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Abstract 24 

Aim 25 

Predicting biodiversity responses to global changes requires good models of species’ 26 

distributions. Both environmental conditions and human activities play determine population 27 

density patterns. However, quantifying the relationship between wildlife population densities and 28 

their underlying environmental conditions across large geographical scales has remained 29 

challenging. Our goal was to explain the abundances of mammal species based on their response 30 

to several remotely sensed indices including the Dynamic Habitat Indices (DHIs) and the novel 31 

Winter Habitat Indices (WHIs).  32 

Location 33 

Russia, the majority of regions. 34 

Taxon 35 

Eight mammal species. 36 

Methods 37 

We estimated average population densities for each species across Russia from 1981 to 2010 38 

from Winter Track Counts. The DHIs measure vegetative productivity, a proxy for food 39 

availability. Our WHIs included the duration of snow-free ground, duration of snow-covered 40 

ground, and the start, end, and length of frozen season. In models we included elevation, climate 41 

conditions, human footprint index. We parameterized multiple linear regression and applied best-42 

subset model selection to determine the main factors influencing population density. 43 

Results 44 

The DHIs were included in some of the top-twelve models of every species, and in the top model 45 

for moose, wild boar, red fox and wolf, so they were important for species at all trophic levels. 46 
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The WHIs were included in top models for all species except roe deer, demonstrating the 47 

importance of winter conditions. The duration of frozen ground without snow and the end of 48 

frozen season were particularly important. Our top models performed well for all the species 49 

(R2
adj 0.43 to 0.87). 50 

Main Conclusions  51 

The combination of the DHIs and the WHIs with climate and human-related variables resulted in 52 

high explanatory power. We show that vegetation productivity and winter conditions are key 53 

drivers of variation in population density of eight species across Russia. 54 

Keywords 55 

Animal abundance, Dynamic Habitat Indices, Russia, Winter Habitat Indices, Winter Track 56 

Counts.  57 
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Introduction 58 

Population densities of wild species vary greatly in space and time (Currie et al. 1993). 59 

Environmental conditions and human activities strongly influence population density (Melis et 60 

al. 2009, Muhly et al. 2013) and discerning the relative importance of these factors is important 61 

for better understanding of broad scale biogeographic pattern of species’ abundances and 62 

distributions. Remote sensing offers many advantages as a tool to explain broad-scale population 63 

density patterns because satellite data provide consistent information about habitat conditions 64 

including land cover, primary productivity, snow cover, soil freeze-and-thaw status, and human 65 

disturbances across large areas (Turner et al. 2003, Kerr and Ostrovsky 2003, Turner 2014).  66 

Understanding what causes variation in population densities is a central question in 67 

ecology and biogeography. Food availability is an important bottom-up factor, and plant 68 

productivity influences the density of herbivores (Oksanen et al. 1981, Scherber et al. 2010). In 69 

tri-trophic systems (i.e., plants, herbivores, and carnivores), the relationships become less clear 70 

because herbivore densities may be influenced by both top-down and bottom-up effects 71 

(Oksanen et al. 1981, Ripple and Beschta 2012). In such systems, carnivore densities may show 72 

a positive relationship with plant productivity while herbivore densities are relatively stable 73 

across productivity gradients (Oksanen et al. 1981, Ripple and Beschta 2012). Remotely sensed 74 

estimates of plant productivity, especially the suite of MODIS vegetation products, provide great 75 

opportunities to explore such relationships. Ecological theory suggests that several aspects of 76 

annual productivity, especially a) the cumulative productivity throughout the year, b) the 77 

minimum productivity, and c) the variation in productivity matter for biodiversity because they 78 

are related to the available energy hypothesis (Wright 1983, Mittelbach et al. 2001, Hawkins et 79 

al. 2003, Bonn et al. 2004), the environmental stress hypothesis (Connell and Orias 1964, Currie 80 
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et al. 2004), and the environmental stability hypothesis (Hurlbert and Haskell 2003, Williams 81 

and Middleton 2008), respectively (Radeloff et al. 2019). That is why the three Dynamic Habitat 82 

Indices (DHIs, Coops et al. 2008) are cumulative productivity, minimum productivity, and 83 

variation in productivity. Indeed, the DHIs are good predictors of the species richness of birds in 84 

North America (Coops et al. 2009a, 2009b, Hobi et al. 2017) and Thailand (Suttidate et al. 2019), 85 

of butterflies in Canada (Andrew et al. 2012), and of moose abundance in Ontario, Canada and in 86 

Russia (Michaud et al. 2014, Razenkova et al. 2020). 87 

In middle and high latitudes, population densities are quite sensitive to winter habitat 88 

conditions because food is less available while energetic demands are higher, which affects 89 

survival rates. The duration of both the frozen season and snow cover are important for wildlife, 90 

and frozen ground without snow cover is particularly challenging because of limited availability 91 

of accessible moisture, and because many northern species rely on snow cover for insulation 92 

(Korslund and Steen 2006, Gilg et al. 2012, Reid et al. 2012, Sinclair et al. 2013, Shipley et al. 93 

