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A B S T R A C T   

Extremely-rapid flowlike landslide are a major hazard in many parts of the world, and managing their risk re
quires an understanding of the mechanisms that drive motion, as well as reliable predictions of their potential 
destructiveness. Numerical runout models are one tool that can be used for both these applications, however 
their utility is presently limited by their computational runtime. In the present work, a new depth-averaged, 
smooth particle hydrodynamics based model is implemented to run on a graphical processing unit. The new 
implementation provides a speedup of over two orders of magnitude, compared to a commonly used CPU based 
runout model. The new model has been validated, and then is used to back-analyse the Johnsons Landing 
Landslide. It is shown that increasing model resolution results in an accurate simulation of complex topographic 
interactions between the flowing landslide and the surface topography. The new model runs on commercially 
available GPU’s, and should therefore be useful for both researchers and practitioners seeking to understand and 
quantify landslide hazard and risk.   

1. Introduction 

Extremely rapid flow-like landslides, which include rock avalanches 
and debris flows, are among the most catastrophic geophysical flows. 
These events threaten people living and traveling in mountainous areas, 
and effective risk management requires accurate forecasts of their mo
tion. Numerical models are one tool that can be used to forecast flow- 
like landslide motion, however long model runtimes and limited 
model resolution restrict the calibration and prediction accuracy of 
these models. 

In recent years, widely available and inexpensive graphical pro
cessing units (GPUs) have revolutionized many areas of computing 
(NVIDIA Corporation, 2021). GPUs, which feature thousands of indi
vidual computing cores, can provide orders of magnitude increase in the 
speed at which certain parallelizable algorithms run (NVIDIA Corpora
tion, 2021). Implementing numerical models for simulating landslide 
motion on a GPU could dramatically increase the efficiency of these 
algorithms. The present work implements and tests a numerical runout 
model on a GPU. 

Many numerical models that can simulate landslide motion have been 
proposed in the literature (e.g.Ho et al., 2018). These models can be either 
continuum or discontinuum models (Hungr et al., 2007). Discontinuum 
models have recently gained more prevalence, and some have been 
implemented on a GPU (Song et al., 2017; Wang et al., 2017; Xu et al., 
2021). Continuum models provide an alternative to discontinuum 
models, and tend to be more computationally efficient, and the use of 
GPU’s has recently enabled 3D runout analysis using continuum models 
(Li et al., 2020; Peng et al., 2019, 2022). Many continuum runout models 
have been implemented (Ho et al., 2018; Hungr et al., 2007; McDougall, 
2017), and these models differ primarily in the form of the equations of 
motion (Lagrangian or Eularian) and the numerical solution method, as 
well as the methods used to simulate internal pressure gradients, 
entrainment, and centripetal accelerations. Two benchmarking exercises 
have revealed that simulation results using different continuum models 
tend to be similar (Ho et al., 2018; Hungr et al., 2007). 

In the present work a depth-averaged, Lagrangian runout model is 
implemented to run on a GPU. This model leverages the highly parallel 
GPU architecture to decrease model runtime by two orders of 
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magnitude, and increase maximum model resolution by two orders of 
magnitude. Firstly, the implementation of the new model is described, 
and then the new model is validated. Secondly, a runtime comparison 
between the new model and a CPU-based runout model is provided. 
Finally, the new model is applied to back-analysis using simulation 
configurations that were previously unattainable. 

2. Model Overview and CUDA Implementation 

As described more fully in McDougall & Hungr (2004), simulation of 
extremely-rapid flowlike landslides requires that a model can simulate 

motion over complex topography, while accounting for unique features 
of flow-like landslide motion, which include centripetal accelerations 
and strain dependent stresses. Using a Lagrangian form of the equations 
of motion, combined with meshfree numerical methods, can meet these 
requirements (e.g. McDougall & Hungr, 2004), and the numerical model 
presented here is based on Dan3D, a depth-averaged, Lagrangian runout 
model (Hungr, 1995; McDougall & Hungr, 2004). 

Meshfree methods, such as Smooth Particle Hydrodynamics (SPH), 
which is the method used in the present work (Monaghan, 1992), can 
suffer from long model runtimes. This is because of the interpolation 
procedure which is at the core of SPH. SPH divides the landslide mass 

Fig. 1. Flowchart of the algorithm, showing GPU optimizations. Modified after McDougall, (2006).  
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into a collection of smooth particles, each with a finite volume, and 
interpolates the quantities of interest (such as flow depth, velocity and 
erosion depth) based on its value at these particle locations. This 
interpolation is based on a user selected kernel, whose width is 
controlled by a ‘smoothing length’ parameter (Monaghan, 1992), and 
requires a computationally demanding nearest neighbor search. 

