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A B S T R A C T

Monitoring snow depth is important for applications such as hydrology, energy planning, ecology, and safety
evaluation for outdoor winter activities. Most methods able to estimate snow depth for large regions can only
do so in a spatial resolution of up to 1 km ground sampling distance (GSD). This limits their usage in high
alpine areas, where this resolution fails to capture local snow distribution patterns caused by the pronounced
topographical features. In this work we use a recurrent convolutional neural network to estimate snow depth
at high spatial resolution (10 m GSD), weekly, and at large scale based on satellite data sources and elevation
maps, without the need for measurement stations on the ground. The proposed method achieves unprecedented
results for large-scale, high-resolution snow depth mapping. The resulting maps are evaluated over a period
of three years against high-fidelity snow depth maps obtained with airborne photogrammetry. Finally, we
also produce well-calibrated uncertainty estimates for every individual snow depth estimate via a probabilistic
regression framework.
1. Introduction

Water is arguably the most important natural resource for commu-
nities and ecosystems worldwide. Monitoring it is essential, especially
in the face of challenges due to climate change (Muelchi et al., 2021;
Stahl et al., 2022). Earth Observation (EO) holds great potential for
large scale, continuous monitoring of such resources and for supporting
Sustainable Development Goals (SDGs) (The 17 Goals, 2022), especially
when coupled with modern deep machine learning (Zhu et al., 2017;
Ma et al., 2019; Persello et al., 2022).

Water stored as snow is crucial for over a billion people worldwide
during the warmer months (Lievens et al., 2019). Monitoring snow dis-
tribution is essential for planning and managing water resources weeks
or months in advance, and becomes more important with increasing
climate impacts (Muelchi et al., 2021; Stahl et al., 2022). Research
shows that mean snow depth in the European Alps has decreased at
a rate of >8% per decade over the past 50 years (Matiu et al., 2021;
Rumpf et al., 2022). The melting of snow, glaciers, and permafrost
threatens the water supply of many communities and increases the
likelihood of landslides and floods (Shukla et al., 2022). Water flows
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in high-elevation ecosystems are at high risk of being disrupted due to
glacier loss and shrinking snow-cover. With a rapid loss reduction in the
world’s glaciers (Hugonnet et al., 2021), which is exacerbated by snow
albedo feedback (Thackeray et al., 2019), we can expect big changes in
the hydrological situations of many communities in the coming decades
which will negatively affect water security and livelihoods of millions
(Shukla et al., 2022).

Mapping snow distribution and snow depth has therefore been a
topic of high scientific and practical interest in the fields of hydrology
and remote sensing. Having access to such maps is also important
for ecology, especially in alpine ecosystems (Wipf et al., 2009). Snow
maps support planning of water resource management, leisure outdoor
activities, and promote a better understanding long-term dynamics in
the cryosphere (Lievens et al., 2019; Hugonnet et al., 2021). Moreover,
they are valuable for studying avalanches (Schweizer et al., 2003;
Pérez-Guillén et al., 2021; Bühler et al., 2022), so as to reduce risks and
costs. Large-scale snow depth maps, in conjunction with local density
estimates, also support the estimation of Snow Water Equivalent (SWE),
which is important for many applications in hydrology (Lettenmaier
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et al., 2015; Margulis et al., 2019; Jonas et al., 2009; Winkler et al.,
2021).

Most previous efforts towards snow depth estimation can be grouped
into two categories: large-scale, low spatial resolution estimates (Kelly
et al., 2003; Saha et al., 2010; Muñoz-Sabater et al., 2021; Lievens
et al., 2019; Information, 2022; Olefs et al., 2020) that cover entire
countries or mountain ranges; and small-scale, high spatial resolution
estimates (Bühler et al., 2015; Painter et al., 2016; Bühler et al., 2016,
2017; Jacobs et al., 2021; Eberhard et al., 2021) that cover only regions
of a few km2. The former group varies significantly in resolution,
.g., 1 km (Lievens et al., 2019; Olefs et al., 2020), 9 km (Muñoz-
abater et al., 2021), 25 km (Kelly et al., 2003), or 47 km (Saha et al.,
010). Such maps are valuable for understanding snow dynamics at
lanetary scale, as it is currently not possible to map snow depth for
he entire cryosphere at high spatial resolution. That being said, they
ften are of limited use in alpine terrain, because they cannot capture
he associated spatial variability. Snow depth in such areas is typically
apped with high-resolution methods that are too costly to scale to

arge regions. High-resolution, large scale snow depth estimates have
een produced in the past with moderate success (Wulf et al., 2020),
ut such products are rare and rely on extensive ground measurement
etworks.

Learning-based image analysis has the potential to learn from high-
uality snow depth maps and then be used to produce high-resolution,
arge-scale estimates of snow depth. When applied to globally avail-
ble, high-resolution open data sources such Sentinel-1 and Sentinel-2
mages (Sentinel-1, 2022; Sentinel-2, 2022), the application of such
ethods is not restricted geographically and can even be done retro-

pectively.
In this work we present a novel snow depth estimation method

hat can be used at country-scale to produce spatially dense, weekly
now depth estimates at 10 m GSD with unprecedented accuracy. Such
stimates are created using a fully convolutional, recurrent neural net-
ork and only data from scalable sources: multispectral optical satellite

mages, synthetic aperture radar (SAR) images, and a digital elevation
ap. We use satellite images directly in a deep learning pipeline, while
revious work used photogrammetric methods with images of much
igher resolution. We train this network with a combination of coarse
arge-scale snow depth maps and local high-fidelity maps generated
y airborne photogrammetry. By employing a probabilistic learning
ramework we are, moreover, able to complement the snow depth maps
ith well-calibrated, spatially explicit uncertainty maps. The latter are
seful diagnostic information for map users and downstream processes
e.g., estimates of avalanche risk).

The main contributions of this work are:

1. A novel, scalable snow depth estimation algorithm which does
not require access to ground station measurements. This in-
dependence from in-situ observations and usage of open data
make it possible to, in principle, deploy the proposed method
in any region of interest and at any scale. In our work paper,
we produce weekly maps for the entire country of Switzerland
(>40,000 km2, respectively 4 ⋅108 pixels).

2. The ability to additionally produce uncertainty maps for the
estimated snow depths. In this way, users can derive confidence
margins to inform downstream applications, for instance in hy-
drology. These uncertainty maps allow one to understand which
patterns and locations lead to unreliable snow depth estimates.

3. At a technical level our work is, to the best of our knowledge,
the first to combine a convolutional Gated Recurrent Unit (GRU)
(Ballas et al., 2016) with the probabilistic regression scheme
proposed by Kendall and Gal in Kendall and Gal (2017), thus
producing uncertainty estimates that are dense in both space and
106

time. w
We compare the proposed method to high-fidelity snow depth sur-
veys acquired with airborne photogrammetry around Davos, Switzer-
land, and show empirically that it indeed produces snow depth maps
with finer details and a higher metric accuracy than existing large-scale
methods.

2. Related work

2.1. Snow depth estimation

The first source of snow depth measurements are automatic mea-
surement stations. Manual measurements are also feasible in some
situations. Nevertheless, even in areas with a high density of mea-
surement stations interpolation of such data is unable to account for
the spatial variability of snow depth (Bühler et al., 2015). Snow maps
of this kind nonetheless constitute the state of the art for large-area
products, and are made available by snow research institutes (e.g.,
Information (2022) at 1 km GSD).

