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Abstract

Industrial ecology (IE) methodologies, such as input/output or material flow analysis

and life cycle assessment (LCA), are often used for the environmental evaluation of

circular economy strategies. Up to now, an approach that utilizes these methods in a

systematic, integrated framework for a holistic assessment of a geographic region’s

sustainable circular economy potential has been lacking. The approach developed in

this study (IE4CE approach) combines IEmethodologies to determine the environmen-

tal impact mitigation potential of circular economy strategies for a defined geographic

region. The approach foresees five steps. First, input/output analysis helps identify sec-

tors with high environmental impacts. Second, a refined analysis is conducted using

material flow and LCA. In step 3, circular strategies are used for scenario design and

evaluated in step4. In step5, the assessment results are compiled and comparedacross

sectors. The approach was applied to a case study of Switzerland, analyzing 8 sectors

and more than 30 scenarios in depth. Carbon capture and storage (CCS) from waste

incineration, biogas and cement production, food waste prevention in households,

hospitality and production, and the increased recycling of plastics had the highest mit-

igation potential. Most of the scenarios do not influence each other. One exception

is the CCS scenarios: waste avoidance scenarios decrease the reduction potential of

CCS. A combination of scenarios from different sectors, including their impact on the

CCS scenario potential, led to an environmental impact mitigation potential of 11.9
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Mt CO2-eq for 2050, which equals 14% of Switzerland’s current consumption-based

impacts.

KEYWORDS

circular economy, industrial ecology, input–output analysis, life cycle assessment, material flow
analysis, sustainability

1 INTRODUCTION

Resource extraction has significantly increased in recent years, exceeding environmental limits and thereby creating great harm to nature and cli-

mate (Hertwich et al., 2010; IRP et al., 2019; Steffen et al., 2015; UNEP, 2011). Therefore, changing existing production and consumption patterns

is of utmost importance to reduce the effects of climate change on ecosystems and humans (Hoegh-Guldberg et al., 2019). One concept aiming to

minimize the impact of anthropogenic activity on the environment is industrial ecology (IE), also called the “science of sustainability” (Ehrenfeld,

2004). IE seeks to assess systems holistically and to implement optimal resource management within a specific environmental carrying capac-

ity (Graedel, 1996; Lifset & Graedel, 2015). Methodologies commonly used in IE include (environmentally extended) input–output analysis (I/O

analysis), material flow analysis (MFA), and life cycle assessment (LCA) (Brunner & Rechberger, 2010; Hellweg & Milà i Canals, 2014; Suh, 2004;

Wiedmann, 2009).

Another concept similar to IE is circular economy (CE). CE aims to decouple economic activities from environmental impacts by maximizing

resource circulation andminimizing waste (The EllenMacArthur Foundation, 2012).

The interconnectivity of IE and circular economy is indisputable. IE is considered one of the primary roots of a CE (Bocken et al., 2017;

Lüdeke-Freund et al., 2019) and was labeled the science of the CE (International Society for Industrial Ecology, 2022). Many of the core tools of

IE, such asMFA and LCA, and combinations thereof, are increasingly applied in the context of a sustainable CE (SCE) (Blum et al., 2020; Haupt et al.,

2017, 2018a; Mayer et al., 2018). MFA can be applied to model current and prospective flows and to analyze the effect of CE measures (Eriksen

et al., 2020; Klotz et al., 2022; Lederer et al., 2020). LCA has been utilized in many cases to demonstrate the environmental benefits of certain CE

strategies over others (Colley et al., 2020; Deschamps et al., 2018; Martin et al., 2021). A combination of MFA and LCA to identify environmental

hotspots in consumption was developed byWestin et al. (2019). Environmentally extended I/O analysis has been used to assess CE scenarios. For

example, Donati et al. (2020) andWiebe et al. (2019) usemultiregional I/O analysis tomodel the effect of increased reuse, repair, and recycling on a

global level.

To conclude, I/O analysis, MFA, and LCAwere applied repeatedly to assess the environmental implications of circular economy strategies. How-

ever, combining the three differentmethods into one systematic, integrated framework to obtain a holistic assessment of the potential of an SCE to

mitigate environmental impacts has not been done so far. Therefore, this study aimed to investigate (i) how industrial ecology tools can be used in a

complementary manner for a comprehensive SCE assessment of a geographic region and (ii) how cross-sectoral influences of the scenarios can be

captured and evaluated for an economy-wide SCE assessment.

To do so, we combined the IE tools I/O analysis, MFA, and LCA with CE principles/strategies to determine the environmental impact mitiga-

tion potential of the CE strategies investigated. The industrial ecology tools for assessing the sustainable circular economy potential approach (IE4CE)

foresees five phases: (i) identifying environmental hot spots in (national) production and consumption, (ii) developing circular economy strate-

gies, (iii) assessing the different strategies, (iv) evaluating the influence of the different strategies on each other, and (v) selecting the strategies

or combinations of strategies for highest environmental impact mitigation.

The approach was illustrated in a case study of Switzerland. Selected sectors and case studies are presented to demonstrate different modeling

approaches.

2 METHODS

In this section, each of the five steps of the IE4CE approach for a geographic region is elaborated in detail. A schematic representation of the IE4CE

approach is presented in Figure 1. The application of the IE4CE approach to the case study of Switzerland is presented in Section 3.

