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Abstract
The area covered by boreal forests accounts for∼16%of the global and 22%of theNorthern
Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not
only have strong effects on species composition and diversity at regional to larger scales, but also on
the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to
temperature has been reported from some locations at the higher northern latitudes, a systematic
dendroecological network assessment is still missing formost of the boreal zone. Here, we analyze
the geographical patterns of changes in summer temperature and precipitation across northern
Eurasia>60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus,
Larix and Picea ring width chronologies in the same area and period. In contrast to widespread
summer warming, fluctuations in precipitation and tree growth are spatiallymore diverse and
overall less distinct. Although the influence of summer temperature on ring formation is increasing
with latitude and distinctmoisture effects are restricted to a few southern locations, growth
sensitivity to June–July temperature variability is only significant at 16.6% of all sites (p�0.01). By
revealing complex climate constraints on the productivity of Eurasia’s northern forests, our
results question the a priori suitability of boreal tree-ring width chronologies for reconstructing
summer temperatures. This study further emphasizes regional climate differences and their role on
the dynamics of boreal ecosystems, and also underlines the importance of free data access to
facilitate the compilation and evaluation ofmassively replicated and updated dendroecological
networks.
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1. Introduction

The circumpolar boreal forest primarily consists of a
limited number of conifer species that are well adapted
to an overall cool climate and relatively short growing
seasons (Bonan and Shugart 1989). The huge biome
covers approximately 16% of the global landmass with
11.6×106 km2 in sub-Arctic environments (Bonan
et al 1992, ACIA 2005). Boreal forests account for
nearly 22% of the Northern Hemisphere landmass
and 50% of the area>60 °N (Potapov et al 2008). The
largest part of this biogeographic unit is located in
Eurasia. Together with the Arctic tundra, the boreal
zone stores an estimated ∼272 Pg of carbon (Pan
et al 2013), which accumulates to around 14% of the
Earth’s terrestrial vegetation biomass (Bonan 2008,
Malhi et al 2008). The boreal carbon pool is structured
into 20%biomass and 60% soil (Pan et al 2011).

Recent warming across most of the high-northern
latitudes has been reported to already shift the position
of treeline ecotones (D’Arrigo et al 1987, Payette
et al 2001, Esper and Schweingruber 2004, Holtmeier
and Broll 2007), to affect species migration rates (Hick-
ling et al 2006), and to prolong the length of growing
seasons (Soja et al 2007, Zhang et al 2008). Sparse con-
fidence regarding the causes and consequences of the
observed environmental changes (Price et al 2013),
however, bias any estimate of regional to large-scale car-
bon cycle dynamics (Bonan 2008, McGuire et al 2009,
Pan et al 2011, 2013, Kurz et al 2013). Additional uncer-
tainty emerges from the occurrence of irregular wild
fires and massive insect outbreaks (Kurz et al 2008).
Moreover, empirical evidence suggests both recent
increases (Girardin et al 2011) and decreases in the
radial growth of boreal forest trees (Wilmking
et al 2004, 2005, D’Arrigo et al 2008, Girardin
et al 2014), with further complexity originating from
ecosystemmodels (Pan et al2011, 2013).

Tree growth within the boreal forest, which is
often characterized by low temperatures from autumn
to spring, is hence mainly constrained by rather short
vegetation periods between early-June and late-
August (Shiyatov 1986, Seo et al 2011, Bryukhanova
et al 2013, Jyske et al 2014). During the limited number
of warm summer days, small variations in temperature
means and/or extremes can already trigger substantial
fluctuations in tree-ring width (TRW) (Esper
et al 2010, Duchesne et al 2012), and more general in
the production rate of entire forest ecosystems (Babst
et al 2013, Kauppi et al 2014). Growing season lengths
within Eurasia’s boreal forest are known to vary by
latitude and continentality from relatively long inter-
vals including influences of May and September in the
southwest (Linderholm 2001, Zhang et al 2016), such
as Scandinavia, to extremely short vegetation periods
starting not before July and often already ending in
August in the northern coastal areas of eastern Siberia
(Sidorova and Naurzbaev 2002, Piao et al 2007), for
instance. Temperature limited forest growth generally