Many previous authors (e.g. Domínguez et al., 2013; Goozee & Ja
cobs, 2003), as well as code profiling of a CPU implementation of an SPH 
runout model, show that the SPH algorithm spends the vast majority of 
its computational time performing the nearest neighbor search. Efficient 
and parallelizable neighbor search algorithms exist, which makes a GPU 
based SPH runout model a potentially powerful tool for overcoming 
runtime limitations (e.g. Domínguez et al., 2013; Goozee & Jacobs, 
2003; Peng et al., 2019). 

Graphical processing units (GPUs) are hardware units that feature a 
massively parallel architecture. Many detailed descriptions of this 
hardware exist (NVIDIA Corporation, 2021), and only a brief overview 
of a few relevant details are presented here. GPUs feature a large number 
of computing cores, which can execute instructions in parallel. GPUs 
attain high performance by computing many tasks in parallel, and it is 
thus important to keep GPU occupancy high. However, global memory 
accesses are slow, so algorithms written for the GPU should coalesce 
memory accesses (NVIDIA Corporation, 2021). This has the advantage 
of both increasing the cache hit rate, and enabling multiple reads per 
global memory access. In the present work, an NVIDIA GPU is used, and 
the algorithm is written in CUDA. 

The new model, termed parallel simulatOR of landslIde motioN over 3D 
terrain, or ORIN-3D, runs entirely on the GPU, with the exception of 
model initialization and data output. A flowchart summarizing the al
gorithm is presented in Fig. 1. Fig. 1 is modified after McDougall (2006), 
who presented a CPU implementation of an SPH based runout model. On 
Fig. 1, functions that require a nearest neighbor search are highlighted 
in red. A key aspect to note about this nearest neighbor search is that, 
when Gaussian kernels are used (as is done in the present work), only 
particles within 3 smoothing lengths will appreciably contribute to the 
sums so only these particles need be evaluated. 

In the present work, three main GPU specific code optimizations 
have been implemented, summarized in Table 1. The first is a parallel 
neighbor search, based on that presented by Goswami et al. (2010), 
Domínguez et al., (2013) and Goozee & Jacobs (2003), which uses Z- 
order indexing of particle locations (Goswami et al., 2010; Morton, 
1966). Z-order indexing is an efficient method to map two-dimensional 
particle coordinates to one dimensional numbers, while preserving 
spatial locality. Thus, neighboring particles will have similar Z-index 
values, which increases the cache hit rate in the present algorithm. An 
overview of this neighbor search algorithm is shown in Fig. 2. First, a 
kernel is launched where each thread calculates a Z-index for one of the 
particles. The particles are then sorted based on Z-index, using Radix 
sort as implemented by THRUST (Bell and Hoberock, 2012). A kernel is 
then launched to determine the minimum sorted particle indices in each 
block, as well as the number of particles in each block. Finally, all par
ticles in a block can be scanned through by starting at the minimum 
particle, and looping through the number of particles contained in the 
block. 

One advantage of using a Z-Index neighbor search algorithm is that 
neighboring particles are located nearby each other in memory. To take 

advantage of this, the second optimization (Table 1) is to sort all particle 
quantities (such as position, velocity and volume) according to Z-index 
following the creation of the nearest neighbor arrays. This increases 
memory coalescence (and therefore cache hit rate), as all particles 
within a thread block access similar locations in global memory. As part 
of the second optimization (#2, Table 1), global memory accesses are 
limited by using the Float4 data type, and grouping variables that are 
accessed together, such as particle position (x,y,z) and flow depth (h). 
Thus, one global memory read can access all quantities for a given 
particle. Additionally, as shown on Fig. 1, some functions can be eval
uated in parallel, in particular the functions used to calculate flow 
depths and particle strains. In the fully optimized version of the code, 
these functions are called in parallel. 

The final optimization is aimed at maximizing streaming multipro
cessor occupancy. The nearest neighbor search requires calculating the 
distance between each particle and all other particles within nine sur
rounding cells (Fig. 2). In Optimization #3, the nine cells used for 
comparison are launched as separate thread blocks, and each of these 
blocks is given a specified number of threads for each particle within the 
block. Thus, if the block is meant to evaluate 32 particles, and is given 16 
threads per particle, the block is launched as a 2D grid of 512 total 
threads. In this configuration, 16 threads are assigned to one particle to 
evaluate all neighbor interactions, and the results are aggregated using 
atomic operations. At the block level, shared memory is used to aggre
gate the neighbor results, whereas all information computed by indi
vidual blocks (which correspond to cells (Fig. 2)) are accumulated using 
atomic operations on global memory. The number of particles evaluated 
by each block, as well as the parallel threads per block, need to be 
optimized to trade off streaming multiprocessor occupancy, the cache 
hit rate and serialization resulting from atomic operations. 

