
Computers and Geotechnics 153 (2023) 105078

Available online 25 October 2022
0266-352X/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ORIN-3D – A new model for efficient simulation of landslide motion on a
GPU using CUDA

Jordan Aaron a,b

a Chair of Engineering Geology, Geological Institute, ETH Zurich, Zurich, Switzerland
b Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

A R T I C L E I N F O

Keywords:
Landslide runout modelling
Rock avalanche
Debris avalanche
Smooth particle hydrodynamics
Graphical processing unit
CUDA

A B S T R A C T

Extremely-rapid flowlike landslide are a major hazard in many parts of the world, and managing their risk re
quires an understanding of the mechanisms that drive motion, as well as reliable predictions of their potential
destructiveness. Numerical runout models are one tool that can be used for both these applications, however
their utility is presently limited by their computational runtime. In the present work, a new depth-averaged,
smooth particle hydrodynamics based model is implemented to run on a graphical processing unit. The new
implementation provides a speedup of over two orders of magnitude, compared to a commonly used CPU based
runout model. The new model has been validated, and then is used to back-analyse the Johnsons Landing
Landslide. It is shown that increasing model resolution results in an accurate simulation of complex topographic
interactions between the flowing landslide and the surface topography. The new model runs on commercially
available GPU’s, and should therefore be useful for both researchers and practitioners seeking to understand and
quantify landslide hazard and risk.

1. Introduction

Extremely rapid flow-like landslides, which include rock avalanches
and debris flows, are among the most catastrophic geophysical flows.
These events threaten people living and traveling in mountainous areas,
and effective risk management requires accurate forecasts of their mo
tion. Numerical models are one tool that can be used to forecast flow-
like landslide motion, however long model runtimes and limited
model resolution restrict the calibration and prediction accuracy of
these models.

In recent years, widely available and inexpensive graphical pro
cessing units (GPUs) have revolutionized many areas of computing
(NVIDIA Corporation, 2021). GPUs, which feature thousands of indi
vidual computing cores, can provide orders of magnitude increase in the
speed at which certain parallelizable algorithms run (NVIDIA Corpora
tion, 2021). Implementing numerical models for simulating landslide
motion on a GPU could dramatically increase the efficiency of these
algorithms. The present work implements and tests a numerical runout
model on a GPU.

Many numerical models that can simulate landslide motion have been
proposed in the literature (e.g.Ho et al., 2018). These models can be either
continuum or discontinuum models (Hungr et al., 2007). Discontinuum
models have recently gained more prevalence, and some have been
implemented on a GPU (Song et al., 2017; Wang et al., 2017; Xu et al.,
2021). Continuum models provide an alternative to discontinuum
models, and tend to be more computationally efficient, and the use of
GPU’s has recently enabled 3D runout analysis using continuum models
(Li et al., 2020; Peng et al., 2019, 2022). Many continuum runout models
have been implemented (Ho et al., 2018; Hungr et al., 2007; McDougall,
2017), and these models differ primarily in the form of the equations of
motion (Lagrangian or Eularian) and the numerical solution method, as
well as the methods used to simulate internal pressure gradients,
entrainment, and centripetal accelerations. Two benchmarking exercises
have revealed that simulation results using different continuum models
tend to be similar (Ho et al., 2018; Hungr et al., 2007).

In the present work a depth-averaged, Lagrangian runout model is
implemented to run on a GPU. This model leverages the highly parallel
GPU architecture to decrease model runtime by two orders of

E-mail addresses: jordan.aaron@erdw.ethz.ch, jordan.aaron@wsl.ch.