2019). Also, the depth and density of snow cover affect animal movement, food availability, and 94 

the ability of small mammals to tunnel. For example, the duration of snow cover affects hare 95 

abundance (Lepus spp.) (Pedersen et al. 2017), and distribution (Sultaire et al. 2016). Snow cover 96 

also determines moose distribution (Formozov 2010), and ice-covered ground limits reindeer 97 

foraging (Hansen et al. 2011). Satellite data can detect both frozen ground (Zhu et al. 2017) and 98 

snow cover (Hall et al. 2002) thereby capturing key aspects of winter habitat conditions such as 99 

the duration of frozen ground with and without snow cover, and the start, end, and length of the 100 

frozen season (Zhu et al. 2017, 2019). These Winter Habitat Indices (WHIs) provide exciting 101 

new opportunities to quantify the effects of winter habitat conditions, and predict winter bird 102 

diversity well (Gudex-Cross et al. 2021). 103 
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Our study provides a unique opportunity to examine regional variation in population 104 

densities of wildlife, using unique abundance data that have been collected across Russia. The 105 

broad expanse of Russia encompasses large variation in population densities, environmental and 106 

climate conditions, and anthropogenic activities. The aim of our work was to advance 107 

understanding of population densities of eight mammal species across Russia in response to 108 

several new remotely sensed indices. In particular, we explore how much variation in population 109 

densities is explained by indices for primary productivity, i.e., the DHIs, and winter habitat 110 

conditions, i.e., the WHIs, while including other frequently used remotely sensed indices for 111 

elevation, climate and anthropogenic activities. The newly released WHIs have never been 112 

related to any wildlife population data. Further, the DHIs were originally designed to model 113 

species richness, and only a few studies have related the DHIs to abundance of large mammals. 114 

Assessment of the factors driving variability in population density across regions is important for 115 

understanding underlying mechanisms shaping those population patterns. We formulated 116 

expectations about how the newly released indices of DHIs and WHIs are related to densities of 117 

each of the eight mammal species (Table 1). In general, we expected positive relationships for all 118 

species between population density and cumulative DHI and minimum DHI, and negative 119 

relationships with variation DHI, especially for herbivores (Table 1). Further, we expected that 120 

with increasing severity of winter conditions (e.g. length of frozen season or duration of snow 121 

cover), population densities would decrease, except for carnivores which are not affected by 122 

snow in the same way as herbivores (Table 1). 123 

Materials and Methods 124 

Study area 125 
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The vast area of Russia provides an excellent opportunity to answer our research 126 

questions because Russia contains a wide range of vegetation types and climate conditions. 127 

Mountain ranges are located in the south (Caucasus Mountains), in eastern Siberia (Altai 128 

Mountains, Verkhoyansk Range, Sayan Mountains, and Chersky Range), in the Far East 129 

(Sikhote-Alin Mountains), and divide European from Asian Russia (Ural Mountains), (Figure 130 

S1a). The dominant climate is continental in European Russia and subarctic in Asian Russia, 131 

with a gradient of increasing annual mean temperatures from northeast to south, and the lowest 132 

temperatures are in Yakutia (Figure S1b). Annual mean precipitation also increases from north to 133 

south, and is highest in the Caucasus (southwestern Russia), and Primorsky, Khabarovsk, and 134 

Kamchatka Krais (all in far eastern Russia Figure S1c, Figure S2). Human population density is 135 

variable across Russia, with higher density in the European part (Figure S1d). Forest loss has 136 

occurred in recent decades mainly in the boreal forests (taiga), especially in Siberia (Krasnoyarsk 137 

Krai, Irkutsk, Yakutia), due to fire (Hansen et al. 2013). European Russia (Stavropol Krai, 138 

Krasnodar Krai, Orenburg, Saratov and etc.) and southern Siberia (Altai Krai, Novosibirsk) are 139 

well suited for agriculture (Lesiv et al. 2018).  140 

Data 141 

Wildlife population data for eight mammal species 142 

We analyzed eight mammal species with different life histories including European hare 143 

(Lepus europaeus), moose (Alces alces), roe deer (Capreolus pygargus Pallas, Capreolus 144 

capreolus Linnaeus), brown bear (Ursus arctos), wild boar (Suc scrofa), lynx (Felis lynx), red 145 

fox (Vulpes vulpes), and wolf (Canis lupus). We obtained estimated abundance data for each 146 

species per year and per region from the Russian Federal Agency of Game Animals from 1981 to 147 

2010 (Borisov et al. 1992, Lomanov et al. 1996, 2000, 2004, Gubar et al. 2007, Lomanova et al. 148 
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2011). The vast majority of the data were collected using Winter Track Counts (Kuzyakin 1983, 149 

Lomanov et al. 2000), which have been conducted annually since 1981 for all of Russia, on 150 

approximately 30,000 transects (Gubar et al 2007). The Winter Track Counts protocol involves 151 

counting animal tracks crossing fixed 8-12 km transects, which are visited after the hunting 152 

season and when snow is present. Each transect is surveyed on two subsequent days. On the first 153 

day, all prior tracks are removed, and on the second day, fresh tracks from the last 24 hours are 154 

counted. Transects capture different types of land cover including forest, wetlands, and open 155 

areas. The track counts are combined with a second survey of the daily travel distance of each 156 

species. Daily travel distances vary depending on factors such as snow depth, climate, and 157 

human density or activity. Combining track counts and travel distances results in an estimate of 158 

the number of individuals of each species in each region and year in winter based on the 159 

equation: D=π*A/2L, where D is the average number of animals of a given species per 10 ha, A 160 

is the average number of times tracks of that species cross 10 km of transect, and L is the average 161 

daily travel distance of that species (Chelintsev 2000, Stephens et al. 2006). In addition, aerial 162 

surveys were conducted to validate Winter Track Counts in remote areas (Lomanov et al. 1996). 163 

For brown bear, which hibernates during winter, home range mapping and aerial surveys we are 164 

employed (Gubar 1990). 165 

After the collapse of the Soviet Union in 1991, some regions of Russia were subdivided. 166 