Lievens et al. have proposed a physical model to estimate snow
depth using Sentinel-1 C-band synthetic aperture radar (SAR) images
(Lievens et al., 2019). Focusing on the northern hemisphere, their
model uses the backscatter 𝜎0 to estimate snow depth. Data show that
the ratio 𝜎0VH∕𝜎

0
VV strongly correlates with snow depth. This is based on

the empirical observations that VV polarized SAR bands are suitable for
snow-melt mapping, although they have also observed that C-band SAR
has limited sensitivity to changes in dry snow. With that method, snow
depth estimates with a resolution of 1 km2 GSD can be produced. Olefs
t al. have also produced snow depth maps with a GSD of 1 km, using a
hysically based snow cover model. After producing daily snow depth
aps for Austria for the period 1961–2020, they were able to study
etailed dynamics of the cryosphere in that region, and its evolution
ver the last six decades.

High resolution snow depth maps can be created by comparing
igital surface maps (DSMs) constructed during summer and winter
onths. Such DSMs can be generated using a variety of photogram-
etric techniques: stereo imaging with high resolution satellite images

Eberhard et al., 2021), structure-from-motion using uncrewed aerial
ystems (UASs) or airplanes (Bühler et al., 2015, 2016, 2017; Adams
t al., 2018; Eker et al., 2019; Eberhard et al., 2021), terrestrial cameras
Eberhard et al., 2021), as well as terrestrial or airborne laser scanning
Eker et al., 2019; Jacobs et al., 2021). Some of the more accurate
mong these systems achieve root mean squared errors (RMSE) of
.1–0.3 m, depending on the local topography (Bühler et al., 2016).
xperiments by Eberhard et al. (2021) suggest that snow depth maps
enerated from very high resolution satellite imagery reach accuracies
p to 0.5–1.0 m in terms of RMSE. We note that these experiments
onsider rather small test regions (e.g., 0.10 km2 in Jacobs et al. (2021)
nd 0.12 km2 in Adams et al. (2018)), and may not be representative
or some of the varied terrain characteristics encountered across a
ajor mountain range.

Wulf et al. (2020) have succeeded in producing large-scale, high
esolution snow depth estimates by coupling interpolation of station
easurements with features learned from previous high-accuracy snow
epth surveys. These features, derived from the DEM, to some degree
ompensate for the lack of spatial detail in the initial interpolation.
hat work was the first to successfully produce large-scale (i.e., entire
ountain ranges) snow depth maps with GSD of 20 m. That method

erves as a strong baseline for current country-wide snow mapping in
ur study, and is described in more detail in Section 4.2.1. This method

ill be referred to as TCAM from this point on.
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2.2. Satellite image sequence analysis

In recent years, several methods have applied state-of-the-art ma-
chine learning approaches for analyzing Earth observation time-series.
Previous work has successfully applied random forests (Pelletier et al.,
2016, 2019a), temporal convolutional networks
(Pelletier et al., 2019b,a), Recurrent Neural Networks (RNNs) (Russ-
wurm and Korner, 2017; Rußwurm and Körner, 2018; Rußwurm et al.,
2019; Pelletier et al., 2019a; Garnot et al., 2019; Rußwurm et al., 2020;
Turkoglu et al., 2021b,a), neural ODEs (Metzger et al., 2021), and
self-attention mechanisms (Rußwurm and Körner, 2020; Garnot et al.,
2020; Garnot and Landrieu, 2020, 2021) for a variety of tasks. Such al-
gorithms have achieved excellent results for mapping crops and/or field
boundaries, classifying land cover, forecasting of vegetation indices,
and more. Among such methods, RNNs are a well-established family
of algorithms for various forms of time-series analysis (Russwurm and
Korner, 2017; Rußwurm and Körner, 2018; Rußwurm et al., 2019; Pel-
letier et al., 2019a; Garnot et al., 2019; Rußwurm et al., 2020; Turkoglu
et al., 2021b,a). The prevalent architectures are based on Long Short-
Term Memory (LSTM) (Russwurm and Korner, 2017; Rußwurm and
Körner, 2018; Rußwurm et al., 2019; Rußwurm and Körner, 2020;
Rußwurm et al., 2020) or GRU (Rußwurm and Körner, 2018; Pelletier
et al., 2019a; Garnot et al., 2019), which follow similar principles to
mitigate gradient vanishing and enable learning over long sequences.
GRU is more efficient in terms of storage and computational cost, while
previous work has shown that both variants tend to achieve similar
performance (Rußwurm and Körner, 2018), on par with more recent
self-attention approaches (Rußwurm and Körner, 2020). Convolutional
variants of LSTM and GRU cells – ConvLSTM (Shi et al., 2015) and Con-
vGRU (Ballas et al., 2016) – have been developed to more efficiently
extract spatio-temporal information when analyzing image time-series.
In this work, we employ ConvGRU as a core component of our neural
architecture.

2.3. Uncertainty estimation in deep learning

For many applications a desirable capability of a machine learn-
ing system is to deliver uncertainty margins for the predicted values
(Gustafsson et al., 2020). But modern deep learning systems are known
to often produce overconfident estimates (Guo et al., 2017; Lakshmi-
narayanan et al., 2017). For this reason, several extensions have been
proposed to enable well-calibrated uncertainty estimation (Niculescu-
Mizil and Caruana, 2005; Kendall and Gal, 2017; Kuleshov et al.,
2018). Recent work (Kendall and Gal, 2017) discerns between two
forms of uncertainty: aleatoric uncertainty inherent in the observations,
.g., stemming from sensor noise or ambiguous spectra; and epistemic
ncertainty, expressing the fact that the model parameters may not
pply to unfamiliar input patterns.

Aleatoric uncertainty estimation can, under reasonable assumptions,
e learned from the data themselves, by formulating the learning task
n a probabilistic manner (Kendall and Gal, 2017; Becker et al., 2021).
or regression, this amounts to representing the network output as a
robability distribution rather than a point estimate, and training the
etwork to simultaneously output the mean and the (log-)variance of
hat distribution, individually for each sample. The epistemic uncer-
ainty, on the other hand, reflects a lack of knowledge caused by gaps
n the training data. It is typically estimated with some form of model
nsemble (Lakshminarayanan et al., 2017), building on the assumption
hat the stochastic nature of the optimization scheme itself and of its
nitialization will lead to distinct sets of weights for different ensemble
embers, whose disagreement will then reflect the knowledge gaps.
hile it has been shown that as few as five ensemble members al-

eady provide good estimates of epistemic uncertainty (Ovadia et al.,
019), recent work has tried to find ways to reduce the computational
verhead for training and testing and entire ensemble (Turkoglu et al.,
107

022; Kushibar et al., 2022). We find that, for snow depth estimation i
with the proposed data sources, aleatoric uncertainty is the dominating
component. Therefore we refrain from the use of ensemble methods, so
as to save computational effort.

The described framework for probabilistic deep learning has already
been applied in the context of Earth observation, e.g., for estimating
canopy height (Alagialoglou et al., 2022; Lang et al., 2022b,a) and
other forest structure variables (Becker et al., 2021), and in the context
of extrapolating time series to obtain forecasts (Rußwurm et al., 2020).
To the best of our knowledge, they have not yet been explored in the
context of snow depth estimation.

3. Methodology

The proposed method combines the spatiotemporal analysis capabil-
ity of convolutional gated recurrent unit (ConvGRU) networks (Ballas
et al., 2016) with a probabilistic formulation which enables the network
to model heteroscedastic aleatoric uncertainty (i.e., varying variance
for each prediction) (Kendall and Gal, 2017). The presence of aleatoric
uncertainty in the considered problem is intuitive: it would be naive to
assume that the considered data sources (SAR images, optical images,
and elevation maps) contain all the information needed to perfectly es-
timate snow depth, even using a hypothetical ‘‘perfect’’ algorithm. The
ability of the network to predict heteroscedastic uncertainties allows us
to more reliably interpret the produced estimates. Such uncertainties
can also help in the usage of such maps for downstream analyses or
products.

