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Individual-level trait diversity has been identified as an essential component of trait 
diversity (TD), influencing community assembly and structure. Traditionally, one 
employs trait diversity indices to measure facets of individual-level trait diversity (diver-
gence, richness and evenness). However, the application of species-level trait diversity 
indices to individual-level traits data and their implications have not been adequately 
studied. Thus, we examined the possible challenges of using four commonly used 
multi-trait TD indices: Rao’s quadratic entropy (Rao), functional dispersion (FDis), 
functional evenness (FEve) and functional richness (FRic); two indices primarily 
developed to measure individual-level trait diversity: trait evenness distribution (TED-
for evenness) and trait onion peeling (TOP-for richnness); and a modified version of 
TED (TEDM-for evenness). Additionally, we considered an index that integrates both 
evenness and richness by generalizing ordinary Hill indices for traits (coined HIT). We 
measured individual-level trait diversity with these indices using simulated traits data 
and experimental data from a growth experiment with cyanobacteria. Comparing the 
observed trends from the indices with the expected trends, we observed that only the 
trait divergence indices (FDis and Rao) produced the expected trends in the simulation 
scenarios and experimental data. TED and TEDM are not robust against the number 
of individuals used, and FEve is not sensitive to some changes in the location of indi-
viduals in the trait space. Also, TOP proved to be a discontinuous function dependent 
on the number of individuals, and FRic did not produce the anticipated trend when 
changes in the trait space did not affect the edges of the trait space. HIT did produce 
the anticipated changes, but it was only reliable when many individuals were sampled. 
In summary, applying these individual-level trait diversity indices to quantify anything 
except trait divergence may lead to misinterpretation of the original situation of trait 
distribution in the trait space if their specific properties are not adequately considered.
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Introduction

Quantifying biodiversity is crucial because of its effect on 
ecosystem functions and services (Cardinale et al. 2012). 
Biodiversity comes in various forms, including phylogenic and 
taxonomic diversity and trait diversity. Trait diversity (TD) is 
of prime interest because it connects structure to functioning 
(Tilman 1997, Hillebrand and Matthiessen 2009, Reiss et al. 
2009, Cardinale et al. 2012, Gagic et al. 2015), and co-
determines ecosystem responses to environmental change 
(Violle et al. 2007, de Bello et al. 2010, De Laender et al. 2016). 
Often, one assesses TD using averages across the trait values 
of species (Cianciaruso et al. 2009, Violle et al. 2012). This 
reflects the idea that interspecific diversity is more important 
than intraspecific diversity (Westoby et al. 2002, McGill et al. 
2006, Carmona et al. 2015). However, over the last decades, 
intraspecific variation of traits has been found both highly 
prevalent and ecologically important (Bolnick et al. 2011, Des 
Roches et al. 2018). For instance, intraspecific variation of 
traits influences coexistence (Bolnick et al. 2011, Albert et al. 
2012, Barabás and D’Andrea 2016, Hart et al. 2016) and 
helps predicting species abundance, the establishment of 
alien species and community resource use and biomass pro-
duction (González-Suárez et al. 2015, Wohlrab et al. 2016, 
Fontana et al. 2018). For this reason, TD has been increas-
ingly studied at the individual level, in which case it is referred 
to as individual-level trait diversity (ITD). Acknowledging the 
potential contribution of taxonomy to trait diversity, ITD can 
also be calculated within species, or integrate species abun-
dance data (Carmona et al. 2016).

Three facets of ITD exist: divergence, evenness and rich-
ness (Carmona et al. 2016, Fontana et al. 2016). These 
facets are identical to TD metrics applied to species means 
(Mason et al. 2005). For example, ITD evenness measures 
how evenly individuals are distributed within a trait space. 
ITD richness focuses on the space occupied by individuals in 
the trait space, while ITD divergence focuses on trait differ-
entiation amongst individuals in the trait space. From a com-
putational standpoint, it is possible to apply available TD 
indices to measure ITD (de Bello et al. 2010, Fontana et al. 
2016). However, the conditions under which they can be 
applied to individual-level trait data and their subsequent 
interpretation are less straightforward (Mason et al. 2005, 
Ricotta 2005, Petchey and Gaston 2006).

It is essential for ITD indices to signal trait changes 
across different gradients (Grether 2005, Mason et al. 2005, 
Petchey and Gaston 2006). This is important because envi-
ronmental change, for example, will often cause trait changes 
(De Laender et al. 2016, Pacifici et al. 2017). Several authors 
have carried out simulation exercises to evaluate the ability 
of different TD indices to capture different trait changes 
in a simulated trait space (Laliberté and Legendre 2010, 
Schleuter et al. 2010, Violle et al. 2012, Fontana et al. 2016). 
However, environmental change can – apart from affecting 

traits – also alter the number of individuals in a community. 
Mason et al. (2005) therefore noted that TD indices should 
be independent of the number of units on which we mea-
sure the trait(s) of interest. Else, it would become difficult to 
conclude what drives changes in ITD: changes of abundance 
or of traits. Walker et al. (2008), Carmona et al. (2016) and 
Fontana et al. (2016) also noted this potential dependence 
between TD indices, especially trait richness indices and the 
number of individuals or species. Another criterion concerns 
comparative TD indices. Such indices use standardized trait 
data as a benchmark against which to compare the observed 
trait data (Carmona et al. 2016, Fontana et al. 2016). These 
standardized data should be consistent with the observed 
traits data. For example, using discrete standard trait data 
as a reference for continuous observed trait data is inconsis-
tent. Finally, the last property often desired for TD indices 
is that the contribution of each unit (species or individual) 
to the index should be weighted. When applied to spe-
cies, this weight corresponds to abundance (Ricotta 2005, 
Villéger et al. 2008). Applying these indices in the context of 
ITD implies that each individual contributes 1/N (the empir-
ical distribution of the traits), N being the number of indi-
viduals in the trait space, to the computation of the index.