2.1 Step 1: Hot spot analysis of status quo

First, the scope of the analysis and the geographic region to be investigated are defined. To identify the environmental hot spots of a region’s econ-

omy and mitigation potentials “top-down,” environmentally extended I/O analyses can be used (Minx et al., 2009). To increase the spatial detail of
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256 WIPRÄCHTIGER ET AL.

F IGURE 1 Schematic overview of the approach. The area of the rectangles represents the impacts of different sectors and corresponding
scenarios. Different colors represent different sectors (e.g., an industrial sector within a country), and different shades of one color represent
different scenarios

the analysis, usingmultiregion input–output tables is an option (Lenzen et al., 2017, 2013). Froemelt et al. (2021) linked such a sub-nationalmultire-

gion input–output model (Lenzen et al., 2017) with a highly resolved bottom-up model that predicts the consumption behavior for each household

in a region (Froemelt et al., 2021). This allows an environmentally extended I/O analysis to be conducted, which is tailored explicitly to the region

studied.

Theoutcomeof step1 is the identificationof environmental hot spots in the region assessed as abasis for selecting sectors (e.g., industrial sectors

of potential concern in a region or the supply chain) to be further investigated in detail.

2.2 Step 2: Refined status quo analysis of sectors

In the second step, a refined status quo analysis is conducted for each sector selected during step 1. The refined analysis aims to identify the most

impactful processes and flowswithin a sector (e.g., concrete and steel in the construction industry, see Section 3.2.1). For the in-depth analysis, using

a modular MFA/LCA approach (Haupt et al., 2018a) is suitable. In addition, circularity indicators can provide insights into the current circularity

of the assessed sector and help identify opportunities for improved resource utilization. Such indicators include, for example, the recycling rate

(European Commission, 2015), the reuse potential indicator (Park & Chertow, 2014), the retained environmental value (REV) indicator (Haupt &

Hellweg, 2019) or its derivation for sufficiency scenarios, the comparative environmental value (CEV) (Wiprächtiger et al., 2022) (see Supporting

Information S1, Section 1 for more details), or other indicators as, for example, presented in the review byMoraga et al. (2019).

As a result of step 2, specific materials or products for further investigation of the environmental impact mitigation potential are selected for

each sector analyzed.
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WIPRÄCHTIGER ET AL. 257

2.3 Step 3: Scenario development

In step three, improved resource use and environmental impact mitigation scenarios are designed for the materials and products selected. Scenar-

ios can be developed using, for example, formative scenario analysis (FSA) (Scholz & Tjetje, 2002) or predictive (forecasts or what-if), explorative

(external or strategic) or normative (preserving or transforming) scenarios as defined by Börjeson et al. (2006).

It is essential to define a business as usual (BAU) scenario to which the scenarios developed can be compared. The BAU scenario should

account for population andeconomic growth, expected energymix changes, consumer behavior trends, and environmental awareness. In addition, a

functional unit for the LCA that allows the baseline scenario to be compared to the other scenarios should be defined.We suggest using a functional

unit (FU) based on the service within a defined timespan (e.g., for CE scenarios of clothing textiles, a suitable FU could be “providing clothing for

the households in a defined region in one year”; Wiprächtiger et al., 2022). Once the baseline scenario is defined, CE scenarios can be elaborated.

How the CE scenarios are defined depends on the case and scope of the analysis. The first possibility is a scenario-based target. The target can be a

reduction target, as often specified for foodwaste (see, e.g., SDG 12.3 on foodwaste prevention; UnitedNations, 2016) or a quota, for example, the

55% reuse and recycling rate of municipal solid waste in the EU by 2025 (European Parliament & Council, 2018). The circularity strategies refuse,

reuse, recycle, etc. (Kirchherr et al., 2017; Potting et al., 2016; Reike et al., 2018) are used to formulate theCE scenarios,which are thenmodeled and

evaluated in step 4. Another approach can involve the assessment of a potential, for example, estimating the energy potential of currently unused

biomass sources (Burg et al., 2018). The outcome of step 3 is various CE scenarios for the environmental impact mitigation of the assessed sector.

2.4 Step 4: Scenario assessment

During step4, theCE scenarios for the flows selected are assessedusing combinedMFA/LCA. The assessment should entail an impact-based assess-

ment since increased circularity in terms of mass does not necessarily lead to reduced environmental impacts (Blum et al., 2020; Hahladakis &

Iacovidou, 2018; Haupt al., 2018a, 2018b; Pivnenko et al., 2016). A prospective analysis may be conducted to assess the effect of today’s measures

on future material flows and environmental impacts. Subsequently, the scenarios are compared to the baseline scenario to determine the impact

mitigation potential. Comparing the different scenarios of one sector can help reveal potential combinations of the scenarios analyzed (e.g., reduced

consumption could be combined with increased separate collection) or mutually exclusive scenarios (e.g., reduced food waste vs. increased energy

production frombiogenicwaste). To assess the circular sustainability of the scenarios, we further suggest using theREV indicator (Haupt&Hellweg,

2019) (see explanation in Supporting Information S1) in combination with absolute environmental impacts.

The outcome of step 4 includes determining the environmental impact saving potential for each scenario.

2.5 Step 5: Synthesis of findings

In the last step, all scenarios analyzed are compared to each other to determine the scenarios with the highest environmental impact mitigation

potential. Similar to step 4, combinations of scenarios that may lead to an increased combined benefit are evaluated.