This section describes how we produce snow depth estimates and
uncertainty maps using the available data sources, which will be de-
scribed in more detail in Section 4. The first challenge is to handle the
input of differently and irregularly sampled inputs in time to produce
regular outputs. We then provide a detailed description of the neural
network’s architecture and the probabilistic modeling of uncertainties
which is used.

3.1. Temporal stacking

The proposed method aims to produce spatially dense snow depth
estimates every 7 days. We do not aim to go beyond the temporal
resolution of the available dynamic data sources, and we find that
weekly snow depth estimates suffice for most applications. Note that
the method can be adjusted to produce snow depth estimates at any
frequency if desired, up to producing daily results. Since data from
satellite sources are acquired at different dates and at different rates,
we propose a simple strategy for temporally stacking the data in order
to include the maximum amount of information in the inputs to our
RNN. The main idea is the following: for each pixel of each spectral
band, the latest available valid data is considered.

More formally, we define an update process for each 𝑀 by 𝑁
olor channel 𝐱𝑐 ∈ R𝑀×𝑁 that is computed every day given the
ew observation 𝐡𝑐 and the associated binary validity mask 𝐦𝑐 which
enotes the region of the image for which new data are available
ith 1, and contains 0 everywhere else. In the case of optical satellite

mages, 𝐦𝑐 also takes into account cloud masks. For a given day 𝑑,
the temporally stacked image can then be obtained by computing the
following equation:

𝐱𝑐,𝑑 = 𝐦𝑐,𝑑 ⊙ 𝐡𝑐,𝑑 + (1 −𝐦𝑐,𝑑 )⊙ 𝐱𝑐,𝑑−1, (1)

here ⊙ denotes element-wise product. This way we obtain a daily
omposite for 𝐱𝑐 , from which samples can be drawn at any rate (weekly
n our case) while guaranteeing that the latest information for each
ocation is included. A schematic illustrating this process can be seen

n Fig. 1
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Fig. 1. Update procedure for temporal stacking of optical images. For SAR images
the procedure is identical, except there is no need to consider a cloud mask. This
procedure ensures that the network always has access to the latest valid information
for each location.

3.2. Convolutional and recurrent network architecture

To best estimate snow depth, it is important that the neural network
be capable of identifying both spatial and temporal patterns. Recurrent
neural networks are neural architectures designed with the explicit
purpose of handling ordered sequences of inputs, usually in the time
dimension (Goodfellow et al., 2016). The proposed neural network
architecture for snow depth estimation is based on ConvGRU cells
(Ballas et al., 2016) for the reasons discussed in Section 2.2. Such cells
are an extension of the GRU recurrent cells (Cho et al., 2014) using
convolutions to promote spatial pattern recognition capacity.

The network receives as inputs the data 𝐱0𝑡 sequentially, where 𝑡 ∈ N
denotes the time-step index. The ConvGRU update operations are given
by:

𝐳𝑙𝑡 = 𝜎(𝐖𝑙
𝑧 ∗ 𝐱𝑙𝑡 + 𝐔𝑙

𝑧 ∗ 𝐡𝑙𝑡−1 + 𝐛𝑙𝑧) (2)

𝐫𝑙𝑡 = 𝜎(𝐖𝑙
𝑟 ∗ 𝐱𝑙𝑡 + 𝐔𝑙

𝑟 ∗ 𝐡𝑙𝑡−1 + 𝐛𝑙𝑟) (3)

𝐡𝑙𝑡 = tanh(𝐖𝑙 ∗ 𝐱𝑙𝑡 + 𝐔 ∗ (𝐫𝑙𝑡 ⊙ 𝐡𝑙𝑡−1) + 𝐛𝑙ℎ) (4)

𝐡𝑙𝑡 = (𝟏 − 𝐳𝑙𝑡 )⊙ 𝐡𝑙𝑡−1 + 𝐳𝑙𝑡 ⊙ �̃�𝑙𝑡 (5)

where 𝑙 denotes the layer index, ∗ denotes the convolution operation,
⊙ denotes element-wise multiplication, 𝜎 is the sigmoid activation
function, and tanh is the hyperbolic tangent activation function. The
learnable convolution weights and biases are denoted by 𝐖, 𝐔, and 𝐛.
As such, 𝐳 is the update gate tensor, 𝐫 is the reset gate tensor, and 𝐡
is the output/state of the ConvGRU cell. It is clear then how spatial
patterns are recognized through the use of spatial convolutions, and
temporal patterns are recognized by the information propagation in 𝐡
across time-steps. In the beginning of the time series, the previous state
input is composed of zeros, i.e., 𝐡𝑙−1 = 𝟎. We refer the reader to Cho
et al. (2014) and Ballas et al. (2016) for more information on gated
recurrent units.

In practice, the chosen architecture uses 5 layers of ConvGRU cells
with hidden depth of 128 channels. No encoder–decoder architecture is
employed to maximize the spatial detail of the outputs, in accordance
with previous work (Rodriguez and Wegner, 2018; Lang et al., 2019;
Becker et al., 2021). A diagram of the proposed network can be seen
in Fig. 2, along with a detailed schematic of a ConvGRU cell. For every
108
time-step, the dynamic inputs for that date are concatenated to the
static inputs along the color channel, resulting in an ‘‘image’’ with
several color channels. In the proposed system, this image contains 12
channels from optical data, 4 channels from SAR data, and 6 channels
of static data derived from elevation maps, for a total of 22 channels.
These data sources will be explained in more detail in the following
section. The output layer consists of a 1 × 1 convolution to adjust the
number of feature channels and the appropriate activation, which will
be discussed in more detail in the next section.

3.3. Probabilistic modeling of aleatoric uncertainties

Given that we are dealing with a regression problem of strictly non-
negative numbers, the most intuitive approach is for the output layer
to yield a single feature map, followed by a ReLU activation to enforce
strict non-negativity of the outputs. Supervision can then be done using
a regression loss such as mean squared error (MSE) or mean absolute
error (MAE). In Section 5 we describe experiments conducted using the
MSE loss function, which can be defined as

MSE(𝐲, �̂�) ≜
∑𝑁

𝑖=1 (�̂�𝑖 − 𝑦𝑖)2

𝑁
, (6)

where �̂� is an estimate of 𝐲, and 𝑖 ∈ [1,… , 𝑁] indexes all elements �̂�
and 𝐲. This definition can be trivially extended to a multidimensional
case.

Recent work (Becker et al., 2021; Lang et al., 2022a; Alagialoglou
et al., 2022; Lang et al., 2022b) has explored the usage of probabilistic
formulations for allowing the network to predict an output distribution
rather than a single point estimate (Kendall and Gal, 2017). The Gaus-
sian model which is most often used requires the network to output
two parameters which uniquely define a normal distribution: mean
�̂� and log-variance 𝑠. The log-variance is used for numerical stability
reasons, but one can calculate the distribution’s standard deviation,
which is more frequently used to parametrize Gaussian distributions,
simply by computing 𝜎 =

√

𝑒𝑠. In this formulation, �̂� can be interpreted
as our best estimate, and 𝑠 can be interpreted as an estimate of aleatoric
uncertainty.

Note that in this case no complete ground truth exists, strictly
speaking, since there is no reference data for what the value of 𝐬 should
be. 𝐬 represents the network’s heteroscedastic (spatially and temporally
varying) estimation of aleatoric uncertainty in the predictions �̂�, and
is therefore not a property of the data. A network that uses such
probabilistic modeling can be trained using the Gaussian negative
log-likelihood (GNLL) loss function:

GNLL(𝐲, �̂�, 𝐬) = 1
𝑁

𝑁
∑

𝑖=1

1
2

[

(𝑦𝑖 − �̂�𝑖)2

𝑒𝑠𝑖
+ 𝑠𝑖 + ln(2𝜋)

]

, (7)

where the constant term ln(2𝜋) is usually discarded since it has no
influence in the optimization process or the position or shape of a
function’s minima.