In order to consistently analyze data for all thirty years of our study, we combined those 167 

separated regions to make them comparable to the pre-1991 administrative boundaries; in total, 168 

we analyzed 71 regions. For each species we excluded regions if three consecutive years of data 169 

were missing, and those that were outside of the range of a given species to avoid zero-inflated 170 

models (Table S1). Only red fox occurred in all 71 regions. 171 
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Data from 1996 for all species, and from 1997 for European hare and red fox, were not 172 

available, and some values for specific regions were missing in other years. In these cases, we 173 

applied linear interpolation thereby filling missing values based on the straight line between the 174 

two nearest dates for which data were available (Table S1). During our study period, wildlife 175 

populations changed rapidly, primarily to overexploitation (Bragina et al. 2015) during the 176 

politically unstable period after the Soviet Union collapse in 1991 (Figure S3), so we calculated 177 

the average of population densities for 1981-2010. We used linear interpolation to fill missing 178 

data because the average over the 30-years is potentially different from the average for the 179 

available years. For example, if a species had low population density values from 2000-2010 and 180 

there were missing data for this decade, the average of population density would be biased high, 181 

and if a species had high population density, then the average would be biased low. 182 

We restricted the area for which we summarized the predictor variables to each species’ 183 

range, and converted each species’ abundance into density by dividing the average abundance 184 

from 1981-2010 by the area of suitable habitat (see below) that falls within the range of that 185 

species. To do so, we used range maps from the Russian Academy of Science for brown bear and 186 

European hare (Pavlov et al. 2002), from IUCN for lynx and wolf (IUCN 2001), from Soviet 187 

literature for red fox (Heptner et al. 1967), wild boar and roe deer (Danilkin 1999, 2002), and for 188 

moose, we drew from Lomanov et al. 1996. Roe deer species (Capreolus pygargus Pallas and 189 

Capreolus capreolus Linnaeus) are not differentiated in the game surveys, so we combined their 190 

ranges. Using a MODIS land cover map, we defined the land cover classes that can be 191 

considered as suitable habitat for each species (Table S2) and calculated the area of suitable 192 

habitat to determine regional population densities (Figure 1). We defined suitable habitat for 193 
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each species based on literature (Baskin and Danell 2003, Matyushkin and Vaisfeld 2003) and 194 

expert knowledge (Table S1,Table S2). 195 

Dynamic Habitat Indices 196 

The Dynamic Habitat Indices (DHIs) characterize three aspects of vegetative 197 

productivity: annual cumulative productivity (cumulative DHI), which is the overall productivity 198 

throughout the year; annual minimum productivity (minimum DHI), which is the minimum 199 

value of productivity of a year; and seasonal variation (variation DHI) expressed as the 200 

coefficient of variation in productivity for a year (Figure S1e, Coops et al. 2008; Hobi et al. 201 

2017; Radeloff et al. 2019). We calculated the DHIs from a time series of the 2003-2014 median 202 

values of the MODIS Fraction of Absorbed Photosynthetically Active Radiation (FPAR) data for 203 

each of the 46 dates of the 8-day MODIS product (Hobi et al. 2017, Radeloff et al. 2019) 204 

generated each year. The DHIs calculated from median productivity values (in this case FPAR) 205 

represent average annual vegetative productivity and eliminate year-to-year variation, which 206 

matched our study goal of investigating long-term averages of population density. We calculated 207 

mean values for each region within the suitable habitat of each species for the three DHIs. 208 

Land cover 209 

We analyzed the MODIS land cover product to map stable land cover for 2003-2012 210 

(Friedl et al. 2010), as we expected higher abundance of most species in suitable habitat that was 211 

consistently available among years. For a given pixel, if one land cover type was present for 212 

more than half of that time, we treated it as stable (Figure S1f).  213 

Winter habitat indices 214 

To include winter-related variables in our models, we used a recently developed dataset 215 

with 500-m spatial resolution that provided data for the duration of snow-covered ground (DWS 216 
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WHI), the duration of snow-free frozen ground (DWOS WHI), the timing (start and end date) 217 

and the length of the frozen ground season from 2000-2012 (Figure S1g-h, Zhu et al. 2019; Zhu, 218 

Radeloff, and Ives 2017). Zhu et al 2017 derived these variables from combined 8-day MODIS 219 

snow cover product (MOD10A2) and the NASA MEaSUREs Global Record of Daily Landscape 220 

Freeze/Taw Status dataset (FT-ESDR). The start of the frozen season was defined as the middle 221 

day of the first 15 consecutive days from September to February when ground was frozen ≥ 8 222 

days. The end of the frozen season was defined as the middle day of the first 15 consecutive days 223 

from March to August when ground was thawed ≥ 8 days. The duration of snow-covered ground 224 

was defined as the number of days during the frozen season when frozen ground was covered by 225 

snow and the duration of snow-free frozen ground as the number of days when frozen ground 226 

was not covered by snow (Zhu et al. 2019). We calculated mean values for each region within 227 

the suitable habitat of each species for all winter-related variables. The duration of snow-free 228 

frozen ground and the duration of snow-covered ground were not available everywhere, so we 229 

calculated mean values for partially available data and assigned zero for areas affected by polar 230 

night.  231 

Elevation and bioclimatic variables 232 

We used 1-km resolution elevation and bioclimatic data (Figure S1a-c, Hijmans et al. 233 

2005). The elevation data are from the Shuttle Radar Topography Mission (SRTM), and 234 

bioclimatic data are from Worldclim.org. We calculated mean values for each region within the 235 

suitable habitat of each species. 236 

Human disturbance  237 

As proxies of human disturbance we included 1-km road density data (Hijmans et al. 238 

2001), which are based on the Digital Chart of the World and include primary and secondary 239 
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roads and 1-km human footprint index (Figure S1d, Sanderson et al. 2002). The human footprint 240 

index is based on nine variables that capture human population pressure (population density), 241 

land use and infrastructure (built-up areas, nighttime lights, land use/land cover), and human 242 

access (coastlines, roads, railroads, navigable rivers). The human footprint index represents the 243 

cumulative human pressure on the environment, and higher values indicate greater pressure 244 

(Sanderson et al. 2002). We calculated the mean human footprint index value for each region 245 

within the range of each species, and road density for each region, defined as the length of roads 246 

within the region divided by its area.  247 

Statistical analyses 248 

To model population densities, we applied multiple linear regression, best subset model 249 

selection, and for the top model 10-fold cross validation and hierarchical partitioning analysis. 250 