Existing examination of TD indices in the context of 
measuring ITD has been testing if a given index gives the 
expected change in the light of specific discrete changes in 
the trait space (two levels) (Mason et al. 2005, Villéger et al. 
2008, Schleuter et al. 2010). Other examinations of TD 
indices involve comparison of their performances with newly 
developed indices for measuring individual-level diver-
sity (Laliberté and Legendre 2010, Carmona et al. 2016, 
Fontana et al. 2016). While these examinations provide cru-
cial insights into the behaviour of TD indices, they mostly 
consider specific and often substantial changes in a trait space 
and not gradual changes. Because trait changes along envi-
ronmental gradients can be expected to be gradual rather 
than abrupt, it is needed to evaluate the behaviour of TD 
indices along such gradients.

To fill the gap identified in the paragraph above, we quan-
tified ITD along simulated gradients of trait change using 
eight TD indices. To this end, we extended the scenarios con-
tained in Schleuter et al. (2010) and Fontana et al. (2016) 
with scenarios of continuous changes in trait space (changes 
along a grid). We critically assess seven indices that are capable 
of dealing with multivariate traits, four of which were initially 
developed for species mean trait data. Functional dispersion 
(FDis, Laliberté and Legendre 2010) and Rao’s quadratic 
entropy (Q, Rao 1982) are two divergence indices. Functional 
evenness (FEve, Villéger et al. 2008) is an existing evenness 
index, while trait even distribution (TED, Fontana et al. 
2016) is an evenness index that was specifically designed to 
analyze individual-level trait data. We considered two richness 
indices: trait onion peeling (TOP, Fontana et al. 2016, devel-
oped for individual trait data) and functional richness (FRic, 

 16000706, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.09178 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [12/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 3 of 15

Villéger et al. 2008). In addition, we also propose and evalu-
ate a modified version of the TED (TEDM), which accounts 
partly for the limitations of the TED index. Finally, we also 
evaluate a recently developed index based on Hill numbers 
applied on individual-level trait data (Leinster and Cobbold 
2012, Scheiner et al. 2016, Barabás et al. 2022), coined ‘HIT’.

For each of those indices, we assess how continuous changes 
in the bi- and trivariate distribution of traits (along a contin-
uum) within a population alter these indices and if these changes 
match expectations. We achieve this aim by simulating individ-
ual-level trait data in a 2-dimensional (2D) and 3-dimensional 
(3D) trait space, either uniformly or normally distributed. The 
uniformly distributed trait space assumes that trait combina-
tions have an equal probability of occurrence throughout the 
trait space. In contrast, the normally distributed trait space 
allows extreme trait values to have a lower probability of occur-
rence than trait values closer to the center of the trait space. 
We also examined the performances of these indices using an 

experiment in which we measured the growth of two strains 
of cyanobacteria. This experiment offers the chance to examine 
the trend in the performance of these indices beyond simulated 
data. Also, our study setup enables us to examine the effects of 
the number of individuals, the use of inconsistent reference trait 
distribution and empirical distribution (1/N) as weights on the 
capacity of these indices to measure the respective facets of ITD 
they were designed to measure.

Material and methods

Trait diversity indices

Divergence indices
FDis (functional dispersion, Laliberté and Legendre 2010) 
measures species-level trait divergence as the average dis-
tance of species to the center of gravity of the trait space. 
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Figure 1. A hypothetical population of individuals in a 2D trait space. (A) FDis is the average of the yi’s, and each yi is the distance of a trait 
value yj to that center c. (B) FEve examines the regularity of the branch length from one individual to the other in the minimum spanning 
tree (the dotted lines connecting all individuals). (C) TED compares the density distribution of the Euclidean distances of the observed trait 
data with the density distribution of Euclidean distances from a discrete uniform. TEDM does the same, but it uses a continuous uniform 
distribution instead. (D) The volume of the black polygon (minimum convex-hull encompassing all individuals) gives the FRic. (E) TOP 
is the sum of the area of all peel-able convex-hulls (black polygons).
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Although developed independently based on the multivari-
ate dispersion of Anderson et al. (2006), it is very similar to 
Rao’s Q (Champely and Chessel 2002). FDis is computed by 
weighing the Euclidean distance or other distance measure 
(Manhattan) to the center by the relative abundance of the 
species:
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where i is the counter for the traits, wj is a vector of relative 
abundances, xj is a vector representing the position of the 
jth species in the trait space, S is the number of species and 
c is the centroid of the observed positions in the trait space 
(Fig. 1A). When applied to individuals, FDis translates to:
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where yj the Euclidean distance of the jth individual to the 
center of the (observed) trait space and N the number of indi-
viduals in the trait space.

Rao’s quadratic entropy (Q) (Rao 1982) expresses inter-
specific divergence as the average difference between species. 
It is computed by weighing all pairwise distances between 
species in the trait space by their relative abundances:

Q = w Dw¢

D is a S × S matrix of squared distances between species, S 
being the number of species and w is the vector of relative 
abundances. When applied to individuals, Q measures the 
average difference between individuals in a trait space and 
can be rewritten as:
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since each individual has a relative abundance of 1/N; xk and 
xj are trait vectors of the kth and jth individual, N is the total 
number of individuals in the trait space.

Evenness indices
FEve (Villéger et al. 2008) measures evenness by considering 
the regularity of the distances between species in a trait space. 
Consider a branch �  with length d�  from a minimum span-
ning tree connecting the trait values of two species 1 and 2; 
species with relative abundances w�1  and w�2  respectively; 
and define:
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The total number of branches is S − 1, with S the number of 
species. FEve is then defined as:
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FEve ensures that each species contributes proportionally to 
the computation of the indices by using the relative abun-
dance of the species as weights. When applied to individuals, 
FEve measures the regularity of the distance between indi-
viduals in a trait space. Since every single individual has an 
abundance equal to 1, FEve becomes:
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with N the number of individuals and d�  denoting the length 
of branch �  (panel B in Fig. 1).