3 CASE STUDY

Thecase studyof a future circular economy inSwitzerland (geographic regionassessed)will serveas anexample to illustrate theapproachpresented

above. It is not the aim of this study to create a comprehensive analysis of all flows and CE strategies in Switzerland, but to give a general indication

of the feasibility of some key CE measures in closing resource loops and in contributing to reductions in Switzerland’s impacts on climate change

and its ability to reach net zero by 2050 (Der Schweizerische Bundesrat, 2021). Climate change (IPCC GWP 100a; IPCC, 2014) was chosen as a

critical impact category, but assessment with other impact indicators could be added. This case study serves to highlight methodological decisions

and challenges facedwhen undertaking the assessment.

We selected ambitious (but in our view still realistic) scenarios for all sectors analyzed. The scenarios foresee closingmaterial loops and concen-

trate onmaterials, products, andwaste. The transition of the energy system (e.g., increased renewables or electrification of themobility and housing

sector (Schweizerischer Bundesrat, 2020a) was neglected here unless related tomaterials or wastemanagement.

The impactmitigation potential of CEmeasureswas contrasted to the effect of carbon capture and storage (CCS), which is increasingly discussed

in terms of combatting increasing CO2 levels in the atmosphere (IPCC, 2021; UVEK & VBSA, 2022). A joint scenario combining compatible CE

measures and CCSwas assessed to quantify the overall improvement potential across all sectors analyzed.
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258 WIPRÄCHTIGER ET AL.

F IGURE 2 Greenhouse gas emissions of various sectors in Switzerland for 2014. The consumption perspective impacts are further
distinguished by impacts causedwithin Switzerland and impacts caused elsewhere in the world through imported goods (ROW imports; ROW, rest
of the world). The production impacts are similarly divided into impacts caused and consumed in Switzerland and impacts caused by production in
Switzerland that is exported. Underlying data for this figure can be found in Supporting Information S2.

3.1 Hot spot analysis of the status quo

For the hot spots analysis, two different butwell-known perspectives for emission accountingwere adopted: consumption-based carbon footprints

(globally occurring greenhouse gas [GHG] emissions induced by Swiss final demand) and production-based emissions (direct emissions released

within Switzerland) (Lin et al., 2015; Ramaswami et al., 2011). For this purpose, the Swiss sub-national (e.g., cantons) multiregion input–output

table from Froemelt et al. (2021) was used. They generated this table as a product of a new spatially resolved modeling approach that links a

highly detailed bottom-up model that uses machine learning techniques to predict the consumption behavior of Swiss households (Froemelt et al.,

2020) with a top-down macro-economic approach (Lenzen et al., 2017). Sectoral impacts on climate change for the consumption and production

perspectives are presented in Figure 2. The sectors correspond to theGeneral Classification of Economic Activities (NOGA) classification of economic

sectors (Federal StatisticalOffice (BFS), 2008), which is in linewith the European classificationNACE (Eurostat, 2020).One advantage of thismodel

is that it can also be downscaled to sub-regions to allow for sub-national regional analysis (Table 1).

Direct household GHG emissions were calculated as described by Froemelt et al. (2021), making use of emissions listed in the national inventory

(Federal Statistical Office (BFS), 2018) and prorated using results from Froemelt et al. (2020).

Manufacturing is the most impactful sector from a consumption perspective, followed by transport, real estate, heating, and construction. A

detailed analysis of the manufacturing sector is shown in Supporting Information S1, Figure S1. From the production perspective, manufacturing,

transport, storage, communication, agriculture, and forestry show the highest impacts. The household’s direct transport and heating emissions are,

for both perspectives, significant contributors. As households are responsible for an important share of the consumption-based carbon footprint,

it makes sense to change the underlying economic classification (NOGA) to consumption categories (COICOP) (United Nations Statistics Division,

2018), often used in household consumption studies (Froemelt &Wiedmann, 2020; Froemelt et al., 2018). This conversion can be obtained by the
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TABLE 1 Overview of different scenarios for each sector investigated in detail

Sector Scenario name Scenario Scenario description

Construction

industry—steel

& concrete (SC)

SCBAU BAU Constructionmaterial demand and demolition waste is assumed to

develop as predicted by, e.g., Gauch et al. (2016); Heeren andHellweg

(2019).

SC1 Retention of building

structure

The building structure of the dismantled buildings (i.e., concrete and steel)

is retained after dismantling andmodified (e.g., adding annexes or new

stories; Cheshire, 2016) instead of constructing new buildings.

SC2 Increased use of

renewablematerials

Based on the optimal wood use study byMehr et al. (2018), Swiss wood is

mainly utilized in buildings, thereby replacing concrete.

SC3 Use of circular concrete To decrease the environmental impacts of concrete, a new technology

working with adsorption of CO2 in recycling concrete aggregates (RCA)

and increased RCA amounts in concrete is assessed (Eberhard

Unternehmungen, 2022; neustark ag, 2021).

Construction

industry—

insulation

material (IN)

INBAU BAU The development of insulationmaterial installed and deconstructedwas

estimated based on a dynamicMFA (Heeren &Hellweg, 2019) and

combinedwith LCA to calculate the environmental impacts, assuming

the same installation, deconstruction and disposal pathways as today

(Wiprächtiger et al., 2020).

IN1 Recycling It was assumed that thermal insulationwould be separated better at the

deconstruction site and, therefore, increasingly recycled.

IN2 Renewable, biogenic

materials

For this scenario, it was assumed that mineral-oil-based insulation

materials would be phased out and replaced by biogenic, renewable

materials such as wood, cellulose fibers and hemp fibers. For insulation

in the basement, foam glass was used due to humidity).