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

https://doi.org/10.1016/j.compgeo.2022.105078
Received 25 February 2022; Received in revised form 10 August 2022; Accepted 6 October 2022

mailto:jordan.aaron@erdw.ethz.ch
mailto:jordan.aaron@wsl.ch
www.sciencedirect.com/science/journal/0266352X
https://www.elsevier.com/locate/compgeo
https://doi.org/10.1016/j.compgeo.2022.105078
https://doi.org/10.1016/j.compgeo.2022.105078
https://doi.org/10.1016/j.compgeo.2022.105078
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2022.105078&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Geotechnics 153 (2023) 105078

2

magnitude, and increase maximum model resolution by two orders of
magnitude. Firstly, the implementation of the new model is described,
and then the new model is validated. Secondly, a runtime comparison
between the new model and a CPU-based runout model is provided.
Finally, the new model is applied to back-analysis using simulation
configurations that were previously unattainable.

2. Model Overview and CUDA Implementation

As described more fully in McDougall & Hungr (2004), simulation of
extremely-rapid flowlike landslides requires that a model can simulate

motion over complex topography, while accounting for unique features
of flow-like landslide motion, which include centripetal accelerations
and strain dependent stresses. Using a Lagrangian form of the equations
of motion, combined with meshfree numerical methods, can meet these
requirements (e.g. McDougall & Hungr, 2004), and the numerical model
presented here is based on Dan3D, a depth-averaged, Lagrangian runout
model (Hungr, 1995; McDougall & Hungr, 2004).

Meshfree methods, such as Smooth Particle Hydrodynamics (SPH),
which is the method used in the present work (Monaghan, 1992), can
suffer from long model runtimes. This is because of the interpolation
procedure which is at the core of SPH. SPH divides the landslide mass

Fig. 1. Flowchart of the algorithm, showing GPU optimizations. Modified after McDougall, (2006).

J. Aaron

Computers and Geotechnics 153 (2023) 105078

3

into a collection of smooth particles, each with a finite volume, and
interpolates the quantities of interest (such as flow depth, velocity and
erosion depth) based on its value at these particle locations. This
interpolation is based on a user selected kernel, whose width is
controlled by a ‘smoothing length’ parameter (Monaghan, 1992), and
requires a computationally demanding nearest neighbor search.

Many previous authors (e.g. Domínguez et al., 2013; Goozee & Ja
cobs, 2003), as well as code profiling of a CPU implementation of an SPH
runout model, show that the SPH algorithm spends the vast majority of
its computational time performing the nearest neighbor search. Efficient
and parallelizable neighbor search algorithms exist, which makes a GPU
based SPH runout model a potentially powerful tool for overcoming
runtime limitations (e.g. Domínguez et al., 2013; Goozee & Jacobs,
2003; Peng et al., 2019).

Graphical processing units (GPUs) are hardware units that feature a
massively parallel architecture. Many detailed descriptions of this
hardware exist (NVIDIA Corporation, 2021), and only a brief overview
of a few relevant details are presented here. GPUs feature a large number
of computing cores, which can execute instructions in parallel. GPUs
attain high performance by computing many tasks in parallel, and it is
thus important to keep GPU occupancy high. However, global memory
accesses are slow, so algorithms written for the GPU should coalesce
memory accesses (NVIDIA Corporation, 2021). This has the advantage
of both increasing the cache hit rate, and enabling multiple reads per
global memory access. In the present work, an NVIDIA GPU is used, and
the algorithm is written in CUDA.

The new model, termed parallel simulatOR of landslIde motioN over 3D
terrain, or ORIN-3D, runs entirely on the GPU, with the exception of
model initialization and data output. A flowchart summarizing the al
gorithm is presented in Fig. 1. Fig. 1 is modified after McDougall (2006),
who presented a CPU implementation of an SPH based runout model. On
Fig. 1, functions that require a nearest neighbor search are highlighted
in red. A key aspect to note about this nearest neighbor search is that,
when Gaussian kernels are used (as is done in the present work), only
particles within 3 smoothing lengths will appreciably contribute to the
sums so only these particles need be evaluated.