TED (Fontana et al. 2016) is a relative comparison 
between the distribution of Euclidean distances among indi-
viduals in an observed trait space to that of a hypothetical or 
reference trait space filled with evenly distributed individu-
als (a discrete regular grid). TED was explicitly designed to 
quantify ITD and is essentially a measure of how close the 
distribution of the Euclidean distances of the observed traits 
is to that of the Euclidean distances of the reference distribu-
tion (Fig. 1C). This is achieved by using the Kullback–Leibler 
divergence (Kullback and Leibler 1951), measuring a statisti-
cal difference between two distributions:

TED
KLDiv

= 1
1+

  (4)

where KLDiv is the asymmetric Kullback–Leibler divergence 
of the observed trait data and reference distribution.

We also introduce TEDM, similar to the TED index, 
but with two modifications. The first modification involves 
replacing the even distribution based on a regular grid with 
simulated trait values from a continuous uniform distribution 
(Gregorius and Gillet 2021). We do so because the continu-
ous uniform distribution better characterizes the definition 
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of trait evenness. Moreover, the comparison in TEDM is 
made between two continuous distributions (in contrast to 
TED, which uses a discrete reference distribution). The sec-
ond modification involves limiting the comparison in even-
ness to the space covered by the observed trait values. This 
modification ensures that the comparison does not include 
values of the reference distribution outside the observed trait 
space (see the Supporting information for more explanation 
on these modifications). It is important to note that different 
references could be generated for the same dataset. To avoid 
this, we encourage computing TEDM over several simulated 
reference (this is potentially computationally intensive) or set 
a seed before generating the reference distribution.

Richness indices

FRic (Cornwell et al. 2006) measures species trait richness as 
the (hyper-)volume or area covered by individuals in a trait 
space (Fig. 1D). It is obtained by computing the volume of 
the smallest convex hull containing all individuals in the 
trait space. It can be applied to measure individual-level trait 
richness without modifications. Note that this index only 
involves species/individuals at the edges of the trait space.

TOP (Fontana et al. 2016) is developed to assess ITD 
and measures trait richness as the total area covered by all 
individuals in the trait space (not only those spanning the 
outer convex hull). It is obtained by summing areas of con-
vex hulls peeled off from the individuals in the trait space 
(Fig. 1E). By summing all successive areas of the peeled-off 
convex hulls, TOP can detect trait changes at and within the 
edges of the trait space. It is conceptually similar to the FRic, 
and its computation involves all individuals in the trait space. 
Consequently, TOP is sensitive to changes involving individ-
uals across the whole trait space:

TOP =
=1k

H

kAå   (5)

where Ak is the area of the kth peelable convex hull from the 
trait space, and H is the number of hulls.

A joint measure of richness and evenness based on 
Hill indices

For categorical data where each category is represented as a 
fraction, Hill numbers offer a flexible and widely used way 
of measuring diversity. Given C distinct categories with frac-
tions pi in category i (for instance, the categories could be 
species and the pi their relative abundances), the Hill number 
D(q) of order q is obtained as

D q p
i

C

i
q

q

( ) =
=1

1
1

å
æ

è
ç
ç

ö

ø
÷
÷

-

  (6)

(Leinster and Cobbold 2012). Various choices for q return 
different well-known diversity indices. For q = 2, one recovers 

the inverse Simpson index, while the exponential of the 
Shannon index obtains in the limit of q→1.

This index does not immediately generalize to measuring 
trait diversity, for the following reason. A good measure of 
diversity ought to reflect the fraction of trait space covered 
by individuals, as well as the evenness of this cover. But any 
number of discrete individuals, each of them a single point 
in trait space, will form a set of volume zero and thus techni-
cally cover a fraction zero of that space. To get around this 
problem, we must treat the observed individuals as samples 
from an underlying trait distribution. This distribution can 
be estimated either using regression based on theoretical 
expectations (e.g. one might expect some trait to be approxi-
mately normally distributed), or via more agnostic methods 
such as kernel density estimation (Carmona et al. 2016, 
Barabás et al. 2022). Here we opt for the latter procedure. 
This will yield a trait probability density function D( )x ,  
whose value multiplied by an infinitesimal dx0 at a given 
point x0 is the probability that a randomly sampled individ-
ual from the underlying population has a trait value falling 
within an infinitesimal radius dx0 of x0.

Once D( )x  is obtained, it is tempting to directly apply 
Eq. 6 by replacing the summation with an integral. However, 
it is known that this procedure does not work; among other 
problems, it leads to a diversity metric that is not dimension-
less (Barabás et al. 2022). Instead, the way to go is to subdi-
vide the trait space into C equally-sized grid cells, evaluate 
D( )x  in the center of each, obtain the population’s diversity 
using Eq. 6, and then take the C→∞ limit. To prevent the 
index from diverging to infinity (which it would, given the 
ever-larger number of categories C introduced by refining the 
grid resolution), one can normalize the metric by dividing 
with C. This will yield a finite result, and corresponds to com-
paring the diversity of the observed population with that of 
another whose trait distribution is uniform throughout the 
trait space (Barabás et al. 2022). The diversity index formula 
of order q thus reads
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where Di  is the value of D( )x  evaluated at the center of cell 
i. We call this class of metrics Hill indices for traits (HIT).

The same formula can be written in an alternative form by 
introducing the vector p whose ith entry is Di . Then, with a bit 

of algebra, Eq. 7 can be expressed as D q
q

q
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(Barabás et al. 2022), in the limit of p having infinitely many 
entries. Here the overbars denote the arithmetic mean of a 
vector of values, but raising a vector to some power is inter-
preted entrywise. Keeping the number of entries in p large 
but finite, this alternative form of D(q) offers a straightfor-
ward numerical implementation of Eq. 7.
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HIT inherits the properties of Hill numbers, now applied 
to individual-level trait data. It yields higher values if more 
of the trait space is covered, and if that cover is more even. 
The parameter q can be used to adjust the sensitivity of the 
metric; here we fix q to be 2, leading to the usual inverse 
Simpson diversity index. See Fig. 2 for an illustration of how 
one computes this metric.

