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A B S T R A C T   

Accurate georeferencing is essential if forest indicators, such as timber volume, are to be modelled and predicted 
area-wide by establishing a linkage between local inventories and remote sensing data. Nevertheless, due to 
inaccuracies in global navigation satellite system (GNSS) measurements under a closed canopy, determining the 
exact position of sample-plots in a forest inventory is a major challenge. In this study different methods were 
evaluated, each of which is designed to improve the co-registration between field measurements and remote 
sensing data in a forest inventory. The methods were evaluated in two areas in Switzerland (Bremgarten and 
Zurich), all of which have heterogeneously structured and mixed forests. A simple algorithm that searches for the 
best match between tree-tops, detected in remote sensing data, and an inventory tree-top point-cloud led to 
unsatisfactory results. The failure of the algorithm was primarily related to the lack of accurate single-tree- 
identification (STI) methods in airborne laser scanning (ALS) data (10 points m− 2) on deciduous and mixed 
forest stands. These inaccuracies hampered a successful co-registration of the two data sources. To omit the 
single-tree-identification (STI) step, methods that rely on the comparison between an artificial canopy height 
model (CHM) calculated from the inventory data and the CHM generated from ALS data were tested. Correlating 
the two CHMs made it possible to identify plausible positions within the search range. The quality of all co- 
registration methods was assessed by the leave-one-out cross-validated root-mean-squared error (RMSE) of the 
timber volume estimate of the subsequently calibrated regression model. The best results were achieved with a 
method that modelled inventory tree-crowns as spheres and that applied a correlation metric named SQDIFF_-
NORMED. Co-registration made it possible to increase the model accuracy of timber volume estimates in 
Bremgarten by 31 RMSE-%, i.e. from 134.4 m3 ha− 1 (without co-registration) to 92.6 m3 ha− 1 with co-registered 
positions. Additional testing of the identified superior method with a larger inventory dataset of the canton of 
Zurich, Switzerland confirmed these results. There, the RMSE of the basal-area estimate was improved by 10 
RMSE-%, from 13.56 m2 ha− 1 to 12.18 m2 ha− 1. For these CHM-based methods, integrating the information from 
a deciduous–evergreen (DecEv) raster improved the positional accuracy but not the overall predictive power of 
the regression models.   

1. Introduction 

Forests provide various ecosystem services. They are important for 
biodiversity conservation and climate change mitigation, but also pro-
duce timber for various industrial purposes and function as a location for 
retreat and recreation. Provision of these various services requires effi-
cient forest management. Effective forest management in turn requires 
precise knowledge about the current state of the forest. As a census of the 

whole forest area is usually impossible, inventories with a sampling 
scheme are usually applied to estimate, for example, the timber volume 
(VOL) and the basal area (BA). To increase the accuracy of these esti-
mates two-phase inventories are common (Mandallaz, 2007; Naesset & 
Jonmeister, 2002). After inventory data are collected at the terrestrial 
sampling locations (i.e. in sample-plots), a relationship between the 
target variable (e.g. VOL) in the sample-plots and predictors derived 
from area-wide remote sensing data is established by means of 
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regression analysis (Bont et al., 2020; Hauglin et al., 2014; Hollaus et al., 
2009; Immitzer et al., 2012; Waser, 2012; Waser et al., 2011). To form 
accurate and reliable regression models, it is essential that the remote 
sensing data and the sampling locations are adequately geo-referenced 
(co-registered). Inaccurate co-registration between terrestrial in-
ventory data and remote sensing data leads to erroneous regression 
models and therefore less accurate predictions. 

The location of the sample-plots is only approximately known, even 
if positions are measured with a global navigation satellite system 
(GNSS). With non-differential GNSS devices, positional accuracies of 
10–20 m are attainable under a closed canopy (Lamprecht et al., 2017; 
Monnet & Mermin, 2014; Wing et al., 2005). For example Zimbelman 
et al. (2018) reported an RMSE ranging from 1.81 m to 16.69 m, with a 
mean of 6.61 m, which was depending on the stand characteristics. 

By using a differential GNSS (dGNSS) device it is possible to account 
for atmospheric diffraction effects, but precise measurements require a 
logging time of approximately 20 min (Hauglin et al., 2014; Valbuena 
et al., 2010). Without canopy cover, positional accuracies of ≤ 0.5 m are 
realisable. Under closed canopy conditions the satellite-constellation- 
dependent refraction of the GNSS signal leads to positional errors >
0.5 m. For stands with a BA < 30 m2 ha− 1, Naesset & Jonmeister (2002) 
measured dGNSS positional errors between 0.49 and 3.60 m. The “true” 
reference positions were found by means of transverses performed from 
a reference point in the open area with a positional accuracy of 0.1–0.2 
m. For BA values > 45 m2 ha− 1 the authors found positional errors to be 
between 2.15 and 5.60 m. Kaartinen et al. (2015) showed that combi-
nations of dGNSS sensors combined with an inertial measurement unit 
(IMU) further improved accuracy with a positional accuracy (RMSE) 
ranging between 1.3 m (young spruce) to 2.7 m (mature spruce). 

Even though GNSS and dGNSS devices are now used in most forest 
inventories to measure the sampling location exactly, positional errors 
of > 10 m are common due to erroneous instrument handling or a weak 
reference signal. The accuracy of statistical regression models that are 
derived from that position decreases with increasing positional error 
(Dorigo et al., 2010; Fadili et al., 2019; Hernández-Stefanoni et al., 
2018). Therefore, predictions made with these models also have a 
greater error. Post-processing techniques to correct positional mea-
surement errors by comparing field data with remote sensing data could 
improve the quality of area-wide predictions of forest parameters and 
multi-phase forest inventories. Several authors have studied such co- 
registration techniques, mostly under advantageous forest conditions 
with a high proportion of conifers (conical crown shape) and relatively 
open forest stands. Frequently, use of an accurate single-tree- 
identification (STI) method from remote sensing data is required for 
the success of these techniques (Hauglin et al., 2014; Olofsson et al., 
2008). 

Different STI methods have already been intensively researched. 
Today, most STI approaches rely directly on airborne laser scanning 
(ALS) point-clouds or datasets derived from an ALS point-cloud, such as 
canopy height models (CHM; Kaartinen et al., 2012; Vauhkonen et al., 
2012). Some STI methods estimate tree positions (Eysn et al., 2015; 
Kaartinen et al., 2012; Koch et al., 2006; Menk et al., 2017; Vauhkonen 
et al., 2012), whereas others attempt to identify entire tree-crowns by 
means of different segmentation algorithms (Eysn et al., 2015; Kaartinen 
et al., 2012; Koukoulas and Blackburn, 2005; Leckie et al., 2003; 
Vauhkonen et al., 2012). The most sophisticated but also data intensive 
algorithms identify complete trees (Lu et al., 2014; Parkan, 2019; Parkan 
& Tuia, 2015; Reitberger et al., 2009). When co-registration is attempted 
by means of a previously conducted STI algorithm, the presumed 
sample-plot centre is shifted within a certain search range based on the 
identified single-tree distribution compared with the distribution based 
on the terrestrial record (Hauglin et al., 2014). However, little research 
has been done on the influence of STI quality on the accuracy of co- 
registration. 

For clarity and readability, the terms deciduous and evergreen were 
used in this paper. Only, when the relevant distinguishing feature is the 

crown shape, the terms coniferous and broadleaf were applied. The larch 
is treated as deciduous and coniferous (non-broadleaf). All other 
observed conifers were treated as evergreen. 

1.1. Co-registration via single-tree identification 

If co-registration is carried out via a previous STI, different data 
sources can be linked by comparing and matching single-tree distribu-
tion patterns or single-tree characteristics. In contrast to an area- or 
pixel-based approach, this method can integrate structural characteris-
tics of single trees into a subsequent modelling process. 

Hauglin et al. (2014) use terrestrial laser scanner (TLS) point-clouds 
of each sample-plot to co-register it with the ALS point-cloud in a 
conifer-dominated study area. As the initial position, measurements 
with a non-differential GNSS device were used. By identifying local 
maxima (LM) in an ALS-derived CHM raster, tree positions were deter-
mined, as well as tree-top positions extracted from the TLS data. For co- 
registration, a match score was calculated based on pair-wise point 
distances within a search range. 

Lamprecht et al. (2017) developed an algorithm that links trees from 
field measurements to trees that were detected with remote sensing 
data. GNSS measurements of the sample-plot centres were used as initial 
positions for co-registration. The authors argued that most co- 
registration methods are limited by the small number of sample-plots 
for algorithm calibration, and that sufficient training data for a reli-
able model can be provided only by modelling forest stands. The method 
proposed by Lamprecht et al. (2017) used many synthetic forest stands 
to achieve an optimal parametrization of the co-registration algorithm. 
From these forest stands artificial point-clouds were generated and an 
LM-based STI was applied. These identified tree-tops were subsequently 
matched to the tree-tops of the simulated stand (3D-point-matching). 
Samples were considered correctly co-registered if at least 50% of the 
individual trees have been correctly assigned. Olofsson et al. (2008) 
presented a method which linked terrestrial inventory trees and trees 
detected in remote sensing data. As a starting position for the co- 
registration algorithm, GNSS measurements of the sample-plot centres 
were used. In an ALS-based CHM, an LM-based STI was performed. 
Terrestrially measured, as well as remotely detected, trees were 
modelled as a Gaussian surface with an amplitude proportional to the 
tree height to calculate an artificial CHM (aCHM). Within a search 
range, this aCHM was compared with the ALS-based CHM by calculating 
a normalized correlation coefficient for each overlaying position. At the 
end, the overlaying position with the best coefficient was chosen. The 
Swedish study area was dominated by coniferous trees. It should be 
emphasized that the actual co-registration process was done by CHM 
image-matching, and only the preparatory work was based on single- 
tree detection. 

1.2. Co-Registration with CHM image-matching 

In contrast to the co-registration methods described in section 1.1, 
the CHM-based methods described here do not require an STI. This can 
be an advantage in broadleaf-dominated forests (irregular crown shape), 
where STI by LM detection is error prone (Monnet & Mermin, 2014). 

Dorigo et al. (2010) chose an approach that strongly resembles the 
one of Olofsson et al. (2008) but avoids STI. The crown of each terres-
trially sampled tree was modelled to generate an artificial CHM (aCHM) 
for each sample-plot. In a search range of 30 m, the ALS-CHM and the 
aCHM were compared and the most similar position was identified, 
giving more weight to pixels that presumably belonged to a crown-tip. 
As a reference and ground truth, all sample-plots were manually co- 
registered. Most broadleaf-dominated sample-plots had to be excluded 
from the analysis because manual co-registration was impossible. 