IN3 Optimized For this scenario, mineral-oil-basedmaterials are phased out where

possible. The remaining oil-based andmineral insulationmaterials were

assumed to be recycled to the same extent as in IN1.

Biogas (BG) from

manure

BGBAU BAU Future (2035/2050) biogas production from anaerobic digestion of

manure was assumed to be similar to today (Burg et al., 2018).

BG1 Biogas substituting

electricity and heat

100% of available manure is anaerobically digested in∼4500 installation;

the thereby produced heat and electricity will substitute natural gas

and electricity from the grid (Burg et al., 2018).

BG2 Biogas upgrading for

natural gas

substitution

90% of availablemanure is anaerobically digested in 130 facilities; the

biogas produced is upgraded to biomethane and used for heat

production for industrial processes, substituting natural gas

(Schweizerischer Bundesrat, 2020a).

Foodwaste (FW) FWBAU BAU Per-capita food losses were assumed to be the same in 2035 and 2050

(based on Beretta &Hellweg, 2019a; in terms of percentage wasted at

each stage); population growthwas accounted for.

FW1 Measures in households It was assumed that consumers would buymore seasonal products and

products that do not fully comply with aesthetic norms and that

non-conformist produce and seasonal overproductionwould be

processed (Beretta &Hellweg, 2019a). In addition, households are

sensitized to durability, storage conditions, freezing options, and the

assessment of product state (Quested et al., 2011).

FW2 Measures in the

processing industry,

retail, and agriculture

This scenario includes reducing and utilizing by-products (e.g., wheat

bran), nose-to-tail strategies, and the utilization of dairy industry

by-products in products (e.g., in protein powders). The product

assortment in retail is better adjusted to seasonal fluctuations, and

incentives for households to buymore than needed reduced, for

example, through adjusting packaging sizes, pricing or product

placement (Beretta &Hellweg, 2019a).

FW3 Measures in hospitality

services

This scenario includes aesthetically non-conformist produce in the

hospitality sector (Beretta &Hellweg, 2019a). Further, nose-to-tail

strategies are to be applied and there are to bemore seasonal products.

(Continues)

 15309290, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jiec.13364 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [12/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



260 WIPRÄCHTIGER ET AL.

TABLE 1 (Continued)

Sector Scenario name Scenario Scenario description

Chemical industry

(CI)—solvents

CIBAU BAU It was assumed that the same share of solvents in the chemical industry

are incinerated after use as today (with energy recovery).

CI1 Highest circularity For this scenario, it was assumed that all solvents were regenerated

(recovery rate based on state-of-the-art technology)

Textile clothing TCBAU A dynamicMFA and LCA based on the system in 2017was conducted to

predict flows and impacts of textile clothing in Switzerland for the years

2025 and 2030 (Wiprächtiger et al., 2022) and then adjusted based on

expected population growth for the years 2035 and 2050.

TC1 Share It was assumed that 25% of the Swiss population would share their

clothing for this scenario.

TC2 Domestic reuse For this scenario, it was assumed that clothes that are currently exported

for reuse abroadwould be reused in Switzerland.

TC3 Repair This scenario considers that around 30% of waste clothes currently

disposed of via municipal waste incineration could be repaired (BAFU,

2014).

TC4 Refuse Quite a share of purchased clothes is never or only seldomworn

(Greenpeace, 2015). Thus, in this scenario, a reduction in clothing

consumption of 15% by 25% of the Swiss population was assumed.

TC5 Sufficiency For this scenario, a decrease in clothing consumption of 50%was

assumed.

Household

furniture

HFBAU A dynamicMFA and LCA based on the system in 2018was conducted to

predict flows and impacts of household furniture in Switzerland for the

years 2035 and 2050 (Wiprächtiger et al., 2022).

HF1 Prolonged life This scenario assumes that furniture is, on average, used for 25 instead of

currently 15 years.

HF2 Reuse Based on a study that found that 53% of discarded furniture could be

reused (Curran, 2010), increased reuse wasmodeled in this scenario.

HF3 Refurbish For this scenario, furniture was assumed to be returned to the retailer or

producer, overhauled, and subsequently sold again.

HF4 Recycle It was assumed that wooden parts of furniture weremade from recycled

wood.

MSW

management

(MW)

MWBAU BAU As a baseline scenario, theMSW system assessed by Haupt et al. (2018a)

was used, assuming increased per capita waste production until 2050

and considering population growth (Birnstengel et al., 2018; Kohli et al.,

2020).

MW1 Increased recycling rate This scenario assumes an increase in the recycling rate of glass, paper,

cardboard, aluminum, tinplate and ferrousmetals by 5% (e.g., 80% to

85%) (Haupt et al., 2018a).

MW2 “optimized” This scenario assumes that all waste streamswould be distributed to the

optimal EoL pathway (paper and cardboard recycled to insulation

material, packaging glass reused, recycled tinplate, aluminum, and

ferrousmetals) (Haupt et al., 2018a).

Plastics waste

(PW)

PWBAU BAU The consumption of plastics was assumed to develop based on the

per-capita consumption of today, accounting for population growth.

PW1 Max. collection This scenario assumes constant per-capita consumption. The collection

rate of plastic products that can be practically collected and are suitable

for mechanical recycling increases to 80% The sorting and recycling

processes aremostly the same as in 2017. This leads to a recycling rate

of 19%, considering secondarymaterial usability (Klotz et al., 2022b).

