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Summary

� Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical

cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering

basic research and biodiversity conservation.
� Here, we used machine learning (random forests, extreme gradient boosting, and neural

networks) and conventional statistical methods (generalized linear models and generalized

additive models) to test environment-related hypotheses of broad-scale vascular plant diver-

sity gradients and to model and predict species richness and phylogenetic richness worldwide.

To this end, we used 830 regional plant inventories including c. 300 000 species and predic-

tors of past and present environmental conditions.
� Machine learning showed a superior performance, explaining up to 80.9% of species rich-

ness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques

for disentangling complex and interacting associations between the environment and plant

diversity. Current climate and environmental heterogeneity emerged as the primary drivers,

while past environmental conditions left only small but detectable imprints on plant diversity.
� Finally, we combined predictions from multiple modeling techniques (ensemble predictions)

to reveal global patterns and centers of plant diversity at multiple resolutions down to

7774 km2. Our predictive maps provide accurate estimates of global plant diversity available

at grain sizes relevant for conservation and macroecology.

Introduction

Vascular plants comprise well over 340 000 species (Govaerts
et al., 2021) and are fundamental to terrestrial ecosystems main-
taining ecosystem functioning (Tilman et al., 2014) and provid-
ing ecosystem services (Isbell et al., 2011; Cardinale et al., 2012).

To preserve and manage this important part of global biodiver-
sity, knowledge of its spatial distribution and location of biodi-
versity centers is critical. Mapping plant distributions and
diversity has a long and rich tradition starting in the 19th century,
with the collation of regional plant species numbers and expert-
drawn isolines of species richness (Wulff, 1935; Barthlott
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et al., 2005; reviewed in Mutke & Barthlott, 2005). These maps
have since then been refined and scaled to different resolutions
(e.g. c. 12 100 km2 in Kreft & Jetz, 2007) by modeling diversity
patterns in response to environmental and spatial variables (Keil
& Chase, 2019; Sabatini et al., 2022), allowing for continuous
predictions worldwide. The accuracy of such predictive maps
depends on the quality and representativeness of available plant
diversity data, environmental predictors, and models applied.
Recent developments in the availability both of data and of mod-
eling techniques allows for models of plant diversity of hitherto
unprecedented resolution and accuracy.

Knowledge of plant distributions worldwide has increased in
recent years, thanks to international efforts to mobilize and col-
late species occurrence records (Enquist et al., 2016; GBIF, 2020)
and vegetation plots (Sabatini et al., 2021) along with regional
checklists and floras (Weigelt et al., 2020; Govaerts et al., 2021).
However, these data differ in precision, completeness, and scope
(K€onig et al., 2019). Specifically, fine-grained data such as occur-
rence records and vegetation plots are often geographically biased
and only partially cover regional floras (Meyer et al., 2016; Qian
et al., 2022). Despite being coarse-grained and often delimited
by artificial, administrative borders, checklists and floras reflect
the most complete and authoritative accounts of regional floristic
composition to date and are available with near-complete global
coverage (Weigelt et al., 2020; Govaerts et al., 2021). As such,
checklists and floras are useful resources for global-scale modeling
of plant diversity–environment relationships (Kreft & Jetz, 2007)
and for predicting plant diversity across different grain sizes (Keil
& Chase, 2019). Including species identities further allows for
the integration of species-level phylogenetic and trait informa-
tion, offering a unique opportunity to study multiple facets of
biodiversity.

Although it is widely accepted that plant diversity reflects the
complex interplay of evolutionary, geological, and ecological pro-
cesses, disentangling the drivers of global plant diversity remains
an important topic of modern macroecology (Kreft & Jetz, 2007;
Tietje et al., 2022). Several hypotheses related to geography, past
and present climate, and environmental heterogeneity of a region
have been proposed to explain plant diversity patterns (Currie
et al., 2004; Mittelbach et al., 2007; Fine, 2015; Supporting
Information Table S1). Large and heterogeneous areas, for exam-
ple, are hypothesized to support more species by offering a
greater diversity of resources and habitats, thus promoting species
coexistence (Connor & McCoy, 1979) and offering refugia dur-
ing environmental fluctuations (Stein et al., 2014). Also, areas
with warm, wet, and relatively stable climates such as humid
tropical forests should support more species owing to high specia-
tion (Rohde, 1992; Mittelbach et al., 2007; Brown, 2014) and
low extinction rates (Gillooly & Allen, 2007; Eiserhardt
et al., 2015). Geographic isolation could simultaneously promote
extinction (Brown & Kodric-Brown, 1977; Ouborg, 1993) and
speciation (Kisel & Barraclough, 2010), by making populations
less well-connected. Finally, historical processes like past plate
tectonics and climatic change have influenced diversity patterns
through altered biotic isolation and exchange or species range
shifts (Dynesius & Jansson, 2000; Svenning et al., 2015;

Couvreur et al., 2021). However, past environmental conditions
remain underrepresented in global models of plant diversity and
their legacies in modern plant distributions are still poorly under-
stood (Kissling et al., 2012; Hagen et al., 2021).

Diversity–environment relationships are often complex, non-
linear, and scale-dependent (Francis & Currie, 2003; Keil &
Chase, 2019). Many environmental predictors interact and show
high levels of collinearity, thus presenting major challenges for
conventional statistical models such as generalized linear models
(GLMs) and generalized additive models (GAMs). Machine
learning approaches represent powerful modeling tools that can
effectively deal with multidimensional and correlated data and
can reveal nonlinear relationships and interactions of predictors
without a priori specification (Olden et al., 2008; Crisci
et al., 2012). Therefore, machine learning has become a promis-
ing alternative to conventional techniques in ecology (Hengl
et al., 2017; Park et al., 2020; Sabatini et al., 2022). However, its
performance in modeling global plant diversity has yet to be
explored. In addition to relying on one particular model type,
combining predictions based on multiple modeling techniques
(i.e. ensemble predictions) might decrease prediction uncertain-
ties (Ara�ujo & New, 2007) and can thereby further improve pre-
dictions of global plant diversity patterns.

Here, we present improved models and predictions of two
key facets of vascular plant diversity, that is, species richness
and phylogenetic richness, at a global extent using advanced
statistical modeling techniques. In addition to nonspatial and
spatial GLMs and GAMs, we systematically assess the predic-
tive performance of machine learning methods, including ran-
dom forests, extreme gradient boosting (XGBoost), and neural
networks. Specifically, our aims are as follows: to compare the
performance of different modeling techniques in revealing
complex diversity–environment relationships and to improve
global geo-statistical plant diversity models; to test hypotheses
on plant diversity gradients related to geography, environmen-
tal heterogeneity, current climate, and past environmental con-
ditions, and to quantify their relative importance for plant
species and phylogenetic richness; and, to predict both facets
of plant diversity at multiple grain sizes across the globe. Our
study is based on c. 300 000 species from checklists and floras
for 830 regions across the globe (Fig. S1) collated in the Glo-
bal Inventory of Floras and Traits (Weigelt et al., 2020; GIFT;
Notes S1), and a large, dated megaphylogeny of vascular plants
(Jin & Qian, 2019).