Monnet and Mermin (2014) presented another approach, which 
performed a co-registration by comparing CHM values to the size of 
terrestrially recorded trees. Based on tree-size-related parameters (DBH 
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and tree height), a tree-size raster was calculated for each sample-plot. 
In this raster only cells with a tree trunk in it were kept as non-zero. 
This artificial inventory-plot raster was moved over the ALS-based 
CHM within a search range of 20 m, and the correlation (same equa-
tion as in Olofsson et al. (2008)) was calculated at each position. 

Previous work primarily focused on co-registration in stands domi-
nated by conifers with a single and pronounced tree-top maximum and 
therefore accurate STI results. In Central Europe, broadleaf and mixed 
forests dominate and are predicted to become even more important with 
advancing climate change (Seidl et al., 2017). Therefore, there is a need 
to investigate these existing methods under more diverse forest condi-
tions and to develop methods that are better suited to highly structured 
and mixed forest stands. Recent co-registration studies have emphasized 
the use of single-tree point-matching methods, which search for the best 
match between two corresponding tree-top point-clouds. It is likely that 
co-registration methods that require an STI based on ALS data are not 
yet suitable for mixed and diversely structured forest stands, as STI is 
highly unreliable under such conditions. Raster-based methods not only 
omit STI, but also use area-wide information. Therefore, positional in-
formation, for example about gaps in the forest area, is maintained. Such 
non-STI-reliant methods can therefore be expected to become increas-
ingly important in Central Europe as forest composition shifts under 
climate change. 

The objective of this study was to test the effectiveness of different 
(STI and non-STI-reliant) co-registration methods using a variety of 
forest stand types. Emphasis was placed on the generalisability of the 
methods under different forest conditions. As acquiring reliable refer-
ence data, e.g. by manual co-registration, is a major challenge and a 
source of error, the quality of the co-registration was primarily assessed 
based on the quality of OLS regression models that predicted VOL and 

BA from ALS-derived predictors. OLS regression models were applied 
because the frequently used two-phase estimators introduced by Man-
dallaz (2013) require the internal models to be fitted with an OLS 
technique. 

1.3. Research questions 

The following research questions were addressed in this study:  

1. Is there a gain in the model performance of OLS regression models, in 
predicting VOL or BA from remote-sensing-derived predictors, when 
terrestrial samples are co-registered with remote sensing data prior 
to model calibration? 

2. Which co-registration methods are best suited in study areas domi-
nated by mixed and heterogeneously structured stands? 

3. Is co-registration further improved when deciduous–evergreen in-
formation from remote sensing data is integrated into the co- 
registration process? 

2. Materials and methods 

2.1. Study areas 

The main comparison of different co-registration methods was per-
formed with forest inventory data from Bremgarten (Canton of Aargau, 
Switzerland) (Fig. 1, left). The best-performing methods were then 
tested with a considerably larger dataset from a cantonal inventory in 
Zurich (Switzerland) (Fig. 1, right). Additional study area parameters 
can be found in Table 1. 

The response variables were chosen according to the requirements of 

Fig. 1. Investigated case study areas in Switzerland and the locations of the sample-plots in Bremgarten and Zurich (coordinate system: EPSG 2056, CH 1903+ / 
LV 95). 
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the data provider. In Bremgarten the local forest owners primary focus is 
the merchantable VOL. For the Canton of Zurich, the BA is a valuable 
monitoring dataset. 

2.1.1. Bremgarten 
The Bremgarten study area is located in the Central Plateau of 

Switzerland (Fig. 1). A detailed description can be found in Bont et al. 
(2020). The natural forest types are deciduous-dominated mixed forests. 
The actual forest stands are dominated by evergreen trees (conifers 
without larch; 52 % of both VOL and BA) and have an average VOL of 
274 m3 ha− 1 and BA of 20.9 m2 ha− 1. As a result of storm Lothar in 
December 1999, there is a surplus of young forest stands compared with 
a normal age class structure (Fig. 2, left and Fig. 3), with a higher pro-
portion of deciduous volume than in older forest stands (Bont, 2019). As 
a consequence, at least in terms of area, deciduous trees dominate the 
study area (75 %; calculated according to section 2.9). In winter 2011/ 
2012, an inventory with a total of 363 permanent sample-plots was 
carried out, following the protocol of Schmid-Haas et al. (1993). The 
tree species beech (Fagus sylvatica, 17 % VOL), oak (Quercus sp., 9.1 %), 
maple (Acer sp., 5.8 %), ash (Fraxinus excelsior, 5.2 %), basswood (Tilia 
sp., 0.9 %), cherry (Prunus avium, 0.5 %), elm (Ulmus sp., 0.1 %), Norway 
spruce (Picea abies, 41.6 %), silver fir (Abies alba, 6.2 %), Scots pine 
(Pinus sylvestris, 1.4 %) and larch (Larix sp., 2.9 %) were distinguished. 
Other species were summarized as other deciduous trees (0.1 %) and 

other evergreen trees (3.0 %). The same design had already been applied 
in inventories in 1971, 1976, 1986 and 1996. The sampling design 
featured circular sample-plots with a radius of 11.3 m (area = 400 m2). A 
sample was taken in a W-E direction every 80 m and in a S-N direction 
every 150 m. During the inventory of 2011/2012, the position of 
sample-plots on which trees were present (276 sample-plots in total) was 
measured with a dGNSS receiver. In addition to the terrestrial mea-
surements, 4-band (RGB and near infrared [NIR]) orthoimages from 
2016 with a resolution of 25 cm were available, along with data from 
three ALS flights. One ALS flight was made in November 2011 (leaf-off) 
with a point density of 8 points m− 2 and two flights were made in 2014 
(leaf-on and leaf-off) with 14 points m− 2 (Abteilung Wald, 2014; BFS 
Swissphoto AG, 2011). 

2.1.2. Zurich 
The canton of Zurich maintains a forest inventory with permanent 

sample-plots surveyed according to Schmid-Haas et al. (1993). The in-
ventory design features circular sample-plots with a radius of 9.8 m 
(300 m2) on a 80 m (W-E) × 300 m (S-N) grid (Baudirektion Kanton 
Zürich, 2017). The DBH threshold for recording is 12 cm. The tree 
species beech (Fagus sylvatica, 25.5 % VOL), oak (Quercus sp., 3.6 %), 
maple (Acer sp., 5.9 %), ash (Fraxinus excelsior, 8.8 %), basswood (Tilia 
sp., 0.4 %), cherry (Prunus avium, 0.6 %), elm (Ulmus sp., 0.4 %), Norway 
spruce (Picea abies, 32.8 %), silver fir (Abies alba, 10.1 %), Scots pine 
(Pinus sylvestris, 6.5 %) and larch (Larix sp., 1.8 %) were distinguished. 
Other species were summarized as other deciduous trees (2.4 %) and 
other evergreen trees (0.5 %). In this study, records from the years 2017 
and 2018 were used (4,687 sample-plots; Fig. 1). The corresponding 
forest stands have an average VOL of 414 m3 ha− 1 and BA of 30.9 m2 

ha− 1. For 3,446 of the total 4,687 sampling-plots, dGNSS or GNSS 
measurements were available. ALS data with a point density of 8 points 
m− 2 were acquired in spring 2014 (mostly leaf-off) (BSF Swissphoto AG, 
2014). Four-band (RGB and NIR) orthoimages with a resolution of 10 cm 
were acquired in summer 2018. 

2.2. Allometry data 

For the derivation of tree-species-specific regression models, which 
were used to estimate tree height and crown size based on DBH, data 
from the Chair of Forest Growth and Yield Science at the Technical 
University of Munich (TUM), as well as the Swiss Federal Institute for 
Forest, Snow and Landscape Research (WSL) were used. The WSL data 
originated from the Experimental Forest Management (EFM) plots 
(Forrester et al., 2019), while the TUM data were gathered by Professor 
Hans Pretzsch and his group for various research projects related to the 
growth pattern in pure and mixed forest stands (Dieler & Pretzsch, 2013; 
Naudts et al., 2015; Pretzsch, 2014; Pretzsch et al., 2002, 2015; Pretzsch 
& Dieler, 2012). In total 213,006 single-tree measurements were 

Table 1 
Properties of the study areas Bremgarten and Zurich (DBH = diameter at breast 
height, 1.3 m above ground).   

Bremgarten Zurich 

Number of terrestrial 
sample-plots (GNSS in 
brackets) 

363 (276) 4,687 (3,446) 

Number of sample-plots 
after cleaning (section 
2.5) (GNSS in brackets) 

329 (244) 4,687 (3,446) – no 
cleaning 

Theoretical sample-plot 
arrangement grid 

80 m × 150 m 80 m × 300 m 

GNSS measurement quality dGNSS measurements dGNSS or GNSS 
measurements 

Recording method 400 m2 circle, min. DBH 
threshold of 12 cm 

300 m2 circle, min. 
DBH threshold of 12 
cm 

Date of terrestrial sampling Autumn to winter 2011/ 
2012 

2017/2018 

Date of the LiDAR flight 3 datasets: 9.11.2011, 
18.3.2014 – 4.4.2014 and 
19.6.2014 – 25.7.2014 

8.3.2014 – 15.4.2014 

Point density of the LiDAR 
raw data 

≥ 8 points m− 2, ≥ 16 points 
m− 2 and ≥ 14 points m− 2 

≥ 8 points m− 2, 
mean: 15 points m− 2 

Date of orthoimage flight Summer 2016 Summer 2018 
Orthoimage resolution 25 cm 10 cm  

Fig. 2. Densities of the measured timber volume (Bremgarten, left) and basal area (Zurich, right) distributions of the sample-plots. The density scale differs be-
tween panels. 
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analysed. Additional Information can be found in the Appendix. 

2.3. Methods overview 

An overview of the workflow is given in Fig. 4. In Bremgarten all of 
the methods were evaluated, whereas in Zurich only the ones that per-
formed best in Bremgarten were tested. In total three different sources of 
initial coordinates for co-registration were tested: (1) theoretical posi-
tions, (2) dGNSS positions and (3) dGNSS measurements with an arti-
ficial random error of up to 10 m to simulate non-differential GNSS 
measurements. The workflow for Bremgarten is explained below, as the 
application to the Zurich dataset was merely a simplification of the 
procedure. 

In a first step (section 2.4; Fig. 4a) the ALS data were validated, 
classified, normalized and clipped to the extent of the search window of 

each sample-plot. Starting from a known sample-plot position, two 
different co-registration approaches were tested. 

