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Appendix 

I. Software 

The software used for data processing can be summarized as follows: 

 PyCharm Python IDE 2019.2.1 with Miniconda3 4.3.31 and Python 3.6.7: Installed 
packages were (in this order): pandas 0.24.2, scipy 1.2.1, xlrd 1.2.0, xlwt 1.3.0, 
matplotlib 3.0.3, scikit-learn 0.20.3, scikit-image 0.15.0, cx-Oracle 7.0.0, py4j 0.10.8.1, 
statsmodels 0.9.0, open-cv 4.1.0.25, [GDAL 2.4.1, Fiona 1.8.6, pyproj 2.1.3, Rtree 0.8.3, 
Shapely 1.6.4 as Gohlke Wheelfiles], geopandas 0.5.0, pyshp 2.1.0, xgboost 0.90, psutil 
5.6.3, patsy 0.5.1, seaborn 0.9.0, tensorflow 1.12, pillow 6.0.0 and Cython 0.29.12 

 LAStools v. 4.4.2019 (Rapidlasso GmbH, 2019). 

 Octave 5.1.0 with the Digital Forestry Toolbox by (Parkan, 2018). 

 RStudio 1.2 user interface with R 3.6.1 (R Core Team, 2019): Installed packages were: 
boot, broom, dismo, dplyr, ggplot2, minpack.lm, nlstools, pander, RColorBrewer, 
reshape2 and xlsx 

 QGIS 3.6 

II. Supplementary methodical explanations 

Allometry data: additional information (section 2.2) 

From the EFM dataset 173’382 single-tree measurements were used. These were recorded at 
different plots in Switzerland over more than a century. For this study all measurements were 
used, without e.g. selection according to different regions or altitude levels. The TUM dataset 
comprised 39’624 single-tree measurements, 37’707 of which originated from long-term 
research plots in southern Germany. In 1’917 cases, park and city trees all over the world were 
sampled (Pretzsch et al., 2015). For the present study, the attributes DBH, tree species and 
crown radius of all 39’624 trees were used. The crown radius was either derived from average 
values of measurements in four orthogonal, horizontal directions (WSL dataset) or from root-
mean-squared error values of measurements in eight cardinal points (N, NW, ..., NE; TUM 
dataset). 

ALS data pre-processing: additional information (section 2.4) 

The entire processing of the ALS data was carried out using the LAStools v. 4.4.2019 software 
(Rapidlasso GmbH, 2019). Names of LAStools tools are hereafter highlighted in typewriter 
font. With lasclip, the ALS data were cut to the search window of each sample-plot, and 
with lasnoise outliers were classified as background noise and excluded from further 

processing (class 7). Subsequently, ground points (class 2) were identified with lasground 
and the remaining points were classified with lasclassify (classes: unclassified 1; low 
vegetation 3; high vegetation 5; buildings 6). The calculation of a digital terrain model (DTM) 
with a resolution of 50 cm was done with las2dem. With the same tool and the pit-free 
algorithm, a digital surface model (DSM) and a normalized DSM (nDSM or CHM) with a 
resolution of 50 cm were created. Finally, the classified ALS point-cloud was normalized with 
lasheight and points with a negative normalized height were excluded. 
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Single-tree-identification (STI) methods: additional information (section 2.10) 

The methods of Menk et al. (2017) and Kaartinen et al. (2012) both rely on filtering of the CHM 
prior to LM detection. Menk et al. (2017) used a] Gaussian filter with a raster-resolution-
dependent standard deviation of 𝜎 =  0 (no smoothing) for resolutions (res) ≥ 0.5 m, 𝜎 =  1 
for res ≥ 0.5 and < 1, and 𝜎 =  2 for res < 0.5 (method LM1). The following Gauss kernel 
(method LM2) was applied by (Kaartinen et al., 2012): 
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In another LM method, Parkan (2018) first calculated a CHM based on the ALS point-cloud, 
which was then smoothed with a 2.4 𝑥 2.4 m Gaussian filter. Afterwards, single trees with a 
minimum height of 2 m and a minimum inter-tree distance of 0.28 −  ℎ0.59 m (Chen et al., 
2006) were identified, where ℎ is the height of the higher of the two tree candidate points 
that were read from the CHM (method LM3). 