In this approach, the network’s output layer is a 1 × 1 convolutional
layer with 2 output channels associated with �̂� and 𝐬. The outputs �̂�
go though a ReLU activation layer, since we are attempting to regress
non-negative snow depth values.

3.4. Training and inference details

Given the two available sets of snow depth maps described in
Sections 4.2.1 and 4.2.2, which differ in scale, availability, and quality,
we opted to conduct the training of the proposed neural network in
two stages. First, the network is trained using the large-scale, low-
fidelity maps described in Section 4.2.1 as reference data. The aim here
is to learn as much as possible from these data, especially temporal
snow dynamics. This training stage is later referred to as pre-training
or PT. Then, we use the high-fidelity maps described in Section 4.2.2 as
reference data. The aim here is to learn the high-frequency details from
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Fig. 2. Network architecture and ConvGRU cell details. Convolutions are used to better identify spatial patterns, while the recurrent cells allow for the accumulation of information
ver time.
hese data, to calibrate the uncertainty estimation, as well as to correct
ny possible biases present in the first set of reference data. This stage
ill later be referred to as fine-tuning, or FT.

The network is trained using time-series of inputs ranging from
he first of November until the last day of April using a time-step of

days. For the PT stage, only data from the 2020/21 winter season
re available. At this stage we split the data into train and validation
y longitude: the western 80% are used for training, and the eastern
0% are used for validation. The rationale behind this split is to avoid
ny overlap between data used for training in this stage and data
sed for cross-validation data in the FT stage. During the FT stage,
ata from three winter seasons are available: 2018/19, 2019/20, and
020/21. All high-fidelity snow depth maps used at this stage are
ocated in the eastern 20% of the Swiss territory. We conduct this
tage in a cross-validation manner, i.e., we train using data from two
ears (e.g., 2018/19 and 2019/20) and evaluate it using the remaining
ata (e.g., 2020/21). Additionally, the results are evaluated against
utomated ground measurements over the entire Swiss territory.

. Data

In this work we combine data from several different sources for
oth input data and reference data. The region of interest is the
ntire area of Switzerland and Liechtenstein (referred to as Switzerland
rom this point on for simplicity). In this region, accurately estimating
now depth with high spatial resolution would have a strong positive
mpact in energy management and winter sport activities. The total
onsidered area amounts to approximately 41’500 km2, although the

high resolution snow depth maps do not cover the entire area. The total
size of the dataset we use, after all preprocessing steps, is approximately
8 TB.

The compiled data spans three winter seasons: 2018/19, 2019/20,
and 2020/21. All the available data from this period relative to the area
of interest has been downloaded and preprocessed. The preprocessing
details for each of the data sources are described below. All data have
been resampled using an aligned grid with a footprint of 10 m GSD. The
operations described in the following subsections are done using ESA’s
SNAP toolbox (SNAP, 2022), GDAL (GDAL/OGR contributors, 2022),
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or custom code written in Python.
4.1. Input data

We use input data from three sources. The two dynamic data sources
(i.e., changing in time) are SAR images from the Sentinel-1 satellites
(Sentinel-1, 2022) and multispectral optical images from the Sentinel-
2 satellites (Sentinel-2, 2022). These have been chosen due to their
high resolution, high revisit rate, and large-scale coverage. These data
are also freely accessible, which would enable the application of the
method proposed in this paper to many different regions. Furthermore,
a static data source (i.e., not changing in time) is a digital elevation
map (DEM), from which we derive and precompute certain features.

4.1.1. Sentinel-1
The Sentinel-1 GRD data (Sentinel-1, 2022) are composed of C-band

SAR images in two polarizations: VV and VH. The obtained images
are robust to variations in solar illumination, cloud cover, and other
meteorological events, which makes them a reliable, timely tool for
observing the Earth at regular intervals. For the considered time and
region, the average revisit rate was approximately 3 days.

The downloaded Sentinel-1 data was preprocessed using ESA’s
SNAP toolbox (SNAP, 2022). The preprocessing pipeline followed the
one proposed in Truckenbrodt et al. (2019) for maximum accuracy. No-
tably, terrain flattening and terrain correction are of high importance
for maximizing the coregistration of SAR images with each other and
with other sources of data, as well as for minimizing the distortions
caused by differences in angle of incidence and reflection.

Furthermore, there is a significant difference in images obtained
during ascending or descending orbits, as can be seen in Fig. 3. Due to
these differences, we chose to separate the acquisitions into two groups
depending on the orbit type. This then resulted in four total image
channels to serve as inputs to the network: two polarization channels
for each of the two orbit types.

4.1.2. Sentinel-2
The multispectral optical images obtained by the Sentinel-2 satel-

lites (Sentinel-2, 2022) also serve as inputs to the network. The
Sentinel-2 L2 A product contains 12 spectral bands in the visible and
infrared range representing bottom-of-atmosphere reflectances. The

revisit rate for these satellites is approximately 5 days, although optical
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Fig. 3. Sentinel-1 SAR images obtained during (c) ascending and (d) descending orbits
display very different profiles depending on the orientation of the imaged surface.
Therefore, images acquired during different orbits are considered separately. In (c) and
(d), green represents the VH polarization and magenta represents the VV polarization.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

imagery is affected by clouds and other types of occlusion, therefore the
effective revisit rate is lower.

For this data source the preprocessing is kept to a bare minimum.
Images are simply mosaiced and resampled in the appropriate grid at a
resolution of 10 m GSD. This results in 12 color channels that serve as
inputs to the neural network. Additionally, cloud masks were obtained
using the s2cloudless algorithm (Skakun et al., 2022).

4.1.3. Digital elevation map
The last input data source is a digital elevation map (DEM). We

use swissALTI3D (Swisstopo, 2018), a high quality DEM of the Swiss
territory provided by SwissTopo, which we resample in the same
10 m grid as all other data sources. Furthermore, we use this DEM
to compute topographic features of interest using GDAL. The chosen
features are: slope, terrain ruggedness index (TRI) (Riley et al., 1999),
topographic position index (TPI) (Weiss, 2001; Wilson et al., 2007),
and aspect. Previous work has shown that topographic features of
this kind strongly correlate with snow depth, especially TPI (Revuelto
et al., 2020). The aspect channel is further split into cosine and sine
of the computed aspect angle to avoid step discontinuities in north-
facing areas. Although these features can in theory be learned by the
network if necessary given enough data, we opt to pre-compute them to
facilitate the learning process and because the training data are limited.
The set of DEM and derived features provide six input channels which
are used by the neural network.

In Fig. 4 we see part of the elevation map and the associated
features for the same region that have been calculated from it. The
features capture characteristics which affect how snow accumulates and
melts. Notably, TPI captures fine-scale terrain details that correlate with
locations where snow accumulates, e.g., gullies.

4.2. Reference data

In this work, in accordance with previous work (Bühler et al., 2015,
2016, 2017; Eberhard et al., 2021; Jacobs et al., 2021), the term ‘‘snow
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Fig. 4. DEM and extracted features in an area of interest near Davos. The extracted
features (b-f) capture fine terrain characteristics that are not obvious in the original
elevation map (a). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

depth’’ refers to the difference between measurement at a given date
and reference data measured in the summer.

Two sets of snow depth maps are available to supervise the training
of the proposed neural networks. The first set of maps is available daily
for the winter of 2020/21 and covers the entire Swiss territory, but with
limited accuracy and spatial detail. The second set of maps has been
generated using high-fidelity photogrammetric methods (Bührle et al.,
2022), but are limited to only few regions and dates. These two sources
of data are therefore complementary. Examples can be seen in Fig. 5.