Simulation study

We evaluated the behaviour of these indices following contin-
uous changes of individuals in trait space using simulations. 
We considered three scenarios: for the first two scenarios, we 
simulated populations composed of 1000 individuals located 
in a 2D and 3D trait space, using 2D and 3D uncorrelated 
normally or uniformly distributed trait values. For the third 
scenario, we simulated between 50 and 4000 individuals. The 
three scenarios are defined as follows:

Scenario one. Here, we shift the trait values of one part of 
the population, akin to disruptive selection, i.e. the formation 
of a second cluster in a trait space. We started with a bivariate 
normal trait space (two uncorrelated traits with a mean value 
of 5 and 10 on axis one and axis two respectively, with a vari-
ance of 0.85 for both dimensions), and gradually shifted the 
trait values of 20% of randomly selected individuals. (addi-
tion of δ = 0.5 to their trait values along all trait axes). We 
repeat the same action in a 3D trait space, but with a mean 
value of 5 on each trait axis, the same variance as in the two-
dimensional trait space, and a correlation of 0 between the 
traits. Figure 3A–C show three sample cases from scenario 1.

Scenario two. Here, we (re)move individuals that are 
0–50% (in steps of 10%) closest to the centroid of the trait 
space. This represents selection against trait combinations at 
the center of the trait space. We consider trait values from a 
bivariate and trivariate uniform trait space. In scenario two 

A, we kept the number of individuals constant and only sam-
pled individuals away from the distribution’s center. We do 
this in the following steps:

1) take a sample of size n individuals from the desired trait 
space (2D or 3D uniform)

2) calculate the mean trait along each trait axis to form a vec-
tor of mean trait values

3) obtain the Euclidean distance of each individual in step 1 
to the mean trait vector in step 2 and order these distances

4) obtain the 10th–50th quantiles (q) of the euclidean dis-
tance distribution. Per quantile, discard all observations 
with a Euclidean distance lesser than the current quantile

5) per quantile, sample another individual from the trait 
space as in step 1 and check if its Euclidean distance to 
the mean vector is greater than the current quantile. If 
it is, keep such sample; if it is not, discard it. Continue 
sampling until the number of individuals is again n.

In scenario two B, we followed the same algorithm but 
without the last step. Hence, we do not re-sample individuals 
from the trait space, but we simply remove the individuals 
with Euclidean distances less than the particular q quantile. 
We did this to evaluate the case where the sample size is not 
constant (scenario two B) and where it is constant (scenario 
two A). Figure 3E–F show three sample cases from the first 
version of this scenario.

Scenario three. Here, we randomly added individuals to a 
bivariate and trivariate trait space in which individuals were 
normally (scenario three A) or uniformly (scenario three B) 
distributed with a mean value of 5 and 10 on axis one and 
axis two respectively. The variance was 0.85 for all trait axes. 
For the trivariate trait space, we used exactly the same setup 
as in scenario 1, i.e. a trait mean of five on each axis, a vari-
ance of 0.85, and a correlation of 0. We kept the trait space 
unchanged (by fixing its mean and variance) as individuals 
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Figure 2. Trait diversity for a two-dimensional trait distribution formed by 200 individuals (A, points). The individual data are used to 
estimate the underlying trait probability density function (B) via kernel density estimation (Carmona et al. 2016). The trait space is then 
subdivided into a grid (C); the density is approximated as constant within each grid cell. The HIT index of functional diversity can now be 
evaluated using Eq. 7. The finer the grid resolution, the more accurately the computed index converges to its true value. In this example, 
setting q = 2 and using 25 grid points along both dimensions leads to C = 252 and D(q) = 0.142. In turn, C = 1002 yields D(q) = 0.151, 
while C = 10002 results in D(q) = 0.153.
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randomly entered into the trait space such that population 
size grows from 50 to 4000 individuals. This situation repre-
sents immigration or reproduction events. We present three 
example cases from scenario three A in Fig. 3I–K.

Expected trends from the three scenarios

In scenario one, we expect trait richness and divergence to 
increase because shifting 20% of the individuals away from 
the centroid should result in increasing trait differentiation 

(divergence) and trait space expansion (richness). Since we 
are sampling individuals with normally distributed trait val-
ues, we expect an initial increase in evenness because indi-
viduals moving away from the centroid of the trait space will 
initially make the trait space more even (i.e. the distribution 
more uniform) compared to the initial trait distribution. 
However, we expect evenness to decrease as soon as clusters 
start forming (Fig. 3B–C).

In scenario two, we expect trait divergence to increase 
while trait evenness and richness would decrease. This is 
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Figure 3. Illustrations of the three simulated scenarios and the expected trend for each component of individual-level trait diversity (ITD). 
Scenario 1 (row 1) represents trait expansion. (A), (B) and (C) show different degrees of expansion. Scenario 2 (row 2) represents selection 
against trait combinations near the center of the trait space. (E), (F) and (G) show varying degrees of selection. Scenario 3 (row 3) represents 
a scenario with constant trait probability distribution, but with varying number of individuals. (I), (J) and (K) shows the trait spaces with 
200, 500, 1000 individuals respectively. (D), (H) and (L) present the expected trends of ITD in each scenario.
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because the movement of individuals away from the cen-
tre of the trait space (scenario two A) or increasing loss of 
individuals at the centre of the trait space (scenario two B) 
increases trait dissimilarity. This makes individuals no longer 
evenly spread across the trait space (with an increasingly sized 
empty centre of the trait space) (Fig. 3E–G). For trait rich-
ness, we expect a decreasing trend in scenario two A because 
the movement of individuals away from the centre of the trait 
space results in an overall loss of trait combinations at the 
centre. While one can argue that the new individuals entering 
into the trait space compensate for trait combinations lost at 
the centre, these new individuals would impact trait richness 
less since they introduce trait combinations similar to those 
already present in trait space. In scenario two B, we expect a 
decreasing trend since we increasingly remove individuals at 
the centre of the trait space and do not add new individuals 
to compensate for lost individuals.