enables sensitive TRW chronologies to be developed
(i.e. time-series with a high degree of inter-annual var-
iation), which have frequently been utilized for recon-
structing summer temperatures at regional (Briffa
et al 1995, Luckman et al 1997, Naurzbaev and Vaga-
nov 2000, Kirchhefer 2001, Naurzbaev et al 2002,
Briffa et al 2008, Esper et al 2012) and larger scales
(D’Arrigo et al 2006, Mann et al 2009, Christiansen
and Ljungqvist 2012, PAGES2k Consortium 2013
Wilson et al 2016). Composite TRW chronologies of
living and relict material from Fennoscandia (Linder-
holm et al 2010), the Polar Urals (Shiyatov 1995, Briffa
et al 2013), eastern Taimyr (Naurzbaev et al 2002), the
Yamal Peninsula (Hantemirov and Shiyatov 2002,
Briffa et al 2013), and northeastern Yakutia (Hughes
et al 1999, Sidorova andNaurzbaev 2002), so far repre-
sent an important backbone for high-resolution
paleoclimatology in Eurasia and during the common
era (Briffa et al 2013, PAGES2k Consortium 2013,
Büntgen et al 2014).

More dendroecological-oriented studies, how-
ever, indicate some sort of reduced summer temper-
ature sensitivity at a few boreal forest sites (Jacoby and
D’Arrigo 1995, Briffa et al 1998, Barber et al 2000,
Lloyd and Fastie 2002, Wilmking et al 2005, Zhang
et al 2008, Stine and Huybers 2014). This alleged
phenomenon has been described as the inability of
formerly temperature sensitive TRW and maximum
latewood density chronologies to track instrumental-
based warming since around the second half of the
20th century (Briffa et al 1998, 2004). In addition to
this low-frequency trend offset between warmer mea-
sured and cooler reconstructed temperatures
(Büntgen et al 2008), the potential failure of TRW fol-
lowing high-frequency climate signals has been repor-
ted for some individual boreal and alpine sites.
Summarized as the ‘divergence problem’ (DP; for a
discussion see D’Arrigo et al 2008), these two observa-
tions would not only have substantial implications
on our ability of estimating changes in biomass
production and carbon sequestration (Büntgen
et al 2008, 2009, Esper and Frank 2009, Esper
et al 2010), but would also question the reliability of
tree ring-based temperature reconstructions, as well as
our capability tomodel the productivity and function-
ing of forest ecosystems in a warmer world
(Bonan 2008). Quantifying regional differences in the
response of boreal forests to climatic changes and the
subsequent effects on large-scale dynamics of the car-
bon cycle thus remains a pending, interdisciplinary
scientific challenge (Frank et al 2010).

The ambiguity in determining spatial and tem-
poral explicit patterns of boreal tree growth (Hell-
mann et al 2016) is occasionally exacerbated by
inadequate observational programs and the geo-
graphical bias of most studies towards climate sensi-
tive forest margins (Lloyd and Bunn 2007, Beck
et al 2011). Currently available field assessments and
remote sensing observations are often limited in the
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discrimination of natural ecosystem fluctuations from
anthropogenically forced environmental changes
(Bonan 2008). Network approaches of temperature
and precipitation variability, as well as the analysis of
site and species-specific growth trends and responses
are generally restricted in space and time. An excep-
tion though describes the recent work by St. George
(2014) and St. George and Ault (2014), in which the
seasonal climate sensitivity of TRW chronologies
from around the Northern Hemisphere has been eval-
uated. Superimposed on possible caveats that may
arise from the uniform generalization of large-scale
network approaches (St. George 2014, Hellmann
et al 2016) are potential sources of meteorological sta-
tion error (Frank et al 2007, Esper et al 2010), which
can range from the initial measurement-level to the
later girding process (Cowtan et al 2015, Jones 2016).
Non-systematic error that is particularly difficult to
detect (Frank et al 2007), exists in many of the
overall short and often even incomplete station
records from Eurasia’s northern latitudes (Esper
et al 2010). Associated homogeneity issues of instru-
mentalmeasurements have been further recognized to
complicate any straightforward proxy-target calibra-
tion exercise and subsequent climate reconstruction
development (Frank et al 2007, Büntgen et al 2015), for
instance.

A poor understanding of the combined abiotic and
mechanistic drivers, and thereby dynamic behavior, of
the boreal ecosystem emphasizes the urgent need for a
thorough collection and systematic assessment of
highly resolved and spatially extensive tree-ring proxy
and meteorological target data that continuously
cover at least several decades (Esper et al 2010, St.
George 2014,Hellmann et al 2016).