Materials and Methods

Species distribution data and species richness

To calculate species and phylogenetic richness, we used the spe-
cies composition of native vascular plants in regional checklists
and floras from GIFT (Weigelt et al., 2020; v.2.1: http://gift.uni-
goettingen.de). In GIFT, all nonhybrid species names are stan-
dardized and validated based on taxonomic information provided
by The Plant List (v.1.1, http://www.theplantlist.org) and addi-
tional resources available via iPlant’s Taxonomic Name
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Resolution Service (TNRS; Boyle et al., 2013; Weigelt
et al., 2020). The original database contains > 3000 geographic
regions representing islands, protected areas, biogeographical
regions, and administrative units (e.g. countries and provinces).
We excluded regions with incomplete native vascular plant
checklists, incomplete data for predictor variables, or an area of
< 100 km2. Furthermore, we coped with overlapping regions in
two steps. First, for overlapping regions from one individual lit-
erature source, we kept only nonoverlapping regions preferring
smaller over larger regions (e.g. the individual states of Brazil
instead of the country). Second, for overlapping regions from
different literature sources, we retained smaller and larger
regions if smaller regions covered only parts of the larger
regions. Otherwise, we removed the larger regions. A total of
298 087 vascular plant species from 775 mainland regions and
55 islands or island groups were used to proceed with the calcu-
lation of species richness (i.e. taxonomic richness) and phyloge-
netic richness. The geographic regions in the dataset were
distributed representatively across the entire globe, covering all
major biomes (Fig. S1).

Phylogeny reconstruction and phylogenetic richness

We used a large, dated megatree of vascular plants, GBOTB_ex-
tended (Jin & Qian, 2019), as a backbone to generate a phy-
logeny for all species in the dataset. The megatree was derived
from the GBOTB tree for seed plants by Smith & Brown (2018)
and the phylogeny for pteridophytes in Zanne et al. (2014). We
excluded taxa not identified to the species level for calculating
phylogenetic richness, leading to a dataset including 295 417 spe-
cies in 466 families of vascular plants. All families and 10 128 out
of 14 962 genera (67.7%) in the dataset were included in the
megatree. We bound the remaining genera and species into their
respective families and genera using ‘Scenario 3’ in the R package
V.PHYLOMAKER (Jin & Qian, 2019). In ‘Scenario 3’, the
weighted positioning of the additional taxa depends on the length
and amount of already existing tips per taxon. 91.95% out of the
295 417 species in the dataset were from genera already present
in the backbone. It is suggested that patterns of phylogenetic
richness are similar regardless of whether the phylogeny used is
resolved at the genus or species level (Qian & Jin, 2021). To test
for the effect of adding missing genera to the phylogeny on phy-
logenetic richness, we carried out a sensitivity analysis and found
consistent patterns, indicating that our method is robust (see
Methods S1 for details).

Several indices exist for capturing different dimensions of phy-
logenetic diversity including richness, divergence, and regularity
(Tucker et al., 2017). Here, we focus on phylogenetic richness,
which represents the amount of unique phylogenetic history pre-
sent in an assemblage (Tucker et al., 2017). We chose Faith’s
PD, a common measure of phylogenetic richness, calculated as
the sum of the branch lengths of all species coexisting in a region
(Faith, 1992), which is directly comparable to species richness.
Even though highly correlated with species richness (Pearson’s
r = 0.98), we did not standardize phylogenetic richness (i.e.
assessing the deviation of phylogenetic richness from expectations

based on species richness) in our main analyses as we were not
interested in whether the phylogenetic structure of a region is
overdispersed or clustered, but rather aimed to capture both taxo-
nomic and phylogenetic aspects of plant diversity. However, we
present an analysis on the drivers of deviations in phylogenetic
richness from species richness in Table S2.

Predictor variables

We identified a set of candidate predictor variables hypothesized
to affect plant distributions and diversity and classified them into
four categories: geography, current climate, environmental
heterogeneity, and past environmental conditions. Twenty-five
predictors were considered in the original dataset (Table S1).
These have been shown or hypothesized to contribute to geo-
graphic patterns of plant diversity in previous studies (Kreft &
Jetz, 2007; Kissling et al., 2012; Stein et al., 2014; Keil &
Chase, 2019). Geographic variables were region area (km2) and
the summed proportion of landmass area in the surrounding area
of the target region within buffer distances of 100, 1000, and
10 000 km, serving as a measure of geographic isolation (Weigelt
& Kreft, 2013). Current climatic variables included 13 biologi-
cally relevant temperature and precipitation variables. These vari-
ables represent annual averages, seasonality, and limiting climatic
factors (e.g. length of the growing season), capturing the main
aspects of climate important for plant diversity (Karger
et al., 2017). Furthermore, gross primary productivity (Zhao &
Running, 2010) was included as a measure of potential plant pro-
ductivity based on available solar energy and water. Climatic vari-
ables were extracted as mean values across the input raster layers
per region. The number of soil types (Hengl et al., 2017) and ele-
vational range (Danielson & Gesch, 2011) were calculated for
each region as proxies for environmental heterogeneity within
regions.

To determine the contribution of past environmental condi-
tions to modern diversity patterns, we calculated biome area vari-
ation since the Pliocene and the Middle Miocene, temperature
anomaly since the mid-Pliocene warm period, temperature stabil-
ity since the last glacial maximum (LGM), and velocity of tem-
perature change since the LGM. Terrestrial biomes are affected
by multiple drivers containing atmospheric circulation, precipita-
tion, and temperature patterns, and thus, changes in biome distri-
butions represent major environmental changes through
geological time. To calculate biome area variation, we used
biome distribution maps at present (Olson et al., 2001), the
LGM (c. 25–15 ka; Ray & Adams, 2001), the mid-Pliocene
warm period (mid-Piacenzian, c. 3.264–3.025Ma; Dowsett
et al., 2016), and the Middle Miocene (c. 17–15Ma; Henrot
et al., 2010). The three paleo-time periods represented particu-
larly different climates compared with present-day conditions
and showed distinct biome distributions, which are hypothesized
to have left imprints on current plant diversity (Svenning
et al., 2015; Sandel et al., 2020). As biome definitions differed
across the four datasets, we regrouped biomes to match across
datasets and then calculated biome area changes (see Methods S2
for details; Table S3). We acknowledge the potential drawbacks
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of this approach due to the coarse resolution and uncertainty of
the original past biome maps. Because of the coarse resolution of
the Middle Miocene map and absent data for some geographic
regions, we used biome area variation only since the Pliocene and
excluded Miocene biome variation from further analyses.