In the first approach (Fig. 4b), the tree-tops of the inventory trees 
were modelled via tree-species-specific allometric relationships to 
generate an artificial CHM (aCHM) (section 2.7). Subsequently, (Fig. 4c) 
within a quadratic search-window with a side length of 100 m for 
theoretical sample-plot positions and 50 m for (d) GNSS initial positions, 
the best match with the pit-free CHM (Khosravipour et al., 2014) was 
identified (section 2.11.1). The choice of the search window resulted 
from deviations from the theoretical sample-plot positions of up to 50 m 
in Bremgarten. 

In the second approach (Fig. 4d), the height of each inventory tree 
was estimated from the DBH, and the tree-tops were saved as a three- 
dimensional point-cloud (section 2.6). In parallel, (Fig. 4e) various STI 
methods were applied to extract single-tree positions from the CHM or 

Fig. 3. Histograms of the number of sample-plots aggregated by timber volume class and ordered by the share of evergreen tree species (conifers without 
larch) in Bremgarten and Zurich. Timber volume classes are < 250 m3 ha¡1, 250–500 m3 ha¡1, 500–750 m3 ha¡1, and > 750 m3 ha¡1. 
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the ALS point-cloud (section 2.10). The two tree-top point-clouds were 
aligned with a simple 3D-point-matching algorithm (section 2.11.2; 
Fig. 4f). To limit the computational burden, a slightly smaller search 
window of 60 m for theoretical sample-plot positions and 30 m for GNSS 
/ dGNSS surveyed positions was chosen. 

In a next step (section 2.9; Fig. 4g), a deciduous–evergreen (DecEv) 
map was produced based on the leaf-off ALS data. This procedure made 
use of the fact that first return intensity values of deciduous trees in a 
leafless condition are smaller than those of evergreen trees. 

After this DecEv extraction, predictors were calculated per sample- 
plot (Fig. 4h). The co-registered and non-co-registered sample-plot 
polygons were used as masks, so that only the values within this mask 
were taken into account in the calculation of predictors from ALS data, 
orthoimages and DecEv rasters (section 2.13). 

A method was applied which randomly removed one out of two 
strongly correlated predictors and subsequently performed a predictor- 
selection procedure. Finally, an OLS regression model (section 2.14) 
was used to predict VOL (Bremgarten) or BA (Zurich) from the previ-
ously derived predictors. To get an accurate measure of model quality, 
the leave-one-out cross-validated (LOOCV) root-mean-squared error 

(RMSE) and adjusted R2 were calculated for the entire study area. Since 
the implemented predictor variable selection was a stochastic process, 
this complete procedure was repeated three times. The quality of the 
models was ultimately assessed based on the mean RMSE and adjusted 
R2 values of these three repetitions. 

The presented method enabled the comparison between different 
point-based and raster-based co-registration methods. Additionally, 
raster-based (CHM) methods in previous research were limited to the 
comparison of a selection of pixels close to a tree-top. Performing the co- 
registration by comparing a complete aCHM and ALS-based CHM was 
new to the present study. Similarly, the integration of a DecEv raster into 
the co-registration procedure had not previously been attempted. 

2.4. ALS data pre-processing 

The entire processing of the ALS data (top-right in Fig. 4) was carried 
out using the LAStools v. 4.4.2019 software (Rapidlasso GmbH, 2019). 
After cleaning the ALS data, a digital terrain Model (DTM), a digital 
surface model (DSM) and a normalized DSM (nDSM or CHM) with a 
resolution of 50 cm was calculated. Processing details can be found in 

Fig. 4. Illustration of the data-processing steps applied in this study.  
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the Appendix. 

2.5. Cleaning of sample-plots 

For Bremgarten data from three ALS flights (2011 leaf-on; 2014 leaf- 
on and leaf-off) exist. Data from 2011 are in good temporal synchro-
nicity with the terrestrial measurements but have a lower point density. 
To use the data from 2014 without introducing great uncertainty 
regarding major changes on some sample-plots (e.g. harvesting), both 
leaf-on datasets were processed according to section 2.4. Subsequently, 
for each sample-plot an absolute difference raster was calculated by 
subtracting the two CHMs. Visual inspection of the difference rasters and 
comparison with aerial photographs led to the decision to exclude all 
sample-plots where the mean deviation of the two CHMs was >4.5 m 
(Fig. 5). Furthermore, five sample-plots were excluded because ALS data 
coverage did not include the whole search window of 100 m × 100 m. 

Since only one ALS dataset was available for the Zurich study area, 
no sample-plots were excluded. 

2.6. Derivation of tree-species-specific allometric relationships 

To model the tree shape of all inventory trees, tree-species-specific 
allometric relationships were derived, which establish a relationship 
between DBH and tree height and between DBH and crown size. A model 
was calibrated for each of the separately recorded tree species in 
Bremgarten (section 2.1.1). The models were calibrated based on the 
synthesis of the data from WSL and TUM (section 2.2). For each of the 
tree species, five different non-linear models and one linear model with a 
quadratic interaction were tested. A general formulation of these models 
is given in Table 2 (Peng et al., 2001). Each model was calibrated 
separately for each individual tree species. Subsequently, the model 
with the lowest Akaike Information Criterion (AIC) value was chosen. 
For model calibration, the software R 3.6.1 (R Core Team, 2019) with 
the user interface RStudio 1.2 was used, including the package minpack. 
lm (for nonlinear functions) and the function ‘lm’ (linear regression) 
within the package stats. As initial parameter values for the numeric 
minimization of the non-linear regression models, the mean value of the 
respective parameters in Peng et al. (2001) were used. The resulting best 
model formulations, as well as the corresponding AIC values, are given 
in Tables 5, 6 and 7 in the Appendix. 

2.7. Artificial CHM (aCHM) computation 

For co-registration by searching for the best match between two 

CHMs, an aCHM raster with a size of 30 m × 30 m and a resolution of 50 
cm was created for each sample-plot, based on the terrestrial data. Each 
tree was modelled, considering the tree species and the respective tree 
height h and crown radius r (section 2.6) (Fig. 6). The following crown 
forms were tested: 

• Gaussian bell-curve (bivariate normal distribution) with an ampli-
tude of h at the tree-top position (x0, y0) and standard deviation r: 

f (x, y) = h*exp

(

−

(
(x − x0)

2

2r2 +
(y − y0)

2

2r2

))

(1)    

• Sphere with radius r, with the highest point of the sphere located at a 
height of h above the terrain at the tree-top position (x0,y0): 

f (x, y) = h − r+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 −
(x − x0)

2

r2 −
(y − y0)

2

r2

)

*r2

√
√
√
√ (2)    

• Ellipsoid with radius r in the two horizontal dimensions and radius 
3*r in the vertical dimension, with the highest point of the ellipsoid 
at a height of h above the terrain at the tree-top position (x0,y0): 

Fig. 5. CHM difference rasters between 2011 and 2014. The sample-plot related to the raster on the left was excluded due to major differences between the years, 
presumably caused by a harvesting operation. The raster on the right was considered sufficiently similar. 

Table 2 
Regression model equations tested to model the species-specific relationship 
between DBH and tree height and between DBH and crown size, where h stands 
for tree height and r for crown radius. The parameters marked a, b and c were 
calculated during model calibration. The parameter i represents the intercept 
and was set to 1.3 m for tree height modelling and 0 m for crown size modelling.  

Model   Source 

Linear model: h or r = a + b*DBH +

c*DBH2 
(1) this paper 

Chapman- 
Richards: 

h or r = i + a(1 − e− b*DBH)
c (2) 

Chapman (1961) 

Weibull: h or r = i + a(1 − e− b*DBHc
) (3) 

Yang et al. (1978) 
Exponential: 

h or r = i + a*e

b
(DBH + c)

(4) 
Ratkowsky & Giles 
(1990) 

Logistic modified: h or r = i +
a

(1 + b− 1*DBH− c)

(5) 
Ratkowsky & Reedy 
(1986) 

Korf: h or r = i + a*e(− b*DBH− c ) (6) 
Stage (1963)  
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f (x, y) = h − 3*r +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 −
(x − x0)

2

r2 −
(y − y0)

2

r2

)

*(3*r)2

√
√
√
√ (3)  

2.8. Artificial deciduous–evergreen (DecEv) raster computation 

Incorporating deciduous–evergreen (DecEv) information could 
improve co-registration quality. To generate the artificial DecEv raster 
based on the inventory data, a check was performed for each cell in the 
aCHM to evaluate whether the underlying maximum value was based on 
an evergreen or deciduous tree. Cells with an aCHM value below 1.5 m 
were set to a noData code in the DecEv raster. During the co-registration 
process this raster was compared with an ALS-derived DecEv raster 
(section 2.11.1). 

2.9. Deciduous–evergreen (DecEv) raster from leaf-off ALS 

The DecEv raster was computed by using the mean return intensity of 
leaf-off ALS points located high up in the canopy, as proposed in the 
Digital Forestry Toolbox by Parkan (2018). The DecEv Raster had 
a spatial resolution of 1 m. 

For the ALS tile of each individual sample-plot, only medium and 
high vegetation points (≥50 cm) that were < 1 m below the calculated 
CHM surface were used to calculate a mean intensity raster with a res-
olution of 1 m (Fig. 7a). Segments were calculated using the Digital 
Forestry Toolbox’s slic algorithm (Fig. 7b). Subsequently, an in-
tensity histogram was calculated and the intensity limits (x) and (y) 
were set manually (Fig. 7c) to calculate the classified raster (Fig. 7d). 
Segments with an intensity less than (x) were assigned to a non- 
vegetation class, those between (x) and (y) were classified as decidu-
ous, and those above (y) were classified as evergreen. The limits (x) and 
(y) were set to 7 and 18 in Bremgarten and to 17 and 70 in Zurich. 

2.10. Single-tree-identification (STI) methods 

Various single-tree-identification (STI) methods were implemented 
in a separate co-registration process. The local maxima (LM) based 
methods from Menk et al. (2017) [method LM1], Kaartinen et al. (2012) 
[method LM2] and Parkan (2018) [method LM3] were applied. In 
addition, stem detection from leaf-off ALS data, designed for deciduous 
stands, was applied, as proposed by Parkan (2018) in the Digital 
Forestry Toolbox [method Stems]. Processing details can be found 

in the Appendix. 

2.11. Co-registration 

2.11.1. aCHM-based Co-registration 
With theoretical sample-plot locations as initial positions, a search 

window (default size: 100 m × 100 m, 50 m × 50 m for GNSS measured 
positions) was used. The aCHM (size: 30 m × 30 m) was moved across 
the ALS-based CHM in 0.5 m steps within the search range. Thus, the 
centre position moved by a total of 70 m [± 35 m] for theoretical initial 
positions, and 20 m [± 10 m] with GNSS measurements. At each posi-
tion different measures of similarity between the two CHMs were 
calculated, as listed in Table 3 (except the Simple method). As the co- 
registered position of the sample-plot, the position with the highest 
correlation (Olofsson, CCORR_NORMED) or the smallest deviation 
(SQDIFF_NORMED) was returned (see equations in Table 3). 