In seeking to overcome the above mentioned lim-
itations, we compiled the so far best-replicated den-
droecological network of Eurasia’s boreal forest>60 °
N. Together with a careful assessment of regional
temperature and precipitation variability, we analyzed
growth trends and climate responses of 445 TRW site
chronologies over the last six decades. The resulting
patterns allowed us to see if spatiotemporal differences
in climate variability have affected the climate sensitiv-
ity of pine (Pinus sp.), larch (Larix sp.) and spruce
(Picea sp.) on inter-annual to decadal time-scales dur-
ing the second half of the 20th century. Critical discus-
sion has been devoted to challenge the a priori
assumption that boreal TRWchronologies are suitable
for reconstructing summer temperatures. Some
emphasis was then given to novel directions in tree-
ring research that consider the role of regional differ-
ences in the climate system itself, and ultimately aim at
the development of large-scale networks to overcome
logistical restrictions in the distribution of sampling
sites, and thus help to better fulfill ecological and cli-
matological criteria.

2.Material andmethods

Our newly developed Eurasian TRWnetwork covers the
boreal forest between 0–180 °E and>60 °N.This unique
compilation consists of 285 annually resolved and
absolutely dated TRW measurement files from the
International Tree Ring Data Bank (ITRDB; http://ncdc.
noaa.gov/data-access/paleoclimatology-data/datasets/
tree-ring) (Grissino-Mayer and Fritts 1997), as well as a
total of 160 newly developed and mostly unpublished
TRWchronologies fromRussia (figure 1).

The entire TRW network contains 186 pine (Pinus
sp.; 126/60, ITRDB/non-ITRDB), 187 larch (Larix
sp.; 112/75) and 72 spruce (Picea sp.; 47/25) sites. This
dataset was further separated into a southern belt from
60–65 °N (labeled as S) and a northern belt from
66–73 °N (labeled as N). A simple geographical group-
ing was applied to best represent nine west-east grid
cells within two latitudinal bends, which resulted in 18
spatial subsets: 0–20 °E (labeled as S0/N0), 21–40 °E
(S1/N1), 41–60 °E (S2/N2), 61–80 °E (S3/N3), 81–
100 °E (S4/N4), 101–120 °E (S5/N5), 121–140 °E
(S6/N6), 141–160 °E (S7/N7), and 161–180 °E (S8/
N8). For an overview on the distribution of sites per
species and grid see table 1.

The individual TRW sites are relatively well dis-
tributed across northern Eurasia (figure 1). The den-
droecological/-climatological sampling sites are not
limited to higher elevations—a feature that especially
accounts for many temperate and warmer areas, such
as the Mediterranean basin (figure S1, Galván
et al 2014), for instance. However, the distribution of
sampling sites often reflects the infrastructural back-
ground of a region. Remote regions tend to contain
only very few data, particularly around the Vilyuy
River in Yakutia (S5 with two sites), as well as large
parts of continental southeastern Siberia (S8 with two
sites). Regions that are characterized by better infra-
structural settings, such as Scandinavia (S1 and N1
with 64 and 42 sites, respectively), and areas nearby
Russian university cities like Krasnoyarsk (S4 with 38
sites) and Yakutsk (S6 with 60 sites), exhibit dense net-
works of regional tree-ring research. Due to the unpre-
cedented Schweingruber sampling campaign in the
1990s, the northern timberline is well represented by
numerous TRW sites (Schweingruber and Briffa 1996,
Esper and Schweingruber 2004).

Larix presents the shortest (1976–1998 AD) but
also the longest (−764 to 2005 AD) TRW site chronol-
ogy. Nearly 60% of all chronologies from the three
species have recent end dates before 1996 (i.e. those
from the ITRDB). Originating fromFennoscandia, the
Russian Polar Urals, eastern Taimyr, Yamal and
northeastern Yakutia, only ten chronologies con-
tinuously cover the last millennium. The average
growth rate (AGR) per geographical grid in the north-
ern belt ranges from 0.33–1.34 mm and is on average
0.75 mm for larch, 1.05 mm for pine and 0.80 mm for
spruce (table S1). With a minimum AGR of 0.50 mm
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and a maximum of 1.85 mm, the AGR is generally
higher in the southern belt with 1.03 mm for larch,
1.07 mm for pine and 1.12 mm for spruce. Averages
for the three species ofmaximumandminimummean
segment lengths (MSLs) for each grid are similar
between the northern (132 and 48 years) and southern
(141 and 49 years) grid cells. MSL per species averaged
over all northern and southern grids, respectively,
reveals differences between north and south. Larch,
pine and spruce reveal a MSL of 106, 100 and 84 years
in the north compared to a MSL of 93, 88 and 80 years
in the south (table S2).

Age trends in the raw TRW measurements were
removed with the ARSTAN software (ARSTAN_41d
for Windows) (Cook and Krusic 2007) by applying
negative exponential functions (Fritts 1976) after
power-transformation (PT; Cook and Peters 1997),
where residuals were used to compute dimensionless
TRW indices. Variance changes in the resulting index
chronologies from the ARSTAN standard routine
were further stabilized (VS; Osborn et al 1997), and
truncated at a minimum replication of five series
before any further calculations were performed with
the programR (RCore Team2014).