Best subset regression fits models using all possible combinations of independent variables, and 251 

ranks them by Bayesian Information Criteria (BIC). Our dependent variable was population 252 

density, and explanatory variables were the cumulative, minimum, and variation DHIs, road 253 

density, human footprint index, elevation, 19 bioclimatic variables, duration of snow-free frozen 254 

ground, duration of snow-covered ground, and start, end, and length of the frozen season. To 255 

ensure that the assumptions of linear regression model were met, i.e., that the residuals of the 256 

model were normally distributed, we log-transformed the density of brown bear, lynx, moose, 257 

red fox, roe deer, and wolf. We excluded outliers according to the Bonferroni outlier test (Table 258 

S1, Cook and Weisberg 1982). We calculated Pearson’s correlation coefficients among all 259 

explanatory variables and removed highly correlated variables while retaining the most 260 

important variables (Table S3, and described below. Also, see workflow of the statictical 261 

analysis Figure S4). 262 
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We conducted best subset regression analyses for each species to identify variables that 263 

were most frequently included in the top-twelve models. Then we calculated the percentage of 264 

the explanatory variables that were present in those models (Table S3). We then reduced the 265 

candidate set of explanatory variables by applying a three-step selection process: we selected 266 

variables that 1) appeared in most top-twelve models for all species or appeared in more than 8 267 

models for one species; and 2) are ecologically important for each individual species; and 3) 268 

removed one of each pair of variables that had correlation coefficient >0.8.After running best 269 

subset regression with all explanatory variables for all species (Table S3), we reduced the full set 270 

to the following subset: the three DHIs, human footprint index, elevation, isothermality, 271 

maximum temperature of the warmest month, precipitation of the wettest quarter, precipitation 272 

seasonality, duration of snow-free frozen ground, duration of snow-covered ground, start and end 273 

of the frozen season. Road density, mean temperature of warmest quarter, and both precipitation 274 

of the wettest quarter and precipitation of the warmest quarter were removed due to high 275 

collinearity with human footprint, max temperature of the warmest month, and precipitation of 276 

the wettest month, respectively (Table S3). Correlation was <0.8 among these remaining 277 

explanatory variables. We refitted models with the reduced set of explanatory variables and 278 

ranked them based on BIC. Most of the remaining explanatory variables were included in the 279 

top-twelve model of at least one species, but which variables were important varied greatly 280 

among species. For each species’ top model we plotted QQ plots to ensure that the residuals 281 

follow a normal distribution and calculated the variance inflation factor (VIF, where a VIF >10 282 

indicates high multicollinearity) (Figure S5). To assess the predictive performance of the top 283 

model for each species, we performed a 10-fold cross validation and evaluated several metrics: 284 

the mean absolute error (MAE), the root mean squared error (RMSE), the standard deviation 285 
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calculated of the coefficient of determination across the 10-folds of the cross validation (SD), 286 

and the average of coefficient of determination across the 10-folds of the cross validation (R2). 287 

Low values for MAE, RMSE, SD and high values of R2 are indications of the ability of model to 288 

predict actual observations. For the 10-fold cross validation we split the data into 10 subsets, 289 

reserved one subset for testing our model, and trained the model on remaining subsets, repeated 290 

that procedure 10 times, and calculated the prediction statistics. Lastly, we ran hierarchical 291 

partitioning analysis of the top model to estimate the independent contributions of each variable 292 

to total variance explained (Chevan and Sutherland 1991).  293 

Check for data quality 294 

To test if the quality of Winter Track Counts data changed over time, we conducted 295 

several tests. We divided the data into three decades that captured the transition from planned to 296 

open-market economies: 1981-1990, 1991-2000, and 2001-2010. We assumed that data were of 297 

higher quality for the Soviet period (1981-1990), and that quality declined after the collapse of 298 

the Soviet Union. The years after the dissolution of the Soviet Union in 1991 were a time of 299 

instability for Russia. During this time major political and economic changes occurred, including 300 

the transition from state-command to open markets, land privatization (Lerman and Shagaida 301 

2007), farmland abandonment (Ioffe et al. 2004, Prishchepov et al. 2012), rising poverty rate 302 

(United National Statistics Division, 2016), as well as the rapid decline of wildlife populations 303 

due to overexploitation (Bragina et al. 2015). Due to all of these changes, Russian wildlife 304 

management agencies may have been less effective than in prior decades. First, we calculated the 305 

correlation coefficients for average population densities for the entire study period (1981-2010) 306 

versus those averages for 1981-1990, 1991-2000, and 2001-2010. Second, we calculated the 307 

coefficient of variation (CV) for each year across all regions to see if CVs changed over time. 308 
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We assumed that noisier data would correspond to higher CVs. A high CV could also reflect 309 

other patterns, for example, if European hare and lynx had cyclical population dynamics. 310 

However, neither of these two species exhibited a population cycle in our 30-years data, which is 311 

why we assumed that higher CVs indicated noisier data. Third, we calculated CVs for each of the 312 

three decades to see if there was a systematic difference among decades. This test, conducted for 313 

moose in Razenkova et al. (2020) found no difference among decades, and we checked other 314 

species here. Fourth, we checked if there was a significant difference between the CVs for three 315 

periods using a) the asymptotic test for the equality of coefficients of variation from k 316 

populations (Feltz and Miller 1996), and b) the modified signed-likelihood ratio test (MSLRT) 317 

for equality of CVs (Krishnamoorthy and Lee 2014). Finally, we checked for difference in the 318 

spatial autocorrelation of the residuals of the top models for the entire time period and for the 319 

three decades. To do so, we fitted non-parametric covariance function and plotted the spline 320 

correlograms with a 95% confidence interval, using 1,000 permutations with a distance 5,000 km 321 

for seven species and 2,000 km for European hare (Bjørnstad and Falck 2001). We chose a 322 

smaller maximum lag distance for European hare because this species occurs only in European 323 