A stem-detection-based STI for deciduous stands was performed according to the procedure 
proposed in the Digital Forestry Toolbox. The algorithm uses normalized leaf-
off ALS last returns, which belong to class 4 or 5 (medium vegetation or high vegetation), to 
identify stems at positions of high ALS point density (method Stems). 

Shannon entropy and GLCM: additional information (section 2.13) 

The Shannon entropy is defined as 𝐻 =  − ∑ 𝑝𝑘 ∗  𝑙𝑜𝑔2(𝑚𝑎𝑥(𝑝𝑘, 1))𝑘 , where 𝑝𝑘 is the 
probability that a pixel has the value 𝑘 (Singh & Singh, 2008). The result depends on the 
underlying image data type (e.g. 8-bit integer with 𝑘 ∊  [0, 256) or 16-bit integer with 𝑘 ∊
 [0, 65′536)). In Bremgarten and Zurich 16-bit integer orthoimages were used. 

GLCM contains information about the texture in an image. It has the four dimensions 
𝑖, 𝑗, 𝑑 and  Ɵ. The matrix-values 𝑝𝑖,𝑗,𝑑,Ɵ  ∊  [0, 1] give the probability that a pixel 𝑗 at a distance 

𝑑 and an angle Ɵ occurs relative to the pixel value 𝑖 (Soh & Tsatsoulis, 1999). In this study, 𝑑 
was defined as one pixel width (Bremgarten 25 cm; Zurich 10 cm) and Ɵ had a value of 0°. 
Thus, the dimensions of the GLCM were reduced to two (𝑖, 𝑗). The 16-bit orthoimages were 
converted to 8-bit images prior to calculating the GLCM for each of the four orthoimage bands 
(RGB and NIR).  

Removal of highly correlated features: additional information (section 2.14.1) 

To get a subset of predictors that were not highly correlated, the following algorithm was 
repeated 1,000 times, counting how often each predictor occurred in these 1,000 runs. 
Starting with one predictor, further predictors were randomly added as long as their 
correlation with all of the previously chosen predictors was < 0.7. Finally, only those predictors 
which had been added more than 0.15 times as often as the one that was most frequently 
chosen in the 1,000 runs were kept in the subset. Since strongly correlated predictors could 
also occur in this subset, the algorithm was applied one more time to the subset with a 
correlation limit of 0.85 to ultimately exclude one of two predictors with a correlation > 0.85. 
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III. Supplementary tables 

Table 5: This table shows the parameters 𝒂, 𝒃 and 𝒄 of the regression model equations, which were selected 
for each tree species (number of observations in the second column) to model the relationship between DBH 
and tree height (top) or DBH and crown size (bottom). 𝝈 denotes the standard deviation of the residuals. The 

𝐑𝟐 is only given for the linear models, since its interpretation is questionable for the non-linear models (Spiess 
& Neumeyer, 2010). The underlying model formulation, chosen by AIC comparison (see Table 6 and 7) is 
indicated in the column on the right. 

DBH – Tree height 
Tree species 𝑛-Obs. 𝑎 𝑏 𝑐 𝜎 [m] R2 Model 

Fagus sylvatica 36 381 5.695   x 101 2.452  x 10-2 1.042  3.496  - Logistic mod. 
Quercus sp. 4 125 3.348  x 101 3.079  x 10-2 1.127  2.763  - Weibull 
Acer sp. 4 447 7.970  x 101 -6.306  x 101 1.940  x 101 3.266  - Exponential 
Fraxinus excelsior 1 931 6.121  x 101 -3.673  x 101 1.349  x 101 3.142  - Exponential 
Tilia sp. 480 3.212  x 101 1.652  x 10-2 1.250  2.510  - Weibull 
Prunus avium 785 9.102  x 101 -6.990  x 101 2.035  x 101 2.162  - Exponential 
Ulmus sp. 88 2.962  x 102 5.889  2.377  x 10-1 3.057  - Korf 
Other broadleaf 21 368 3.313  7.984  x 10-1 5.440  x 10-3 3.362  0.806 Linear 
Picea abies 57 592 4.923  1.001  x 10-2 1.348  3.805  - Logistic mod. 
Abies alba 18 485 6.311  x 101 9.287  6.565  x 10-1 3.335  - Korf 
Pinus sylvestris 19 078 2.673  7.749  x 10-1 4.561  x 10-3 3.770  0.656 Linear 
Larix sp. 16 790 1.325  8.897  x 10-1 5.301  x 10-3 3.219  0.877 Linear 
Other coniferous 31 456 2.289  x 102 7.392  3.378  x 10-1 3.788  - Korf 