In addition, we calculated temperature stability from two
paleo-time periods until present, that is, the LGM and the mid-
Pliocene warm period, representing cooler and warmer climates
than the current climate, respectively. Temperature stability since
the LGM was calculated using the CLIMATESTABLITY R package
(Owens & Guralnick, 2019). It takes temperature differences
between 1000 yr time slices expressed as standard deviation and
averages the results across all time slices. The stability is then cal-
culated as the inverse of the mean standard deviation rescaled to
(0,1). Temperature anomaly since the mid-Pliocene was calcu-
lated as the difference in mean annual temperature between the
mid-Pliocene warm period and present day. The velocity of tem-
perature change since the LGM was calculated as the ratio
between temporal change and contemporary spatial change in
temperature, representing the speed with which a species would
have to move its range to track analogous climatic conditions
(Sandel et al., 2011). For details on paleoclimate estimates, see
Methods S2.

An alternative way to evaluate the effects of biogeographic his-
tory on plant diversity is to account for predefined discrete
geographic regions influencing diversity via differences in diversi-
fication history and dispersal barriers. We therefore included
floristic kingdoms (Takhtajan, 1986) as an additional categorical
variable in the models and compared the performance of models
with and without floristic kingdoms to assess whether we man-
aged to model the effect of biogeographic history properly by
only including the variables that directly quantify past environ-
mental change.

Statistical models

Predictor variable selection To quantify diversity–environment
relationships, we fitted five different types of models with species
richness and phylogenetic richness as response variables: GLMs,
GAMs, random forests, XGBoost, and neural networks. To com-
pare model performance across model types, we used the same set
of predictors across models. As there was significant collinearity
between the 23 predictors in the initial dataset, we removed vari-
ables with low contribution to predictions until the variance
inflation factors (VIFs) of all remaining variables were below a
threshold of five. It has been suggested that a VIF value that
exceeds five indicates a problematic amount of collinearity (James
et al., 2013). The contribution to predictions was based on a pre-
liminary ranking of predictor variables using random forests and
a stepwise forward strategy for variable introduction (Genuer
et al., 2015). Along these lines, we selected a subset of 15 predic-
tor variables minimizing redundancy and maximizing model per-
formance to fit models (bold in Table S1; Fig. S2). The
predictors retained represented all aspects (geography, current cli-
mate, environmental heterogeneity, and past environment) that
are hypothesized to affect plant diversity patterns.

Modeling To perform GLMs and GAMs, we used a negative
binomial error distribution with a log link function for species
richness to cope with the overdispersion of the response variable
and a Gaussian error distribution with a log link function for
phylogenetic richness. For the GLMs, some predictors were log-
transformed owing to their skewed distribution (i.e. area, temper-
ature seasonality, number of wet days, precipitation seasonality,
precipitation of warmest quarter, gross primary productivity, ele-
vational range, number of soil types, and velocity in temperature
since the LGM). After log transformation, all continuous predic-
tor variables were standardized to zero mean and unit variance to
aid model fitting and make their parameter estimates compara-
ble. Although fitting GLMs with 15 predictors might seem exces-
sive, it is suggested not to exclude predictors hypothesized to be
important when collinearity is minimized and not a hindrance to
analysis (Morrissey & Ruxton, 2018). Thus, in our GLMs, we
built the full model including 15 predictors and then simplified
the model using Akaike’s information criterion (AIC). Predictors
were tested in turn, and removed if AIC values were larger in the
complex models than in the simpler ones (Phillips et al., 2019;
Table S4). To account for the interactive effects of environmental
predictors on diversity patterns, we fitted GLMs including energy–
water, energy–environmental heterogeneity, and area–environment
interactions, as suggested by previous studies (Kreft & Jetz, 2007;
Stein et al., 2014; Keil & Chase, 2019). Models including interac-
tions were simplified based on AIC values. First, all interactions
were tested, and then, any main effects (i.e. individual predictors)
that were not included in the retained interactions were tested
(Phillips et al., 2019). In GAMs, we used penalized regression
smoothers (with nine spline bases for species richness and 10 spline
bases for phylogenetic richness) for each predictor to estimate the
smooth terms. The number of spline bases was selected from val-
ues between two and 10 using random cross-validation to optimize
model performance (i.e. minimizing the root-mean-square error
(RMSE)). Additionally, we used a gamma value of 1.4 to reduce
overfitting without compromising model fit (Wood, 2006) and
also included a double penalty to variable coefficients. We used the
R packages MASS (Venables & Ripley, 2002) to fit negative bino-
mial GLMs and MGCV (Wood, 2006) to fit GAMs.

In addition, we applied machine learning techniques, that is,
random forests, XGBoost, and neural networks, to fit global
models of plant diversity. Random forests are an ensemble learn-
ing method that builds a large collection of decision trees and
outputs average predictions of the individual regression trees,
while XGBoost is an ensemble model of decision trees trained
sequentially fitting the residual errors in each iteration. Several
innovations make XGBoost highly effective, including a novel
tree learning algorithm for handling sparse data and a theoreti-
cally justified weighted quantile sketch procedure enabling han-
dling instance weights in approximate tree learning (Chen &
Guestrin, 2016). Neural networks are a machine learning method
that comprises a collection of connected units (neurons) and their
connections (edges). For these machine learning methods, species
and phylogenetic richness were log-transformed before modeling
to reduce the skewness of their distributions. A set of tuning
parameters (i.e. hyperparameters), which cannot directly be
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estimated from the data, needs to be set beforehand. These
hyperparameters determine the training strategy and related effi-
ciency of the algorithms. It is commonly suggested to tune hyper-
parameters to maximize model performance before running
models for a certain problem (Bergstra & Bengio, 2012). We
used the train function from the R package CARET to optimize the
model tuning parameters for the three machine learning models
used here (Kuhn, 2008). We used repeated random cross-
validation and selected the hyperparameters that produced the
lowest RMSE. We then refitted the final models using these opti-
mal hyperparameters. The R package RANGER was used to fit ran-
dom forests (Wright & Ziegler, 2017), XGBOOST to fit XGBoost
(Chen & Guestrin, 2016), and NEURALNET to fit neural networks
(G€unther & Fritsch, 2010). Unlike GLMs and GAMs, machine
learning can detect and model interactions of predictors without
a priori specification, and we visualized interactions in machine
learning models using partial dependence plots. For details on
tuning parameters, model fitting using machine learning tech-
niques, and visualization of interactions, see Methods S3.