In scenario three, we expect the indices to remain stable 
as the number of individuals increases (Fig. 3I–K). That is 
because, ideally, a trait index should not change with the 
number of individuals in the trait space. In case a trend 
would appear, we expect this trend to be asymptotic with 
respect to the number of individuals, since the impact of 
adding new individuals drops as the trait space becomes 
more populated.

Furthermore, we expect FDis and Rao to perform simi-
larly in all the simulation scenarios based on the relationship 
between both indices (Champely and Chessel 2002). Also, 
we expect FRic to not produce any trend in both cases of 
scenario two since we leave the edges of the trait space intact.

For each scenario, we performed fifteen replicates. Thus, 
per scenario, we computed the indices fifteen times. Larger 
numbers of replicates were not feasible as the calculation of 
some indices (notably FDis, Rao, FEve and FRic) was com-
putationally too intensive. However, this number of repli-
cates gives us an idea of the variability of these indices within 
each scenario.

Cyanobacteria invasion experiment

To apply these indices to individual-level data, we used data 
from a flow cytometry (FCM) experiment involving two 
strains of Synechococcus cyanobacteria (BS4 and BS5 with 
accession numbers RCC2434 and RCC2385 respectively). 
The samples were grown under 12H/12H day/night cycles at 
20°C. The cyanobacteria remained in monoculture samples 
until they achieved carrying capacity. Afterward, they were 
invaded with the other strain. Thus, BS4 was invaded with 
BS5 at carrying capacity and vice-versa. FCM was used to 
measure the presence of chlorophyll a (488 nm excitation, 
695 nm fluorescence), phycoerythrin (488 nm excitation, 583 
nm fluorescence), phycocyanin (642 nm excitation, 664 nm 
fluorescence), cell size (forward scatter) and cell granularity 
(side scatter). We refer to Spaak et al. (2020) for more details 
on this experiment. We computed the indices using data in 
which BS5 is the resident species and we used three traits: cell 
size, chlorophyll a and phycoerythrin.

Expected trends from the cyanobacteria invasion 
experiment

The experimental setup resembles simulation scenarios 
one and three. The pre-invasion part of the experiment 
resembles scenario three since only changes in the number 
of individuals is expected during this phase of the experi-
ment. The post-invasion part of the experiment resembles 
scenario one since the invading species will expand the trait 
axis, unless it shares trait values with the resident species. 
Thus, we expect that the invasion of the resident strain 
should increase trait richness and divergence but decrease 
trait evenness. While both strains have similar cell size, the 
resident BS5 strain is known to have higher levels of phy-
coerythrin and chlorophyll a than BS4 (Stomp et al. 2004). 
Thus, the invading BS4 will expand the trait space along 
this trait axis. At the same time, we expect no change along 
the cell size axis (see the Supporting information for posi-
tions of the strains along the phycoerythrin and chlorophyll 
a channels).

Calculation of indices and settings

We performed all simulations using R (www.r-project.org), 
ver. 4.0.2. We used the dmvnorm function in the mvt-
norm package (Mi et al. 2009) to simulate trait values in 
the bi- and trivariate normal case, and the runif function 
in base R to simulate trait values for the uniform case. 
To compute the TED, we simulated the reference trait 
matrix from a 2-dimensional square using the geozoo 
package (Schloerke et al. 2016). For TEDM, we simu-
lated the reference trait matrix using the runif function. 
We used the FD package (Laliberté and Legendre 2010) to 
compute FEve, FRic, FDis and Rao, and the geometry 
package (Barber et al. 2015) to compute convex hulls for 
TOP and TEDM. We also computed all kernel densities 
for the TED and TEDM using the density function in the 
stats package (Duong 2007). To compute D(q), we used 
the ks package to compute the required kernel density  
(Duong 2021).

Results

ITD divergence

Both trait divergence indices (Rao and FDis) reproduced 
the expected positive effect of disruptive selection (scenario 
one) and selection against average trait values (scenario two) 
(row one-three, column one in Fig. 4) on individual-level 
trait divergence. Increasing the sample size (scenario 3) did 
not affect the divergence indices (row four-five, column one 
in Fig. 4). Also, the differences in the number of individu-
als in scenarios two A and two B did not disrupt the per-
formance of the two divergence indices. As expected, both 
indices have a larger standard deviation when the number 
of individuals is small.
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ITD evenness

Two evenness indices (TED and TEDM) produced the 
expected unimodal response of trait evenness to disruptive 
selection (scenario one). Both indices initially increased but 
then decreased with selection, but more outspokenly for 
TEDM (row one, column two in Fig. 4). The third evenness 

index (FEve) did not exhibit this response; it remained con-
stant for minor location shifts and then decreased mono-
tonically. Selection against central trait values (scenario 
two) led to the expected decline for TED and TEDM in 
an almost identical way. In contrast, FEve did not show 
the expected decreasing trend (row two-three, column two 
in Fig. 4). Also, in scenario two B, the averaged values of 
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Figure 4. Mean ± standard deviation of the indices’ values from the 2D trait space. The plots are obtained by re-scaling the computed 
indices to the 0–1 interval before averaging, i.e. each point is an average of fifteen re-scaled index values, while the vertical lines represent 
the standard deviation of the indices across the fifteen replicates. The trend line in each plot panel is obtained from a generalised additive 
model (GAM) fit. Formal statistical test for trend in these indices is reported in the Supporting information. We computed HIT with q = 2. 
JRE = joint measure for richness and evenness.
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FEve showed some limited decrease. Adding individuals 
did affect all three evenness indices, contrasting our expec-
tations. These effects were both positive (scenario three B) 
and negative (scenario three A) and were smallest for FEve 
(Fig. 4). Nevertheless, the results also suggest an asymptotic 
behaviour for scenario three B. The responses of these indi-
ces to abundance changes seizes at high abundance (around 
500 and 1000 individuals for FEve and TEDM, respec-
tively; around 2000 individuals for TED). FEve varied most 
across all scenarios because it has the largest variance (dis-
played by the length of the vertical lines in Fig. 4). Also, the 
similarity in the performance of the TED and its modified 
version suggests that using different types of uniform refer-
ence distributions does not affect much the performance 
of the index. Across all the scenarios, HIT produced the 
expected richness trends. While this index also produced 
the expected evenness trend in scenario two A and B, this 
was largely due to the strong relationship between evenness 
and richness in these scenarios.