In the present work, three main GPU specific code optimizations
have been implemented, summarized in Table 1. The first is a parallel
neighbor search, based on that presented by Goswami et al. (2010),
Domínguez et al., (2013) and Goozee & Jacobs (2003), which uses Z-
order indexing of particle locations (Goswami et al., 2010; Morton,
1966). Z-order indexing is an efficient method to map two-dimensional
particle coordinates to one dimensional numbers, while preserving
spatial locality. Thus, neighboring particles will have similar Z-index
values, which increases the cache hit rate in the present algorithm. An
overview of this neighbor search algorithm is shown in Fig. 2. First, a
kernel is launched where each thread calculates a Z-index for one of the
particles. The particles are then sorted based on Z-index, using Radix
sort as implemented by THRUST (Bell and Hoberock, 2012). A kernel is
then launched to determine the minimum sorted particle indices in each
block, as well as the number of particles in each block. Finally, all par
ticles in a block can be scanned through by starting at the minimum
particle, and looping through the number of particles contained in the
block.

One advantage of using a Z-Index neighbor search algorithm is that
neighboring particles are located nearby each other in memory. To take

advantage of this, the second optimization (Table 1) is to sort all particle
quantities (such as position, velocity and volume) according to Z-index
following the creation of the nearest neighbor arrays. This increases
memory coalescence (and therefore cache hit rate), as all particles
within a thread block access similar locations in global memory. As part
of the second optimization (#2, Table 1), global memory accesses are
limited by using the Float4 data type, and grouping variables that are
accessed together, such as particle position (x,y,z) and flow depth (h).
Thus, one global memory read can access all quantities for a given
particle. Additionally, as shown on Fig. 1, some functions can be eval
uated in parallel, in particular the functions used to calculate flow
depths and particle strains. In the fully optimized version of the code,
these functions are called in parallel.

The final optimization is aimed at maximizing streaming multipro
cessor occupancy. The nearest neighbor search requires calculating the
distance between each particle and all other particles within nine sur
rounding cells (Fig. 2). In Optimization #3, the nine cells used for
comparison are launched as separate thread blocks, and each of these
blocks is given a specified number of threads for each particle within the
block. Thus, if the block is meant to evaluate 32 particles, and is given 16
threads per particle, the block is launched as a 2D grid of 512 total
threads. In this configuration, 16 threads are assigned to one particle to
evaluate all neighbor interactions, and the results are aggregated using
atomic operations. At the block level, shared memory is used to aggre
gate the neighbor results, whereas all information computed by indi
vidual blocks (which correspond to cells (Fig. 2)) are accumulated using
atomic operations on global memory. The number of particles evaluated
by each block, as well as the parallel threads per block, need to be
optimized to trade off streaming multiprocessor occupancy, the cache
hit rate and serialization resulting from atomic operations.

Certain operations (green boxes on Fig. 1), including calculating the
smoothing length, creating the particle list and evaluating the Coura
nt–Friedrichs–Lewy (CFL) condition to determine the timestep, require
the minimums, maximums and counts of certain quantities. To avoid race
conditions resulting from parallel evaluation of particle quantities, these
operations are implemented using atomic operations within CUDA.

3. Model Validation

The new CUDA based runout model has been validated using a subset
of the test cases presented in McDougall and Hungr (2004). These
include an analytical solution to the dam break problem, generalized to
include basal friction and a sloping base (Mangeney et al., 2000), as well
as lab experiments performed by Gray et al. (1999). For the dam break
problem, and following McDougall (2006), the algorithm was modified
to neglect momentum in the y-direction, and a one dimensional
Gaussian function was used as the interpolation kernel. Simulations
were conducted with basal inclinations of 0◦ and 30◦, and friction angles
of 0◦ and 20◦, respectively. 1,000,000 particles were used for both
validation cases. Only results from the simulations with a 30◦ basal
inclination and 20◦ friction angle are presented here.

In the Gray et al. (1999) lab experiments, dry quartz chips were
released down a chute inclined at 40◦, which then went through a
smooth transition before depositing on a flat plane. Due to the smooth
transition, centripetal accelerations at the base of the setup approximate
what may occur in natural cases, and this experiment thus tests the ef
ficacy of the centripetal acceleration algorithm.