A recent version of ArcGIS (10.1 SP1 for Desktop
by Esri) was used for all mapping purposes. Monthly

resolved temperature means and precipitation totals
were extracted from the gridded 0.5°×0.5° CRU
dataset (CRU TS3.22; Harris and Jones 2014) over the
period 1901–2013. A total of 18 regional climate sub-
sets was developed to best match the geographical dis-
tribution of the corresponding TRW divisions (S0-S8
and N0-N8). The Mann-Kendall test adapted to auto-
correlation (Hamed and Rao 1998) was applied to
assess and quantify trends and their significance levels
in the climatological target (temperature and pre-
cipitation) and dendrochronological proxy (TRW)
time-series back to 1951 AD. Trends in the TRW
chronologies from 1951 to their individual recent end
years were calculated per grid cell and conifer species
(see also supplementary material for details), as well as
for themean of all chronologies per grid. Temperature
means and precipitation totals from June–July (JJ), as
derived from the nearest meteorological grid, were
used for growth-climate response analyses over the
1951–1990 common period. The interval from
1951–1990 was chosen as a compromise between a
reliable time span (40 years) and the intention to
include as many TRW site chronologies as possible.
Correlation coefficients were calculated for different
monthly and seasonal means, i.e. June, July, JJ, as well
as June–August (JJA). Only small variations between

Figure 1. (A)Distribution of 445 TRWchronologies across the Eurasian boreal forest zone from>60 °Nand 0–180 °E.Data are
separated between northern (N, 66–73 °N) and southern (S, 60–65 °N) regions and fromwest to east from0–20 °E (0), 21–40 °E (1),
41–60 °E (2), 61–80 °E (3), 81–100 °E (4), 101–120 °E (5), 121–140 °E (6), 141–160 °E (7), 161–180 °E (8). Symbols indicate the three
main boreal forest species spruce (Picea sp.), pine (Pinus sp.), and larch (Larix sp.) and colors refer to the source (dark green: ITRDB,
light green: not ITRDB). The red line represents the northern timberline and shows that the network is spatially well covering the
boreal forest zone. (B) Length of all site chronologies separated by the grid cells N0-N8 and S0-S8 and colors referring to the source as
in (A).
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the different temperature means, together with the
overall highest temperature associations, as well as the
methodological restriction of a uniform network ana-
lysis in general, i.e. the impracticality of showing indi-
vidual best results for each site (St. George 2014),
justified utilization of the JJ meteorological target sea-
son for most of our investigations (see supplementary
material for other seasonal windows).

The significance of each Pearson’s correlation coef-
ficient was determined after reducing the degrees of
freedom according to the temporal autocorrelation
characteristics within both, the proxy and target data
(Fritts 1976). A simple classification scheme of values
<0.3, 0.3–0.39 and�0.4 was additionally considered to
illustrate different levels of the obtained growth-climate
relationships. Results were visualized on an inter-
polated, high-resolution background map showing JJ

temperature means and precipitation totals of
1951–2000 (Hijmans et al 2005). Site-specific correla-
tion coefficients between summer temperature means
and precipitation totals were further plotted against
latitude. Linear trend lines were computed to visualize
possible dependencies.

3. Results

3.1. Climate patterns
Temperature and precipitation across the boreal forest
zone vary depending on latitude, continentality as well
as the location and orientation of mountain ridges
(table 1, figures 3 and S3). Cool summer temperatures
characterized much of the coastal areas within the two
most western grid cells (S0 and N0). Mean JJ
temperatures in the Fennoscandian part of the

Table 1. For each grid, N0-N8 and S0-S8, the number of sites and their trend behavior is shown for all species and separated for pine, larch
and spruce. Trends and temperature/precipitation average values were calculated for each region, i.e. grid. Additionally,mean,maximum
andminimumcorrelation coefficients of the tree-ring sites with temperature and precipitation are presented per region. Significant trend
values are indicated by bold numbers. TRW: tree-ring width, JJ: June–July, T: temperature, P: precipitation,Max:maximum,Min:
minimum.