As shown in section 3.2.1, SQDIFF_NORMED led to promising re-
sults. Therefore, subsequent incorporation of forest type information, to 
improve co-registration, was only tested with SQDIFF_NORMED. For 
this purpose, the correlation between the DecEv map, based on leaf-off 
ALS data (section 2.9), and the artificial tree-type map, based on field 
data (section 2.8), was calculated with the Simple method. Both 
resulting correlation matrices (forest type, SQDIFF_NORMED CHM) 
were normalized, weighted and added together, with weighting factors 
5.0, 3.0, 2.0, 1.0 and 0.5 for the latter, and the co-registered position of 
the sample-plot was assigned to the location where the value was 
smallest. 

2.11.2. Point-matching-based co-registration 
The methodology used to co-register two point-clouds is illustrated 

in Fig. 4f. The central idea is to identify the best match between two tree- 
top point-clouds, where the reference (blue dots in Fig. 4f, remotely 
sensed trees [RSTs]) is obtained using one of the STI methods described 
in section 2.10. The tree height is taken from the ALS CHM. The red dots 
represent the tops of the terrestrial measured inventory trees (ITs), 
which were calculated with the species-specific relationship between 
DBH and tree height. 

The IT point-cloud was shifted in 1-m steps across the AST point- 
cloud, with a moving window size of 60 m [± 30 m] for theoretical 
initial positions and 30 m [± 15 m] with GNSS measurements. At each 
position the following point-matching algorithm was used:  

- Step 1: For each IT, find the RST whose tree-top is closest to that of 
the IT (3D) and store the respective distance.  

- Step 2: Sum the distances of all ITs.  
- Step 3: Compare the distance sum with the smallest distance sum 

measured so far (previous positions in the moving window) and save 
the position as the new best co-registration position if it is smaller 
than the smallest distance sum so far. 

2.12. Response variable 

The response variable in Bremgarten was the local density of the 
merchantable VOL [m3 ha− 1] (volume with a diameter ≥ 7 cm). It is 
based on field measurements on which a tariff function was applied, as 
described in Bont et al. (2020). In Zurich the BA was used as the response 
variable, which was directly derived from field measurements. 

2.13. Predictors from remote-sensing data 

Predictors formed the basis for model building and were derived 
from various sources, such as the normalized leaf-on and leaf-off ALS 
data (Bremgarten; Zurich only leaf-off), four-band orthophotos and the 
leaf-off ALS-derived DecEv raster. Based on the orthophotos, the 
Normalized Difference Vegetation Index (NDVI; equation (4)), the 
Shannon entropy, and the Grey Level Co-occurrence Matrix (GLCM) 

Fig. 6. (a) ALS-derived CHM (100 × 100 m) of a sample-plot in Bremgarten 
(No. 234’667), (b) – (d) aCHM (diameter 22.57 m), with (b) gaussian aCHM 
model, (c) sphere model and (d) ellipsoid model. 
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were calculated. 

NDVI =
NIR − red
NIR + red

(4) 

The Shannon entropy was computed according to Singh & Singh 
(2008), the GLCM according to Soh & Tsatsoulis (1999). Details can be 
found in the Appendix. Finally, the deciduous, evergreen and non- 
vegetation proportions within the masks were calculated from the 
DecEv raster. All predictors used are listed in Table 4. 

2.14. Statistical methods 

The aim of co-registration is to achieve a more precise link between 
different data sources by searching for plausible sample-plot positions 
within a search window. Predictors are calculated from the remote 
sensing data at these corrected positions. VOL and BA were modelled as 
a response variable. 

For the analysis, ordinary least squares (OLS) regression models were 
calibrated. The root-mean-squared error (RMSE; equation (7)) and the 
adjusted R2 (equation (6)) after leave-one-out cross-validation (LOOCV) 
were used to denote the accuracy improvement after co-registration, 
compared with un-co-registered positions. The adjusted R2, unlike the 

Fig. 7. Illustration of the deciduous–evergreen classification. Panels (a), (b) and (d) show the 100 × 100 m tile around the theoretical sample-plot centre of plot No. 
259’680 in Bremgarten. (a) shows the raw intensity raster. (b) shows the segmented version of (a), and (d) shows the same raster classified as non-vegetation (light 
grey), deciduous (dark grey) and evergreen (black). (c) is the histogram used to set the intensity limits (x) and (y) in Bremgarten. 

Table 3 
The table shows the different correlation metrics, which were used for co- 
registration with an aCHM. The correlation (1) was introduced as a simple 
measure for binary deciduous-evergreen comparison. The correlation measure 
(2) corresponds to the one used by Olofsson et al. (2008). The other metrics were 
derived from the MatchTemplate function of the open-cv python package. p 
denotes the m pixel of the artificial CHM within the circular moving window. c 
stands for the corresponding pixels in the leaf-on ALS CHM.p and c correspond to 
the respective mean values in m and cordx,dy is the correlation (2, 3), respectively 
the deviation (1, 4) at the position dx, dy.  

Name Formula  

Simple: 
cordx,dy =

∑
i∈m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(pi − ci)
2

√

m 

(1) 

Olofsson: 
cordx,dy =

∑
i∈m(pi − p)(ci − c)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i∈m(pi − p)2*
∑

i∈m(ci − c)2
√

(2) 

CCORR_NORMED: 
cordx,dy =

∑
i∈mpi*ci

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i∈m(pi)
2*
∑

i∈m(ci)
2

√
(3) 

SQDIFF_NORMED: 
cordx,dy =

∑
i∈m(pi − ci)

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i∈m(pi)
2*
∑

i∈m(ci)
2

√
(4)  
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R2, also reflects the complexity of the models. To keep the procedure 
easily adaptable to changes in available predictor input data, expert- 
based models according to Bont et al. (2020), which do not rely on 
automatic predictor selection, were not tested. 

R2 =

∑n
i=1(ŷi − y)2

∑n
i=1(yi − y)2 (5)  

adj.R2 = 1 −
(
1 − R2)*

(
n − 1

n − (k + 1)

)

(6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(7)  

where yi are the individual observations, ŷi are the estimated values of 
these observations, y is the mean value of all observations, n is the 
number of observations, and k is the number of predictors used. 

2.14.1. Removal of highly correlated features 
The previously described predictors (section 2.13) were standardized 

(mean 0, standard deviation 1). Subsequently, a subset of predictors that 
had a correlation of <0.85 was selected in an iterative automated 

Table 4 
This table shows the various predictors which were calculated based on the remote sensing data (ALS and orthophotos). They were subsequently used for model 
building to derive a model for the response variable (VOL or BA).   

Description Abbreviation Unit 

Percentile-Values Specifies the height percentiles of the normalized ALS points 
within the mask. Example: 95th percentile: p95 

pXX; XX = {05, 10, 20, 30, 40, 50, 60, 70, 
80, 90} 

[m] 

Specifies the intensity percentiles of the ALS points 
within the mask. Example: 95th percentile: int_p95 

int_pXX; XX = {05, 10, 20, 30, 40, 50, 60, 
70, 80, 90} 

[-] 

Quantile-Values Specifies the quantile of the NDVI-values 
within the mask. Example: 0.95 quantile: q0.95 

qXX; XX = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9} 

[-] 

Minimum Lowest point in the normalized ALS data 
within the mask. 

min [m] 

Minimal intensity value of the ALS points 
within the mask. 

int_min [-] 

Minimal NDVI value of the pixels 
within the mask. 

NDVI_min [-] 

Maximum Highest point in the normalized ALS data 
within the mask. 

max [m] 

Maximal intensity value of the ALS points 
within the mask. 

int_max [-] 

Maximal NDVI value of the pixels 
within the mask. 

NDVI_max [-] 

Mean Average height of the normalized ALS points 
within the mask. 

avg [m] 

Mean of the intensity values of the ALS points 
within the mask. 

int_avg [-] 

Mean of the NDVI values of the pixels 
within the mask. 

NDVI_mean [-] 

Standard 
deviation 

Standard deviation of the height of the normalized ALS points 
within the mask. 

std [m] 

Standard deviation of the intensity values of the ALS points 
within the mask. 

int_std [-] 

Standard deviation of the NDVI values of the pixels 
within the mask. 

NDVI_stdev [-] 

Asymmetry 
(skewness) 

Pearson’s moment coefficient of skewness of the height of the normalized ALS points within the mask. ske [-] 
Pearson’s moment coefficient of skewness of the intensity values of the ALS points within the mask. int_ske [-] 

Curvature 
(kurtosis) 

Kurtosis of the height of the normalized ALS points 
within the mask. 

kur [-] 

Kurtosis of the intensity values of all the ALS points 
within the mask. 

int_kur [-] 

Shannon entropy Shannon entropy defined as H = −
∑

kpk*log2(max(pk,1) ), where pk is the probability that a pixel has the 
value k (Singh & Singh, 2008). 

S_entropy [-] 

GLCM GLCM entropy for each band as 

H = −
∑

i
∑

jpi,j*log2

(
max

(
pi,j, 1

))
XX_glcm_entropy [-] 

GLCM dissimilarity for each band as 
D =

∑
i
∑

jpi,j*|i − j|
XX_glcm_dissimilarity [-] 

GLCM homogeneity for each band as 

H =
∑

i
∑

j
pi,j

1 + (i − j)2 

XX_glcm_homogeneity [-] 

GLCM ASM for each band as ASM = (energy)2 as 
A =

∑
i
∑

jp2
i,j 

XX_glcm_asm [-] 

GLCM correlation for each band as K =
∑

i
∑

jpi,j*
(i − μi)*

(
j − μj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σ2

i
)
*
(

σ2
j

)√ with the mean values μi =
∑

i
∑

j i*pi,j 

and μj =
∑

i
∑

j j*pi,j and the standard deviations σi =
∑

i
∑

j(i − μi)
2*pi,j 

and σj =
∑

i
∑

j

(
j − μj

)2
*pi,j 

XX_glcm_correlation [-] 

With RGB and NIR bands B1, B2, B3, B4 for all GLCM metrics XX = {B1, B2, B3, B4}  
DecEv Area share of deciduous trees within the mask share_dec [%] 

Area share of evergreen trees within the mask share_ev [%]  
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process. Details can be found in the Appendix. 