PW2 Max. recycling This scenario assumes that per-capita consumption remains constant and

the collection rate is the same as in PW2, while additionally product

design andwaste sorting are improved. This leads to a recycling rate of

31%, considering secondarymaterial usability (Klotz et al., 2022b).

(Continues)
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TABLE 1 (Continued)

Sector Scenario name Scenario Scenario description

Carbon capture

and storage

(CC)

CCBAU No CCS The baseline scenario assumes no CCS activities in Switzerland.

CC1 Biomass utilizationwith

carbon capture and

storage (BECCS)

For this scenario, it was assumed that CCS units would be installed at

wood-fired CHPwith CO2-emission streams larger than 0.1Mt CO2/a

(IPCC, 2005).

CC2 CCS atMSWI It was assumed that CCS units would be installed atMSWI plants for this

scenario (sus.lab ETHZ&VBSA, 2019).

CC3 CCS at cement plant For this scenario, it was assumed that CCS units would be installed at

cement production plants (Cemsuisse, 2021).

Abbreviation: BAU, business as usual.

COICOP-resolved household final demand vector defined in Froemelt et al. (2021), which originates from the official Swiss input–output table

(Bundesamt für Statistik, 2018). This change in classification reveals that themost impactful categories are nutrition, housing, mobility, furnishings,

and clothing, confirming the findings of previous studies (Alig et al., 2019; Froemelt et al., 2018, 2020; Jungbluth et al., 2011).

Based on this hot spot analysis, the construction industry and real estate, the production and processing of food, and the production of chemicals

and pharmaceuticals (asmajor sub-sectors of themanufacturing sector, see Figure S1 in Supporting Information S1)were selected for further inves-

tigation. Energy production frombiogenic (or) wastematerials and, particularly relevant for households (Froemelt et al., 2018)—textile clothing and

household furniture, are additionally examined in this study. Furthermore, the waste management (WM) system was studied as it is decisive in the

closing of resource loops and the sequestration of CCS, which was identified as a necessarymeans tomitigating climate change (IPCC, 2021).

Mobility, heating, and energy transition are important for GHG emission mitigation. Nevertheless, these will not be assessed in this study. They

donot involve closingmaterial resources loops per se (with someexceptions, e.g., lithiumbattery recycling,whichwedid not studyhere), and several

existing policies in Switzerland already target them. However, changes in the future energy mix were considered as part of the background system

of the CE scenarios evaluated further below.

3.2 Refined status quo analysis

In this step, the sectors selected are analyzed inmore detail and relevant findings for the subsequent analysis are presented.

A detailed overview of the refined status quo analyses can be found in Supporting Information S1, Section 3.

3.2.1 Construction industry

Steel and concrete

Steel and concrete are the most GHG-relevant materials in the Swiss construction industry (Gauch et al., 2016). Both materials are already widely

recycled (Gauch et al., 2016; VSMR, 2020). However, demolished concrete only substitutes aggregates (e.g., gravel or sand) and not bindermaterial.

The most impactful component of concrete, clinker, is still needed (Knoeri et al., 2013). Recycled steel does have lower impacts than primary steel

but needs to be remolten, which still requires large amounts of energy (Yellishetty et al., 2011).

Insulation material

The production and disposal of insulation material for residential buildings will become relevant for climate change impacts in the future due to

renovations (Heeren & Hellweg, 2019). Currently only 1.5% of insulation is recycled. Environmental hot spots are the production of insulation and

the incineration of oil-based insulationmaterials (Wiprächtiger et al., 2020).

3.2.2 Biomass waste for energetic use

The necessity to transform from a fossil-based to a renewables-based energy system is obvious and part of Switzerland’s agenda (Bundesamt

für Energie (BFE), 2020). To close resource loops, energy from biogenic and waste materials is focused on. The potential of biomass use has been
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262 WIPRÄCHTIGER ET AL.

analyzed by Burg et al. (2018a). They noted that manure currently has the largest unused energy potential. Hence, the energy from the anaerobic

digestion of manure will be further investigated.

3.2.3 Food waste

A significant contributor to the environmental impacts of the food sector is foodwaste (Beretta &Hellweg, 2019b). An analysis of food losses along

the supply chain revealed that around 2.8Mt of food waste is produced annually in Switzerland, equaling 4.1Mt CO2-eq (Beretta, 2018; Beretta &

Hellweg, 2019a). Around28%of foodwaste occurs in households (40%of impacts on climate change), the domestic food processing industry causes

24% of food losses (30% of impacts), and the rest is caused in agriculture or the food processing industry for consumption abroad (see Figure S3 in

Supporting Information S1). The options and effects of reducing foodwaste will be discussed and assessed in this study.

3.2.4 Chemical industry

An analysis of the chemical industry in Switzerland proved extremely difficult due to limited data available on chemical use and regeneration. In

official statistics, only chemicals transported to either off-site recycling or incineration facilities are covered. Thus, a simplified approachwas chosen

to design and evaluate CE strategies, focusing on solvents used in the chemical industry. These were identified to be of primary concern in previous

studies (Capello et al., 2007; Hofstetter et al., 2003).

3.2.5 Textile clothing

Textile clothing is responsible for around 3% of a household’s climate change impact (Froemelt et al., 2018). Currently, the largest share of clothes

is incinerated after use, while a smaller share is collected for further reuse or repurpose abroad (Wiprächtiger et al., 2022). The largest share of

environmental impacts of clothing can be attributed to production (Nørup, 2019; Sandin et al., 2019; Schmutz et al. 2021;Wiprächtiger et al., 2022),

emphasizing the need to alter consumption patterns to reduce environmental impacts.