4.2.1. Large scale snow depth maps
We use snow depth maps that have been produced daily for the

2020/21 winter season, and which span the entire Swiss territory.
These maps have been produced using TCAM (Wulf et al., 2020). The
first step in that method is a first-order estimation of the correlation
between the snow depth measurements from measurement stations,
and whose residuals are used as inputs to a generalized additive model
to account for spatial variations. This is then refined using learned
residuals which are estimated using topographic features. We refer the
reader to Wulf et al. (2020) for a more detailed description of this
approach.

The snow depth estimates produced by this algorithm are currently
the best available at country-scale, which is important for the use
cases considered in this paper. Nevertheless, the produced maps lack
the spatial detail that are seen when mapping the snow with pho-
togrammetric methods. In particular, these maps are important for
planning and safety analysis of winter sports. Furthermore, the reliance
on measurement stations may limit the extension of such algorithm to
regions that are not as densely monitored as Switzerland.
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Fig. 5. Color image and snow depth maps available for 16/04/2021. The snow maps shown in (b) and (c) are complementary in terms of (c) spatial detail and high fidelity, and
(b) spatiotemporal coverage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Locations and dates of available high-resolution snow depth maps obtained using
photogrammetry.

Location Date

Dischma valley
16/03/2019
06/04/2020
16/04/2021

Dorfberg 11/12/2020
25/02/2021

Gaudergrat

12/12/2018
12/03/2019
07/02/2020
17/02/2020

Latschüelfurgga
18/12/2020
24/02/2021
26/03/2021

Schürlialp 18/02/2019
22/04/2020

4.2.2. High fidelity snow depth maps
A second set of local snow depth maps is available. These have

been obtained using photogrammetric techniques (Bühler et al., 2016,
2017; Eberhard et al., 2021; Bührle et al., 2022) and provide the best
available snow depth mapping accuracy at very high spatial resolution
(better than 0.5 m GSD). Due to the cost and planning required for
the acquisition of the very high resolution images from aerial sources
or uncrewed aerial vehicles (UAVs) needed for such methods, these
maps are only available for sparse dates and regions of interest in the
considered winter seasons.

Despite the low temporal resolution and limited area coverage of
these maps, their strengths are complementary to the weaknesses of the
maps described in the previous section. Such maps contain high spatial
frequency details and are highly accurate, especially in regions where
detailed snow distribution patterns are of special interest. The high
accuracy of these maps is useful not only for supervising the training of
the proposed machine learning method, but also to validate it by using
a cross-validation scheme.

The dates for which measurements are available can be found in
Table 1. The sparsity and scale of the described data is clear, but our
results show that using such data is of paramount importance to boost
the performance of our snow depth estimation algorithm. Finally, the
approximate area covered by each of these datasets can be found in
Fig. 6.
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5. Experiments

5.1. Experimental setup

All the reported experiments were conducted using PyTorch on
a Nvidia GeForce 3090 GPU card. The optimization during training
was done using stochastic gradient descent (SGD) with momentum of
0.9 and a base learning rate of 10−4. Note that the concept of an
epoch is not properly defined in the described dataset, so here we
define an epoch to be a set of 800 randomly sampled time-series of
patches for training and 200 for validation. During the PT stage, the
network was trained for 100 epochs at the base learning rate, followed
by 10 epochs with a linearly decreasing learning rate. During the FT
stage, the network was trained for 50 epochs at the base learning rate,
followed by 50 epochs with a linearly decreasing learning rate. Batches
consisted of two time-series of 128 × 128 patches (covering an area of
approximately 1.6 km2) composed of data starting in the beginning of
November and ending on the last available day in April.

5.2. Evaluation metrics

The accuracies of the snow depth estimates were evaluated using
four main metrics: mean absolute error (MAE), root mean squared error
(RMSE), Pearson’s correlation coefficient (𝜌), and mean error (ME).
MAE and RMSE measure the general discrepancy between 𝐲 and �̂�,
with MAE being more sensitive to smaller errors and RMSE being more
sensitive to larger errors. 𝜌 measures the correlation between 𝐲 and �̂�
while ignoring errors in overall shift and scale. ME measures whether
there are biases in the errors. These metrics can be defined as:

MAE(𝐲, �̂�) ≜ 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (8)

RMSE(𝐲, �̂�) ≜

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (9)

ME(𝐲, �̂�) ≜ 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 − �̂�𝑖 (10)

𝜌(𝐲, �̂�) ≜
𝑁
∑

𝑖=1

(𝑦𝑖 − 𝜇(𝐲)) ⋅ (�̂�𝑖 − 𝜇(�̂�))
𝑁 ⋅ 𝜎(𝐲) ⋅ 𝜎(�̂�)

(11)

where 𝜇(⋅) denotes the mean operator and 𝜎(⋅) denotes the standard
deviation operator.

The calibration accuracy of the estimated uncertainties has been
quantified in two ways. The estimated variance is, by definition, the
estimated value of the squared error of a given snow depth estimate.
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Fig. 6. Approximate locations for each of the regions for which high-fidelity snow depth maps are available. All the considered areas are near Davos, in eastern Switzerland.
Despite the spatial overlap, no two maps have been produced for the same date. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
But given that this is a stochastic process, samples cannot be individ-
ually evaluated. Thus, samples can be grouped into 𝑀 groups 𝐺𝑖, 𝑖 ∈
[1,𝑀] according to estimated variance, and then each group’s mean
squared error (MSE) can be compared with the groups mean estimated
variance. We split the samples into 100 quantiles for this computation.
The expected calibration error (ECE) (Alagialoglou et al., 2022) can
then be computed using

ECE(𝐲, �̂�, 𝜎2) ≜
𝑀
∑

𝑖=1

|𝐺𝑖| ⋅ |MSE(𝐲𝐺𝑖
, �̂�𝐺𝑖

) − 𝜇(𝜎2𝐺𝑖
)|

𝑁
, (12)

where |𝐺𝑖| denotes the number of elements in group 𝐺𝑖. MSE was
defined in Eq. (6).

Another way to validate the estimated distributions is to evaluate
the coverage of the reference data for different confidence margins.
Intuitively, if we compute for each estimate a lower and an upper
bound which give us an X% margin of confidence, we should expect X%
of the reference values to fall within this margin. Since the probabilistic
estimates �̂�𝑖 and 𝜎2𝑖 = 𝑒𝜈𝑖 can be interpreted as a Gaussian probability
distribution function  (�̂�𝑖, 𝜎2𝑖 ), the lower bound 𝑙(𝑐) and upper bound
𝑢(𝑐) defining a margin with expected coverage 𝑐 ∈ (0, 1) can be
computed using the inverse cumulative distribution function icdf(𝑥):

𝑙(𝑐) = icdf(0.5 − 𝑐
2
) (13)

𝑢(𝑐) = icdf(0.5 + 𝑐
2
) (14)

We can then graph the actual coverage versus the expected coverage for
several values in the range (0, 1). Kuleshov et al. also evaluate the cali-
bration of regression systems in a similar way (Kuleshov et al., 2018),
although we center the intervals around the median, i.e., icdf(0.5), since
that is more relatable to real scenarios where a best estimate and a
confidence margin around that value are used. We can then quantify
the calibration error as the area between the obtained curve and the
ideal (identity) curve, which approaches 0 for perfect calibration and
0.5 in the worst case scenario. This measure is henceforth named Area
Between Curves (ABC).

5.3. Snow depth estimation results

After training the proposed neural network, we produced country-
scale estimates for both qualitative and quantitative evaluations. One
such output is presented in Fig. 7, along with the associated uncertainty
estimates. We have also included the temporal-stacked true color com-
posite Sentinel-2 image and the DEM for context. While the finer details
cannot be seen in this country-scale image, it clearly shows several
correlations that are to be expected. First, we can observe how regions
in higher elevations often accumulate more snow during the winter.
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Second, we see that the predicted snow cover follows very closely the
snow that is visible in the optical images. Furthermore, we see that
regions with higher snow depth estimates also tend to be attached to
higher uncertainty values.