 

DBH – Crown size 
Tree species 𝑛-Obs. 𝑎 𝑏 𝑐 𝜎 [m] R2 Model 

Fagus sylvatica 36 381 1.312  6.824  x 10-2 1.177  x 10-4 8.852  x 10-1 0.637 Linear 
Quercus sp. 4 125 3.280  x 101 -1.777  x 102 4.074  x 101 7.426  x 10-1 - Exponential 
Acer sp. 4 447 2.135  x 104 1.473  x 10-5 6.967  x 10-1 4.824  x 10-1 - Logistic mod. 
Fraxinus excelsior 1 931 1.883  x 10-1 1.085  x 10-1 -1.612  x 10-4 7.128  x 10-1 0.803 Linear 
Tilia sp. 480 1.319  x 101 -5.520  x 101 1.752  x 101 5.186  x 10-1 - Exponential 
Prunus avium 785 1.370  x 101 -6.011  x 101 1.599  x 101 4.224  x 10-1 - Exponential 
Ulmus sp. 88 1.448  8.045  x 10-2 -9.470  x 10-6 6.836  x 10-1 0.745 Linear 
Other broadleaf 21 368 3.008  x 10-1 1.218  x 10-1 -3.961  x 10-4 7.061  x 10-1 0.824 Linear 
Picea abies 57 592 2.024  x 101 -2.143  x 102 6.832  x 101 4.730  x 10-1 - Exponential 
Abies alba 18 485 9.646  x 10-1 6.316  x 10-2 -1.797  x 10-4 6.270  x 10-1 0.729 Linear 
Pinus sylvestris 19 078 2.729  x 101 -2.125  x 102 5.781  x 101 4.623  x 10-1 - Exponential 
Larix sp. 16 790 1.163  x 101 -9.742  x 101 3.534  x 101 4.958  x 10-1 - Exponential 
Other coniferous 31 456 9.450  x 101 6.275  1.766  x 10-1 5.783  x 10-1 - Korf 
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Table 6: Akaike’s Information Criterion (AIC) of the DBH - tree height regression models. For each species the 
one model with the smallest AIC value was chosen for further modelling. 

Model Fagus Quercus Acer Fraxinus Tilia Prunus Ulmus 

Linear 1.9515  x 105 2.1005  x 104 2.3178  x 104 9.9797  x 103 2.2512  x 103 3.4650  x 103 4.5476  x 102 
Chapman 1.9434  x 105 2.0104  x 104 2.3218  x 104 9.9194  x 103 2.2539  x 103 3.4905  x 103 4.5231  x 102 
Weibull 1.9433  x 105 2.0097  x 104 2.3220  x 104 9.9185  x 103 2.2508  x 103 3.4905  x 103 4.5217  x 102 
Exponential 1.9439  x 105 2.0211  x 104 2.3151  x 104 9.9065  x 103 2.2560  x 103 3.4429  x 103 4.5312  x 102 
Logistic mod. 1.9432  x 105 2.0158  x 104 2.3222  x 104 9.9176  x 103 2.2579  x 103 3.4905  x 103 4.5193  x 102 
Korf 1.9433  x 105 2.0341  x 104 2.3231  x 104 9.9253  x 103 2.2710  x 103 3.4943  x 103 4.5136  x 102 
 

Model 
Other 

coniferous Picea Abies Pinus Larix 
Other 

broadleaf  

Linear 1.7346  x 105 3.1898  x 105 1.0013  x 105 1.0479  x 105 8.6915  x 104 1.1246  x 105   
Chapman 1.7326  x 105 3.1747  x 105 9.7731  x 104 1.0495  x 105 8.6946  x 104 1.1249  x 105   
Weibull 1.7327  x 105 3.1753  x 105 9.7803  x 104 1.0495  x 105 8.6918  x 104 1.1249  x 105   
Exponential 1.7329  x 105 3.1739  x 105 9.7179  x 104 1.0484  x 105 8.7041  x 104 1.1252  x 105   
Logistic mod. 1.7319  x 105 3.1737  x 105 9.7330  x 104 1.0499  x 105 8.7045  x 104 1.1260  x 105   
Korf 1.7306  x 105 3.1759  x 105 9.6992  x 104 1.0505  x 105 8.7312  x 104 1.1280  x 105   

 

Table 7: Akaike’s Information Criterion (AIC) of the DBH – crown size regression models. For each species the 
one model with the smallest AIC value was chosen for further modelling. 