2.14.2. Predictor selection procedure 
The remaining set of predictors was subject to a feature selection 

algorithm that relied on the coefficients of the calibrated parametric OLS 
model. This Recursive Feature Elimination (RFE) algorithm was (n/10)- 
fold (n-observations) cross-validated (CV) to obtain the optimal number 
of predictors (Guyon et al., 2002). 

2.14.3. Model calibration 
The calibration of the OLS model, as well as all previous steps, was 

performed three times to compensate for fluctuations resulting from the 
random removal of highly correlated features. Each of these three runs 
was leave-one-out cross-validated. The accuracy metrics (RMSE, 
adjusted R2) were calculated based on the cross-validated results of each 
run. The mean value of the accuracy metrics of the three runs was ul-
timately used to assess model accuracy. 

3. Results 

3.1. Co-registration 

The quantitative evaluation of the co-registration, presented in the 

following section 3.1.1, was kept relatively short. On the one hand, in 
homogeneous stands of deciduous forest it is impossible to manually co- 
register sample-plots by visually inspecting CHM or orthoimage rasters. 
On the other hand, the assessment of the co-registration quality, with 
certain restrictions (section 4), was possible by measuring the quality of 
the subsequent VOL or BA modelling. Furthermore, for the accuracy of 
the subsequent VOL model calibration, the identification of one plau-
sible position was considered more important than the exact recording 
position. Qualitative evaluations are presented in sections 3.1.2 and 
3.1.3. 

3.1.1. Quantitative consideration of co-registration methods 
The quantitative evaluation of the co-registration was based on a 

comparison between the co-registered positions and the location of the 
relatively exact dGNSS sample-plot positions. The results of this distance 
evaluation are shown in Fig. 8. For non-co-registered theoretical sample- 
positions, distances of up to 74 m from the dGNSS position were 
measured. 

The first two panels in Fig. 8 show that, without the integration of 
DecEv information, the sample-plot positions were on average further 
away from the dGNSS positions than before co-registration. As reference 
lines the following distances were observed: mean GNSS position with 
artificial error: 8.21 m; mean theoretical position: 13.31 m; median 

Fig. 8. The mean (and median) distance between the co-registered sample positions and the relatively accurate dGNSS positions. Large distances denote a poor co- 
registration. The co-registration results which used the theoretical sample positions as starting points are shown in red. The blue data points are based on randomly 
distorted dGNSS positions (shifted up to 10 m) as initialization of the co-registration algorithm. The non-co-registered reference is shown as a line (red and blue line) 
in all panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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GNSS position with artificial error: 8.49 m; median theoretical position: 
8.10 m. And the following distances after co-registration (mean and 
median of the first two panels): mean GNSS position with artificial error: 
12.02 m; mean theoretical position: 25.47 m; median GNSS position 
with artificial error: 12.06 m; median theoretical position: 23.00 m. The 
co-registration method combinations, which used the theoretical 
sample-plot positions as starting points, generally showed a larger de-
viation from the dGNSS positions than those which were initialized with 
the artificially distorted dGNSS positions. This observation is presum-
ably related to the larger search window with the theoretical positions. 
The largest deviations are associated with the aCHM-based CCORR_-
NORMED co-registration methods. The finding that the largest distances 
occurred with one of the aCHM co-registration methods in combination 
with theoretical sample-plot positions is consistent with the fact that this 
is where the largest search window was used (100 m CHM section, 
which means a 70 m shift [± 35 m] of the sample positions; see section 
2.11.1). Despite the smaller search window (computing power limita-
tion; 60 m [± 30 m] for theoretical positions), the point-matching al-
gorithm led to mean deviations of up to 25 m. When DecEv information 

was integrated into the co-registration process, the distances (mean and 
median) to the dGNSS positions were smaller, especially when the CHM 
correlation was weighted to be higher than the DecEv correlation with 
weighting factors 5.0, 3.0 and 2.0 (Fig. 8, subfig. 3, 4 and 5). The mean 
of the results for weighting factors of 5.0, 3.0 and 2.0 is 7.51 m (8.21 m 
without co-registration). The corresponding median is 5.50 m (8.49 m 
without co-registration). Giving higher weights to the DecEv correlation 
(factors 1.0 and 0.5; Fig. 8, subfig. 6 and 7) increased the distances to the 
dGNSS positions, especially for theoretical positions as the co- 
registration starting point. For all weighting factors, the results with 
distinct tree-crowns (ellipsoid or sphere) were superior to the ones with 
a Gaussian crown surface. The combination with DecEv co-registration 
was only tested for the CHM co-registration method SQDIFF_NORMED. 

These quantitative considerations are followed by a qualitative 
assessment of the plausibility of the co-registered position found for the 
example of Bremgarten sample-plots No. 234’664 and No. 253’683 in 
section 3.1.2 and No. 259’680 in section 3.1.3. 

Fig. 9. The leaf-on ALS-based CHM (100x100m) of the sample-plots No. 234’664 (a) and No. 253’683 (h) in Bremgarten, as well as the corresponding aCHMs, which 
were derived from the inventory data (b–d, e–g). The positions identified by the co-registration methods, with theoretical positions as initial starting points, are 
illustrated in colour, overlying the ALS-based CHM. The aCHMs presented above one another in (b)–(d) and (e)–(g) are identical and are only shown to facilitate the 
visual comparison with the ALS-CHM. The diameter of an aCHM raster and the sample-plot circles was 22.57 m. For some correlation metrics positions were 
identical, which made the circles drawn underneath invisible. 
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3.1.2. Examples of aCHM-based co-registration 
Fig. 9 illustrates two typical cases of co-registration via aCHMs 

generated based on inventory data (Bremgarten sample-plots No. 
234’664 and No. 253’683). The co-registration used the theoretical 
sample positions (green) as starting points. 

The first graphs (Fig. 9a–d) show sample-plot No. 234’664, with a 
convincing co-registration outcome. All variants of the SQDIFF_-
NORMED method were identical with the dGNSS measured position 
(blue). Visual comparison of the CHM suggests that co-registration led to 
a plausible result for the other methods as well. All co-registration 
methods achieved a shift of the sample-plot away from the erroneous 
position on the edge of an old stand towards a young stand, where the 
dGNSS located the sample-plot. 

Sample-plot No. 253’683 (Fig. 9e–h) serves as an example of a 
sample-plot where the co-registration was difficult, yet it is rather 
irrelevant for the derivation of better VOL or BA regression models. This 
sample-plot lies within a homogeneous stand dominated by oak trees. In 
the CHM, there were no clear stand boundaries or deviations from the 
prevailing pattern. As a consequence, the co-registration results differed 
strongly. 

The sphere- and ellipsoid-based SQDIFF_NORMED methods identi-
fied a position in the CHM where the gap on the left edge of the aCHM 
was well represented. When 3D Gaussian-bells were used, such gaps 
were smoothed and therefore were given less weight. In contrast, 

Olofsson’s correlation method seemed to give more weight to the gap at 
the left edge of the sample-plot. For the CCORR_NORMED method, it is 
rather ambiguous why the respective positions were chosen. 

3.1.3. Examples of point-matching-based co-registration 
Fig. 10 illustrates an example of the co-registration with the 3D 

point-matching method for sample-plot No. 259’680 in Bremgarten. As 
the co-registration starting point the theoretical sample position was 
used. All development stages, from thickening trees to trees at a 
harvestable age, and both broadleaf and conifer wood are present. In 
addition, the theoretical sample-plot position is distant from the dGNSS 
position to the extent that the latter is no longer completely within the 
search window. These are conditions which make a correct co- 
registration important but also difficult. Since the algorithm took tree 
height information into account, the position was shifted southwards 
where the smaller trees, as well as the dGNSS position, were located. The 
algorithm identified positions that seem plausible in all four cases. 
However, if one compares the inventory tree positions with the detected 
individual trees, none of the single-tree detection methods identified a 
tree pattern at the dGNSS position with a strong similarity to the in-
ventory tree distribution. It presumably would not have been found even 
if it was completely within the search window. The chosen imple-
mentation of the point-matching algorithm made it favourable for po-
sitions in the search window where many detected single trees occurred. 

Fig. 10. The leaf-on ALS-CHM (100x100 m) of 
sample-plot No. 259’680 in Bremgarten. Panels (a)– 
(d) show different STI results in blue, calculated ac-
cording to section 2.10. Furthermore, the result of the 
3D-tree-top co-registration algorithm (section 
2.11.2), which matches the red inventory trees to the 
blue STI-detected trees, is shown in pink. The dGNSS 
sample-plot position is shown in blue and protrudes 
slightly beyond the search window with a side length 
of 100 m. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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Under such conditions, the likelihood of finding a closely matching 
detected tree for each inventory tree was high. 

3.2. Timber volume (VOL) or basal area (BA) prediction 

The co-registration was assessed by comparing the regression model 
quality before and after co-registration for VOL and BA in Bremgarten 
and Zurich, respectively. As shown in the Appendix (Fig. 18), the cor-
relation between BA and VOL is almost linear. Therefore, the results 
(RMSE) can be compared without further effort. 

3.2.1. Bremgarten 
Fig. 11 gives an overview of the results (RMSE of VOL modelling) of 

all the OLS regression models with previous predictor variable selection 
(reduced predictor set) in Bremgarten. Each data point is the average 
RMSE of three separate leave-one-out cross-validated OLS calibrations, 
including the described probabilistic predictor variable selection pro-
cedure. Applying a co-registration method led to an improved RMSE, 
provided that the corresponding points were below the respective hor-
izontal reference line without co-registration. The respective adjusted R2 

values are given in Fig. 16 in the Appendix. 
The first two panels of Fig. 11 show the RMSE when co-registration 

was performed without taking DecEv information into account. The 
other five panels show the result with a different weighting between the 

match of the CHM pattern versus the deciduous–evergreen pattern. 
These were therefore an extension of the aCHM matching techniques. 

No matter which STI method was chosen (LM1, LM2, LM3 or Stems), 
applying a point-matching co-registration method did not improve the 
results. The second panel in the first line, however, showed promising 
results. These methods relied on aCHM modelling. The underlying in-
ventory tree-crown model seemed to be less relevant than the correla-
tion metrics used. When the correlation metric of Olofsson et al. (2008) 
(Methods *_1:Olofsson) was used, the RMSE deteriorated compared with 
the dGNSS positions. In comparison with the theoretical sample-plot 
positions, the RMSE remained unchanged. If the CCORR_NORMED 
correlation was used for CHM co-registration, the results for dGNSS 
initial positions were similar to the ones with the Olofsson correlation 
methods. Compared with the theoretical sample positions, the RMSE 
deteriorated significantly. A noticeable improvement in the RMSE was 
achieved only when the SQDIFF_NORMED correlation metric was used. 
Compared with the non-co-registered theoretical sample-plot positions, 
with an RMSE of 134.4 m3 ha− 1, the co-registration with the best 
method combination sphere_1:SQDIFF_NORMED led to a 31% lower 
RMSE of 92.6 m3 ha− 1. Only the co-registration with inventory tree-tops 
modelled as 3D Gaussian-bells, starting from the already very accurate 
dGNSS positions, did not improve the RMSE. 