3.2.6 Household furniture

Furnishings, including furniture, cause around 6% of a Swiss household’s climate impact. Furniture is mainly imported and, after its use, incinerated

inMSW incineration plants (Wiprächtiger et al., 2022). The production phase causes the highest impacts during the lifecycle of furniture, that is, the

energy required to process thematerials (Castellani et al., 2015; Dietz, 2005;Wenker et al., 2018;Wiprächtiger et al., 2022).

3.2.7 (Municipal) solid waste

Recycling rates of municipal solid waste in Switzerland are generally high for paper, cardboard, glass, and metals, ranging between 60% and 85%

(Haupt et al., 2017). In terms of the environmental impacts of the waste management system, paper and cardboard are relevant because they

dominatemass wise, whereas metals have higher impacts per tonne (Haupt et al., 2018a).

Klotz and Haupt (2022) conducted a detailed MFA of plastics in Switzerland for 2017. They identified around 0.8 Mt of plastic waste, of which

only 9% are recycled.

The analysis of global plastic supply chains revealed that the production of plastics is the most impactful life cycle stage for climate change

impacts (Cabernard et al., 2021). Therefore, increased plastic recycling to reduce primary plastic production will be investigated.

3.2.8 Carbon capture and storage

In Switzerland, CCS is discussed as an inevitable measure to reduce CO2 emissions and reach the net-zero target. The capturing of CO2 from the

exhaust gases is considered especially relevant at cement kilns as well as waste and biomass incineration facilities (Schweizerischer Bundesrat,

2020b).
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WIPRÄCHTIGER ET AL. 263

The CCS potential is estimated to be around 4.2 Mt CO2 from MSW incineration and around 1 Mt CO2 from cement production, respectively

(Cemsuisse, 2021; sus.lab ETHZ&VBSA, 2019; UVEK&VBSA, 2022).

3.2.9 Outcomes of step 2

Based on the refined SQ analyses, the followingmaterials and products are investigated in the next steps:

∙ For the construction industry, scenarios for increased circularity of concrete and steel and thermal insulation will be assessed.

∙ For the energy sector, a focus will be placed on the anaerobic digestion of manure.

∙ Measures in line with SDG 12.3 along the whole food value chain will be evaluated to reduce foodwaste.

∙ A scenario for more circular solvent management will be studied.

∙ For textile clothing and furniture, scenarios focusing onwaste prevention will be used.

∙ For the household waste fractions glass, aluminum, and paper and cardboard, improved separate collection and recycling will be evaluated.

∙ For plastic waste, scenarios for increased separate collection and increased recycling will be developed.

∙ CCS atMSW incineration plants, cement kilns, andwood-fired combined heat and power plants (CHP) will be investigated.

3.3 Scenario development

Based on the refined status quo analysis findings, scenarioswere developed for 2035 and 2050.While changes in the energymixwere not assessed

as a reduction potential, we did assume a change in the Swiss energy mix in the background inventories compared to today’s energy mix. We

analyzed two different energy mixes. One scenario assumed the phasing out of nuclear power and its replacement with imports from abroad, an

increased share of renewables (wind and solar) andmaintained levels of hydropower. The second scenario considered increased natural gas imports

for electricity and heat generation (Bundesamt für Energie (BFE), 2020).

Detailed elaboration on the definition of the baseline scenarios, the CE scenarios, and the related modeling and assessment assumptions for all

case studies analyzed can be found in Supporting Information S1, section 4.

3.4 Scenario assessment and synthesis of findings

The scenarios’ saving potentials andREV/CEVs for 2035 and2050 are presented in Figure 3. Further results can be found in Supporting Information

S1. Differences between the results for different energymixes wereminor.

The combined CCS scenarios show the highest GHG savings potentials. Food waste avoidance, high recycling of plastics (for 2050), biogas

upgrading and feeding into the natural gas grid, and construction prevention show potentials in a similar range. The rest of the scenarios indicate

lower impact mitigation potentials.

Compared to the BAU impacts of the respective scenario, the biogas utilization scenarios show themost considerable savings. These savings are

due to the avoidance of N2O andNH4 emissions of unmanagedmanure and the credits from the energy substituted.

Looking at the REV and CEV results, the retention of the building structure, optimized recycling pathways forMSW fractions, biogas upgrading,

and furniture refurbishing show the most prominent potential. The reduced demand for concrete and steel for the CS1 scenario leads to large

amounts of impacts saved (see also saving potentials of CS1 in Figure 3) in comparison to the original impacts (CSBAU). These saved impacts then

lead to a high CEV. In the case of biogas upgrading, EIdisp is large because natural gas is substituted. For plastic waste, the incineration impacts

supersede the recycling credits, resulting in a negative numerator (see equation (1) in Supporting Information S1).

It is important to emphasize that Figure 3 shows the potential of the individual scenarios. Some scenarios can be combined without influencing

the saving potential (i.e., they are additive).

An overview of the influence of the scenarios on each other is presented in Figure 4. For detailed explanations of the influences, see Supporting

Information S1, section 5.1. Most of the scenarios do not negatively influence each other, hence their potentials can be summed up (e.g., the food

waste avoidance scenarios). Only a few scenarios reduce the potential of other scenarios. Scenarios SC1 and SC2 potentially negatively influence

scenario SC3; the reduced consumption of concrete lessens the saving potential of circular concrete. On the other hand, the impact mitigation

potential of scenarios SC1 and SC2 can be augmented using circular concrete. Therefore, scenario SC3 positively influences scenarios SC1 and SC2.