Russia, which has smaller regions, and thus where correlations for longer lag distances could not 324 

be reliably calculated. 325 

We performed all analyses in R version 3.3.1 (R Core Team 2016), including packages 326 

‘psych’ to calculate correlation matrices (Revelle 2017), ‘leaps’ to perform the best subset 327 

selection (Lumley 2009), ‘car’ to run Bonferroni outlier test to identify outliers and calculate VIF 328 

for explanatory variables (Fox and Weisberg 2016), ‘caret’ for cross-validation (Kuhn et al. 329 

2021), ‘hier. part’ for hierarchical partitioning analysis (Walsh, C., Mac Nally 2013), 330 
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‘cvequality’ to test for significance difference in CVs (Marwick and Krishnamoorthy 2019), and 331 

‘ncf’ to plot spline correlograms (Bjornstad 2020). 332 

Results 333 

For herbivores, we found that only moose density had positive relationships with 334 

cumulative DHI and minimum DHI. European hare and roe deer did not have a strong positive 335 

relationship with either cumulative DHI or minimum DHI (Figure 2, Table 2). Among the WHIs, 336 

we found that the duration of snow-covered ground was an important variable only for European 337 

hare, but the duration of snow-free frozen ground was included in the top-twelve models for all 338 

herbivores, and the end of the frozen season was included in the top-twelve models for moose 339 

and roe deer density (Figure 2). 340 

For omnivores, we found a positive relationship with cumulative DHI for wild boar, but 341 

not for brown bear (Figure 2, Table 2). Wild boar density was negatively associated with 342 

duration of snow-covered ground, while the density of brown bear was positively associated with 343 

duration of snow-covered ground. The density of brown bear was positively related to minimum 344 

DHI, however minimum DHI was not a strong predictor and appeared in only five of the top-345 

twelve models (Figure 2, Table 2). 346 

We found that cumulative DHI was included in the top-twelve models for red fox and 347 

wolf, but not in the models for lynx. However, red fox density was negatively related with 348 

cumulative DHI (Table2). Minimum DHI appeared in most of the top-twelve models for red fox, 349 

but in only six and three of the top-twelve models for lynx and wolf, respectively. The 350 

directionality of the relationship between minimum DHI and carnivore density varied in that 351 

there was a positive relationship for lynx, but negative relationships for red fox and wolf. Lynx 352 
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and wolf had positive relationships with duration of snow-covered ground, while red fox had a 353 

negative relationship with this variable (Figure 2, Table 2).  354 

Our top models explained medium to high levels of variation in population density of all 355 

eight species (R2
adj = 0.43 - 0.87, Figure 2). With one exception the VIF of all parameters in top 356 

models was less than 5, indicating an absence of multicollinearity in models (Table S4). The 357 

exception was red fox, in which both variation DHI and maximum temperature of warmest 358 

month had VIF = 5. While a VIF >10 indicates significant multicollinearity in the model, these 359 

VIF values of 5 are still relatively low. The evaluation metrics MAE, RMSE, and SD calculated 360 

with the 10-fold cross validation varied among species; the lowest values of MAE and RMSE 361 

were for wild boar model and the highest values were for roe deer, brown bear, and lynx models 362 

(Table S5), while SD was high for brown bear and lynx models. In comparisons of the R2 across 363 

the10-folds of our cross validation and the full models, we found that the biggest differences 364 

occurred for roe deer, brown bear and lynx indicating lower predictive power of those models.  365 

The DHIs and WHIs complemented the environmental variables and human footprint 366 

index in our models of population density (Figure 3). The hierarchical partitioning analysis 367 

showed that different individual component of the DHIs and WHIs contributed substantially to 368 

the overall variance explained for the different species. Because we estimated independent 369 

contributions of each explanatory variable only for the top model, the set of explanatory 370 

variables was different for each species. The DHIs were included in the top model for moose, 371 

wild boar, red fox and wolf. The WHIs were included in the top models for all species except roe 372 

deer. Human footprint index was included in models for all species except lynx, while elevation 373 

appeared in models for brown bear, wild boar, lynx and red fox. There was no consistency in 374 

which bioclimatic variables were included in models. Based on the hierarchical partitioning 375 
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analysis the duration of snow-free frozen ground had the highest independent contribution in the 376 

top model for European hare, while human footprint index had greatest contribution in moose 377 

and red fox top models, precipitation seasonality for roe deer, elevation for brown bear and lynx, 378 

isothermality for wild boar, and variation DHI contributed most in the wolf top model (Figure 3). 379 

Checks of Winter Track Counts data quality 380 

Within each species, the average population densities for the entire 30-year study period 381 

and for each decade were highly correlated (0.73-0.99, Table S6), suggesting that our choice to 382 

model the 30-year averages did not affect our results substantially. Annual coefficients of 383 

variation of population densities across all regions varied over time but we did not observe 384 

consistent trends (Figure S6). Similarly, in the CV there was some variation among the three 385 

decades for most species but no major differences or trends, except in the last decade for wolf 386 

when the CV was especially high (Figure S7). This was confirmed in our statistical tests. Based 387 

on the asymptotic test for the equality of coefficients of variation from k populations and 388 

MSLRT for equality of CVs, we did not find significant differences between CV for different 389 

decades for any species (all p>0.16; Table S7). Lastly, we did not find differences among the 390 

spatial autocorrelation of the residuals of the top models calculated on thirty years data and the 391 

three decades separately (Figure S8). Spatial autocorrelation was rare in our models, occurring 392 

only at shorter lag distances for lynx in two periods. In summary, we did not find evidence that 393 

the data quality of the Winter Track Counts differed among the three decades. 394 