Adding DecEv information to the SQDIFF_NORMED correlation 
method did not substantially improve the respective model accuracy in 

Fig. 11. Comparison of co-registration methods (horizontal axis) based on the leave-one-out cross-validated RMSE (vertical axis) of the timber volume in Brem-
garten. The values shown are the average values of three OLS regression model calibration runs, including predictor variable selection and random removal of 
strongly correlated predictors. The colour indicates the different co-registration starting positions. Horizontal lines show the reference values without co-registration. 
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terms of RMSE (Fig. 11) or adjusted R2 (Fig. 16 in the Appendix). 
However, Fig. 8 shows that adding this DecEv information decreased the 
mean and median distance between dGNSS positions and co-registered 
positions, if the CHM correlation was weighted to be higher than the 
DecEv correlation. This indicates that the co-registration quality 
improved with regards to the correct identification of sampling posi-
tions, but the effect was smaller regarding the subsequently calibrated 
VOL regression models. However, the integration of DecEv correlation 
information did not decrease the regression model quality if the weight 

given to the CHM correlation was higher than that given to the DecEv 
resemblance. Only for weights equal to or less than one did the quality 
decrease significantly. 

Fig. 12 illustrates the regression model accuracy with predictor 
variable selection and (b) with and (a) without co-registration (theo-
retical sample-plot positions) in Bremgarten. For the latter, the differ-
ence between the modelled and the measured values was rather high. 
These variances were in many cases the result of poor matching. Co- 
registration with the sphere_1:SQDIFF_NORMED method (Fig. 12b) 

Fig. 12. The observed and the predicted timber volume values after predictor variable selection in Bremgarten. (a) displays the leave-one-out cross-validated values 
for the non-co-registered theoretical sample-plot positions. (b) shows these values after co-registration with the sphere_1:SQDIFF_NORMED method. All predictors 
were standardized before the calibration of the OLS model. Data points with a large model deviation are labelled with the respective sample-plot number. 
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achieved an improvement in R2 from 0.53 to 0.77 (adj. R2: 0.51 to 0.76; 
RMSE: 134.4 to 92.6 m3 ha− 1). 

The residuals of Fig. 12b are shown in Fig. 13a. Calibrating an OLS 
regression model relies on the assumptions that the residuals have a 
mean of zero, that they are uncorrelated, and that they have a constant 
variance (homoscedasticity) (Gauss–Markov-theorem; Hallin, 2014). 
Fig. 13a does not indicate a pronounced correlation between the re-
siduals. As the measured values could not fall below zero, the variance 
for small VOL tended to be lower than for medium VOL. The residuals’ 
average value was sufficiently close to zero (4.21 m3 ha− 1). Only for 
high observed VOL, the quantile–quantile graph and the histogram 
(Fig. 13b) indicated that VOL might have been slightly underestimated. 
The deviations from the assumptions were, however, rather small. 

Co-registration results show that the correct dGNSS position was not 
always identified, but rather one plausible position within the search 
window was found. This circumstance calls for additional validation. A 

systematically incorrect co-registration could result in a bias in the 
resulting regression models. To test for such a bias, an OLS sphere_1: 
SQDIFF_NORMED regression model was fitted with the co-registered 
positions and applied on the non-co-registered positions. Fig. 14 dis-
plays the results of this validation. The representation of the observed 
and the modelled VOL at the theoretical sample-plot positions, as well as 
the histogram and the quantile–quantile graph of the residuals, do not 
indicate any systematic error in the regression model. The quanti-
le–quantile graph is symmetrical, and therefore the residuals do not 
correlate with the measured VOL. The histogram shows a slight over-
representation of positive residuals. 

3.2.2. Zurich 
For Zurich, only BA data were available, and they were therefore 

used for modelling. Only the sphere_1:SQDIFF_NORMED co-registration 
method was tested. All other processing steps were identical to those in 

Fig. 13. (a) shows residuals and predicted timber 
volume values in Bremgarten (same data as in 
Fig. 12b). Data points with large residuals are 
labelled with the respective sample-plot number. The 
quantile–quantile graph and the histogram in (b) are 
based on the same residuals. The histogram is over-
layed with a normal distribution with mean value 
and standard deviation of the empirical residuals. 
The sample-plot positions used to calculate the pre-
dictors were identified with the sphere_1:SQDIFF_-
NORMED co-registration method, starting from the 
theoretical sample-plot positions. All predictors were 
standardized before the calibration of the OLS 
model.   
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Bremgarten. All regression model types were calibrated three times, and 
the mean value of the leave-one-out cross-validated RMSE and adjusted 
R2 were used as quality measures. As can be seen in Fig. 15, co- 
registration improved the OLS regression model accuracy for all initial 
sample-plot positions, when the DecEv map was not considered for co- 
registration. For theoretical sample-plot positions, the RMSE decreased 
from 13.56 m2 ha− 1 without co-registration to 12.18 m2 ha− 1 with 
sphere_1:SQDIFF_NORMED co-registration (1.38 m2 ha− 1 or − 10%). 
The integration of the DecEv map deteriorated the co-registration 
quality for all the tested weighting factors. The respective adjusted R2 

values are given in Fig. 17 in the Appendix. 

4. Discussion 

4.1. Co-registration 

For the calibration of regression models, which establish a connec-
tion between terrestrial measurements and remote sensing data, an ac-
curate spatial matching is necessary. In this section, the results of the 
various co-registration procedures are analysed. 

To achieve a performant regression model, the identification of the 
exact recording position is only of secondary importance. It is, however, 
essential to identify one position for each sample-plot that is consistent 
with the inventory data. Whether the exact position of each sample-plot 
is found depends on the size of the search window and the associated 
assumed accuracy of the initial position for co-registration. The 

Fig. 14. The observed and the OLS predicted timber 
volume values after predictor variable selection in 
Bremgarten. The regression model was calibrated 
with the predictors calculated at the sphere_1: 
SQDIFF_NORMED co-registered sample-plot posi-
tions, and that model was used to predict the timber 
volume at the non-co-registered positions (a). All 
values are based on a leave-one-out cross-validation. 
The predictors were standardized before the cali-
bration of the OLS regression model. The histogram 
is overlayed with a normal distribution with mean 
value and standard deviation of the empirical re-
siduals. The graphics are suitable to check whether 
co-registration led to a systematic bias in the 
regression model.   
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heterogeneity of the forest area in the search window plays a major role 
as well. Homogeneous stands or large search windows increase the 
probability that several plausible positions will appear within the search 
window. Positional errors of up to 74 m compared with dGNSS mea-
surements in Bremgarten made large search windows necessary, which 
in turn meant that several plausible sample-plot positions within the 
window were likely. As a consequence, co-registration did not neces-
sarily identify the true recording position. 

4.1.1. Distance to dGNSS 
As described above, it was expected that the co-registered positions 

would not necessarily be close to the dGNSS measured sample-plot po-
sitions. A comparison of the average distance to the dGNSS position, 
which used either the theoretical sample-plot positions or the artificially 
distorted dGNSS positions as starting points, confirmed this expectation. 
Due to the larger search window with theoretical positions, the average 
deviations after co-registration were greater than with distorted dGNSS 
initial positions. Without consideration of the DecEv map, none of the 
methods achieved an improvement with regard to the distance to the 
dGNSS measurement. However, when the error of the initial position 
was rather small (distorted dGNSS), the integration of the DecEv infor-
mation into the CHM-based co-registration considerably reduced the 
median, but also the mean distance error, especially when the CHM 
correlation weight was higher than the DecEv weight. This indicates, 
that, within a small search window, the DecEv information made it 
possible to considerably narrow the possible CHM positions, down to the 
true one in many cases. However, the CHM information is still more 
important than the DecEv accordance. For large search windows, the 
positive effect of DecEv integration diminished, likely because multiple 
similar positions appeared within the search window. 

4.1.2. Qualitative assessment of CHM co-registration 
The quantitative observations were confirmed by the qualitative 

results, as described in sections 3.1.2 and 3.1.3. For the interpretation of 
the results of the aCHM co-registration, a basic understanding of the 
correlation equations is essential (Table 3). The method Olofsson in-
cludes an image-wise normalization step. As a result, this correlation 
equation (Table 3, formula 2) was unable to detect absolute height 
differences among the two CHMs. If a CHM was copied and all values 

increased or decreased by a few meters, the two CHMs would still 
correlate perfectly. The other two correlation equations (CCORR_-
NORMED and SQDIFF_NORMED) lack such a normalization with the 
average value of all pixels of an image. These were thus suitable to detect 
absolute height differences between the two CHMs. 

As illustrated with examples in section 3.1.2, there were sample-plots 
for which all aCHM co-registration methods led to plausible results, as 
well as some for which the identified positions were less plausible and 
therefore some methods were less suited for regression modelling of the 
VOL. In particular, the qualitative examples confirmed that the true 
recording position in the search window was not always identified, but 
rather one plausible position was identified. This observation is consis-
tent with the observed increase in mean distance to the dGNSS position 
after co-registration. 

As the first example in Fig. 9 shows, the probability that the true 
sample-plot position was identified was higher in a heterogeneously 
structured forest. In contrast, the second example in Fig. 9 shows that 
the correct localization was almost impossible in a homogeneous forest. 
However, under such conditions, the positioning of the sample-plot is 
rather irrelevant for model fitting, as these metrics are similar within the 
entire search radius. 

Visual inspection suggested that the modelled tree-crowns were in 
some cases rather small, at least in the spherical or ellipsoid case. An 
inadequate crown size can be problematic, if this leads to a systematic 
shift of the sample-plot towards positions with lower or higher average 
CHM values. Using such a co-registration to calibrate regression models 
would lead to a systematic over- or underestimation. The relevance of 
this issue can be checked by visually comparing the CHM and aCHM of 
some sample-plots that are easy to co-register. On average, the CHM and 
aCHM should have similar values at the correct position. If this is not the 
case, a crown-size scaling factor could be introduced, or another crown 
model could be implemented. 