Model Fagus Quercus Acer Fraxinus Tilia Prunus Ulmus 

Linear 8.8517  x 10-1 7.5588  x 10-1 4.8411  x 10-1 7.1285  x 10-1 5.1873  x 10-1 4.2425  x 10-1 6.8362  x 10-1 
Chapman 9.0215  x 10-1 7.5726  x 10-1 4.8240  x 10-1 7.1313  x 10-1 5.1910  x 10-1 4.2544  x 10-1 7.0289  x 10-1 

Weibull 9.0215  x 10-1 7.5722  x 10-1 4.8240  x 10-1 7.1313  x 10-1 5.1913  x 10-1 4.2547  x 10-1 7.0289  x 10-1 
Exponential 8.8568  x 10-1 7.4256  x 10-1 4.8548  x 10-1 7.1385  x 10-1 5.1857  x 10-1 4.2238  x 10-1 6.8400  x 10-1 
Logistic mod. 9.0215  x 10-1 7.5724  x 10-1 4.8240  x 10-1 7.1313  x 10-1 5.1915  x 10-1 4.2549  x 10-1 7.0289  x 10-1 

Korf 9.0368  x 10-1 7.5853  x 10-1 4.8270  x 10-1 7.1353  x 10-1 5.1933  x 10-1 4.2583  x 10-1 7.0456  x 10-1 

 

Model 
Other 

coniferous Picea Abies Pinus Larix 
Other 

broadleaf  

Linear 5.8148  x 10-1 4.7337  x 10-1 6.2700  x 10-1 4.6256  x 10-1 4.9605  x 10-1 7.0609  x 10-1   
Chapman 5.7861  x 10-1 4.8214  x 10-1 6.3474  x 10-1 4.6761  x 10-1 4.9914  x 10-1 7.0683  x 10-1   
Weibull 5.7850  x 10-1 4.8214  x 10-1 6.3474  x 10-1 4.6761  x 10-1 4.9914  x 10-1 7.0688  x 10-1   
Exponential 5.7884  x 10-1 4.7304  x 10-1 6.2764  x 10-1 4.6227  x 10-1 4.9580  x 10-1 7.0676  x 10-1   
Logistic mod. 5.7839  x 10-1 4.8214  x 10-1 6.3474  x 10-1 4.6760  x 10-1 4.9914  x 10-1 7.0693  x 10-1   
Korf 5.7829  x 10-1 4.8320  x 10-1 6.3544  x 10-1 4.6846  x 10-1 4.9949  x 10-1 7.0727  x 10-1   
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IV. Supplementary figures 

 

Figure 16: Comparison of co-registration methods (horizontal axis) based on the leave-one-out cross-validated 
adjusted R2 (vertical axis) of the timber volume in Bremgarten. The values shown are the average values of 
three OLS regression model calibration runs, including predictor variable selection and random removal of 
strongly correlated predictors. The colour indicates the different co-registration starting positions. Horizontal 
lines show the reference values without co-registration. To minimize overlapping, all points were slightly 
shifted horizontally. 
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Figure 17: Application of the co-registration method that performed best in Bremgarten to the Zurich dataset, 
with and without taking the DecEv raster into account. The figure shows the leave-one-out cross-validated 
adjusted R2 (vertical axis) of the OLS modelled BA in Zurich. The reference is given by the non-co-registered 
sample-plots (horizontal lines). All values are averages from three independent calibration runs, including 
predictor variable selection and random removal of strongly correlated predictors. The colour denotes the 
respective co-registration starting position. To minimize overlapping, all points were slightly shifted 
horizontally. 
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Figure 18: Comparison of the Basal Area (BA) and Volume (VOL) for DBH values of single trees between 12 
and 70 cm. The volume was calculated according to the tariff functions, that were applied in Bremgarten. 
The resulting curves are almost linear. 

 