N0 N1 N2 N3 N4 N5 N6 N7 N8

Sites 26 42 6 20 25 22 15 18 7

Pinus sites 25 36 2 0 0 0 1 0 0

Larix sites 0 0 1 14 18 19 14 18 7

Picea sites 1 6 3 6 7 3 0 0 0

TRWtrend 0.03 −0.01 −0.38 0.20 −0.10 −0.30 0.16 −0.27 −0.17

TRWtrend Pinus 0.03 −0.07 −0.49 — — — 0.13 — —

TRWtrend Larix — — −0.10 0.23 −0.02 −0.30 0.15 −0.27 −0.17

TRWtrend Picea 0.46 0.03 −0.25 0.10 −0.19 −0.33 — — —

T trend 0.20 0.16 0.15 0.21 0.17 0.19 0.25 0.20 0.35

P trend 0.01 0.17 −0.03 −0.19 −0.14 −0.06 0.08 −0.01 −0.12

mean JJ T (°C) 9.72 11.65 11.30 9.34 9.13 11.29 11.38 9.94 6.72

mean JJ P (mm) 78.60 58.29 48.49 44.50 51.14 44.24 44.70 35.62 33.62

MeanTRW-JJT correlation 0.30 0.32 0.28 0.45 0.49 0.41 0.22 0.51 0.18

MaxTRW-JJT correlation 0.59 0.66 0.49 0.79 0.78 0.54 0.53 0.77 0.31

MinTRW-JJT correlation −0.18 0.01 0.07 −0.17 0.20 0.21 −0.04 0.07 0.11

MeanTRW-JJP correlation −0.11 −0.07 0.13 0.00 −0.10 −0.11 0.14 −0.05 −0.28

MaxTRW-JJP correlation 0.26 0.24 0.29 0.32 0.25 0.17 0.43 0.24 −0.15

MinTRW-JJP correlation −0.36 −0.49 −0.07 −0.43 −0.44 −0.36 −0.09 −0.23 −0.40

S0 S1 S2 S3 S4 S5 S6 S7 S8

Sites 23 64 33 22 39 3 60 18 2

Pinus sites 16 58 11 11 9 1 13 3 0

Larix sites 0 1 11 5 18 0 44 15 2

Picea sites 7 5 11 6 12 2 3 0 0

TRWtrend −0.15 0.08 −0.13 0.16 0.04 −0.32 −0.33 −0.45 0.28

TRWtrend Pinus −0.39 0.10 −0.10 0.13 −0.06 −0.11 −0.30 −0.48 —

TRWtrend Larix — −0.13 −0.16 0.28 0.14 — −0.30 −0.19 0.28

TRWtrend Picea −0.03 −0.19 −0.06 −0.49 0.05 −0.35 0.25 — —

T trend 0.23 0.23 0.17 0.17 0.18 0.28 0.37 0.37 0.30

P trend 0.02 0.10 −0.01 −0.15 −0.10 0.10 0.01 −0.04 −0.03

mean JJ T (°C) 11.84 14.93 14.86 14.50 14.18 14.47 13.86 8.10 8.80

mean JJ P (mm) 77.13 62.49 68.15 66.44 62.73 53.33 52.38 55.88 41.39

MeanTRW-JJT correlation 0.05 0.09 0.28 0.17 0.25 0.02 0.03 0.19 0.45

MaxTRW-JJT correlation 0.60 0.41 0.77 0.48 0.60 0.08 0.48 0.50 0.54

MinTRW-JJT correlation −0.50 −0.23 −0.13 −0.21 −0.19 0.08 −0.22 −0.21 0.36

MeanTRW-JJP correlation −0.01 0.16 0.00 0.00 0.08 −0.03 0.10 −0.05 −0.19

MaxTRW-JJP correlation 0.35 0.60 0.30 0.28 0.35 0.00 0.47 0.17 −0.08

MinTRW-JJP correlation −0.34 −0.18 −0.47 −0.29 −0.28 −0.06 −0.22 −0.34 −0.30
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network were 11.8 °C and 9.7 °C (1951–2013), respec-
tively. JJ temperatures north of 65 °N declined east-
wards to central Siberia from N1 up to N4 (from
11.6 °C to 9.1 °C). Even further east, mean JJ tempera-
tures from 1951–2013 were generally higher (11.3 °C
and 11.4 °C for N5 and N6, respectively), but with
9.9 °C and only 6.7 °C again lower in N7 and N8. This
drop was even more pronounced in the south, where
mean JJ temperatures did not varymuch from S1 to S6
(14.9 °C in S1 to 13.9 °C in S6), but declined to 8.1 °C
and 8.8 °C in S7 and S8, respectively. Average
temperatures for each grid were constantly declining
from the south to the north from 20 °E to ∼110 °E
(figure 3). From 110 °E to ∼135 °E, the continental
climate caused overall warm summer temperatures as
far north as 66 °N (12.5 °C–15 °C), whereas further
east colder JJ temperatures (5 °C–10 °C) were prevail-
ing that went up to 15 °C in the central Kolyma region
of eastern Siberia (figure 3). Precipitation was declin-
ing eastwards in the north from 78.6 mm (N0) to
33.6 mm (N8) and in the south from 77.1 mm (S0) to
41.4 mm (S8).