Certain operations (green boxes on Fig. 1), including calculating the 
smoothing length, creating the particle list and evaluating the Coura
nt–Friedrichs–Lewy (CFL) condition to determine the timestep, require 
the minimums, maximums and counts of certain quantities. To avoid race 
conditions resulting from parallel evaluation of particle quantities, these 
operations are implemented using atomic operations within CUDA. 

3. Model Validation 

The new CUDA based runout model has been validated using a subset 
of the test cases presented in McDougall and Hungr (2004). These 
include an analytical solution to the dam break problem, generalized to 
include basal friction and a sloping base (Mangeney et al., 2000), as well 
as lab experiments performed by Gray et al. (1999). For the dam break 
problem, and following McDougall (2006), the algorithm was modified 
to neglect momentum in the y-direction, and a one dimensional 
Gaussian function was used as the interpolation kernel. Simulations 
were conducted with basal inclinations of 0◦ and 30◦, and friction angles 
of 0◦ and 20◦, respectively. 1,000,000 particles were used for both 
validation cases. Only results from the simulations with a 30◦ basal 
inclination and 20◦ friction angle are presented here. 

In the Gray et al. (1999) lab experiments, dry quartz chips were 
released down a chute inclined at 40◦, which then went through a 
smooth transition before depositing on a flat plane. Due to the smooth 
transition, centripetal accelerations at the base of the setup approximate 
what may occur in natural cases, and this experiment thus tests the ef
ficacy of the centripetal acceleration algorithm. 

The results of the dam break validation are shown on Fig. 3A. The 
match between the numerical and analytical solutions is high. The 
comparison between the Gray et al. (1999) experiments and ORIN-3D 
results are shown on Fig. 3B. The correspondence is again high. As 
can be seen in Fig. 3B, the model diverges somewhat from the experi
ments at t = 1.5 s and 2 s. A similar phenomenon was observed in 
McDougall & Hungr (2004), and may be related to variations of the 
dynamic friction angle of the material, as discussed in literature (Gray 
et al., 1999; Wieland et al., 1999). 

Table 1 
Optimizations made in the CUDA runout model.  

Optimization 
# 

Description 

1 Implementation of Z-order based neighbor search 
2 Sorting and grouping of variables into the Float4 data type 
3 Maximize streaming multiprocessor occupancy by optimizing the 

number of blocks and threads used by each kernel call  
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4. Runtime Evaluation 

The performance of the new numerical model was assessed by 
comparing the model runtimes of ORIN-3D to Dan3D, which is imple
mented to run on a CPU. The CPU used in this evaluation was an Intel-i9, 
and the GPU was an Nvidia 2080Ti. It should be noted that the CPU 
simulation algorithm has not been optimized in the same manner as the 
GPU algorithm, so this comparison cannot be used to generally assess 
the relative performance of CPU vs GPU SPH models. However, the 
specific CPU model (Dan3D) is commonly used by researchers and 
practitioners, so the runtime comparison is still relevant in assessing the 
speedup of the present model compared to a commonly used one. 

For this benchmarking exercise, the Nomash River case history was 
selected, as this case history features entrainment of path material and 
strongly curving topography (McDougall & Hungr, 2005), so it utilizes 
all the features of both Dan3D and the newly developed CUDA algo
rithm. This event, shown in Fig. 4A, occurred in 1999 on Vancouver 
Island, British Columbia. It involved an irregular failure (collapse) of 
approximately 300,000 m3 of crystalline limestone (McDougall & 
Hungr, 2005). Following failure, the mass overran a thick colluvial 

deposit, entraining a further 360,000 m3. The moving fragments of rock 
and entrained material then entered into a channel, and followed a 
sinuous path downstream, superelevating three times before deposition 
(Hungr & Evans, 2004; McDougall & Hungr, 2005). To analyze this case, 
the same parameterization as that used by McDougall & Hungr (2005) 
was used. A single Voellmy material was used for the entire travel path, 
and entrainment was enabled in the zone containing colluvium 
(‘entrainment zone’ on Fig. 4A). In this zone, an entrainment rate of 
1.9e-3 m− 1 was used (McDougall & Hungr, 2005). The simulation output 
obtained when using these parameters is shown on Fig. 4B. 

For the runtime evaluation, a suite of simulations was performed 
which varied the included code optimizations and number of particles 
(N). As summarized in Table 1, three main code optimizations have been 
implemented. The influence of these optimizations is assessed based on 
the change of simulation runtime achieved for each successive optimi
zation. Two sets of baseline simulations are presented, which include 
model runtimes for CPU and GPU algorithms that implement an O(N2) 
nearest neighbor search, and do not coalesce and minimize global 
memory access. The next sets of results present simulation runtimes 
using progressively more optimized code, where the optimization 

Fig. 2. Explanation of the particle nearest neighbor detection algorithm, modified after (Domínguez et al., 2013).  