4.1.3. Qualitative assessment of point-matching co-registration 
In section 3.1.3, point-matching co-registration examples were 

described. Visual inspection led to the conclusion that the SQDIFF_-
NORMED aCHM-based co-registration methods attain more plausible 
results than the application of a point-matching algorithm. The visual 
comparison of the inventory tree-top point-cloud with the detected tree- 

Fig. 15. Application of the co-registration 
method, which performed best in Bremgarten, to 
the Zurich dataset. Integration of the DecEv raster 
was only tested with the theoretical sample-plot 
positions. The figure shows the leave-one-out 
cross-validated RMSE (vertical axis) of the OLS 
modelled basal area (BA) in Zurich. The reference 
is given by the non-co-registered sample-plots 
(horizontal lines). All values are average values 
from three independent calibration runs, 
including predictor variable selection and random 
removal of strongly correlated predictors. The 
colour denotes the respective co-registration 
starting positions.   
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tops at the dGNSS position in Fig. 10 indicated that, even with an 
optimal point matching algorithm, the dGNSS position would probably 
not have been identified, as the two point-clouds differed significantly. 
The basic problem is that all STI methods do not find all trees and that 
they locate the stem positions with too little precision. Since the tested 
3D point-matching algorithm also included tree height information in 
the co-registration process, it could be expected that positions are 
identified where the estimated height of the forest stand matches the 
height of the inventory trees reasonably well. However, this information 
is already included in the faster aCHM co-registration. Whenever indi-
vidual tree-crowns are hard to identify due to a relatively flat CHM with 
fuzzy LM, an aCHM method has the advantage that the influence of an 
individual LM pixel on the correlation result is smaller than if only 
distances between LM points and inventory tree-tops are compared. 

Finally, the results showed that point-matching-based methods are 
not superior to aCHM methods, as long as no accurate STI methods are 
available or additional information on the single-tree level is used (e.g. 
crown margin points from ALS). If artificial point-clouds were simulated 
based on the inventory data and if they were compared with the 
observed ALS point-cloud by means of the point-matching algorithm, an 
STI, including all its uncertainties, could be omitted. 

4.1.4. Relationship to other studies 
Studies about co-registration of forest inventory and remote sensing 

data, which have been published in recent years, assume positional er-
rors of<20 m and thus assume at least GNSS or dGNSS measurements 
are available. Only Hauglin et al. (2014) also tested search radii between 
20 and 65 m. Using a point-matching algorithm, like the one in the 
present study, they achieved a co-registration error of<0.5 m for 78% of 
all sample-plots, if a search radius of 25 m was used. The search window 
used in the present study for dGNSS positions with artificial distortion 
corresponds approximately to the search radius of 25 m in Hauglin et al. 
(2014). The median distances to the approximately correct dGNSS po-
sition indicated that even the best co-registration method SQDIFF_-
NORMED, was less accurate than the one in Hauglin et al. (2014). 
Besides a slightly more sophisticated algorithm, the almost exclusive 
abundance of spruce (Picea abies) and Scots pine (Pinus sylvestris) 
probably facilitated co-registration in the study of Hauglin et al. (2014). 

Lamprecht et al. (2017) used real inventory samples to generate 
artificial forest stands and used an artificial ALS point-cloud for each of 
these forest stands. From these forest stands, inventory data were 
simulated and used as ground-truth in the subsequent modelling pro-
cess. The position of the simulated inventory data was distorted with an 
artificial GNSS error. At these positions, an LM-STI was performed with 
the ALS point-cloud. Afterwards, probabilities of agreement between the 
trees of the simulated samples and the trees detected as LM were 
calculated and used for co-registration. The match probabilities were 
based on different distance metrics between the individual trees. This 
point-matching co-registration method is similar to the one applied in 
the present study, but it uses a more complex single-tree matching 
method and permits rotation of the inventory plot by superimposing the 
single-tree displacement vectors. With this method, the authors ach-
ieved a co-registration overall accuracy of 82.7%, where a co- 
registration was considered successful if >50% of all single trees were 
correctly assigned (single-tree assignment overall accuracy = 89.1%). 
Due to the lack of ground-truth reference data in the present study, no 
quantification of how often the point-matching algorithm correctly 
matched a pair of trees was done. The median and mean distances to the 
dGNSS positions, however, suggest that the frequency of correct allo-
cation of both the sample-plots and the individual trees must be smaller 
than in the study of Lamprecht et al. (2017). The degree of simplification 
of the co-registration problem by simulating the ALS point-cloud, as 
done in Lamprecht et al. (2017), compared with using real ALS data 
remains to be clarified. The random addition of residuals to the ALS 
points generated based on the simulated crowns in Lamprecht et al. 
(2017) may lead to a more realistic ALS point distribution, but the 

crowns would remain approximately symmetrical. Therefore, unilateral, 
asymmetric crowns (especially broadleaf trees) would likely be 
underrepresented. 

The co-registration process described by Olofsson et al. (2008) is 
similar to the one described as aCHM co-registration with the Olofsson 
correlation coefficient and gauss_1 crown shape described in this paper. 
However, Olofsson et al. (2008) used an LM-STI to model the detected 
single trees in the same way as the inventory trees. This STI step was 
omitted in the present study, and the aCHM was directly compared with 
the CHM. Olofsson et al. (2008) showed, with their simulations, that 
with a standard deviation of the STI positional error < 1 m and an STI 
omission and commission error of 20%, 70% of all inventory trees were 
correctly linked to the corresponding remotely sensed trees. The pro-
portion of correctly co-registered sample-plots, even if not specifically 
quantified, is likely to have the same order of magnitude. The median 
and mean distances to the dGNSS positions presented in the present 
paper are rather high. Therefore, the achieved proportion of correctly 
assigned individual trees is significantly lower than in Olofsson et al. 
(2008) (Fig. 8). The results of Olofsson et al. (2008) are relativized by 
the fact that they assumed an STI positional error of < 1 m. This is likely 
the case for conifer stands, but rather unlikely for broadleaf stands. 

Apart from slight adjustments regarding the weighting of individual 
pixels when comparing the CHM with the aCHM and the renunciation of 
an STI in the CHM, as well as adjustments to the sampling design (angle- 
counting sampling according to Bitterlich 1952), the co-registration 
method according to Dorigo et al. (2010) is identical to the method 
according to Olofsson et al. (2008) and to the aCHM-based co-registra-
tion applied in the present study. Despite a relatively large search radius 
of 30 m, Dorigo et al. (2010) successfully co-registered 67 out of 98 
sample-plots with a positional error < 5 m. Such an accuracy was not 
achieved in the present study. However, Dorigo et al. (2010) excluded 
many broadleaf-dominated stands, as they could not be co-registered 
manually. 

The co-registration method presented by Monnet and Mermin (2014) 
is similar to the ones by Olofsson et al. (2008) and Dorigo et al. (2010) 
and the one applied in the present study. Monnet and Mermin (2014) 
showed that the average positional accuracy could be improved 
compared with conventional GNSS measurements. However, the stan-
dard deviation of the distances to the correct positions increased, as 
incorrectly co-registered sample-plots were frequently positioned far 
from the correct locations. Compared with dGNSS measurements, the 
co-registration decreased the positional accuracy. The data in the pre-
sent study (Fig. 8) show that co-registration, based on the artificial and 
uniformly distorted dGNSS positions, did not lead to any improvement 
in the average positional accuracy. 

The above comparisons with other studies show that the co- 
registration methods implemented here, despite the similarity with the 
methods of other studies, found the correct position less often. This may 
result from a less sophisticated point-matching co-registration or a 
slightly too small crown size for the aCHM-based methods. On the other 
hand, the high proportion of broadleaf stands in Bremgarten probably 
increased the uncertainty of the co-registration results. 

4.2. Timber volume (VOL) and basal area (BA) prediction 

As shown in section 3.2.1, none of the point-matching methods could 
achieve a systematic improvement in accuracy of the subsequent VOL 
modelling with the Bremgarten data. From a theoretical point of view, it 
is not obvious why the point-matching algorithm did not achieve an 
improvement in regression accuracy, which is comparable to a good 
aCHM method. The distances given in section 3.1.1 show that the correct 
sample position was not always identified, and, as described in section 
4.1.3, the STI accuracy was likely too low. However the use of 3D tree- 
top distances to quantify the co-registration quality ensures that the 
forest-stand height is approximately the same as that of the inventory 
trees at the identified positions. Extreme deviations, which occur, for 
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example, when sample-plots are accidentally located in a mature forest 
stand instead of a young growth stand, should be eliminated by the al-
gorithm. Nevertheless, this factor was not enough to significantly 
improve the regression accuracy. A possible reason could be the previ-
ously described problem that the algorithm tends to place sample-plots 
at locations with many detected trees. 

The co-registration with an aCHM and the SQDIFF_NORMED metric 
led to an improvement of the regression model accuracy of 31 RMSE-%, 
from 134.4 m3 ha− 1 to 92.6 m3 ha− 1 in Bremgarten. This result was 
confirmed by the modelling of the Zurich inventory data, at least if the 
DecEv raster was not used for co-registration. The fact that the 
Olofsson correlation metric gave poor results when tree position 
patterns occurred several times within the search window could be ex-
pected given that the correlation equation (Table 3) is not able to detect 
absolute CHM differences. This means that mature wood cannot be 
distinguished from a young growth stand if the CHM surface has a 
similar relative height pattern. The method will thus only lead to good 
results in open stands with gaps and small search radii. Such a limitation 
does not exist for the correlation equations CCORR_NORMED and 
SQDIFF_NORMED. However, they both use a standardization term in the 
denominator, which gives the sum of the CHM differences in the 
numerator more weight if one of the two CHMs has a low squared-sum of 
all pixel values. Using the difference-sum of the pixel values (SQDIFF_-
NORMED) was superior to using the product-sum of the pixel values 
(CCORR_NORMED). One possible reason is that the CCORR_NORMED 
correlation tended to move the sample-plots to positions where the CHM 
values were rather too high relative to the aCHM values. Such a trend 
was not observed with SQDIFF_NORMED. It would be worth investi-
gating whether the inclusion of the normalization term in the correlation 
equations leads to better results, given that the observed height range is 
wider for large trees than for smaller trees. With the ALS-CHM the height 
error is independent of the absolute CHM values, which makes the 
chosen standardization less appropriate. It would be of interest to test an 
adapted SQDIFF_NORMED correlation equation, in which only the 
aCHM height is used for normalization: 

cordx,dy =

∑
i∈m(pi − ci)

2

∑
i∈m(pi)

2 (8)  

where p are the pixels of the aCHM and c the pixels of the CHM. 
Besides testing other correlation equations for co-registration, a 

crown-size scaling factor or alternative crown shapes, for example ac-
cording to Pretzsch (2001), could lead to better co-registration results 
and thus better regression models. This work has shown that the 
modelling of tree-crowns as Gaussian-bells is rather unsuitable. A 
possible explanation is that the information contained in the tree posi-
tion is blurred when using a Gaussian-bell. A horizontally clearly defined 
geometry keeps more of the positional information. Instead of direct 
modelling of the crown shape as a Gaussian-bell, a subsequent 
smoothing of other crown models with a Gauss-filter could be tested. 
Furthermore, during the validation of most regression models, it was 
found that the VOL of samples in Bremgarten with an observed VOL of 
zero was systematically slightly overestimated. This is plausible because 
the DBH threshold for recording was 12 cm in Bremgarten. Therefore, an 
inventory value could be zero even though the actual VOL was slightly 
larger than zero. Excluding sample-plots with a VOL of zero from the 
model calibration might improve the model quality. 