The results of the dam break validation are shown on Fig. 3A. The
match between the numerical and analytical solutions is high. The
comparison between the Gray et al. (1999) experiments and ORIN-3D
results are shown on Fig. 3B. The correspondence is again high. As
can be seen in Fig. 3B, the model diverges somewhat from the experi
ments at t = 1.5 s and 2 s. A similar phenomenon was observed in
McDougall & Hungr (2004), and may be related to variations of the
dynamic friction angle of the material, as discussed in literature (Gray
et al., 1999; Wieland et al., 1999).

Table 1
Optimizations made in the CUDA runout model.

Optimization

Description

1 Implementation of Z-order based neighbor search
2 Sorting and grouping of variables into the Float4 data type
3 Maximize streaming multiprocessor occupancy by optimizing the

number of blocks and threads used by each kernel call

J. Aaron

Computers and Geotechnics 153 (2023) 105078

4

4. Runtime Evaluation

The performance of the new numerical model was assessed by
comparing the model runtimes of ORIN-3D to Dan3D, which is imple
mented to run on a CPU. The CPU used in this evaluation was an Intel-i9,
and the GPU was an Nvidia 2080Ti. It should be noted that the CPU
simulation algorithm has not been optimized in the same manner as the
GPU algorithm, so this comparison cannot be used to generally assess
the relative performance of CPU vs GPU SPH models. However, the
specific CPU model (Dan3D) is commonly used by researchers and
practitioners, so the runtime comparison is still relevant in assessing the
speedup of the present model compared to a commonly used one.

For this benchmarking exercise, the Nomash River case history was
selected, as this case history features entrainment of path material and
strongly curving topography (McDougall & Hungr, 2005), so it utilizes
all the features of both Dan3D and the newly developed CUDA algo
rithm. This event, shown in Fig. 4A, occurred in 1999 on Vancouver
Island, British Columbia. It involved an irregular failure (collapse) of
approximately 300,000 m3 of crystalline limestone (McDougall &
Hungr, 2005). Following failure, the mass overran a thick colluvial

deposit, entraining a further 360,000 m3. The moving fragments of rock
and entrained material then entered into a channel, and followed a
sinuous path downstream, superelevating three times before deposition
(Hungr & Evans, 2004; McDougall & Hungr, 2005). To analyze this case,
the same parameterization as that used by McDougall & Hungr (2005)
was used. A single Voellmy material was used for the entire travel path,
and entrainment was enabled in the zone containing colluvium
(‘entrainment zone’ on Fig. 4A). In this zone, an entrainment rate of
1.9e-3 m− 1 was used (McDougall & Hungr, 2005). The simulation output
obtained when using these parameters is shown on Fig. 4B.

For the runtime evaluation, a suite of simulations was performed
which varied the included code optimizations and number of particles
(N). As summarized in Table 1, three main code optimizations have been
implemented. The influence of these optimizations is assessed based on
the change of simulation runtime achieved for each successive optimi
zation. Two sets of baseline simulations are presented, which include
model runtimes for CPU and GPU algorithms that implement an O(N2)
nearest neighbor search, and do not coalesce and minimize global
memory access. The next sets of results present simulation runtimes
using progressively more optimized code, where the optimization

Fig. 2. Explanation of the particle nearest neighbor detection algorithm, modified after (Domínguez et al., 2013).

Fig. 3. A) Results of the dam break analysis over
a 30◦ sloping bed with a basal friction angle of
20◦. The solution is given at ten second intervals,
with the line representing the analytical solution,
and the dots the numerical solution. For clarity,
only the spreading of the front of the simulated
dam break is shown, and not the trailing material
present at horizontal distances less than 0. B)
Results of simulating the Gray et al. (1999) ex
periments. The black outline shows the measured
extent of the experimental flow, and the contours
show the simulated flow depth.

