker J., Simpson J., de la Rosa C., Rivadeneira M.M.,
Jetz W. 2014. EltonTraits 1.0: species-level foraging attributes of the
world’s birds and mammals: ecological archives E095-178. Ecology.
95:2027.

Woolfit M. 2009. Effective population size and the rate and pattern of
nucleotide substitutions. Biol. Lett. 5:417–420.

Wright S.D., Gillman L.N., Ross H.A., Keeling D.J. 2010. Energy and the
tempo of evolution in amphibians. Glob. Ecol. Biogeogr. 19:733–740.

Wright S.D., Ross H.A., Keeling D.J., McBride P., Gillman L.N. 2011.
Thermal energy and the rate of genetic evolution in marine fishes.
Evol. Ecol. 25:525–530.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/2/341/6637530 by Lib4R

I Eaw
ag user on 28 June 2023