As previously described (section 4.1.1), the integration of the DecEv 
information into the co-registration process lowered the mean and me-
dian deviation between the co-registered positions and the dGNSS 
measured positions. When the weighting factor for the DecEv raster was 
smaller than the one for the CHM, the inclusion of the DecEv informa-
tion had no influence on the regression model quality in Bremgarten. 
Unfortunately, for the Zurich dataset the inclusion of the DecEv raster in 
the co-registration process deteriorated the model quality in terms of 
RMSE. A possible explanation is that the ALS data were recorded in mid- 

April, when some deciduous trees might have already grown their fo-
liage. Therefore, the quality of the leaf-off ALS data was probably lower 
in Zurich than in Bremgarten. The DecEv results in Bremgarten, espe-
cially in terms of positional error, make the integration of ALS-based 
DecEv rasters into the co-registration process advisable whenever ALS 
data that were clearly collected completely under leaf-off conditions are 
available. 

4.3. Forest inventory and co-registration: Advantages and pitfalls 

If a co-registration method accurately identifies the position for a 
large proportion of the sample-plots, it improves, in particular, the ac-
curacy of regression models connecting field measurements with remote 
sensing data. If these prerequisites are met, co-registration is always 
recommended. However, cases in which co-registration identifies a 
plausible but not true sample-plot position must be discussed thoroughly. 

Frequently, good performance of the co-registration methods 
described in literature has required the exclusion of sample-plots with a 
difficult co-registration (e.g. dense broadleaf stands) from the investi-
gation, or a small proportion of broadleaf trees in the study area (section 
4.1). One aim of this study was to show that an improvement in the 
modelling of forest indicators through co-registration is also possible if 
the inventory contains sampling areas that are difficult to co-register. 
For this reason, no sample-plots were excluded in advance and a 
search window was chosen, which should ensure that the actual 
recording position was within the search window for almost all sample- 
plots. Visual inspection of the identified tree-tops (point matching) or 
the CHM (aCHM co-registration) indicated that similar patterns 
occurred several times in the search window and that the identified tree- 
top pattern at the true position (dGNSS) did not always match the in-
ventory data well. A manual co-registration would have been possible 
only with great uncertainty for many sample-plots. It was therefore 
expected that an automated co-registration procedure would not 
necessarily identify the correct position, but rather a suitable position 
with a similar tree distribution and tree height pattern in the search 
window of each sample-plot. As such, the true connection between the 
two data sources was no longer given, and the question of whether 
regression models based on this information can be used for further 
modelling in the framework of multi-phase forest inventories must be 
discussed in detail. 

Since the SQDIFF_NORMED correlation method attained the best 
VOL and BA regression results, the following discussion will focus on 
this co-registration metric. In general, it would be a problem if the 
response variable in the co-registration process had a direct influence on 
the values of the response variables. This would lead to a selective choice 
of positions whose predictors would be optimally matched to the 
response variable, without necessarily representing the true conditions. 
Since the VOL correlates with the aCHM values and the values of aCHM 
should correlate with those of the CHM, an indirect link between the 
response variable and the predictors is given, but this correlation is ul-
timately necessary and desirable in order to achieve a meaningful cali-
bration of a regression model. Because the response variable (VOL or 
BA) has no direct influence on the co-registration process, it cannot 
directly control the values of the predictors. If the co-registration process 
finds positions at which the calculated predictors perfectly explain the 
VOL or BA, despite leave-one-out cross-validation (LOOCV), the derived 
regression model is suitable, even if the true sampling positions were not 
found. 

Caution is advised whenever the co-registration could lead to a 
systematic bias in the linkage of the two data sources. This is theoreti-
cally possible and best explained by means of an example. Assuming a 
co-registration method systematically identifies positions at which the 
forest stand height is too small (e.g. too small tree height or crown size in 
the aCHM), a calibrated regression model perfectly explains the putative 
VOL at this position. However, if the model is used to make predictions 
for areas with independent data, it overestimates the VOL systematically. 
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This systematic bias is possible with the modelling of all forest indicators 
if they are in any way related to the metric used for co-registration (CHM 
height in the aCHM- and point-matching case or stem number in the 
point-matching case). A major problem would be that the mean value of 
the quantity to be estimated would be distorted systematically and the 
confidence interval would remain small. This would lead to a false high 
precision. Less problematic is the situation when the identification of 
plausible but not true positions leads to a greater spread in the regression 
model. In this case, the residuals remain symmetrically distributed 
around the true mean value. Although this is undesirable, since the 
confidence interval of the estimate is enlarged, no false accuracy is 
given. As this comparison indicates, a systematic bias can be tested on 
the residuals, when the model calibrated at the co-registered positions is 
used for the prediction of the VOL at the initial positions. Fig. 14 shows 
an example of such a verification for the best-performing co-registration 
method sphere_1:SQDIFF_NORMED. No systematic bias was found. 

If such a review of residuals were to show that a systematic bias 
exists, it is advisable to check whether the distortion can be eliminated 
by adjusting the parameters of the co-registration method. With the 
aCHM methods, a different crown model or a different crown-size 
scaling factor could be tested. For the point-matching methods, a 
correction of the CHM-extracted tree heights, for which it is known that 
they tend to underestimate the height of the trees, is possible (Hollaus 
et al., 2010). If a systematic error cannot be prevented by such means, a 
correction analogous to the correction via the residuals in the evaluation 
of sub-areas of a multi-phase inventory would be plausible (Mandallaz, 
2007). 

5. Conclusions 

Various co-registration methods were evaluated in a study area in 
Bremgarten. The aim of these methods is to establish a more precise link 
between forest inventory and remote sensing data. These methods 
should make the calibration of more precise regression models possible, 
which could then be used in a multi-phase inventory. The point- 
matching algorithm, which searched for the correct position by 
comparing two tree-top point-clouds, did not lead to satisfactory results. 
The method failed primarily because of the insufficient positional ac-
curacy of the tested STI methods. To address the problem of an inac-
curate STI, it would be of interest to try integrating a weighting factor, 
which gives dominant trees a greater weight in the co-registration pro-
cess. Furthermore, it would be of interest to develop a method that not 
only uses tree-top points but also compares whole ALS point-clouds. 
Analogous to the method of Lamprecht et al. (2017), synthetic ALS 
point-clouds could be generated based on the inventory data and sub-
sequently compared with the point-cloud retrieved from the ALS flights. 

In addition to the point-matching-based co-registration, methods 
that use an artificial CHM (aCHM) generated from the sample data were 
tested for georeferencing. As the comparison with the dGNSS measured 
sample positions showed, none of the co-registration methods succeeded 
in adequately identifying the true recording positions. Due to several 
similar positions within the search window, a certain manual (CHM or 
orthophoto) co-registration was impossible for many sample-plots. 

Despite the partly uncertain co-registration, it could be shown from 
the positions identified by the SQDIFF_NORMED correlation metric that 
this method is better suited for deriving regression models that link 
forestry indicators and remote sensing data. The method did not 
necessarily identify the true sampling position, but it found one plau-
sible position (out of many). The improved accuracy of the regression 
models led to more precise modelling of forestry indicators from remote 
sensing data. If the inventory trees were modelled as Gaussian-bells in 
the aCHM, co-registration led to worse regression models than if the 
tree-crowns were modelled as spheres or ellipsoids. In this respect, it 
would be interesting to develop a method that smooths the discretely 
limited crown shapes by an additional application of a Gaussian filter to 
achieve a more realistic aCHM surface. Additionally, the investigation of 

an alternative SQDIFF_NORMED correlation metric, where the normal-
ization is performed using only the aCHM values, and not the CHM 
values, would be worthwhile (section 4.2: Equation (8)). 

Including the DecEv information in the raster-based co-registration 
process improved the positional accuracy when an accurate DecEv raster 
source was available (Bremgarten) but deteriorated the BA regression 
model quality when the DecEv raster source was likely not accurate 
enough (Zurich). However, neither for Bremgarten nor for Zurich did the 
DecEv information improve the quality of the VOL or BA regression 
model. 

The evaluated co-registration methods were primarily advantageous 
when no dGNSS measurements of the sample-plot positions were 
available as a reference. However, even compared with the dGNSS po-
sitions, a slight improvement of the regression model accuracy was 
possible. If predictors based on co-registered positions are used to cali-
brate the regression models, the confidence interval of the model esti-
mate and thus the confidence interval of the estimated average value of 
the total inventory is improved. It is essential to check whether the 
identification of a plausible, but not the true recording position in-
troduces a systematic bias in the regression models. If there is such a 
bias, it should be tested whether it can be dissolved by adapting the co- 
registration method parameters. If this is not possible, a correction via 
the empirical residuals, analogous to the evaluation of sub-areas in 
multiphase inventories, is indicated. A systematic bias was not found in 
the present study. As the true recording positions were not identified in 
some cases, it should be emphasized that none of the methods tested is 
suitable if a linkage (co-registration) at the single-tree level is intended. 

Applying the best-performing co-registration method sphere_1: 
SQDIFF_NORMED to the Zurich forest inventory data showed that the 
methods also led to an improvement of the RMSE of the regression 
model for this study area, at least when the DecEv raster was not 
considered in the co-registration process. The DecEv raster quality was 
most likely not sufficient in Zurich. This shows that the results are 
transferrable to other areas of investigation, with other ALS data and 
orthophoto sources. 

For further research, it would be of interest to refine the point- 
matching co-registration procedures. Since the method already fails 
due to insufficiently precise STI methods, stem-detection methods in 
deciduous stands and leaf-off ALS data with a point density > 50 points 
m− 2 could show whether the method is able to produce good co- 
registration results, if the underlying STI is sufficiently accurate. 
Furthermore, point-matching procedures which not only co-register 
tree-top point-clouds but also use all ALS points could improve the co- 
registration process. On the one hand, the uncertainties of an STI 
could be avoided, while on the other hand more information from the 
ALS data could be used than if only LM were detected. Regarding the 
aCHM co-registration methods, possible improvements include other 
crown models or correlation metrics. 
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