Fig. 8 contains zoomed in results of selected regions to highlight
the difference in spatial detail contained in the presented results and
those obtained by using TCAM (Wulf et al., 2020). This method is the
only one found in the relevant literature whose results are comparable
in scale and resolution, as was discussed in Section 2.1. Note that
all snow depth estimates have been computed at 10 m GSD, thus
differences in the amount of fine details in each result do not come from
differences in image resolution. While both results generally agree in
the distribution of snow at a macro scale, our method produces snow
depth estimates with much finer spatial detail. These high-frequency
details closely depend on the local topography, and their presence in
the snow depth estimates is important for applications such as planning
winter activities in nature. These details are likely to help in predicting
avalanche risks more accurately.

Figs. 9 and 10 show a comparison of snow depth estimates to
reference data around Davos on 16/04/2021, which is the date for
which the most reference data are available. Snow depth estimates
produced by our method and by TCAM are presented, as well as images
containing the residual errors after comparing to the reference data.
Fig. 10, which contains zoomed in crops of the results, is especially
illustrative of the improvements that come from using our method. We
can see that the high-frequency details that are present in our snow
depth estimates correspond to those in the reference data. This leads
to a general improvement in the image of residual differences for our
snow depth estimates. We can also observe in these images the strong
correlation between the TPI and the spatial detail in our snow depth
estimates.

Quantitative evaluation of the proposed method is presented in
Table 2. Results are computed using data from all available years (left
half) or only data from the 2020/21 winter season (right half). This
is done because snow depth estimates using TCAM are only available
for this last winter season, and this way a quantitative comparison
between these two methods is possible. We also present results for
ablated versions of the proposed method to evaluate the contribution
of each data source and training procedure detail. The first groups
of ablations concern data sources: each input data source is ablated
one at a time. The second group of ablations concerns training and
architecture details: the absence of the PT and FT stages are studied, as
well as replacing the probabilistic loss function with the more standard
MSE loss function. We also explore the value of temporal information,
by severing the temporal connections in the recurrent cells. Note that
the network trained using the MSE loss is unable to produce uncertainty
estimates.
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Fig. 7. Snow depth map, uncertainty map, optical image composite, and DEM for 16/04/2021. The proposed method allows us to produce such estimates at 10 m GSD on a
weekly basis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Comparison between snow depth estimates obtained by using TCAM (center)
and the presented method (right), along with a true color composite image for reference
(left). There is a clear improvement in the amount of spatial detail in our results,
especially in gullies which accumulate snow over the winter. All snow depth estimates
refer to 16/04/2021 and are computed at 10 m GSD. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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We have also repeated the training procedure three times using
different seeds for generating random numbers in order to evaluate
the consistency of the results across different runs. This was done for
the proposed method, which also allows us to compute metrics for the
‘‘PT only’’ ablation. Results are reported in Table 3. We see that the
combination of a relatively small network and an optimizer with slowly
decaying learning rate leads to very consistent results. The computed
standard deviation is minimal for MAE, RMSE, and 𝜌, with slightly
larger values for ME.

Fig. 11 contains 2D histograms that show the distribution of esti-
mated snow depth versus reference data for the entire dataset. We see
that after the PT stage the neural network’s estimates closely match the
distribution of the snow estimates produced by TCAM, which are used
as reference data at this stage. In (c), we see that the distribution after
the fine-tuning stage more adequately follows the identity diagonal,
which is our target. Even if there remains a fair amount of uncertainty
in the results, the final results are much less biased, which is important
especially when using or analyzing aggregate estimates.

5.4. Uncertainty calibration evaluation

To evaluate the calibration of the estimated predictive uncertainties,
we first plot the MSE versus the estimated variance after binning
the predictions by quantiles using 100 bins. This curve is shown in
Fig. 12, alongside the histogram of estimated predictive uncertainties.
The plot shows that the calibration curve closely follows the identity
diagonal, which is our target, for values up to approximately 1.5 m2.
The histogram included in the figure shows that most values fall within
this interval, which means the uncertainty is well calibrated for most
predicted values. We see that the predictive uncertainty is slightly
underestimated in the range of values up to approximately 1.2 m2.
This gap can likely be explained by the fact that we are not estimating
epistemic uncertainty, only aleatoric uncertainty (Kendall and Gal,
2017). Estimating epistemic uncertainties, for instance using ensembles
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Fig. 9. Comparison between our method and the considered baseline, TCAM, for 16/04/2021. We see that at a macro scale, both algorithms are in agreement. The residual images
show that our estimates are more accurate despite having no access to measurement station data. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 10. The improvements with respect to TCAM become even clearer at a fine scale. Our snow depth estimates contain the fine-scale details that are missing from the baseline
method, which reduces the errors observed in the residual images. The displayed images refer to 16/04/2021. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Table 2
Quantitative evaluation of snow depth estimates. Units are in meters (MAE, RMSE, ME) or unitless (𝜌). The proposed method outperforms TCAM in all metrics. Ablation results
for used data sources (first group) and training procedure (second group) are also included. Numbers in parentheses highlight the difference to the proposed method’s results.

Method All dates Winter 2020/2021

Ablation MAE (↓) RMSE (↓) 𝜌 (↑) ME (0) MAE (↓) RMSE (↓) 𝜌 (↑) ME (0)

TCAM – – – – 0.69 (+0.11) 0.94 (+0.14) 0.51 (−0.17) 0.07
Proposed method 0.68 0.91 0.59 0.08 0.58 0.80 0.68 0.06

No S2 0.69 (+0.01) 0.93 (+0.02) 0.59 (0.00) 0.22 0.64 (+0.06) 0.88 (+0.08) 0.63 (−0.05) 0.26
No S1 0.72 (+0.04) 0.95 (+0.04) 0.53 (−0.06) 0.06 0.61 (+0.03) 0.83 (+0.03) 0.65 (−0.03) −0.03
No DEM 0.70 (+0.02) 0.94 (+0.03) 0.55 (−0.04) 0.01 0.64 (+0.06) 0.87 (+0.07) 0.61 (−0.07) −0.08

PT only 0.74 (+0.06) 1.00 (+0.09) 0.50 (−0.09) 0.19 0.67 (+0.09) 0.92 (+0.12) 0.56 (−0.12) 0.15
FT only 0.67 (−0.01) 0.91 (0.00) 0.59 (0.00) 0.11 0.58 (0.00) 0.79 (−0.01) 0.69 (+0.01) 0.06
MSE 0.66 (−0.02) 0.89 (−0.02) 0.62 (+0.03) 0.11 0.57 (−0.01) 0.79 (−0.01) 0.69 (+0.01) 0.07
No recurrence 2.23 (+1.55) 2.50 (+1.59) 0.19 (−0.40) −1.85 2.58 (+2.00) 2.78 (+1.98) 0.30 (−0.38) −2.53
114
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Fig. 11. 2D histograms of reference snow depth values versus predictions by TCAM and our method, including the ‘‘PT only’’ ablation. We see that our proposed method follows
much more closely the ideal line depicted in dashed green. After the pre-training stage the results resemble those of TCAM, and further improve after fine-tuning. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Mean and standard deviation for each metric over multiple runs. We observe extremely consistent results in terms of MAE, RMSE, and 𝜌 with slightly stronger variations in bias
(ME).