Fig. 3. A) Results of the dam break analysis over 
a 30◦ sloping bed with a basal friction angle of 
20◦. The solution is given at ten second intervals, 
with the line representing the analytical solution, 
and the dots the numerical solution. For clarity, 
only the spreading of the front of the simulated 
dam break is shown, and not the trailing material 
present at horizontal distances less than 0. B) 
Results of simulating the Gray et al. (1999) ex
periments. The black outline shows the measured 
extent of the experimental flow, and the contours 
show the simulated flow depth.   
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numbers refer to Table 1. 
The results of the performance comparison are shown on Fig. 5. The 

suite of simulations labelled ‘GPU N2′ implements an algorithm that is 
identical to the CPU model, but that does not leverage many of the 
unique features of the GPU. Nevertheless, Fig. 5 shows an immediate 
speedup (~4x) is gained by switching to the GPU. Successive code op
timizations provide more dramatic speedups, with the fully optimized 
code running about 115 times faster for a 4,000 particle simulation. 
Additionally, increasing the number of particles appears to result in a 
logarithmic increase in runtime for the optimized GPU simulations. It 
should be noted that the timestep was kept constant for all simulations 
except ‘GPU #3 CFL’ on Fig. 5. Comparing this simulation to the others 
presented on Fig. 5 shows that larger timesteps are used for fewer par
ticles, resulting in a runtime speedup, however for larger numbers of 
particles, smaller timesteps are required. This small timestep becomes 
the main runtime constraint when the number of particles are increased. 

5. High Resolution Simulation of the Johnsons Landing 
Landslide 

In order to demonstrate the new results that can be achieved with the 
optimized GPU model, an example high-resolution simulation of the 
Johnsons Landing landslide has been performed. This landslide occurred 
in 2012 on the shores of Kootenay Lake, British Columbia, Canada, and 
involved the failure of about 320,000 m3 of debris, which bulked to a 
volume of ~ 375,000 m3. As shown on Fig. 6, the failed material rapidly 
traversed the upper reaches of Gar Creek, before reaching a 70◦ bend in 
the channel. The failed material avulsed at this bend, flowing onto the 
Johnsons landing bench and killing four people. A detailed back- 
analysis of this event was presented in Aaron et al. (2020), who found 
that the material was likely moving in an undrained condition. The 
simulations performed by Aaron et al. (2020) were limited to 4,000 
particles, and underestimated the large volume of debris that deposited 
on the bench, and overestimated the volume that went down the 
channel. This was potentially due to limited model resolution. In the 
present work, the same parameterization as Aaron et al. (2020) is used, 
but 1,000,000 particles are used to discretize the failed mass. 

The results of the 1,000,000 particle simulation are shown on Fig. 7. 
Fig. 7 shows the material travelling down the channel and super
elevating twice before encountering the 70◦ bend. The increased num
ber of particles well resolves all of these complex features. Further, the 
material avulses from the channel, and deposits on the bench, resulting 
in deposit depths that are close to that inferred from the field observa
tion (compare inset on Fig. 7 to simulated depths). Finally, the small 
volume of material that ran down the lower channel and deposited on 
the Gar Creek Fan (Fig. 6) is well resolved. 

6. Conclusions 

The GPU based runout model presented here provides an increase in 
efficiency of over two orders of magnitude, when compared to a 
commonly used, CPU based runout model. The new model was vali
dated, and then the influence that increasing model resolution has on 
simulation results was assessed. It was shown that increasing model 
resolution enables the model to capture complex features, such as su
perelevation, channel avulsion, and branching flow. The new model 
thus provides the foundation for more rigorous back-analysis, and effi
cient probabilistic prediction. As all simulations were run on a desktop 

Fig. 4. A) Overview of the Nomash River rock 
avalanche. Modified after McDougall and Hungr (2005). 
and Aaron and McDougall (2019), original photo: Dana 
Ayotte. B) Output of the GPU numerical simulation using 
the input parameters detailed in McDougall and Hungr 
(2005). The black outline shows the observed impact 
area, the orange shape shows the simulated impact area, 
and the contours show simulated final deposit depth. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of 
this article.)   

Fig. 5. Runtime comparison for various code optimizations, compared to a CPU 
runout model. The numbers refer to the optimization numbers given in Table 1, 
and CFL refers to simulations performed with an adaptive timestep based on the 
CFL condition. 
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computer using a commercial graphics card, the model is useful for both 
researchers and practitioners. 
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Fig. 6. Overview of the Johnsons Landing landslide showing the main source and deposit features. Figure modified after (Aaron et al., 2020), Image Copyright 
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Fig. 7. Simulated landslide depth at various timesteps, using 1,000,000 particles. Inset shows estimated deposit depths based on pre- and post- event topography 
(further described in Aaron et al., 2020). 
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