
1. Introduction
1.1. Motivation

Practically all mountainous regions worldwide are subject to some forms of rock falls, snow/rock/ice avalanches, 
debris flows and sediment-transporting floods. These rapid mass movements pose a significant hazard to both the 
population and infrastructure, with billions of dollars in financial damage and thousands of fatalities each year 
(Dilley, 2005; Emberson et al., 2020; Froude & Petley, 2018; Petley, 2012). According to the 2021 Intergovern-
mental Panel on Climate Change report, the “magnitude of debris flows might increase […] and the debris-flow 
season may last longer in a warmer climate” (Zhongming et al., 2021). This suggests that global warming will 
exacerbate the hazard potential of debris flows and various types of related mass movements. To early detect 
destructive events and mitigate their impact, extensive, reliable, and high-resolution monitoring and warning 
solutions are crucial. Seismic and acoustic instruments are increasingly popular for mass movement monitoring, 
since they record signatures of hazardous events even kilometers away from their occurrence without the need 
for a direct line of sight between source and sensor (Allstadt et al., 2018; Marchetti et al., 2019). The combina-
tion of unrivaled temporal resolution of seismic records and wide spatial sensitivity is a pivotal advantage over 
in situ measurements (Arattano & Marchi, 2008) and remote sensing approaches like radar technology (Leinss 
et al., 2020).

Abstract Avalanches and other hazardous mass movements pose a danger to the population and critical 
infrastructure in alpine areas. Hence, understanding and continuously monitoring mass movements are 
crucial to mitigate their risk. We propose to use Distributed Acoustic Sensing (DAS) to measure strain rate 
along a fiber-optic cable to characterize ground deformation induced by avalanches. We recorded 12 snow 
avalanches of various dimensions at the Vallée de la Sionne test site in Switzerland, utilizing existing fiber-optic 
infrastructure and a DAS interrogation unit during the winter 2020/2021. By training a Bayesian Gaussian 
Mixture Model, we automatically characterize and classify avalanche-induced ground deformations using 
physical properties extracted from the frequency-wavenumber and frequency-velocity domain of the DAS 
recordings. The resulting model can estimate the probability of avalanches in the DAS data and is able to 
differentiate between the avalanche-generated seismic near-field, the seismo-acoustic far-field, and the mass 
movement propagating on top of the fiber. By analyzing the mass-movement propagation signals, we are able 
to identify group velocity packages within an avalanche that propagate faster than the phase velocity of the 
avalanche front, indicating complex internal structures. Importantly, we show that the seismo-acoustic far-field 
can be detected before the avalanche reaches the fiber-optic array, highlighting DAS as a potential research and 
early warning tool for hazardous mass movements.

Plain Language Summary Avalanches and other hazardous mass movements pose a danger to the 
population and critical infrastructure in alpine areas. Therefore, it is important to be able to reliably measure 
and detect these hazardous events. We show a successful example to measure and characterize avalanches 
recorded with a Distributed Acoustic Sensing device that measures deformation along a fiber optic cable. We 
apply unsupervised machine learning to our avalanche recordings and are able to identify consistent properties 
between 12 avalanches. Ultimately, our results indicate that DAS might be a useful tool for detecting hazardous 
mass movements.

PAITZ ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivs 
License, which permits use and 
distribution in any medium, provided the 
original work is properly cited, the use is 
non-commercial and no modifications or 
adaptations are made.

Phenomenology of Avalanche Recordings From Distributed 
Acoustic Sensing
Patrick Paitz1  , Nadja Lindner2, Pascal Edme2  , Pierre Huguenin3, Michael Hohl3, Betty Sovilla3  , 
Fabian Walter1, and Andreas Fichtner2 

1WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland, 2ETH Zurich, 
Department of Earth Sciences, Institute of Geophysics, Seismology and Wave Physics, Zürich, Switzerland, 3SLF, WSL 
Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Key Points:
•  Distributed Acoustic Sensing 

measurements near the interface 
between avalanche and the subsurface 
reveal flow dynamics

•  Strain rate measurements of 
seismo-acoustic waves are registered 
up to 30 s before avalanches reach the 
sensors

•  Internal group velocities larger 
than the propagation speed suggest 
the presence of complex internal 
structures