Spatial terms Species distribution data and environmental pre-
dictors are often spatially autocorrelated. On the one hand, this
might lead to biased parameter estimates, which need to be
accounted for (Dormann et al., 2007). On the other hand,
including spatial information in models could increase their pre-
dictive power (Keil & Chase, 2019). Because of this, we gener-
ated spatial models using different modeling techniques. To
account for spatial autocorrelation in GLM residuals, we used
simultaneous autoregressive (SAR) models of the spatial error
type, which is recommended for use when dealing with spatially
autocorrelated species distribution data (Kissling & Carl, 2008).
We evaluated SAR models with different neighborhood struc-
tures and spatial weights (lag distances between 200 and
3000 km, weighted and binary coding). As the final SAR model,
we chose a model with weighted neighborhood structure and
800 km lag distance both for species and for phylogenetic rich-
ness, which had the minimal AIC and the best reduction in spa-
tial autocorrelation in the residuals. Species and phylogenetic
richness were log-transformed before modeling. In GAMs, we
added a two-dimensional spline on geographical coordinates,
which accounts for spatial autocorrelation in model residuals
(Dormann et al., 2007; Keil & Chase, 2019). To cope with spa-
tial autocorrelation in machine learning models, we included
cubic polynomial trend surfaces (i.e. latitude (Y), centered longi-
tude (X) as well as X2, XY, Y2, X3, X2Y, XY2, and Y3; Bjorholm
et al., 2005; Li, 2019). Overall, the spatial models successfully
removed spatial autocorrelation from model residuals (Fig. S3).

Comparison with established models To compare our models
to published global models of plant species richness, we rebuilt
these models for the dataset analyzed here. First, we fitted the best
model as in Kreft & Jetz (2007), a combined six-predictor model
using GLMs; and second, we built a GAM using the same model
structure as Keil and Chase’s smooth model (Keil &
Chase, 2019), which contained a two-dimensional spline on geo-
graphical coordinates, 15 single predictors, and interactions

between each individual predictor and area. We ran models
including the same 15 predictor variables and floristic kingdom
using random forests and XGBoost and compared them with the
models without floristic kingdom. Adding floristic kingdom
increased collinearity between predictors. However, the two tree-
based models are able to handle multicollinearity when they are
used for prediction. Random forests in the RANGER R package can
handle categorical variables automatically; however, XGBoost
works only with numeric vectors. We therefore converted all
other forms of data into numeric vectors. Here, we used one-hot
encoding (0,1) to convert the floristic kingdom into dummy vari-
ables for the XGBoost model.

Variable importance To estimate the relative importance of
each environmental predictor, we used a consistent method
across model types. We randomly reshuffled values of the predic-
tor of interest in the dataset, predicted the response variables
based on the modified dataset, and calculated the Spearman rank
correlation coefficient between those predictions and the predic-
tions using the original dataset. The relative importance of the
predictor of interest was calculated as one minus the correlation
coefficient divided by the sum of one minus the correlation coef-
ficients of all predictors (Thuiller et al., 2009). Likewise, to com-
pare the relative importance of different categories of predictor
variables (categories in Table S1), we permuted values of a subset
of predictors belonging to one category, correlated the predic-
tions of the model using the modified dataset and predictions
using the original dataset, and estimated the importance of each
category as one minus the Spearman rank correlation coefficient
divided by the sum of one minus the correlation coefficients of
all predictor categories. Relationships between diversity metrics
and predictor variables were visualized as partial dependence
plots (see Methods S3 for details).

Cross-validation

To assess the accuracy of model predictions across all different
model types, we used random 10-fold cross-validation and spatial
68-fold cross-validation following Ploton et al. (2020; for details,
see Methods S4). To quantify model predictive performance, we
summarized the cross-validation results using the RMSE and two
different pseudocoefficients of determination to quantify the
amount of variation explained by the model based on out-of-bag
samples. R2_CORR is the coefficient of determination of a linear
model of the predicted and observed values from all repetitions
of the cross-validation. R2_Accuracy is the amount of variation
explained by the model, calculated as R2_Accuracy = (1� SSE/
SST) (Hengl et al., 2017), where SSE is the sum of the squared
error between observation and prediction and SST is the total
sum of squares. The model with the lowest RMSE and highest
R2_CORR/R2_Accuracy was identified as the best predictive
model. For all models, we calculated cross-validation results for
log-transformed observed and predicted species and phylogenetic
richness, because species and phylogenetic richness were log-
transformed before modeling for machine learning models and
fitted with log link functions in GLMs and GAMs.
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Variation explained according to spatial cross-validation was
consistently lower than variation explained according to random
cross-validation, likely because the former offers biased and pes-
simistic estimates (Wadoux et al., 2021). Spatial cross-validation
excludes entire portions of regions with specific combinations of
environmental characteristics and biogeographic histories from
the training data and is therefore less representative of the globe
and its environmental spectrum, likely causing predictions out-
side the covariate space within the models. By contrast, random
cross-validation is almost unbiased when the sampling design is
systematic or random (Wadoux et al., 2021). Because the geo-
graphic regions in our dataset were distributed representatively
across the entire globe, covering all major biomes (Fig. S1), we
argue that random cross-validation offers relatively unbiased
assessments of model performance.

Predictions

We used the resulting models to predict vascular plant species
and phylogenetic richness across global grids of four different res-
olutions (i.e. 7774, 23 322, 69 967, and 209 903 km2 hexagon
size). We used the DGGRIDR R package (Barnes & Sahr, 2017) to
produce a grid of equal-area and equidistant hexagons across the
Earth’s surface clipped for global coastlines. Islands smaller than
1.5 times the grid cell size were treated as entire entities instead
of subdividing them into several partial grid cells. For each hexa-
gon, we calculated the same predictor variables as for the geo-
graphic regions used for fitting the models. We then used the
models to predict vascular plant species and phylogenetic richness
and mapped the predictions across the hexagon grid. Due to
missing values in some predictor variables, a few values had to be
interpolated for predictions (see Methods S5 for details).

Besides predictions based on individual models, we used an
ensemble prediction procedure, which averages the predictions
based on the models fitted by different techniques weighted by
model accuracy (the inverse of the model squared error) from the
random cross-validation process (Marmion et al., 2009). Because
spatial cross-validation was likely biased (Wadoux et al., 2021),
we used model accuracy from random cross-validation. In addi-
tion to the hexagon grids, we generated plant diversity maps in
raster format at a resolution of 30 arc seconds based on predic-
tions for the 7774 km2 hexagons (see Methods S5; Fig. S4). As
centers of plant diversity based on the ensemble predictions, we
defined regions with predicted richness values higher than the
90th quantile, that is, containing at least 1765 plant species and
41 866Ma of phylogenetic richness at a resolution of 7774 km2.

Uncertainty

To assess variation of the predictions across models, we calculated
the coefficient of variation of predicted values for each hexagon
grid cell. The coefficient of variation is defined as the ratio of the
standard deviation to the mean, which accounts for the differ-
ences in diversity between regions and thereby avoids artificially
high uncertainty of high-diversity regions. Additionally, we cal-
culated standard errors of predictions for GLMs, GAMs, and

random forests. For XGBoost and neural networks, we modeled
the relationship between model residuals and environmental pre-
dictors from the raw data and used this model to predict uncer-
tainty across the hexagon grids.