J. Aaron

Computers and Geotechnics 153 (2023) 105078

5

numbers refer to Table 1.
The results of the performance comparison are shown on Fig. 5. The

suite of simulations labelled ‘GPU N2′ implements an algorithm that is
identical to the CPU model, but that does not leverage many of the
unique features of the GPU. Nevertheless, Fig. 5 shows an immediate
speedup (~4x) is gained by switching to the GPU. Successive code op
timizations provide more dramatic speedups, with the fully optimized
code running about 115 times faster for a 4,000 particle simulation.
Additionally, increasing the number of particles appears to result in a
logarithmic increase in runtime for the optimized GPU simulations. It
should be noted that the timestep was kept constant for all simulations
except ‘GPU #3 CFL’ on Fig. 5. Comparing this simulation to the others
presented on Fig. 5 shows that larger timesteps are used for fewer par
ticles, resulting in a runtime speedup, however for larger numbers of
particles, smaller timesteps are required. This small timestep becomes
the main runtime constraint when the number of particles are increased.

5. High Resolution Simulation of the Johnsons Landing
Landslide

In order to demonstrate the new results that can be achieved with the
optimized GPU model, an example high-resolution simulation of the
Johnsons Landing landslide has been performed. This landslide occurred
in 2012 on the shores of Kootenay Lake, British Columbia, Canada, and
involved the failure of about 320,000 m3 of debris, which bulked to a
volume of ~ 375,000 m3. As shown on Fig. 6, the failed material rapidly
traversed the upper reaches of Gar Creek, before reaching a 70◦ bend in
the channel. The failed material avulsed at this bend, flowing onto the
Johnsons landing bench and killing four people. A detailed back-
analysis of this event was presented in Aaron et al. (2020), who found
that the material was likely moving in an undrained condition. The
simulations performed by Aaron et al. (2020) were limited to 4,000
particles, and underestimated the large volume of debris that deposited
on the bench, and overestimated the volume that went down the
channel. This was potentially due to limited model resolution. In the
present work, the same parameterization as Aaron et al. (2020) is used,
but 1,000,000 particles are used to discretize the failed mass.

The results of the 1,000,000 particle simulation are shown on Fig. 7.
Fig. 7 shows the material travelling down the channel and super
elevating twice before encountering the 70◦ bend. The increased num
ber of particles well resolves all of these complex features. Further, the
material avulses from the channel, and deposits on the bench, resulting
in deposit depths that are close to that inferred from the field observa
tion (compare inset on Fig. 7 to simulated depths). Finally, the small
volume of material that ran down the lower channel and deposited on
the Gar Creek Fan (Fig. 6) is well resolved.

6. Conclusions

The GPU based runout model presented here provides an increase in
efficiency of over two orders of magnitude, when compared to a
commonly used, CPU based runout model. The new model was vali
dated, and then the influence that increasing model resolution has on
simulation results was assessed. It was shown that increasing model
resolution enables the model to capture complex features, such as su
perelevation, channel avulsion, and branching flow. The new model
thus provides the foundation for more rigorous back-analysis, and effi
cient probabilistic prediction. As all simulations were run on a desktop

Fig. 4. A) Overview of the Nomash River rock
avalanche. Modified after McDougall and Hungr (2005).
and Aaron and McDougall (2019), original photo: Dana
Ayotte. B) Output of the GPU numerical simulation using
the input parameters detailed in McDougall and Hungr
(2005). The black outline shows the observed impact
area, the orange shape shows the simulated impact area,
and the contours show simulated final deposit depth.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of
this article.)

Fig. 5. Runtime comparison for various code optimizations, compared to a CPU
runout model. The numbers refer to the optimization numbers given in Table 1,
and CFL refers to simulations performed with an adaptive timestep based on the
CFL condition.

J. Aaron

Computers and Geotechnics 153 (2023) 105078

6

computer using a commercial graphics card, the model is useful for both
researchers and practitioners.

CRediT authorship contribution statement

Jordan Aaron: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Methodology, Validation, Visuali
zation, Writing – original draft, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data used in this article is already available online

Fig. 6. Overview of the Johnsons Landing landslide showing the main source and deposit features. Figure modified after (Aaron et al., 2020), Image Copyright
province of British Columbia.