Discussion 395 

Relationships between population density and explanatory variables 396 

The main goal of our study was to explain variation in population density for eight 397 

mammals that occupy different trophic levels, i.e., herbivores, omnivores, and carnivores, using 398 
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newly developed remotely sensed indices that characterize primary productivity (DHIs) and 399 

winter conditions (WHIs) along with more traditional variables representing elevation, climate, 400 

and human pressure. We expected that the DHIs would be positively correlated with all species 401 

and especially so for herbivores, as high cumulative and high minimum DHI are likely to be 402 

associated with more food resources. Surprisingly though, the only herbivore that had a strong 403 

positive relationship with the DHIs was moose, while all carnivores exhibited strong 404 

relationships with DHIs (wolf positively related with cumulative DHI, fox negatively related 405 

with cumulative DHI and minimum DHI and lynx positively related with minimum DHI). These 406 

relationships suggest that primary productivity influences prey availability for carnivores. Such 407 

bottom-up effects are more pronounced when a population reaches carrying capacity, or prey are 408 

sparse, and weaker when population levels are low or prey are abundant (Lawton 1990, Currie et 409 

al. 1993). While population density depends strongly on the quality and quantity of available 410 

food throughout the year, winter is often a time of high mortality, and both snow cover and 411 

extremely low temperatures can be important limiting factors (Danilkin 2008). Our results 412 

highlighted the usefulness of winter habitat indices; they appeared in the top models for every 413 

species except roe deer. We predicted a negative relationship with duration of snow-covered 414 

ground for herbivores and omnivores and a positive relationship for carnivores. Interestingly, the 415 

directionality of the relationship between population density and duration of snow-covered 416 

ground varied among species and even within one trophic level. For example, some of our 417 

omnivore (brown bear) and carnivore (lynx and wolf) species had positive relationships with the 418 

duration of snow-covered ground, while others (wild boar and red fox) had negative 419 

relationships. These findings may reflect differing morphology, i.e., wolves and lynx have 420 

physical adaptations for moving through and over snow (Telfer and Kelsall 1984), whereas wild 421 
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boar do not (Formozov 2010). Overall, we found that the WHIs contributed substantially, and the 422 

DHIs somewhat, to our multivariate models, and both WHIs and DHIs provided complementary 423 

information to variables characterizing climate and human disturbance. 424 

Interestingly, all carnivores except lynx had stronger relationships than herbivores did 425 

with the DHIs. However, our finding that the effect of primary productivity was not significant 426 

for European hare and lynx may be due to the strong declines in populations of both species. For 427 

lynx these declines coincide with low prey population (for example, mountain hare (Lepus 428 

timidus) (Newey et al. 2007)), which may have weakened bottom-up effects (Figure S3). Lynx 429 

population dynamics are often cyclical, depending on the cycles of prey species (Matyushkin and 430 

Vaisfeld 2003), and the reproductive rate of lynx responds strongly to prey population size 431 

(Okarma et al. 1997), hence long-term averages of lynx densities may not correlate with long-432 

term vegetation and climate indices. One potential reason the DHIs were not as important for roe 433 

deer as for the other species is that we had to analyze the two roe deer species jointly, because 434 

the game surveys do not distinguish between them, but the two species differ somewhat in size 435 

and habitat preferences (Danilkin 1999), and grouping them may have obscured the relationships 436 

of the individual species. 437 

In middle to northern latitudes and high elevations, snow cover is one of the limiting 438 

factors for animals. For some species, the northern range boundary is limited by snow depth. For 439 

example, distribution is constrained by snow depth of 50 and 60 cm for European and Siberian 440 

roe deer, respectively (Danilkin 1999, Grøtan et al. 2005). In general, our winter-habitat-index 441 

related results indicate that the degree of adaptation to winter conditions greatly affects patterns 442 

of wildlife population densities in Russia. 443 
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Climate affects both the distribution and demographics of wildlife populations (Skidmore 444 

et al. 2003, Michaud et al. 2014, Ehrlén and Morris 2015). Indeed, temperature and precipitation 445 

were included in all top-twelve models for all species, but elevation was only included in some. 446 

Mountainous regions are characterized by a combination of complex landscape elements, often 447 

including open shrub lands. Usually, mountains are less developed, have lower human 448 

population densities and contain fewer roads than flat areas, which is why elevation can be a 449 

proxy of human absence. Given this, we speculate that elevation appeared in top-twelve models 450 

for brown bear and lynx because they avoid human-dominated areas (Nellemann et al. 2007, 451 

Martin et al. 2010, Oriol-Cotterill et al. 2015). 452 

Human activities can greatly affect densities, both by bottom-up mechanisms when food 453 

availability is altered due to land use change (Foley et al. 2005, Kehoe et al. 2015), or top-down 454 

effects including overharvesting or poaching (Okarma et al. 1997, Muhly et al. 2013). The 455 

human footprint index was included in our top models for all herbivores, omnivores, and 456 

carnivores except lynx, but often had a positive relationship with density. We caution that this is 457 

likely not a causal relationship, but may be due to both human populations and wildlife densities 458 

being higher in areas with high vegetative productivity, a phenomenon which may be especially 459 

highlighted in our broad-scale approach that summarizes data per region and thus excludes finer 460 

scale variation in human populations and animal densities. Some of the species are well-adapted 461 

to human-modified landscapes and can occur in agricultural land, including roe deer and wild 462 

boar (Putman and Moore 1998, Geisser and Reyer 2004). An indicator of strong negative, top-463 

down effects of humans on wildlife populations was the rapid drop in animal population for all 464 

species except wolf during the politically unstable period after the collapse of the Soviet Union 465 

(Figure S3, Bragina et al. 2015).  466 
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Caveats and limitations 467 