Method All dates Winter 2020/2021

Ablation MAE (↓) RMSE (↓) 𝜌 (↑) ME (0) MAE (↓) RMSE (↓) 𝜌 (↑) ME (0)

Proposed method 0.68 ± 0.01 0.91 ± 0.01 0.60 ± 0.01 0.09 ± 0.02 0.59 ± 0.01 0.80 ± 0.01 0.68 ± 0.00 0.08 ± 0.05

PT only 0.74 ± 0.00 0.99 ± 0.01 0.50 ± 0.00 0.18 ± 0.05 0.67 ± 0.00 0.92 ± 0.01 0.56 ± 0.00 0.14 ± 0.03
Table 4
Calibration metrics and mean variance for each experiment. We see that most ablations
achieve worse uncertainty calibrations than the base method. The exception is the
experiment which uses no elevation information, but at the cost of actual accuracy.
Notably, we see that skipping the fine-tuning stage drastically decreases the uncertainty
calibration by making the model over-confident.

Model ECE (↓) ABC (↓) 𝜎2

Proposed method 0.190 0.011 0.80

No S2 0.241 (+0.051) 0.020 (+0.009) 0.78
No S1 0.389 (+0.199) 0.047 (+0.036) 0.79
No DEM 0.163 (−0.027) 0.002 (−0.009) 0.86

PT only 0.917 (+0.727) 0.279 (+0.268) 0.09
FT only 0.256 (+0.066) 0.024 (+0.013) 0.75
No recurrence 2291 (+2291) 0.273 (+0.262) 2296

Fig. 12. Binned mean squared error versus estimated variance and histogram of pre-
dicted variances. We observe good calibration of the estimated predictive uncertainties
in the range of variances that includes most samples.

(Kendall and Gal, 2017; Lakshminarayanan et al., 2017) or pseudo-
ensembles (Turkoglu et al., 2022; Kushibar et al., 2022), could bring
marginal improvements to the calibration of uncertainties.
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Fig. 13. Observed coverage for various target confidence margins. We see that the
observed empirical coverage obtained using windows calculated using the estimated
uncertainty follows closely the target, which means our uncertainties are very well
calibrated.

In Fig. 13 we show the coverage plot, described in Section 5.2.
Using this curve we can evaluate how accurate confidence margins
used in practical applications would be. We see that the measured
coverage curve follows very closely the ideal coverage, which means
that estimated confidence margins computed for each location would
very closely match the target coverage. For instance, computing the
confidence margins for a target coverage of 50% achieves real coverage
of 49.06%. The discrepancy between the empirical coverage and the
ideal coverage curves is small, which is a sign of good uncertainty
calibration.

Table 4 contains the quantitative metrics that evaluate the calibra-
tion of estimated predictive uncertainties. These numbers show that
almost every single ablation experiment that was conducted led to
worse calibration of predictive uncertainties. The only exception is
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Fig. 14. We see a correlation between predicted values and uncertainties. This is intu-
itive: areas with higher snow depths are attributed proportionally higher uncertainties.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 5
Accuracy and uncertainty calibration w.r.t. ground measurements from the IMIS
network of ground stations. Deviations tend to increase for later months of the winter
season, likely due simply to the larger amounts of snow. Deviations are also lower in
the eastern region that was used for fine-tuning the network. 𝑁 stands for the number
of data points in each partition.

Data N MAE RMSE 𝜌 ME ECE ABC

All 3402 0.59 0.81 0.61 0.39 0.57 0.21

11/2020 512 0.13 0.18 0.45 −0.03 0.05 0.15
12/2020 528 0.24 0.31 0.56 0.00 0.06 0.06
01/2021 659 0.54 0.69 0.41 0.30 0.42 0.26
02/2021 524 0.80 0.95 0.32 0.60 0.82 0.35
03/2021 524 0.86 1.07 0.28 0.68 1.04 0.32
04/2021 655 0.90 1.10 0.32 0.74 1.11 0.34

Eastern 20% 698 0.48 0.59 0.71 0.30 0.27 0.18
Western 80% 2704 0.62 0.86 0.60 0.42 0.66 0.21

the experiment which did not use elevation data, but this also led to
lower real accuracy, as seen in Table 2. The experiment which obtained
the worst results in these uncertainty calibration metrics was the one
which skipped the fine-tuning stage. We observed that in this case the
estimates were more strongly biased towards underestimating snow
depth, as can be seen in Fig. 11, while also being overly confident.

Finally, in Fig. 14 we show that there is a strong correlation between
the predicted snow depth value and the estimated uncertainty. This
is intuitive since we are estimating strictly positive values: it means
that the relative uncertainty remains somewhat constant for values in
different ranges.

5.5. Validation with ground measurements

To evaluate the estimated snow depth maps against truly inde-
pendent observations, we used measurements from the Intercantonal
Measurement Information System (IMIS) ground stations. We produced
the full time-series of weekly snow depth maps from 11/2020 to
04/2021, spanning the entire Swiss territory. We have also obtained all
available measurements in the area of interest from the IMIS network,
in total between 128 and 132 measurements per day. The evalua-
tion was only conducted for our proposed method. TCAM uses these
measurements as inputs, so the comparison would be meaningless.
Furthermore, too few IMIS data points (namely, five) fall in the area
of the high-fidelity snow maps to compute reliable statistics.
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The comparison to IMIS, reported in Table 5, is split into three
sections. First, we report an evaluation using all data points. Then, a
month-wise evaluation was conducted to see how reliable the produced
snow depth maps are throughout the winter season. Finally, separate
evaluations were conducted for the eastern and western splits of regions
used for training and validation, as described in previous sections.

6. Discussion

Our results show that snow depth estimation using exclusively
satellite data sources and elevation maps is not only feasible, but it can
be more accurate than what was previously possible at a large scale. As
discussed in Section 1, we aim to estimate snow depth for large areas
(e.g., entire countries or mountain ranges) and at a high resolution
(10 m GSD). The only other method which achieves this combination
is TCAM. Our results show that we obtain better performance without
relying on a measurement station network. By instead using data
from satellite sources, our method is in principle scalable without a
dense infrastructure of measurement stations. The results presented in
Table 2 show that our method outperforms this baseline by a significant
margin in terms of MAE, RMSE, and correlation. Even the results’ bias,
measured by the mean error, see a slight improvement even though we
do not have access to ground measurements.

We also show that the level of spatial detail present in our results
is unparalleled by those in the baseline method. These details come
largely from terrain features extracted from the elevation map, which
provide complementary data to those collected by satellite sources.
Figs. 8 and 10 highlight those differences, and show how this positively
impacts the quality of the results by reducing the residual errors. Fig. 10
also shows that there is a strong correlation between the TPI, which is
extracted from the DEM, and the spatial detail in the produced snow
estimates and in the reference data.

Our method achieved an RMSE of 0.91 m in the evaluation using
the entire dataset, and 0.80 m when evaluated in the winter season
of 2020/2021. This is comparable to the results obtained by Eberhard
et al. using photogrammetric methods based on very high resolution
satellite images, which achieved an RMSE of 0.44–0.92 m. Further-
more, our method uses open access data, which significantly reduces
the cost, and is capable of scaling to a much wider area.

The proposed system was also capable of producing well-calibrated
estimates of predictive uncertainties by harnessing a probabilistic
framework for training the neural network, even though predicting
well-calibrated uncertainties is often challenging (Niculescu-Mizil and
Caruana, 2005; Guo et al., 2017; Becker et al., 2021; Lang et al.,
2022a). The calibration can be verified visually in Figs. 12 and 13,
and quantitatively in Table 4. The analysis presented in Fig. 14 also
shows that there is a correlation between estimated snow depth values
and predictive uncertainties, which is expected in a regression problem
focused on strictly non-negative numbers.

In our ablation studies, most experiments led to a decline in per-
formance relative to the proposed method. The first set of ablations in
Table 2 shows that every source of data contributes to the final result
in a different way:

• Optical images allow us to accurately estimate snow cover, given
good atmospheric conditions;

• SAR images are especially useful for estimating snowmelt (Lievens
et al., 2019) and are more robust to atmospheric effects, which
means that data from SAR sources are always up to date;

• Elevation maps contain implicit information about the microcli-
mate, as well as fine-grained terrain features which affect snow
accumulation patterns.