Most adversely influenced by other scenarios are the CCS scenarios. Scenarios entailing waste prevention decrease the potential of CCS at

incineration plants.
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264 WIPRÄCHTIGER ET AL.

F IGURE 3 Overview of impact saving potentials and retained environmental value/comparative environmental value for the different
scenarios. Under

To determine the total impacts mitigated by the scenarios designed and assessed in this study, the potential of the CE scenarios of the different

sectorswere combined. All scenarios are included in the combination scenario if theydonot adversely affect eachother (SCandFW). In caseswhere

the scenarios influence each other, the scenario with the largest impact saving potential was considered (IN, MW, PW, HC, TC, CI). For mutually

exclusive scenarios, the best scenariowas considered (BG). For example, to avoid double countingwith the IN3 scenario, the benefits of usingwaste

paper for producing cellulose insulation, the impacts avoided were deducted from the total potential of theMW2 scenario. More details about the

assumptions and calculations conducted for the combination scenario can be found in Supporting Information S1, Section 5. The influence of theCE

strategies on the CCS scenarios was investigated by determining the reduced amount of emitted CO2 for the CE scenarios.

Themitigated impacts summed up to 8.1Mt CO2-eq for 2035 and 10.1Mt CO2-eq for 2050 for the CE combination scenario. Implementing the

CE combination scenario would decrease the CCS potential to 1.5 and to 1.8 Mt of CO2-eq potentially avoided for 2035 and 2050, as displayed in

Figure 5. In conclusion, the combined CE and the CCS scenarios as presented in this study could lead to a reduction in impacts on climate change

of 9.6 and 11.9 Mt CO2-eq for 2035 and 2050, which amounts to 22% of current Swiss production-based and 14% of current consumption-based

impacts.

4 DISCUSSION

IE methodologies such as MFA, LCA, and I/O analysis are often used to identify and assess possibilities to reduce the environmental impacts of

human activities. One such method involves evaluating the environmental sustainability of CE strategies. This study presented an approach for

combining the IE methodologies I/O analysis, MFA, and LCA to enable a pragmatic, holistic approach to assessing CE strategies for environmental

impact mitigation.
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WIPRÄCHTIGER ET AL. 265

F IGURE 4 Overview of mutual influences of scenarios. Reading example: Scenario SC1 reduces the potential of scenario CC3 as less concrete
is produced, and therefore less CO2 could be captured from cement plants

F IGURE 5 Total climate change impacts of the combined CE scenario, the combined carbon capture and storage scenarios, and the
combination of all scenarios accounting for mutual influences. Underlying data for this figure can be found in Supporting Information S2.
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266 WIPRÄCHTIGER ET AL.

The application of the IE4CE approach to the case of Switzerland demonstrated the usefulness of the approach chosen in helping to set priorities

betweenmultisectoral CE scenarios.

As demonstrated for the case study, the application of I/O analysis to a nation allows an overview of sectoral hot spots in an economy to be

gained. However, for an in-depth understanding of relevant flows, processes, and their environmental impacts, the additional application of MFA

and LCA is needed. I/O analyses are often not resolved enough to cover individual products; hence the combinationwithMFA/LCA allows the flows

to be modeled more accurately. The usefulness of these methodologies for assessing CE strategies has been proven in many cases (Donati et al.,

2020; Haas et al., 2015; Haupt & Zschokke, 2017; Haupt et al., 2018a; Wiebe et al., 2019; Wiprächtiger et al., 2020). As suggested in this study,

combining themethodologies discussed allows for identifying themost relevant sectors, analyzing these in-depth, designing and assessing relevant

CE scenarios and comparing the scenarios across different sectors. The application to the case study highlighted that a cross-sectoral comparison of

scenarios is of utmost importance to identify the effect of the scenarios on each other, whether that be negative or positive. Such influences should

also be considered when developing new policies, with care taken to exclude measures that contradict each other and to foster mutually beneficial

strategies.

4.1 Application to Switzerland

Applying the IE4CE approach to Switzerland revealed that the combination of CE scenarios, that is, reduced foodwaste, reduced steel and concrete

production aswell as increased recycling of plastics all have a high saving potential. Biogas production frommanurewith subsequent upgrading can

further help reduceenvironmental impacts byproviding energy fromawaste source and, as regardspotential nutrient cycling, byusing thedigestion

residues. The potential for optimizing the waste management system in Switzerland is small compared to benefits to be gained by applying other

CE measures mainly because separate collection and subsequent recycling are already carried out at a high level (Haupt et al., 2017). As seen for

furniture and clothing, measures taken before the products become waste are often more effective than waste management measures. An MSW

system that retains as much of the environmental value of the waste as possible is an integral aspect of closingmaterial cycles. Even withmeasures

taken today, due to the lag time and losses during implementation, waste will still occur and needs to be treated optimally.