When interpreting our results, it is important to keep in mind that we modeled average 468 

population density over 30 years versus average habitat conditions at the scale of administrative 469 

regions of Russia, which are rather coarse temporal and spatial resolutions. Furthermore, some of 470 

our data on habitat conditions was collected over different time spans than the wildlife data due 471 

to limitations in data availability. That spatiotemporal mismatch between modeled population 472 

densities and our predictor variables in all likelihood affected our results. However, we decided 473 

to analyze wildlife population density data for all years, and not just the years that matched the 474 

DHIs and WHIs, because population densities changed considerably for most species over time 475 

(Figure S3), and the average for the 30-year time series provided more robust estimates. Given 476 

the high correlation of population densities among decades (Table S6) that decision in all 477 

likelihood had a small effect on our results. Furthermore, by analyzing averages, we may have 478 

missed the effects of extreme weather events. Another potential limitation is that our mammal 479 

abundance data are only publicly available at the scale of administrative regions, and have much 480 

lower spatial resolution than our remotely sensed data. Moreover, the Winter Track Counts data 481 

can only be collected when the ground is snow covered (Mirutenko et al. 2009). The number of 482 

transects have changed over time with the highest number in 1981 (about 30,500 transects), and 483 

the lowest in 1992 (about 26,600) (Gubar et al. 2007). Sampling density is likely uneven across 484 

Russia, both because survey regions are smaller in European Russia, necessitating a higher 485 

density of transects for accurate estimates there, and because many areas in Asian Russia are 486 

very remote and human population density is low making it logistically difficult to maintain a 487 

dense network of transects. Unfortunately though, we did not have access to tallies of the number 488 

of transects by region. Furthermore, data quality may have been affected by the political 489 
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upheaval after the collapse of the Soviet Union. We did not find evidence for systematic changes 490 

in data quality over time (Table S7, Figure S6, and S7), but we cannot rule out such differences 491 

in individual regions. One limitation of the WHIs variables, especially duration of snow-free 492 

ground and the duration of snow-covered ground, is that they rely on optical satellite data, which 493 

do not provide observations during polar night, which affects Russia’s North. That is why we 494 

had to assign zero to the areas affected by polar night, and that may have reduced the explanatory 495 

power of our models and importance of these variables in modeling population density. Despite 496 

these limitations, our remotely sensed indices had high explanatory power and our models were 497 

statistically significant. Had better spatial data for population density been available, 498 

relationships may have been even stronger, given the much higher spatial resolution of remotely 499 

sensed data.  500 

Knowing which factors determine population densities is important for understanding the 501 

underlying mechanisms that shape biodiversity patterns and how species respond to human-502 

dominated landscapes at broad scales. We found that the DHIs and the WHIs had substantial 503 

independent contributions in explaining variation of population density for all eight species 504 

across Russia. The DHIs provide three measures of vegetation productivity that are relevant for 505 

species across different trophic levels because they represent different aspects of productivity, 506 

which is a direct measure of available food for herbivores and omnivores, and an indirect 507 

measure of available food and habitat quality for carnivores. This kind of information can be 508 

useful for better understanding the species-energy relationship (Evans et al. 2005, 2006), and 509 

habitat use (Peek et al. 1976, Michaud et al. 2014, Garroutte et al. 2016). The WHIs capture 510 

important characteristics of snow cover dynamics and characterize winter severity (Zhu et al. 511 

2017, 2019, Gudex-Cross et al. 2021), which influence spatial distribution of plants and animals 512 
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(Zhu et al. 2017). Combining the DHIs and the WHIs provided important information about 513 

environmental conditions that limited population densities and species distributions.  514 

Conclusions 515 

In summary, remote sensing-based DHIs and WHIs explained population density of 516 

mammals of different trophic levels across Russia well. We found that the combination of our 517 

remote sensing indices together with climate and human-related variables resulted in models 518 

with high explanatory power. The DHIs provided valuable information about primary 519 

productivity while the WHIs provided important information about habitat conditions during the 520 

harsh time of the year, which not only limits the range of some species but also the number of 521 

individuals an area can support. The DHIs and WHIs were originally developed to explain 522 

species richness patterns, but have also proven to be useful in distribution models of individual 523 

species (Suttidate et al. 2019, Razenkova et al. 2020). Their potential to contribute to 524 

understanding patterns of population density and population dynamics of different taxa and in 525 

different regions of the world is high. 526 
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Table 1: Our expectations and predictions for the relationship between the densities for 841 

each species and the remotely sensed indices of habitat conditions (DHIs and WHIs). 842 

Species Dynamic Habitat Indices Winter Habitat Indices Reference 

European 

hare (Lepus 

europaeus) 

(herbivore) 

Positive relationship with 

cumulative DHI and minimum 

DHI because hares being 

herbivores require vegetation 

as food 

Negative relationship with 

duration of snow cover 

because European hare do 

not change their coat color 

making them more prone to 

predation. 

(Sultaire et 

al. 2016, 

Mills et al. 

2018) 

Moose (Alces 

alces) 

(herbivore) 

Positive relationship with 

cumulative DHI and minimum 

DHI because of the herbivore’s 

dependence on vegetation as 

food 

A negative relationship 

with the duration of snow 

cover because it is harder to 

escape from predators in 

deep snow and food 

availability during winter. 

(Post et al. 

1999, 

Razenkova 

et al. 2020) 

Roe deer 

(Capreolus 

pygargus 

Pallas, 

Capreolus 

capreolus 

Linnaeus) 

(herbivore) 

Positive relationship with 

cumulative DHI and minimum 

DHI because of the herbivore’s 

dependence on vegetation as 

food. 

A negative relationship 

with the duration of snow-

covered ground because roe 

deer are not well adapted to 

severe winter condition, 

and snow depth is one of 

the limiting factors for the 

range of roe deer. 