Results and Discussion

Performance of plant diversity models

Our results reveal a great potential of machine learning, particu-
larly decision tree methods, for modeling plant diversity–envi-
ronment relationships and for accurately predicting plant
diversity across various scales. Overall, the predictive power of
the models was high (Table 1). Machine learning models and
GAMs outperformed GLMs, and spatial models (i.e. models
containing spatial terms to account for the spatial nonindepen-
dence of regions; Dormann et al., 2007) showed an overall better
performance than nonspatial models (except GLMs for species
richness). Extreme gradient boosting, an ensemble of sequentially
trained decision trees, produced the most accurate predictions
both for species richness (70.3% variation explained based on
spatial cross-validation and 80.9% based on random cross-
validation) and for phylogenetic richness (73.7% and 83.3%,
respectively), which was consistent across spatial and nonspatial
models.

The good predictive performance of machine learning models
can be attributed to their ability to uncover complex, nonlinear
diversity–environment relationships (Figs S5, S6) and interactive
effects (Figs S7–S18). We found strong interactions between spa-
tial terms and environmental variables (Figs S7–S18). This indi-
cates regional differences in plant diversity and diversity–
environment relationships and shows that different combinations
of environmental variables are important when predicting diver-
sity across geographic regions (Keil & Chase, 2019). Moreover,
machine learning models revealed strong interactions between
energy and water availability, energy and environmental hetero-
geneity, as well as area and environmental variables (Figs S7–
S18). Also, the accuracy of GLMs increased when including the
interactions that turned out to be important in machine learning
models (70.4% vs 63.6% in species richness based on random
cross-validation; 63.5% vs 45.2% in phylogenetic richness), high-
lighting the role of complex interactive effects among biotic and
abiotic factors in shaping global plant diversity patterns (Francis
& Currie, 2003; Kreft & Jetz, 2007; Keil & Chase, 2019). By
implicitly accounting for grain dependence and complex interac-
tions among spatial and environmental variables, our machine
learning models outperform previous models of plant diversity
(Kreft & Jetz, 2007; Keil & Chase, 2019; Table S4), improving
our understanding of diversity–environment relationships and
allowing for improved predictions of plant diversity across scales.

Drivers of global patterns of vascular plant diversity

Current climatic variables emerged as the most important drivers
of plant diversity, accounting for 34.4–48.1% of the variation in
species richness and 39.7–58.2% in phylogenetic richness across
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models (Fig. 1; Table S1). High energy and water availability and
low seasonality promoted species and phylogenetic richness
(Figs S5, S6), supporting other large-scale studies that report
strong effects of the current climate on plant diversity (Francis &
Currie, 2003; Hawkins et al., 2003; Kreft & Jetz, 2007). Envi-
ronmental heterogeneity (measured here as elevational range and
number of soil types within a region) explained 21.0–40.9% of
the variation in species richness and 16.3–27.2% in phylogenetic
richness, with increasing heterogeneity leading to higher plant
diversity as expected (Stein et al., 2014). Even though species and
phylogenetic richness were highly correlated (Pearson’s r = 0.98),
some differences emerged in diversity–environment relationships.
For example, environmental heterogeneity explained less varia-
tion in phylogenetic richness than in species richness. This poten-
tially reflects a signal of in situ speciation that is promoted by
high environmental heterogeneity, creating clusters of closely
related species resulting in relatively low phylogenetic richness
compared with species richness (Forest et al., 2007). This notion
was also supported by a negative effect of the number of soil types
on the residual variation of phylogenetic richness after accounting
for species richness (Table S2).

Geographic variables (area and geographic isolation) explained
9.8–23.1% of the variation in species richness and 18.0–24.6%
in phylogenetic richness. Larger regions tend to have higher
in situ speciation rates owing to more opportunities for geo-
graphic isolation within a region and lower extinction rates due

to larger populations (Terborgh, 1973; Kisel & Barra-
clough, 2010). These effects should be most pronounced in self-
contained, isolated regions like islands, mountains, or other iso-
lated habitats and less so in regions that are similar to their sur-
roundings (Rosenzweig, 2003; Testolin et al., 2021).
Additionally, larger regions often provide a greater variety of
habitats, offering more environmental niches to be occupied by
species. Geographic isolation, measured here as the proportion of
surrounding landmass, did not explain much variation (0.0–
3.9% in species richness; 0.5–3.5% in phylogenetic richness;
Fig. S19) for both diversity facets, possibly because our dataset
consisted mainly of mainland regions (93.4% of all regions).
While geographic isolation is a main driver of insular plant diver-
sity (Weigelt & Kreft, 2013), isolation and peninsular effects
seem to play only a minor role on the mainland, where geo-
graphic isolation can be expected to be more important for com-
positional uniqueness of regions and endemism, rather than for
richness (Sandel et al., 2020).

We hypothesized that higher plant diversity would accumu-
late in regions with long-term climate stability because of low
extinction and high speciation rates (Fine, 2015; Svenning
et al., 2015). We therefore assessed the effects of temperature
stability and biome variation as proxies for past climatic change
for two paleo-time periods, that is, the LGM and the mid-
Pliocene warm period. In contrast to the expected legacy effects
of historical variables on modern plant diversity, past

Table 1 Performance of global models of vascular plant diversity based on cross-validation.

Models

Species richness Phylogenetic richness (Faith’s PD)

Random cross-
validation

Spatial cross-
validation

Random cross-
validation

Spatial cross-
validation

RMSE R2 RMSE R2 RMSE R2 RMSE R2

Nonspatial models
Full GLM 0.525 0.636 0.582 0.561 0.514 0.452 0.552 0.359
Minimum adequate GLM 0.520 0.643 0.548 0.608 0.513 0.454 0.548 0.369
GLM with interaction terms 0.471 0.704 0.502 0.664 0.412 0.635 0.453 0.559
GAM 0.437 0.742 0.507 0.658 0.359 0.723 0.430 0.604
Random forests 0.415 0.761 0.511 0.639 0.317 0.784 0.395 0.667
Extreme gradient boosting 0.389 0.791 0.487 0.673 0.295 0.813 0.384 0.685
Neural networks 0.451 0.718 0.604 0.496 0.328 0.769 0.419 0.628
Spatial models
SAR 0.537 0.600 0.548 0.584 0.416 0.629 0.426 0.611
GAM 0.413 0.769 0.499 0.667 0.340 0.751 0.416 0.633
Random forests 0.398 0.780 0.502 0.653 0.303 0.803 0.379 0.694
Extreme gradient boosting 0.371 0.809 0.463 0.703 0.279 0.833 0.351 0.737
Neural networks 0.422 0.753 0.587 0.522 0.314 0.789 0.433 0.597