ITD richness

The two richness indices reproduced the expected increase 
of trait richness following disruptive selection (scenario 
one). However, removing individuals at the centre of the 
trait space (scenario two) only led to the expected trait rich-
ness decrease for the TOP index, in particular for scenario 
two B. This difference between 2a (two A in Fig. 4) and 2b 
(two B in Fig. 4) suggested some sensitivity to the number 
of individuals. Indeed, both indices increased when abun-
dance increased (scenario three). In scenario three A, the 

increase was linear for FRic and quadratic for TOP, but 
the difference between the curve was limited. In scenario 
three B, the dependence on the number of individuals dif-
fers among richenss indices, i.e. convex for TOP and con-
cave for FRic; also, FRic seemed to reach an asymptote after 
2000 individuals, which, as expected, can be addressed to 
the bounded space of the uniform distribution. HIT cap-
tured the increasing richness patterns in scenario one. Also, 
the HIT index is less influenced by the number of individu-
als in scenario three A.

Cyanobacteria invasion experiment

The two divergence indices captured the expected change 
in divergence since the overall divergence (squares in Fig. 5) 
is consistently larger than the divergence for either strain. 
Furthermore, the invading BS4 strain has larger trait diver-
gence compared to the resident BS5 strain despite having 
a lower number of individuals. This is due to the higher 
co-variance in the trait values of the BS4 strain across the 
two trait channels (Supporting information). The three 
evenness indices captured the expected decrease in even-
ness. However, TED and TEDM appear to be the more 
sensitive to the changes in the trait space caused by the 
invading strain (FEve has the shortest distance between the 
squares and either of the circles and triangles in Fig. 5). 
This aligns with the findings from simulation scenario 
one, where the slope of FEve is much smaller than that of 
TED and TEDM. The richness indices also captured the 
expected increase in trait richness caused by the invading 
strain (Fig. 5).
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Figure 5. Individual-level trait diversity (ITD) measured in a cyanobacteria growth experiment. The ‘combined’ values are values of ITD 
when computed across the two strains, i.e. at the community level. Instead, the circles and triangles represent ITD computed within each 
strain. We computed HIT with q = 2. Note that the invading B4 has fewer individuals compared to the resident species B5 during the inva-
sion. Lines are for clarity and do not reflect any trend.
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Discussion

Trait divergence indices should reflect dissimilarity in trait 
combinations across an entire trait space (Mason et al. 2005), 
i.e. a trait space with more different trait combinations is 
considered more diverse. The trait divergence indices FDis 
and Rao, which we examined, captured continuous trait dis-
similarity amongst the simulated individuals and those from 
the experiments. Furthermore, these indices proved robust 
against the number of individuals used in the simulations and 
the number of individuals counted in the experiments. While 
the trait divergence values for the combined case with more 
individuals are larger than those from either of the strains, 
this does not imply that more individuals mean higher diver-
gence because the trait divergence indices for BS4 are con-
sistently larger than those of BS5. This is true despite BS5 
having more individuals.

As earlier discussed, both trait divergence indices weigh 
for abundance, a property that has been criticized because 
such indices are likely to give small weights to rare species 
(Walker et al. 2008), but this is not the case when we use these 
indices to measure ITD. Results from simulation scenarios 
three A and three B support this conclusion. Both indices 
give the weight 1/N for all trait values or vectors, regardless of 
the distribution of individuals in the trait space. This implies 
that extreme trait values have the same weight on both indi-
ces as the less extreme ones. It is essential to mention that, 
provided the distance metric employed in FDis is Euclidean, 
FDis is fundamentally the same as Rao’s quadratic entropy 
(Champely and Chessel 2002). Thus, it is not surprising that 
both indices behaved similarly across all the scenarios consid-
ered in this study.

Trait evenness indices should measure how evenly indi-
viduals are distributed within a trait space (Mason et al. 
2005, Villéger et al. 2008). The closer the distribution of 
individuals in a trait space is to a uniform distribution, the 
more evenly individuals are distributed across that trait space 
(Mason et al. 2005). In essence, evenness is about uniformity. 
Two of the three evenness indices considered in this study 
are relative indices (TED and TEDM), i.e. they compare the 
observed trait data to a reference. We already established that 
TED uses simulated trait values from a discrete uniform trait 
space as its reference. Thus, it will only be entirely consistent 
in its comparison if the trait data under comparison comes 
from a discrete trait space. However, using a discrete uniform 
distribution as a reference instead of a continuous trait space 
does not hinder TED’s performance. TED and TEDM did 
capture continuous changes in trait evenness in situations of 
trait space expansion in scenario one, and both cases of sce-
nario two involving loss of individuals in the center of the 
trait space. Also, these results point out that the distribution 
of distance between trait vectors in the discrete uniform refer-
ence of TED is a sufficiently good approximation to that of 
TEDM (with simulated reference from a continuous uniform 
distribution). Also, the results from the cyanobacteria experi-
ment confirmed TED and TEDM to be more sensitive to 
the changes caused by the invading strain as compared to the 

FEve. Schleuter et al. (2010), Fontana et al. (2016), Legras 
and Gaertner (2018), Kosman et al. (2020) also documented 
other scenarios where FEve did not produce the expected 
changes in a manipulated trait space. However, FEve offers 
the advantage of being less influenced by the number of 
individuals. The simulations show that this effect however 
reaches an asymptote at about 2000 individuals in case of 
the uniform distribution. This is true in both the simulated 
individual-level data and the cyanobacteria experiments.