Trends in JJ temperature means over 1951–2013
AD were all positive and in S0, S1, S5, S6, S7 and S8
and N0, N6 and N8, summer temperature increased
significantly (p�0.01) (figure 2). N8 was the only
sub-region that exhibited a statistically significant
(p�0.01)negative precipitation trend.

3.2. Growth variability and climate sensitivity
TRW trend analyses did not reveal a consistent picture
across regions and species with only a few statistically
significant positive growth trends (table 1, figure 2). A
significant TRW increase was found in grid S8, which
was, however, only sparsely represented by two larch
chronologies. Significant TRW decreases were found
in the northern subsets N2, N5 and N7, as well as the
southern grid cells S6 and S7. TRW trends were,
however, considerably different between the three
conifer species (figure S2). Site-specific calculations
revealed significant negative TRW trend for 103
(23.1%) chronologies, whereas only 30 (6.7%) sites
exhibited a significant increase in TRW (figure 2).

Figure 2. (A)Trends for temperature and precipitation (both JJ), as well as TRWdata over the period 1951–2013 for climate data and
from 1951AD to themost recent year for TRWdata.High-resolution (0.5×0.5) gridded climate data from theCRUdataset were
used (CRUTS3.22, land only). Data are separated between northern (N, 66–73 °N) and southern (S, 60–65 °N) regions and fromwest
to east from0–20 °E (0), 21–40 °E (1), 41–60 °E (2), 61–80 °E (3), 81–100 °E (4), 101–120 °E (5), 121–140 °E (6), 141–160 °E (7),
161–180 °E (8). TRWdata include all sites per region, independently of the species. Trend lines are linear regressionmodels and the
significance (p�0.01) of the trendswas testedwith theMann-Kendall trend test for autocorrelated data (Hamed andRao 1998).
Trends in TRWwere calculated for chronologies after power transformation and removed age trend by applyingmodified negative
exponential curves. (B)TRWtrends for the same period classified in positive (pink) and negative (brown) trends separated by
significance (full dots or circles, p�0.01).
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Long-term reductions in TRWweremost pronounced
in eastern Siberia.

Temperature sensitive sites were mostly found in
the north with best results for JJ but signals depended
on the season and precipitation sensitivity was barely
found. For 35 (7.9%) TRW site chronologies no cli-
mate correlation could be calculated as the measure-
ments did not cover the necessary interval 1951–1990.
A total of 74 (16.6%) out of 445 TRW sites correlated
significantly positive (p�0.01) with JJ temperatures
(figure 3). Forty chronologies of the significant JJ sites
and hence more than half (54%) consisted of larch, 22
(30%) of spruce and twelve (16%) of pine trees. A total
of 80.0%of the significant temperature sites were loca-
ted north of 65 °N, where the JJ temperature mean for
1951–2013 was almost three degrees lower compared
to the south (10.1 °C and 12.8 °C, respectively) and
most were located in zones with mean JJ temperature
between 5 °C and 10 °C (figure 3). Only some temper-
ature sensitive sites were located in regions with mean
JJ temperatures around 10 °C–12.5 °C and few sites
are close to regions with mean temperatures ranging
from 2.5 °C–5 °C and 12.5 °C–15 °C, respectively. The
low temperatures of 2.5 °C–5 °C that barely allowed
tree growth were caused by cold June temperatures for
these regions, whereby July favored tree growth with

much warmer temperatures (>10 °C; figure S3).
Mean JJA temperatures were rarely below 7.5 °C
(figure S3).Warm JJ temperatures from 12.5 °C–20 °C
around the middle and lower part of the Lena River—
the region with the warmest summers in the entire
boreal Eurasia—explained missing temperature sig-
nals in this area.

The majority of TRW sites with significant posi-
tive temperature correlations (73.4%) showed a nega-
tive precipitation signal and the highest positive
precipitation correlations did not exceed r=0.32–
0.49. Most of the significant temperature sites (65.4%)
had a JJ correlation higher than r=0.5 and the lowest
significant JJ correlation coefficient was r=0.45.
Only five sites had a significant positive correlation
with precipitation (p�0.01). Besides one larch site in
Yakutia, these stands were pine sites in southeastern
Fennoscandia, located at 61 °N. Of all sites, 111
(24.9%) had a correlation higher than r=0.39 with JJ
temperature, and seven (1.6%) with precipitation.
More than half of the TRW sites (51.3%) revealed cor-
relations with temperature below r=0.3, and even
87.2% with precipitation. The correlation between
TRW and temperature increased with latitude
(figure 4), whereas the precipitation sensitivity
decreased northwards. Accordingly, the temperature