Each model was evaluated for its predictive performance using both random 10-fold and spatial 68-fold cross-validation. Nonspatial models were fitted
with 15 predictors representing geography, current climate, environmental heterogeneity, and past environment conditions (Supporting Information
Table S1) except for the minimum adequate generalized linear model (GLM) and the GLM with interaction terms. Spatial models in addition contained spa-
tial terms (i.e. simultaneous autoregressive (SAR) models, generalized additive models (GAMs) including splines of geographic coordinates, and machine
learning methods including cubic polynomial trend surfaces). The minimum adequate GLM was obtained by simplifying the full GLM based on Akaike’s
information criterion (AIC). The GLM with interaction terms was fitted including all predictors of the full GLM and interactions of energy-water, energy-
heterogeneity, and area-environment-related variables and was then simplified based on AIC. Because the response variables (i.e. species and phylogenetic
richness) were log-transformed in models, the accuracy statistics are provided on a log scale. Based on all out-of-bag samples, values shown are root-
mean-square error (RMSE); the amount of variation explained by the model calculated as one minus the ratio of the sum of the squared error between
observation and prediction to the total sum of squares (R2). For more detailed cross-validation results, see Table S4.
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environmental conditions contributed only 0.8–5.5% to
explaining species richness in most of our models, but up to
23.8% in neural networks. Likewise, past environmental condi-
tions showed higher explanatory power (15.0%) for phyloge-
netic richness in neural networks than in other models (4.0–
8.5%). Models including spatial trend surfaces or discrete bio-
geographic regions (i.e. floristic kingdoms) to account for regio-
nal idiosyncrasies (after statistically controlling for current and
past environments) further improved model fits (Tables 1, S4).
This suggests that in addition to climate stability since the
LGM or mid-Pliocene warm period, biogeographic history pre-
dating the Pliocene or regional idiosyncrasies other than cli-
matic changes affected modern plant diversity. These historical
regional effects are possibly due to dispersal barriers and
idiosyncratic colonization and diversification histories (Qian &
Ricklefs, 2004; Ricklefs & He, 2016).

Improved global plant diversity maps

We produced global diversity maps for species and phylogenetic
richness of vascular plants, based on individual well-performing
models and model ensembles. Because of its outstanding predic-
tive power and ability to handle missing data, we consider
XGBoost (including geographic coordinates) the most powerful
single model for predicting plant diversity (Figs S20d, S21d). In
addition, we present ensemble predictions, which reduce the
uncertainty introduced by the choice of one particular modeling
technique and therefore improve prediction accuracy (Marmion
et al., 2009). Including region area and its interactions with other
predictor variables allowed us to predict plant diversity across

global grids of equal-area and equidistant hexagons of different
grain sizes (i.e. 7774, 23 322, 69 967, and 209 903 km2;
Figs S22, S23). All model predictions and their uncertainties are
accessible at https://gift.uni-goettingen.de/shiny/predictions/.

Our ensemble predictions (Fig. 2a,d) describe the global pat-
terns of species and phylogenetic richness with unprecedented
detail and accuracy. The maps capture how diversity varies along
environmental gradients and identify global centers of plant
diversity (Fig. 2b,e). The highest concentrations of plant species
and phylogenetic richness are predicted in Central America,
southern Mexico, Andes–Amazonia, the Caribbean, southeastern
Brazil, the Cape region of Southern Africa, Madagascar, Malay
Archipelago, Indochina, and southern China (Fig. 2b,e), which is
in line with empirical observations and previous studies (Myers
et al., 2000; Barthlott et al., 2005; Kreft & Jetz, 2007). While
patterns of phylogenetic richness closely resembled species rich-
ness (Pearson’s r = 0.97), discrepancies occurred, for example,
around the Mediterranean, in Central America, the Caucasus,
and the Himalayas (Fig. S24). Differences might result from
unequal taxonomic efforts (e.g. many closely related species
described separately in Europe) or the uneven distribution of evo-
lutionarily old or young clades across the globe (Thorne, 1999;
Endress, 2001). The former suggests that predictions of phyloge-
netic diversity provide a taxonomically less biased representation
of global plant diversity patterns.

Thanks to the high-resolution environmental data and model-
ing techniques that account for complex interactions, regions
with steep elevational gradients show finer-tuned variation in pre-
dicted effects presented here than in previous studies (Barthlott
et al., 2005; Kreft & Jetz, 2007). For example, the eastern slopes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Past environment

Heterogeneity

Climate

Geography

Relative variable importance

XGBoost

GAM
GLM

Species richness Phylogenetic richness

Neural networks

Random forests

(a) (b)

Fig. 1 Relative importance of environmental variable categories for explaining global patterns of vascular plant diversity across five nonspatial models.
(a) Species richness; (b) phylogenetic richness (Faith’s PD). Relative importance for different variable categories (scaled to sum up to one) was calculated as
one minus the Spearman rank correlation coefficient between predictions of the model using a dataset where the values of the predictors of interest were
randomly reshuffled and predictions using the original dataset. Environmental variables falling into each category are shown in Supporting Information
Table S1. For the importance of individual environmental variables, see Fig. S19. GAM, generalized additive model; GLM, generalized linear model;
XGBoost, extreme gradient boosting.
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of the Andes, southern Himalayan slopes, and the northern Kun-
lun Mountains in China show a finer differentiation from adja-
cent dryer and less diverse regions than in Kreft & Jetz (2007).
At the same time, our ensemble predictions show relatively high
values in species-poor regions like nonglaciated parts of Green-
land and the Sahara. Here, and in other regions with extreme val-
ues of plant diversity, individual models perform better than the

ensemble model (Figs S20, S21), which tends to attenuate
extreme values. Besides the important differences just outlined,
the ensemble predictions presented here were strongly correlated
with model predictions in Kreft & Jetz (2007; Pearson’s
r = 0.872; Fig. S25). Aside from the different modeling tech-
niques used and how they account for complex and interactive
diversity–environment relationships, differences with previous

Fig. 2 Global patterns of vascular plant diversity predicted across an equal-area hexagon grid of 7774 km2 resolution. Species richness (a) and phylogenetic
richness (Faith’s PD, d) are based on ensemble predictions of five different models (i.e. three spatial models using machine learning methods, a spatial gen-
eralized additive model, and a nonspatial generalized linear model with interactions) weighted by model accuracy; species richness (b) and phylogenetic
richness (e) centers are defined as regions with predicted richness values higher than the 90th quantile of the predictions (i.e. containing at least 1765 plant
species and 41 866Ma of phylogenetic richness per 7774 km2). Variation of predictions across models used for the ensemble predictions is calculated as
coefficient of variation of predicted values for species richness (c) and phylogenetic richness (f). Horizontal lines depict the equator and borders of the trop-
ics. In (a, d), log10 scale is used and all maps use Eckert IV projection. For maps of all different models and resolutions and data download, see https://gift.
uni-goettingen.de/shiny/predictions/.
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maps could derive from the accumulation of knowledge on plant
diversity worldwide and the continuously updated species distri-
bution data in GIFT used for modeling.