Fig. 7. Simulated landslide depth at various timesteps, using 1,000,000 particles. Inset shows estimated deposit depths based on pre- and post- event topography
(further described in Aaron et al., 2020).

J. Aaron

Computers and Geotechnics 153 (2023) 105078

7

Acknowledgements

Scott McDougall provided excellent feedback on a draft of this
manuscript, wrote the original Dan3D source code, and provided many
enlightening discussions. The author also thanks Oldrich Hungr for ac
cess to the Dan3D source code. The editor and comments from two re
viewers helped to improve this manuscript.

References

Aaron, J., McDougall, S., Jordan, P., 2020. Dynamic analysis of the 2012 Johnsons
Landing landslide at Kootenay Lake, BC : The importance of undrained flow
potential. Canadian Geotechnical Journal 57 (8), 1172–1182. https://doi.org/
10.1139/cgj-2018-0623.

NVIDIA Corporation. (2021). CUDA C ++ Programming Guide (Issue October).
Domínguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M., 2013. Optimization strategies for

CPU and GPU implementations of a smoothed particle hydrodynamics method.
Computer Physics Communications 184 (3), 617–627. https://doi.org/10.1016/j.
cpc.2012.10.015.

Goozee, R.J., Jacobs, P.A., 2003. Distributed and shared memory parallelism with a
smoothed particle hydrodynamics code. ANZIAM Journal 44 (April), 202. https://do
i.org/10.21914/anziamj.v44i0.679.

Gray, J. M. N. T., Wieland, M., & Hutter, K. (1999). Gravity-driven free surface flow of
granular. November, 1841–1874.

P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. 2010. Interactive SPH
simulation and rendering on the GPU. In Proceedings of the 2010 ACM SIGGRAPH/
Eurographics Symposium on Computer Animation (SCA ’10). Eurographics
Association, Goslar, DEU, 55–64.

Ho, K., Leung, A., Kwan, J., Koo, R., Law, R., Ho, K., Leung, A., Kwan, J., Koo, R., & Law,
R. (2018). Proceedings of the Second JTC1 Workshop Triggering and Propagation of
Rapid Flow-like Landslides (K. Ho, A. Leung, J. Kwan, R. Koo, & R. Law, Eds.; Issue
December).

Hungr, O., 1995. A model for the runout analysis of rapid flow slides, debris flows and
avalanches. Canadian Geotechnical Journal 32 (4), 610–623.

Hungr, O., Morgenstern, N. R., & Wong, H. N. (2007). Review of benchmarking exercise
on landslide debris runout and mobility modelling. Proceedings of the International
Forum on Landslide Disaster Management, 775–812.

Hungr, O., Evans, S.G., 2004. Entrainment of debris in rock avalanches: An analysis of a
long run-out mechanism. Geological Society of America Bulletin 116 (9–10),
1240–1252. https://doi.org/10.1130/B25362.1.

Li, S., Peng, C., Wu, W., Wang, S., Chen, X., Chen, J., Zhou, G.G.D., Chitneedi, B.K., 2020.
Role of baffle shape on debris flow impact in step-pool channel: An SPH study.
Landslides 17 (9), 2099–2111. https://doi.org/10.1007/s10346-020-01410-w.

Mangeney, A., Heinrich, P., Roche, R., 2000. Analytical solution for testing debris
avalanche numerical models. Pure and Applied Geophysics 157 (6–8), 1081–1096.
https://doi.org/10.1007/s000240050018.

McDougall, S., 2017. 2014 Canadian Geotechnical Colloquium: Landslide runout
analysis—Current practice and challenges. 54 (5), 605–620.

McDougall, S., Hungr, O., 2004. A model for the analysis of rapid landslide motion across
three-dimensional terrain. Canadian Geotechnical Journal 41 (6), 1084–1097.