Figure 3.Pearson’s correlation coefficients between TRWsites of pine, spruce, and larch and June–July (JJ) temperature (A) and JJ
precipitation (B). Colors indicate the correlation coefficients classified into values<0.3, 0.3–0.39 and�0.4, and the pie charts show
the proportions of the different classes for temperature (A) and precipitation (B). Stars highlight significant (p�0.01) correlation
coefficients. Correlationswere calculated over the period 1951-1990 against high-resolution (0.5°×0.5°) griddedmean JJ
temperature (A) and precipitation (B) data, respectively, from theCRUdataset (CRUTS3.22; land only). TRWchronologies were
power transformed and age trendwas removed by applying a negative exponential detrending. Background shading indicatesmean JJ
temperature (A), andmean JJ precipitation (B) for 1950–2000AD (Hijmans et al 2005).
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(precipitation) signal decreased (increased)with rising
temperatures. Neither temperature nor precipitation
sensitivity exhibited a clear relationship with increas-
ing or decreasing precipitation totals. Themean corre-
lation between temperature and TRW was in general
higher in the north than in the south (0.35 versus 0.17)
while the correlation of TRW with precipitation was
on average negative and did not vary between north
and south. Temperature means and precipitation
totals weremostly negatively correlated.

4.Discussion

The division of our boreal TRW network into north-
ern and southern subsets implied that some grid cells
were fully covered by landmass, whereas others,
mainly the northern grid boxes, also included sea
surface. The sites in these grid cells were generally
closer to each other as the area over which they spread
is smaller and hence the mean correlation between
sites (Rbar)was higher in the north (figure S7). N5 and
N6 for example, almost fully covered by land and sites
widespread from north to south showed Rbar values
∼0.4 similar to the southern grid cells (figure S7). The
Rbar was highest (0.8) in N2, where only a few spruce
and pine sites were distributed across a small area.

The inter-series correlation (Rbar) calculated for
all sites per grid cell did not vary remarkably between

species and regions. The correlation was, however,
higher within most of the northern subsets compared
to the southern grid boxes (0.55 versus 0.35). Mean
values were calculated by averaging the inter-series
correlation coefficients from each site.

The length of individual TRW chronologies con-
siderably differed. Fennoscandia contained most of the
millennial-long records and also showed the highest
spatial coverage and density, whereas data availability in
many of the remote parts of Russia was limited
(figure 1). The development of millennial-long compo-
site chronologies requires intense sampling campaigns
of living, dry-dead and subfossil wood, ideally together
with an integration of several site chronologies that
show the same growth signal. Remote regions, such as
the far northeast of Siberia, where sampling is excep-
tionally costly, thus lack well-replicated composite
chronologies that extend back into medieval or even
earlier times (Büntgen et al2014).

Average temperature means and precipitation
totals for the northern and southern grid boxes
implied that different elevations and topography can
influence the climate sensitivity of TRW chronologies
in some grid cells (table 1). In fact, much of the moun-
tainous regions in eastern Siberia were colder than the
western Siberian lowland or eastern Fennoscandia.
Micro-site conditions such as the distance to lakes and
rivers, as well as soil conditions and moisture content

Figure 4.Pearson correlation coefficients against temperature (red, (A)–(C)) and precipitation ((D)–(F), blue), as a function of latitude
(A) and (D), JJ temperaturemean (B) and (E), and JJ precipitation (C) and (F). Species are indicated by symbols. Dashed lines show
linear trends per species.
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were also important factors in determining tree
growth responses (Düthorn et al 2013, Kirdyanov
et al 2013, Linderholm et al 2014). Small-scale analyses
that accurately consider local climate conditions were,
however, not achievable within systematic large-scale
network approaches, such as herein presented.

The early ending of many TRW chronologies
before the mid-1990s affected their trend behavior,
and likely accounted for the low number of positive
growth trends that was in disagreement with the sig-
nificant temperature increase. Overall, the different
end years in combination with the partly short time
periods covered influenced the trend behavior. It
should be noted that the calculation of temperature
trends only until 1990 also resulted in less significant
and less positive trends.

The fact that most of the significant temperature
sensitive sites were larch and spruce was due to the
natural distribution of forest types (Bartalev
et al 2004). Larch dominated forests were mainly
found in the northern-central and northeastern part
of Russia. Spruce and pine forests were prevalent in the
southern-central and western part of Russia, as well as
in Scandinavia. Despite of different treeline species in
Scandinavia (pine) and Siberia (larch), summer tem-
peratures did not differ much along the entire boreal
treeline (figure S3). However, winters were much
colder in Siberia than in Fennoscandia.