Regions with high species and phylogenetic richness were
found to be distributed mostly in mountainous regions
(Fig. S26). Specifically, tropical mountain ranges, including the
tropical Andes, eastern African highlands, and various Asian
mountains (e.g. in southern China and the Malay Archipelago),
are global centers of plant diversity. The high diversity of tropical
mountain ranges, as also found in previous studies (Testolin
et al., 2021), is linked to warm and wet climates and heteroge-
neous environments (Antonelli et al., 2018). Multiple biogeo-
graphical and evolutionary processes, including speciation,
dispersal, and persistence that are driven by long-term orogenic
and climatic dynamics in mountains, have led to outstanding
regional plant diversity (Antonelli et al., 2018; Rahbek
et al., 2019). Orogenic processes constantly change soil composi-
tion, nutrient levels, and local climate of mountainous regions,
thus creating novel and heterogeneous habitats where plant lin-
eages diversify and colonize from neighboring areas (Antonelli
et al., 2018). Moreover, climatic fluctuations stimulate diversifi-
cation by driving dynamic shifts in habitat connectivity within
mountains (Rahbek et al., 2019). Due to their steep environmen-
tal gradients and heterogeneous nature, mountain regions pro-
vide refugia in times of unfavorable climate (Bennett et al., 1991;
Rahbek et al., 2019).

Differences among models (measured as the coefficient of vari-
ation) were greatest in regions with extreme environments, such
as deserts and Arctic regions (Fig. 2c,f). Arctic regions also consis-
tently showed the highest prediction uncertainty across models
(Figs S27, S28). The uncertainties in regions with extreme envi-
ronments probably stem from two sources. First, extremely
species-poor regions might be less well represented in published
diversity data. Regions with extreme environments are often part
of artificially delimited regions instead of being sampled individ-
ually (e.g. Chad and Libya sampled instead of the Sahara). Those
artificially delimited regions are more environmentally heteroge-
neous, which attenuates the extreme values of environmental fac-
tors as well as plant diversity. Machine learning models are
known to not extrapolate well under such conditions (Elith
et al., 2010). Second, even for regions with relatively homoge-
neous environments, checklists and floras do not only include
information on predominant but also azonal vegetation, making
them richer than expected from their prevailing conditions and
observed at a more local scale (compared to alpha diversity pre-
dictions in Sabatini et al., 2022).

Conclusions

We present the most accurate and comprehensive predictive glo-
bal maps of regional vascular plant species and phylogenetic rich-
ness available to date. They are based on significantly improved
global models using comprehensive global inventory-based plant
distribution data, high-resolution past and current environmental
information, and advanced machine learning models. Our find-
ings illustrate that machine learning methods applied to large

distribution and environmental datasets help to disentangle
underlying complex and interacting associations between the
environment and plant diversity. Machine learning methods
therefore help to improve both fundamental understanding and
quantitative knowledge in biogeography and macroecology. The
updated global diversity maps of vascular plant diversity at multi-
ple grain sizes (available at https://gift.uni-goettingen.de/shiny/
predictions/) provide a solid foundation for large-scale biodiver-
sity monitoring and research on the origin of plant diversity and
subsequently support future global biodiversity assessments and
environmental policies.

Acknowledgements

LC was supported by China Scholarship Council (CSC) Grant
(no. 201808330443). PP and JP were supported by EXPRO
grant no. 19-28807X (Czech Science Foundation) and long-
term research development project RVO 67985939 (Czech
Academy of Sciences). MW acknowledges DFG funding via
iDiv (DFG FZT 118, 202548816). FE appreciates funding by
the Austrian Science Foundation FWF (Global Plant Invasions-
project, grant I 5825-B). We thank Alexandr Ebel and Christian
K€onig for contributing data and discussions about the manu-
script. Open Access funding enabled and organized by Projekt
DEAL.

Author contributions

LC, HK and PW conceived the idea and developed the concep-
tual framework of the study. LC, HK, AT, PD, JS, FE, MvK, JP,
PP, AS, MW, JFB, NF, I, DNK, JK, AK, MN, DN, AN, AP,
PBP, PS, JJW and PW were involved in collecting the data. LC
performed the statistical analyses. LC wrote the first draft of the
manuscript with input from HK, AT and PW. LC, HK, AT,
PD, JS, FE, MvK, JP, PP, AS, MW, JFB, NF, I, DNK, JK, AK,
MN, DN, AN, AP, PBP, PS, JJW and PW contributed to the
writing and interpretation of the results.

ORCID

Julie F. Barcelona https://orcid.org/0000-0001-5087-8637
Lirong Cai https://orcid.org/0000-0001-9432-2024
Pierre Denelle https://orcid.org/0000-0002-4729-3774
Franz Essl https://orcid.org/0000-0001-8253-2112
Nicol Fuentes https://orcid.org/0000-0002-3773-9832
Inderjit https://orcid.org/0000-0002-4142-1392
Dirk Nikolaus Karger https://orcid.org/0000-0001-7770-
6229
Mark van Kleunen https://orcid.org/0000-0002-2861-3701
Holger Kreft https://orcid.org/0000-0003-4471-8236
Daniel Nickrent https://orcid.org/0000-0001-8519-0517
Arkadiusz Nowak https://orcid.org/0000-0001-8638-0208
Annette Patzelt https://orcid.org/0000-0003-3510-4582
Pieter B. Pelser https://orcid.org/0000-0002-6990-1419
Jan Pergl https://orcid.org/0000-0002-0045-1974
Petr Py�sek https://orcid.org/0000-0001-8500-442X

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

New Phytologist (2023) 237: 1432–1445
www.newphytologist.com

New
Phytologist Research 1441

 14698137, 2023, 4, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18533 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [31/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://gift.uni-goettingen.de/shiny/predictions/
https://gift.uni-goettingen.de/shiny/predictions/
https://orcid.org/0000-0001-5087-8637
https://orcid.org/0000-0001-5087-8637
https://orcid.org/0000-0001-5087-8637
https://orcid.org/0000-0001-9432-2024
https://orcid.org/0000-0001-9432-2024
https://orcid.org/0000-0001-9432-2024
https://orcid.org/0000-0002-4729-3774
https://orcid.org/0000-0002-4729-3774
https://orcid.org/0000-0002-4729-3774
https://orcid.org/0000-0001-8253-2112
https://orcid.org/0000-0001-8253-2112
https://orcid.org/0000-0001-8253-2112
https://orcid.org/0000-0002-3773-9832
https://orcid.org/0000-0002-3773-9832
https://orcid.org/0000-0002-3773-9832
https://orcid.org/0000-0002-4142-1392
https://orcid.org/0000-0002-4142-1392
https://orcid.org/0000-0002-4142-1392
https://orcid.org/0000-0001-7770-6229
https://orcid.org/0000-0001-7770-6229
https://orcid.org/0000-0001-7770-6229
https://orcid.org/0000-0002-2861-3701
https://orcid.org/0000-0002-2861-3701
https://orcid.org/0000-0002-2861-3701
https://orcid.org/0000-0003-4471-8236
https://orcid.org/0000-0003-4471-8236
https://orcid.org/0000-0003-4471-8236
https://orcid.org/0000-0001-8519-0517
https://orcid.org/0000-0001-8519-0517
https://orcid.org/0000-0001-8519-0517
https://orcid.org/0000-0001-8638-0208
https://orcid.org/0000-0001-8638-0208
https://orcid.org/0000-0001-8638-0208
https://orcid.org/0000-0003-3510-4582
https://orcid.org/0000-0003-3510-4582
https://orcid.org/0000-0003-3510-4582
https://orcid.org/0000-0002-6990-1419
https://orcid.org/0000-0002-6990-1419
https://orcid.org/0000-0002-6990-1419
https://orcid.org/0000-0002-0045-1974
https://orcid.org/0000-0002-0045-1974
https://orcid.org/0000-0002-0045-1974
https://orcid.org/0000-0001-8500-442X
https://orcid.org/0000-0001-8500-442X
https://orcid.org/0000-0001-8500-442X