Food waste prevention showed high impact mitigation potential, especially because the potential of the individual scenarios are additive. In

Switzerland, various food-saving projects have been implemented in recent years, for example, selling bakery goods from the previous day for lower

prices (ÄSSBAR GMBH, 2021) or using stale bread and vegetable and fruit that do not fulfill aesthetic requirements to make dumplings (Idealesse,

2021). However, no food waste monitoring system is in place yet. To change this, the Swiss parliament has passed a postulate that requests the

use of indicators for food waste and preparation of an action plan to reach the 50% food waste reduction target as set in the SDG 12.3 by 2030

(Chevalley, 2018). Another scenariowith high impactmitigation potential is the separate collection and recycling of plastics due to the avoidance of

impacts of plastics production and incineration. However, unless plastic products are designed and manufactured to allow for secondary material

uptake, the use of secondarymaterial from post-consumer plastics is limited (Klotz et al., 2022a). The high negative REV illustrates the detrimental

effect that the incineration of plastics has on circularity and the environment (environmental value is destroyed). On a global scale, most plastics

are not incinerated but landfilled (Cabernard et al., 2021; Geyer et al., 2017). Although plastics in landfills are less relevant in terms of impacts on

climate change, they are nonetheless responsible for contaminating freshwater systems, oceans, and terrestrial habitats (Barnes et al., 2009; Rillig,

2012;Wagner et al., 2014; Zubris & Richards, 2005). Landfilling plastics is, therefore, not environmentally friendlier than incineration.

The addition of CCS at incineration facilities and cement plants could further increase the climate change mitigation potential presented in this

study, although mutual influences occur. Waste-reducing measures decrease the potential of the CCS scenarios at waste incineration facilities. At

the same time, the augmented cascading use of renewable resources could increase the amount of CO2 captured from bioenergy plants. CCS at

biogas facilities could further increase the potential of the BG and the CCS scenarios, especially with regard to the benefits of increased anaerobic

digestion of manure. Althoughwidely discussed, CCS is not yet an established technology, and the questions around the storing or utilization of the

captured CO2 are far from resolved.

The analysis presented in this study provides a solid foundation for the development of policies around CE. The study identified both the

largest levers with regard to climate change impacts and hitherto unanalyzed mutual influences between sectors. Policy makers may use these

results to prioritize their actions (political measures). While CE measures might not be sufficient to reach net zero—other measures targeting,

for example, the transformation of the energy system or changed mobility, while already partially in place, need to complement the CE scenar-

ios in order to reach the net-zero target—the study nonetheless highlights that loop-closing strategies are an important contributor to reducing

natural resource consumption and environmental impacts. The analysis further revealed the dependency of Switzerland on global supply chains

(production- vs. consumption-based impacts, e.g., for textile clothing), which underlines the need for global regulations with regard to circular

economy as exemplified by the currently discussed plastics treaty.
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4.2 Environmental assessment beyond climate change

The results presented in this study only cover impacts on climate change; the results for other impact categories might look different. For example,

reduced food waste could help reduce water consumption, biodiversity loss, land use, eutrophication, and ecotoxicity impacts. Similarly, the textile

clothing scenarios can reduce water stress (especially relevant for cotton clothes). Further, by reducing the amount of dyes and other chemicals

used in clothing production across the various scenarios, impacts onhumanhealth andecotoxicity could be reduced (Chrobot et al., 2018).However,

the use of carbon capture technology would lead to increased energy demand and, therewith, energy-related impacts beyond climate change (e.g.,

particulatematter-relatedhealth impacts). The increaseduseofwood, for example, in the building and construction sector, could affect biodiversity.

An additional quantitative analysis of environmental impacts beyond climate change could help identify both co-benefits and trade-offs between

impact categories.

4.3 Limitations of the study

Asignificant challengeof this studywas selecting the sectors tobe analyzed in depth. This selection relied entirely on the I/Oanalysis conducted, the

resolution of the I/O table, and the sectors’ aggregation. The results obtained were contrasted to other studies analyzing end consumption sectors

to verify the results of the hot spot analysis (see Section 3.1).

Further sources of uncertainty are the different approaches to scenario design. For this study, we reverted to already conducted, in-depth stud-

ies.Where necessary, wemade adjustments to reduce inconsistencies between the different scenarios, for example, aligning the years investigated

based on forecasted population growth and background energy mix. Including technology development for more efficient production could be

included to reduce uncertainties for future projections.

In general, thedesignof the scenarios is associatedwithmanyuncertainties since theoptions available are almost endless.We includedconsumer

behavior in the design phase to narrow down the number of possible scenarios. Implementing a feedback loop between the MFAs, LCAs, and the

I/O table, resulting in directly changed flows and environmental impacts for the I/O analysis, could enable the implications of the scenarios for

other sectors to be directly seen, facilitating thereby the detection of some of the mutual influences on the scenarios. Furthermore, comparing the

scenarios’ costs could help identify the most promising scenarios or the necessary financial or political measures (regulations, incentives) required

to implement the environmentally most beneficial scenarios.

5 CONCLUSION

This study revealed that the combination of IE tools, such as I/O analysis, MFA, and LCA, allows for a holistic assessment of a nation’s CE impact

mitigation potential. The approach especially allows scenarios across different sectors to be compared and influences of the individual scenarios on

each other to be identified, which can be helpful for the design of adequate environmental impact mitigation policies. Applied to the case study of

Switzerland, we discovered that no singlemeasurewould lead to a drastic reduction in environmental impacts but that the implementation ofmany

complementary measures is needed. Considering the mutual influences of the scenarios developed and evaluated in this study, an environmental

impact mitigation potential of 11.9Mt CO2-eq was identified for the year 2050, which corresponds to 14% of the current consumption-based and

22%of the current production-based climate change impacts of Switzerland. This substantial contribution to reaching Switzerland’s net-zero target

by 2050 should be accompanied by other measures such as switching to renewable energies or the electrification of personal transport.
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