We also showed that the pre-training stage is not enough to obtain
the most accurate snow depth estimates possible. While at this stage
we are already able to roughly match the performance of TCAM, the
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fine-tuning stage is essential to obtain better results and calibrated
uncertainty estimates.

Somewhat surprisingly, our results show that skipping the pre-
training stage improves the accuracy of the produced snow depth
estimates, albeit by a very small margin. It may be the case that
skipping the pre-training stage increases the accuracy in the (more
restricted) region used for fine-tuning at the cost of generalization per-
formance to other regions which are only seen during the pre-training
stage, but in this study we did not have access to data for validating that
hypothesis. Replacing the probabilistic framework by a simple MSE loss
function also leads to a small improvement in the results. But we note
that these slight improvements come at the cost of uncertainty calibra-
tion: skipping the pre-training stage strongly decreases the accuracy of
uncertainty calibration estimates, as is shown in Table 4, and using the
MSE loss allows for no estimation of uncertainties at all. Furthermore,
the observed bias (ME) is worse in these cases compared to our base
case when computed using all the available data. Nevertheless, if this is
deemed a worthy trade-off by a user, these variations on the proposed
method may be preferred for a given application.

We have also studied the performance gains obtained by harnessing
satellite time series, by severing the recurrent connections (vertical
connections in Fig. 2). As expected, temporal information is essential
to accurately estimate snow depth from the considered data sources.
While the setting is similar to monocular depth estimation, a well-
studied problem in computer vision, the visual cues present in the
satellite images are not strongly affected by snow depth, but mainly
by snow presence or absence. This forces the network to focus on other
cues, i.e., temporal dynamics and seasonal priors.

Finally, the comparison to measurements from the IMIS ground
stations in Table 5 provides us with a realistic evaluation against a
reliable and completely independent data source. We see that the values
for MAE, RMSE and 𝜌 do not differ much from those of the high fidelity

aps, but we do see a deterioration in ME, ECE, and ABC. We also
ee generally lower errors for earlier months in the season, despite the
act that the network uses less data to generate these estimates. This is
ikely due simply to the lower snow depth in these months. As for the
ast/west split, we do observe lower errors in the region used for fine-
uning the model. While these numbers are not directly comparable,
hey do suggest that having a wider variety in the data used for
ine-tuning will likely improve the model’s capability to generalize.

.1. Limitations

While our results show that the proposed snow estimation method
s a significant step forward when compared to previous work, there
re also limitations that should be acknowledged.

At the moment, it is unlikely that the proposed method generalizes
ell to other regions outside the European Alps. Several characteristics

pecific to this mountain range are implicitly learned from the data.
iven enough local data, the proposed method can be extended to
ther mountain ranges and snow-covered areas, but that has not been
chieved yet. It also remains to be tested whether a single network
ould be capable of estimating snow depth in different climates or if
ifferent regions need to be treated separately by training individual
etworks.

We have also noted artifacts in the snow depth and uncertainty
stimates in regions containing objects that are not present or are
nder-represented in the high-fidelity dataset used during the fine-
uning stage. Notably, artifacts were present in some urban areas, likely
ue to the unusually strong SAR signal, and in deciduous forests, which
re not present in the fine-tuning dataset.

Another limitation comes from the fact that variations in snow
epth do not have a direct effect on the information contained in the
ptical and SAR images. In other words, the data we have used do not
ontain details on all the processes related to snow depth and snow
117

over. Thus, there is an upper bound for the achievable accuracy for
any system that considers only the data sources discussed in this paper,
even if superior methods are developed in the future. Furthermore, we
are dependent on an accurate cloud detection algorithm for processing
optical satellite images, and these are often inaccurate in snow-covered
regions. Also, not having access to optical images at times where the
snowline quickly changes, e.g., due to cloud cover in the spring or fall,
may have a negative impact in the results.

Regarding uncertainty modeling, we note that the Gaussian model
may not always be appropriate. For instance, where the network es-
timates an absence of snow (depth 0), 50% of the probability mass
is attributed to negative snow depth values, which are physically
meaningless. More sophisticated uncertainty modeling with strictly
non-negative distributions is an interesting direction for the future.

Finally, the proposed method is not currently able to harness data
from measurement stations. Such data, although sparse, are the most
consistent source of information regarding snow height development.
This information would be especially valuable to improve the system’s
response time to events that lead to a rapid change in snow depth and
to produce more frequent snow depth estimates.

6.2. Future work

Despite the presented work being a considerable step forward in
scalable, high-resolution snow depth estimation, several lines of work
can already be seen for further improving the quality of snow depth
estimation systems.

The most obvious way to improve the results is to find a way to
include station measurements as inputs for the network. This could
improve the estimates’ accuracy and reduce the biases in the results
in regions with dense networks of measurement stations. Station mea-
surements are also valuable sources of information when optical im-
ages are missing for long periods due to cloud cover and during
events that lead to fast-changing snow pack. Nevertheless, using point-
measurements from stations is not directly compatible to the gridded
data that have been used in this work, so approaches need to be
developed to meaningfully fuse those data sources.

Another possible way to improve the results would be to use me-
teorological data, such as precipitation, sunshine duration, air temper-
ature, wind speed and direction, and land surface temperature data.
While such data are not available in such a fine grid as the 10 m GSD
one used in this work, these variables could still provide additional
information which helps to predict the temporal evolution of the snow
pack.

The applicability of the produced estimates also needs to be ex-
plored further for different applications, such as for estimating the
risks associated with outdoor activities and avalanches (Pérez-Guillén
et al., 2021; Bühler et al., 2022). If coupled with the estimation of
snow water equivalent, our snow depth estimates could also be used for
hydrological studies of snowmelt and for forecasting energy availability
from hydropower during the warmer months of the year (Jonas et al.,
2009; Margulis et al., 2019).

Finally, it would be interesting to apply the proposed method to
estimate snow depth in other regions by retraining the network using
local data. As long as high-fidelity reference data are available, the
proposed methodology is in principle applicable to any region within
the range of the Sentinel-1 and Sentinel-2 satellites.

7. Conclusion

We have presented a method for estimating snow depth in very large
regions (e.g., entire countries or mountain ranges) using time-series of
optical and SAR satellite images and an elevation map, and without
relying on ground measurement stations. Spatiotemporal information
is extracted from these data sources using a recurrent convolutional
neural network based on ConvGRU cells. We achieved unprecedented

accuracy for this combination of large-scale and high spatial resolution
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Fig. 15. 2D histograms for reference data versus predicted snow depth values for each ablation experiment and baseline algorithm. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. Calibration curves for all ablation experiments.
snow depth estimation. Furthermore, we were able to produce well-
calibrated uncertainty maps associated with the snow depth estimates
that can provide useful information for users of such products as well
as for downstream applications which make use of such estimates. We
showed that all chosen data sources contribute towards more accurate
results, and that the two-stage training scheme which combines large-
scale reference data with high-fidelity reference data is essential for
obtaining the best uncertainty calibration.

We hope that the presented work will not only provide better, more
accurate snow depth estimates at a large scale, but also will inspire fur-
ther research on this topic. A thorough monitoring and understanding
118
of the cryosphere and how it is changing with the climate is essential
for managing water resources and to support a sustainable future.
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Fig. 17. Coverage curves for all ablation experiments.
Fig. 18. Estimated snow depth versus uncertainty for all ablation experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Appendix

In this section we include the plots for all the experiments described
in Section 5. These include 2D histograms of snow depth estimates
versus reference data (Fig. 15), calibration curves (Fig. 16), empirical
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coverage curves (Fig. 17), and 2D histograms for estimated snow depth
values and uncertainties (Fig. 18).
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