Julian Schrader https://orcid.org/0000-0002-8392-211X
Paramjit Singh https://orcid.org/0000-0001-7909-6284
Amanda Taylor https://orcid.org/0000-0002-0420-2203
Patrick Weigelt https://orcid.org/0000-0002-2485-3708
Jan J. Wieringa https://orcid.org/0000-0003-0566-372X
Marten Winter https://orcid.org/0000-0002-9593-7300

Data availability

Predictions of vascular plant species and phylogenetic richness
and model uncertainties based on the various statistical models
applied here are available at https://gift.uni-goettingen.de/shiny/
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as the data and R codes needed to run the analyses are available at
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Fig. S1 Observed species and phylogenetic richness of
vascular plants for 830 geographic regions used to train the
models.

Fig. S2 Correlations among all predictors and their density distri-
butions.

Fig. S3 Spatial correlograms of raw diversity data, and residuals
from nonspatial and spatial models, respectively, fitted for species
richness and phylogenetic richness.

Fig. S4 Comparison between ensemble predictions of vascular
plant diversity across an equal-area grid of 7774 km2 hexagons
and a raster layer of resampled ensemble predictions at 30-arc-
second resolution.

Fig. S5 Estimated effects of predictor variables on species rich-
ness of vascular plants across five nonspatial models (partial
dependence plots).

Fig. S6 Estimated effects of predictor variables on phylogenetic
richness of vascular plants across five nonspatial models (partial
dependence plots).

Fig. S7 Interaction strength of each predictor variable for
explaining species richness (overall) in the spatial random forest
model and two-way interaction strengths between the nine top-
ranked covariates and all other covariates.

Fig. S8 Estimated effects of the nine two-way interactions (two-
predictor partial dependence plots) in the spatial random forest
model for species richness.

Fig. S9 Interaction strength of each predictor variable for
explaining species richness (overall) in the spatial extreme

gradient boosting model and two-way interaction strengths
between the nine top-ranked covariates and all other covariates.

Fig. S10 Estimated effects of the nine two-way interactions (two-
predictor partial dependence plots) in the spatial extreme gradi-
ent boosting model for species richness.

Fig. S11 Interaction strength of each predictor variable for
explaining species richness (overall) in the spatial neural network
model and two-way interaction strengths between the nine top-
ranked covariates and all other covariates.

Fig. S12 Estimated effects of the nine two-way interactions (two-
predictor partial dependence plots) in the spatial neural network
model for species richness.

Fig. S13 Interaction strength of each predictor variable for
explaining phylogenetic richness (overall) in the spatial random
forest model and two-way interaction strengths between the nine
top-ranked covariates and all other covariates.

Fig. S14 Estimated effects of the nine two-way interactions (two-
predictor partial dependence plots) in the spatial random forest
model for phylogenetic richness.

Fig. S15 Interaction strength of each predictor variable for
explaining phylogenetic richness (overall) in the spatial extreme
gradient boosting model and two-way interaction strengths
between the nine top-ranked covariates and all other covariates.

Fig. S16 Estimated effects of the nine two-way interactions (two-
predictor partial dependence plots) in the spatial extreme gradi-
ent boosting model for phylogenetic richness.

Fig. S17 Interaction strength of each predictor variable for
explaining phylogenetic richness (overall) in the spatial neural
network model and two-way interaction strengths between the
nine top-ranked covariates and all other covariates.

Fig. S18 Estimated effects of the nine two-way interactions (two-
predictor partial dependence plots) in the spatial neural network
model for phylogenetic richness.

Fig. S19 Relative importance of environmental variables explain-
ing the global pattern of vascular plant diversity across five non-
spatial models.

Fig. S20 Species richness of vascular plants predicted across an
equal-area grid of 7774 km2 hexagons based on different models
(i.e. spatial models using machine learning methods and general-
ized additive models and a nonspatial generalized linear model
with interactions).

Fig. S21 Phylogenetic richness of vascular plants predicted across
an equal-area grid of 7774 km2 hexagons based on different mod-
els (i.e. spatial models using machine learning methods and
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generalized additive models and a nonspatial generalized linear
model with interactions).

Fig. S22 Species richness of vascular plants based on ensemble
predictions across different grid sizes (i.e. spatial models using
machine learning methods and generalized additive models and a
nonspatial generalized linear model with interactions).

Fig. S23 Phylogenetic richness of vascular plants based on
ensemble predictions across different grid sizes (i.e. spatial models
using machine learning methods and generalized additive models
and a nonspatial generalized linear model with interactions).

Fig. S24 Residuals (deviation) from the linear regression between
species richness and phylogenetic richness based on ensemble pre-
dictions (phylogenetic richness = 22.19 species richness,
R2 = 0.947, P < 0.0001).

Fig. S25 Comparison between vascular plant species richness
based on ensemble predictions produced in the scope of this
paper (SR.Ensemble) and species richness extracted from Kreft
and Jetz’s predictions (Kreft & Jetz, 2007) (SR.Kreft) (a,
SR.Kreft = 1.01 9 SR.Ensemble, R2 = 0.76, P < 0.0001).

Fig. S26 Vascular plant diversity based on ensemble predictions
across an equal-area grid of 7774 km2 hexagons and mountain
regions.

Fig. S27 Uncertainty in predicted species richness from the
five models used for the ensemble predictions (i.e. spatial
models using machine learning methods and generalized
additive models and a nonspatial generalized linear model with
interactions).

Fig. S28 Uncertainty in predicted phylogenetic richness from the
five models used for the ensemble predictions (i.e. spatial models

using machine learning methods and generalized additive models
and a nonspatial generalized linear model with interactions).

Methods S1 Sensitivity analyses of phylogenetic richness.

Methods S2 Past environmental variables.

Methods S3 Statistical models.

Methods S4 Cross-validation.

Methods S5 Handling of missing values in predictor variables
for predicting and calculating predictions in raster format.

Notes S1 References of checklists and floras from the Global
Inventory of Floras and Traits (GIFT) used to compile the regio-
nal species composition data.

Table S1 List of environmental predictor variables hypothesized
to affect plant diversity patterns.

Table S2 Coefficients of a linear model between the residuals
(deviation) from the linear regression between species richness
and phylogenetic richness, and the 15 predictor variables identi-
fied to best explain plant diversity.

Table S3 Homogenization of biome classifications for current
maps, last glacial maximum, Pliocene (mid-Piacenzian), and
Middle Miocene.

Table S4Model assessment results.
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