Results from network approaches for both, smal-
ler areas in western Russia as well as the entire North-
ern Hemisphere (St. George 2014, St. George and
Ault 2014, Matskovsky 2016), revealed similar results,
i.e. heterogeneous climate responses with overall
increasing temperature sensitivity at higher latitudes.
In comparison to St. George (2014) and St. George and
Ault (2014), we updated the ITRDB data by additional
chronologies. In this way we improved the spatial
replication, particularly towards southern areas and
further considered additional summer monthly and
seasonal means, as well as a suite of slightly different
tree-ring standardization and chronology develop-
ment techniques. Although our study generally con-
firmed stronger TRW responses to summer temper-
atures at higher latitudes, it was spatially limited to
reproduce the often reported response shift towards
increased moisture sensitivity at around 60 °N (Babst
et al 2013, St. George 2014, Seftigen et al 2015,
Matskovsky 2016).

Based on one detrending and standardization
method only, the TRW network did not reflect a
homogeneous climate signal for the entire boreal for-
est zone. Several sites would most probably show
higher and significant correlations if specific methods
were applied for each site. We tested 30 and 300-year
cubic smoothing splines with 50% variance cutoff
(Cook and Peters 1981), as well as negative exponen-
tial functions (Fritts 1976), and have chosen the latter
method due to best average results. For several sites,
other detrending methods, such as RCS detrending

(Esper et al 2012), which is mainly applied for compo-
site chronologies and the preservation of lower fre-
quency variability (Cook et al 1995, D’Arrigo
et al 2006), may have possibly resulted in higher corre-
lations. We also restricted the main figures to one sea-
son (JJ) only, which overall revealed the best results,
even though for some sites higher correlation values
were obtained with othermonthly or seasonal temper-
ature summer means (figure S3). A total of 74 sig-
nificantly positive correlations were found with the
seasonal JJ window, compared to 68 with JJA, 51 with
June and 67 with July temperature means (table S3). A
total of 51 sites showed significant positive correla-
tions against both, JJ and JJA temperature, whereas 35
(36) chronologies correlated significantly positive with
JJ, as well as the monthly temperature means of June
(July). Ten site chronologies had a significant temper-
ature signal against all seasons for which we calculated
correlations, that is JJ, JJA, June, and July monthly
means. Correlations with precipitation would likely
have been higher for some sites when calculating
against earlier summer totals at the onset of the grow-
ing period (Helama and Lindholm 2003, Helama
et al 2005, Hellmann et al 2015). Calculations using
mean March–May precipitation totals, however, did
not reveal better results. Our aimwas though to realize
a network analysis that systematically tested for differ-
ent parameters and the season was also chosen based
on best average results. The northern TRW sites were
in general more sensitive to summer temperature and
therefore more suitable for temperature reconstruc-
tions. However, our study strengthened the impor-
tance of specific analytical methods for each site and
denied the implicit suitability of boreal tree-ring data
for temperature reconstructions. Taking into account
the duration of the vegetation period based on sum-
mer temperatures, continentality, latitude and long-
itude, specific tests need be applied to prove the
temperature sensitivity of a tree-ring site. To facilitate
similar network approaches in the future, data
exchange and free data access are indispensable. An
update of many chronologies, mainly from the
Schweingruber sampling campaign in the 1990s, is
needed and highly relevant as it would allow better
understanding of reactions of boreal trees to recently
increasing temperatures.

5. Conclusions

The so far best-replicated TRW network for Eurasia
>60 °N, together with a careful assessment of spatially
explicit temperature and precipitation variability,
allowed for the first systematic evaluation of growth
trends and climate responses of 445 Pinus, Larix and
Picea TRW chronologies since 1951 AD. While
summer warming was significant (p�0.01) over
most of Eurasia’s boreal zone, fluctuations in precipi-
tation and forest growth were spatially more diverse
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and overall less important. Significant TRW sensitivity
to JJ temperature variability was generally restricted to
higher latitude sites >65 °N, whereas precipitation
was most influential at a few southern sites. Only
16.6% of all TRW sites responded significantly
(p�0.01) to JJ temperatures. The surprisingly high
level of heterogeneity in the climatic response of boreal
forest growth questioned the a priori suitability of
northern Eurasian TRW chronologies for summer
temperature reconstructions. At the same time, our
results stressed the need of refined analyses that
consider the role of regional differences in the climate
system itself, as well as ecological conditions that may
vary from site-to-site.
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