McDougall, S., Hungr, O., 2005. Dynamic modelling of entrainment in rapid landslides.
Canadian Geotechnical Journal 42 (5), 1437–1448. https://doi.org/10.1139/t05-
064.

McDougall, S. (2006). A New Continuum Dynamic Model For the Analysis of Extremely
Rapid Landslide Motion Across Complex 3D Terrain, PhD Thesis (Issue August).

Monaghan, J.J., 1992. Smoothed Particle Hydrodynamics. Annual Review of Astronomy
and Astrophysics 30 (1), 543–574. https://doi.org/10.1146/annurev.astro.30.1.543.

Morton, G.M., 1966. A Computer Oriented Geodetic Data Base; and a New Technique in
File Sequencing. IBM Ltd, Technical Report, Ottawa, Canada.

Peng, C., Wang, S., Wu, W., Yu, H., Wang, C., Chen, J., 2019. LOQUAT: An open-source
GPU-accelerated SPH solver for geotechnical modeling. Acta Geotechnica 14 (5),
1269–1287. https://doi.org/10.1007/s11440-019-00839-1.

Peng, C., Li, S., Wu, W., An, H., Chen, X., Ouyang, C., Tang, H., 2022. On three-
dimensional SPH modelling of large-scale landslides. Canadian Geotechnical Journal
59 (1), 24–39. https://doi.org/10.1139/cgj-2020-0774.

Song, Y., Huang, D., Zeng, B., 2017. GPU-based parallel computation for discontinuous
deformation analysis (DDA) method and its application to modelling earthquake-
induced landslide. Computers and Geotechnics 86, 80–94. https://doi.org/10.1016/
j.compgeo.2017.01.001.

Wang, W., Zhang, H., Zheng, L., Zhang, Y. bin, Wu, Y. qiang, & Liu, S. guang. (2017). A
new approach for modeling landslide movement over 3D topography using 3D
discontinuous deformation analysis. Computers and Geotechnics, 81, 87–97. https://
doi.org/10.1016/j.compgeo.2016.07.015.

Wieland, M., Gray, J.M.N.T., Hutter, K., 1999. Cohesionless Granular Avalanches in a
Chute. J. Fluid Mech. 392, 73–100.

Xu, W., Xu, Q., Liu, G., Xu, H., 2021. A novel parameter inversion method for an
improved DEM simulation of a river damming process by a large-scale landslide.
Engineering Geology 293 (November 2020), 106282. https://doi.org/10.1016/j.
enggeo.2021.106282.

J. Aaron

https://doi.org/10.1139/cgj-2018-0623
https://doi.org/10.1139/cgj-2018-0623
https://doi.org/10.1016/j.cpc.2012.10.015
https://doi.org/10.1016/j.cpc.2012.10.015
https://doi.org/10.21914/anziamj.v44i0.679
https://doi.org/10.21914/anziamj.v44i0.679
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0035
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0035
https://doi.org/10.1130/B25362.1
https://doi.org/10.1007/s10346-020-01410-w
https://doi.org/10.1007/s000240050018
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0060
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0060
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0065
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0065
https://doi.org/10.1139/t05-064
https://doi.org/10.1139/t05-064
https://doi.org/10.1146/annurev.astro.30.1.543
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0085
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0085
https://doi.org/10.1007/s11440-019-00839-1
https://doi.org/10.1139/cgj-2020-0774
https://doi.org/10.1016/j.compgeo.2017.01.001
https://doi.org/10.1016/j.compgeo.2017.01.001
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0110
http://refhub.elsevier.com/S0266-352X(22)00415-3/h0110
https://doi.org/10.1016/j.enggeo.2021.106282
https://doi.org/10.1016/j.enggeo.2021.106282

	ORIN-3D – A new model for efficient simulation of landslide motion on a GPU using CUDA
	1 Introduction
	2 Model Overview and CUDA Implementation
	3 Model Validation
	4 Runtime Evaluation
	5 High Resolution Simulation of the Johnsons Landing Landslide
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