(Mysterud 

and Østbye 

2006, 

Danilkin 

2008) 

Brown bear 

(Ursus 

arctos) 

(omnivore) 

Positive relationship with 

cumulative DHI and minimum 

DHI because plant productivity 

is a proxy for food availability 

for bears. 

Negative relationship with 

duration of snow cover 

because snow cover limits 

food availability, and 

because bears prefer 

denning sites with less 

snow. 

(Pigeon et al. 

2016, 

Berman et 

al. 2019)  

Wild boar 

(Suc scrofa) 

(omnivore) 

Positive relationship with 

cumulative DHI because of 

food availability. 

A strong negative 

relationship with the 

duration of snow-covered 

ground and the length of the 

frozen season because boar 

frequently root in the 

ground to reach food, and 

cannot do so when the 

ground is frozen. 

(Melis et al. 

2006, Massei 

et al. 2015) 
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Lynx (Felis 

lynx), red fox 

(Vulpes 

vulpes), wolf 

(Canis lupus) 

(carnivore) 

Positive relationship with 

cumulative DHI and minimum 

DHI because higher plant 

productivity increases prey 

densities. 

Positive relationship with 

duration of snow cover, 

because of their ability to 

move on top of snow, 

whereas their prey cannot. 

(Matyushkin 

and Vaisfeld 

2003, Mech 

and Boitani 

2003) 
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Table2: Summary of our expectations and actual relationships between the densities of 844 

each species and the remotely sensed indices of habitat conditions (expected / actual 845 

relationship) in the top 12 models. The explanatory variables are Cum DHI - cumulative DHI, 846 

Min DHI - minimum DHI, Var DHI - variation DHI, DWOS WHI – duration of snow-free 847 

frozen ground, DWS WHI – duration of snow-covered ground, Start WHI – start of the frozen 848 

season, Length WHI – length of the frozen season, End WHI – end of the frozen season. (+) - 849 

positive regression relationship, (-) – negative regression relationship, NS - not significant 850 

relationship. Note: there are few variables for which we had neutral expectation, and for these we 851 

just include the actual relationship. 852 

Species Cum 

DHI 

Min 

DHI 

Var 

DHI 

DWS 

WHI 

DWOS 

WHI 

Start 

WHI 

Length 

WHI 

End 

WHI 

European hare (Lepus 

europaeus) 

+ / NS + / NS  - / -     

Moose (Alces alces) + / + + / +  - / 

NS 

-   - 

Roe deer (Capreolus 

pygargus Pallas, 

Capreolus capreolus 

Linnaeus) 

+ / + + / NS - - / 

NS 

-   + 

Brown bear (Ursus 

arctos) 

+ / NS + / +  - / +    - 

Wild boar (Suc scrofa) + / +   - / -  + - / -  

Lynx (Felis lynx) + / NS + / +  + / +    + 

Red fox (Vulpes 

vulpes) 

+ / - + / - - + / -  +   

Wolf (Canis lupus) + / + + / - - + /+ +    

 853 
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 855 

[double column] Figure 1: Average population density (individuals per 1 km2) over 856 

1981-2010 period corrected by suitable habitat area within the range for each species. The 857 
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species are European hare (Lepus europaeus), moose (Alces alces), roe deer (Capreolus 858 

pygargus Pallas, Capreolus capreolus Linnaeus), brown bear (Ursus arctos), wild boar (Suc 859 

scrofa), lynx (Felis lynx), red fox (Vulpes vulpes), and wolf (Canis lupus) across Russian’s 860 

regions. The projection of the map is Albers equal area conic projection (Datum D European 861 

1950). 862 
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 863 
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[double column] Figure 2: Results of model selection showing which variables were 864 

included in the top-twelve models for all species when explaining average population densities 865 

for 1981-2010. Models were ranked based on the BIC criterion. R2
adj is provided for the top 866 

model, highlighted with the red box. Bottom-axis labels: the Dynamic Habitat Indices (Cum DHI 867 

- cumulative DHI, Min DHI - minimum DHI, Var DHI - variation DHI), human footprint index, 868 

BIO 3 – isothermality, BIO5 – maximum temperature of warmest month, BIO13 – precipitation 869 

of wettest quarter, BIO15 - precipitation seasonality, the Winter Habitat Indices (DWOS WHI – 870 

duration of snow-free frozen ground, DWS WHI – duration of snow-covered ground, Start WHI 871 

– start of the frozen season, Length WHI – length of the frozen season, End WHI – end of the 872 

frozen season). Note: in the model for wild boar we replaced end of the frozen season with 873 

length of the frozen season because length of frozen season was an ecologically more important 874 

variable for this species. 875 
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 877 

[single column] Figure 3: The results of hierarchical partitioning analysis of variables included 878 

in the top multiple regression model for each species explaining population density. The species 879 

are European hare (Lepus europaeus), moose (Alces alces), roe deer (Capreolus pygargus 880 

Pallas, Capreolus capreolus Linnaeus), brown bear (Ursus arctos), wild boar (Suc scrofa), lynx 881 

(Felis lynx), red fox (Vulpes vulpes), and wolf (Canis lupus) across Russian’s regions. The 882 

explanatory variables are the Dynamic Habitat Indices (Cum DHI - cumulative DHI, Min DHI - 883 

minimum DHI, Var DHI - variation DHI), HFI - human footprint index, BIO3 – isothermality, 884 

BIO5 – maximum temperature of warmest month, BIO13 – precipitation of wettest quarter, 885 

BIO15 - precipitation seasonality, and the Winter Habitat Indices (DWOS WHI– duration of 886 

snow-free frozen ground, DWS WHI – duration of snow-covered ground, Start WHI – start of 887 

the frozen season, Length WHI – length of the frozen season, End WHI – end of the frozen 888 

season). Note: the length of the frozen season was only included for wild boar because length of 889 

frozen season was an ecologically more important variable for this species.  890 