The difference in performance between TED, TEDM and 
FEve is explainable by their approach to measuring evenness 
in a trait space. FEve responds to changes in the regularity of 
the distances (branch length) between individuals in the trait 
space (Villéger et al. 2008), while TED and TEDM respond 
to changes in distance distributions (Fontana et al. 2016). 
FEve is highly dependent on changes in the branch length 
of the minimum spanning tree employed in computing it. 
If the changes in branch lengths are minimal, for example, 
in the case of individuals becoming more evenly distributed 
due to initial trait expansion in scenario one, FEve will most 
likely miss such changes. On the contrary, TED and TEDM 
employ a reference distribution to which they compare the 
observed traits data. Thus, it is more sensitive and does 
pick up the small changes in trait evenness missed by FEve. 
Indeed, it is important to stress that the performance of TED 
and TEDM might depend on the metric used for compar-
ing trait distributions since different comparison metrics can 
be used (Fontana et al. 2016). The choice of which index to 
employ to measure individual-based trait evenness is a choice 
between sensitivity and the number of individuals. TED and 
TEDM are more sensitive than FEve, whereas FEve is more 
robust against the number of individuals used in computing 
it. However, bootstrapping or refraction techniques can be 
employed to correct for the dependence of TED and TEDM 
on the number of individuals in the trait space. Also, although 
TED performs similarly to TEDM, we cannot exclude that 
in other scenarios, the discrete reference might be less suitable 
as an approximation.

Fontana et al. (2016) introduced the TOP index and 
showed that it always increases with the appearance of unique 
trait combinations in any part of the trait space (monotonic-
ity). TOP did perform as expected in all scenarios considered. 
However, we demonstrated in the Supporting information 
that this index is discontinuous at points where individuals 
move from a smaller convex-hull to a larger one (Supporting 
information). At these discontinuous points, the red point 
in Supporting information is on a convex-hull with a larger 
area than the previous convex-hull it belonged to, which dis-
continues the increasing TOP trend observed initially. This 
feature might make the TOP potentially problematic for 
studying trends in individual-level trait richness. However, 
simulation results and the cyanobacteria invasion experiment 
do not show the discontinuity property as a problem. It is 
important to note that the discontinuity is proportional to 
the distance between the convex hulls. Thus, if there are many 
individuals and hulls, for example, in phytoplankton systems, 
these discontinuities may not result in significant jumps.
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TOP producing no clear trend in scenario two A implies 
that the effect of the new individuals entering the trait space 
to replace those lost at the centre of the trait space is insignifi-
cant. The newly simulated individuals brought in trait com-
binations that were similar to those already existing in the 
trait space, resulting in similar trait richness. As the effects of 
these new individuals with similar trait values to existing ones 
wear off, trait richness reduces, which explains the reduction 
in TOP when we replaced 40–50% of the individuals at 
the centre of the trait space. It is well established that FRic 
remains unchanged when unique trait combinations appear 
within a trait space, as it is susceptible to extreme trait values  
only (Cornwell and Ackerly 2009, Schleuter et al. 2010, 
Legras et al. 2018). This explains the inability of this index 
to produce the expected trend in both cases of scenario two. 
While the index does not produce any trend in scenario two A, 
which might suggest good performance as in the case of TOP, 
this is because the edges of the trait space remain unchanged 
in this scenario. This feature makes FRic less suitable for 
measuring individual-level trait richness. It should instead be 
defined as a multidimensional range (Schleuter et al. 2010, 
Fontana et al. 2016). Despite these shortcomings, results 
from scenario one and the cyanobacteria experiment confirm 
that FRic can be applied in studies that address trait-based 
niche expansion and trait ranges (Pigot et al. 2016).

It is difficult to imagine a trait richness index that does 
not change with the number of individuals in the trait space. 
More specifically, it is essential to note that the dependence 
on the number of individuals is implicit in the definition 
of individual-based trait richness. Thus, it is no surprise 
that both TOP and FRic increase with increasing individu-
als. However, the impact of the number of individuals on 
ITD, in general, is conditioned on the uniqueness of their 
trait combinations. As we argued in the introductory part 
of this paper, the strong association between the number of 
individuals and ITD richness implies that disentangling the 
effect of pure trait richness from the effect of sample size 
becomes difficult. This becomes clearer when we consider 
the results from the cyanobacteria experiment. It is difficult 
to conclude that the higher trait richness in the combined 
case of Fig. 5 is due to trait expansion and not due to the 
increasing number of individuals because the trait richness 
indices increase exponentially with increasing number of 
individuals. To remedy for this, bootstrapping procedures 
(Fontana et al. 2016), which are also employed in rarefac-
tion (Walker et al. 2008), can be applied to make trait 
richness independent of the number of individuals. FRic 
reaching an asymptote in scenario three B results from the 
uniform trait space we employed in this case. Since we were 
sampling individuals from a uniform distribution between 
0 and 1, there are fewer changes at the edges of the trait 
space with increasing sample sizes, implying no change in 
FRic. However, this is not the case for TOP as it can detect 
changes everywhere in the trait space (Fontana et al. 2016). 
The choice of which index to employ to measure individ-
ual-based trait richness depends on the research question. 
However, such research should ideally standardize for the 

number of individuals since the two richness indices exam-
ined will increase with increasing abundance.

HIT balanced between expected richness and evenness 
patterns throughout the entire simulation scenarios. For 
example, in scenario one, the sharp initial increase in HIT 
is due to the initial increase in evenness and continuous 
increase in richness. The following lesser increase is a result 
of a balance between the decreasing evenness and the increas-
ing richness. This is expected of the HIT since it is a joint 
measure of richness and evenness. HIT, in contrast to indices 
of pure richness (FRic, TOP) or pure evenness (FEve, TED, 
TEDM), provides a joint measure of richness and even-
ness (Eq. 7). For q = 2, this metric reduces to a normalized 
inverse Simpson diversity index (Leinster and Cobbold 2012, 
Barabás et al. 2022). However, instead of applying the index 
to a set of categories, such as different morphs of the same 
species, we apply it to the fitted trait probability density func-
tion (Carmona et al. 2016) inferred from the observed data. 
As the HIT index measures both richness and evenness (a 
population with two morphs is more diverse than a single-
morph one, but only marginally so if the difference in relative 
abundance between the two morphs is large), this property 
is inherited when applied to the trait distribution. In other 
words, a population will be more diverse if its individuals 
occupy a larger fraction of the trait space, and still more so if 
they are evenly distributed, as opposed to being heavily con-
centrated in one segment of trait space while leaving others 
empty. In summary, this metric fulfills the original purpose 
of diversity metrics: it is a dimensionless number simultane-
ously quantifying richness and evenness.

HIT’s ability to measure both evenness and richness is 
especially visible in scenario one of Fig. 4. Compared with 
the separate expectations for richness and evenness (Fig. 3D), 
HIT first produces the evenness trend, but then starts fol-
lowing the expected trends for richness. In doing so, it does 
not increase as fast as the richness indices FRic and TOP, 
maintaining some of its ‘in-between’ behavior that balances 
both diversity aspects in a single metric. Scenario two is sim-
pler: the predicted trends are declining for both richness and 
evenness, which is duly observed in Fig. 4 as well. In sce-
nario three, where richness and evenness theoretically ought 
to stay constant, we observe a slight increase in the metric 
as the number of points increases (the only exception is for 
scenario three A in a two-dimensional trait space). While 
not necessarily desirable, this behavior was expected, due 
to the fact that we inferred the underlying trait probability 
density function by performing kernel density estimation on 
our data. Similarly to the case of TED and TEDM, having 
only a few data points means that the estimated trait prob-
ability will be concentrated around those points and won’t 
necessarily reflect the true underlying distribution. As an 
extreme example: no matter how large the variance of a trait 
is, having a single observed individual makes it impossible to 
estimate this variance. Indeed, when switching to a different 
method of estimating the trait distribution whereby we fit a 
multivariate normal distribution to the individual trait values 
(Barabás et al. 2022), the increasing trend largely disappears, 
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and we are left with an index that does not depend on the 
number of individuals. In summary, this way of measuring 
diversity combines the good properties of richness and even-
ness indices, is close in spirit to more traditional diversity 
measures, and behaves in a consistent way. Importantly how-
ever, comparing the index across different populations only 
makes sense if the trait space over which diversity is evaluated 
is identical for all of them.

Several studies have either carried out simulations to eval-
uate and understand the performance of diversity indices or 
proposed criteria they must satisfy to correctly measure dif-
ferent aspects of biodiversity (Botta-Dukát 2005, Grün and 
Leisch 2007, Schleuter et al. 2010, Carmona et al. 2016, 
Fontana et al. 2016, McPherson et al. 2017). While most 
of these indices correctly measure the envisaged aspect of 
ITD, caution is required in the use of some of these indices 
especially with respect to the effect of the number of indi-
viduals. We provide a summary of important recommenda-
tions on each of the indices tested in Table 1. FRic is limited 
to applications involving trait space expansion while FEve 
is not suitable for measuring trait evenness in a number of 
scenarios (Schleuter et al. 2010, Fontana et al. 2016, Legras 
and Gaertner 2018, Kosman et al. 2020) including the one 
identified in this article. Thus, we recommend not using 
FEve to measure ITD evenness. Rather, TED or TEDM 
computed over several bootstraps with a fixed number of 
individuals (N) should be used. The same bootstrap tech-
nique can be used in computing TOP for measuring trait 
richness. HIT is computationally intensive, especially for 
a trait space with more than 3 dimensions and 1000 indi-
viduals (see figure in Supporting information). Bootstrap 
with a fixed number of individuals lesser than 1000 indi-
viduals can be employed to reduce the computational time. 
However, we must stress that this is not guarantee to lead 
to significant reduction in computational time in trait space 
with 4 or more traits. It is important to stress that we con-
sider strictly indices designed for continuous data in this 
article, especially TED and TEDM. HIT is based on Hill 
indices which were originally invented for categorical data, 
so this particular index can be applied to both discrete and 
continuous traits. In principle, the indices considered in 

this article could be extended for binary and categorical 
traits. Such extensions require distance metrics for binary 
and categorical data (Gower distance: Gower 1971, Jaccard 
or Tanimoto distance: Jaccard 1912, Chung et al. 2019). 
Also, computing HIT for binary data requires a multivari-
ate binary density (Teugels 1990, Qaqish 2003). One idea 
presented in the article that might be a challenge for cat-
egorical and binary traits is implementing the concept of 
continuous trait change. This concept is abstract for said 
traits. However, computing the value of a TD index for all 
possible permutations of binary or categorical trait values 
in a (multivariate) trait space can provide valuable insights 
into the performance of such TD index. However, these 
extensions fall outside the scope of this article.

In summary, we recommend either of FDis or Rao for 
measuring individual-level trait divergence. Also, we recom-
mend using TED and TEDM (bootstrap with fixed number 
of individuals) instead of FEve for measuring individual-level 
trait evenness, and TOP (bootstrap with fixed number of 
individuals) instead of FRic for measuring individual-level 
trait richness. FRic (bootstrap with fixed number of individu-
als) should only be considered if the focus of the study is to 
measure trait space expansion.
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