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
P. Paitz,
patrick.paitz@wsl.ch

Citation:
Paitz, P., Lindner, N., Edme, P., 
Huguenin, P., Hohl, M., Sovilla, 
B., et al. (2023). Phenomenology 
of avalanche recordings from 
distributed acoustic sensing. Journal of 
Geophysical Research: Earth Surface, 
128, e2022JF007011. https://doi.
org/10.1029/2022JF007011

Received 25 NOV 2022
Accepted 20 APR 2023

Author Contributions:
Conceptualization: Patrick Paitz, Pascal 
Edme, Pierre Huguenin, Betty Sovilla, 
Fabian Walter, Andreas Fichtner
Data curation: Patrick Paitz, Pascal 
Edme, Pierre Huguenin, Betty Sovilla, 
Fabian Walter, Andreas Fichtner
Formal analysis: Patrick Paitz, Nadja 
Lindner, Pascal Edme, Pierre Huguenin, 
Fabian Walter, Andreas Fichtner
Funding acquisition: Betty Sovilla, 
Fabian Walter, Andreas Fichtner

10.1029/2022JF007011
RESEARCH ARTICLE

1 of 18

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-7464-224X
https://orcid.org/0000-0002-3041-0559
https://orcid.org/0000-0001-8771-6439
https://orcid.org/0000-0003-3090-963X
https://doi.org/10.1029/2022JF007011
https://doi.org/10.1029/2022JF007011
https://doi.org/10.1029/2022JF007011
https://doi.org/10.1029/2022JF007011
https://doi.org/10.1029/2022JF007011
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JF007011&domain=pdf&date_stamp=2023-04-27


Journal of Geophysical Research: Earth Surface

PAITZ ET AL.

10.1029/2022JF007011

2 of 18

Implementation of seismic measurements into operational mass movement warning has to fulfill two require-
ments. First, the seismic sensors have to be placed in various locations to maximize coverage of failure-prone 
terrain. Second, the detection algorithms have to handle real-time data streams and reliably recognize significant 
telltale signals in the presence of environmental and anthropogenic noise.

Seismic instrumentation has in recent years undergone rapid developments toward more portable sensors (Leinss 
et al., 2020). However, even in densely instrumented countries like Switzerland, sensor coverage is still insuf-
ficient to encompass significant amounts of unstable slopes. In view of snow avalanches, in particular, the 
typically harsh terrain in avalanche-prone regions tends to limit the spatial coverage and temporal resolution 
of most measurements, and of seismic arrays in particular (Pérez- Guillén et  al.,  2016). In the past, simple 
avalanche classification models have been created based on the frequency content of conventional seismometers 
(Suriñach et al., 2001, 2005, 2020). These models, however, do not incorporate the spatiotemporal properties of 
the avalanches and hence disregard an important aspect of the complex dynamic processes of hazardous mass 
movements.

In addition to instrumentational developments, recent improvements in machine learning algorithms show great 
promise for the automatic recognition of emergent and complicated mass movement seismograms (Chmiel 
et al., 2021). Yet further improvements are necessary to recognize events at sites where little or no training data 
are available and to identify signal characteristics, which reveal scientific insights into the dynamic characteristics 
of mass movements.

Here, we address these open challenges with the applications of Distributed Acoustic Sensing (DAS) for snow 
avalanche detection and characterization. DAS is a technique to measure strain or strain rate along a fiber-optic 
cable with submeter resolution and mHz to kHz frequency bandwidth and a well-studied instrument response—
confirming that DAS measurements are directly related to true ground motion (Lindsey et  al.,  2020; Paitz 
et al., 2021). Unused fiber-optic infrastructure initially installed for communication purposes can thus be turned 
into countless seismic sensors increasing spatial coverage of seismic measurements. We leverage the dense seis-
mic sensing of DAS with unsupervised algorithms to automatically recognize snow avalanches and their internal 
properties, offering new perspectives for monitoring and alarm systems.

1.2. Fiber-Optic Sensing in a Natural Hazard Context

The introduction of distributed fiber-optic sensing systems to geophysics marks a milestone. By turning a 
fiber-optic cable into a high resolution seismic measurement network, fiber-optic sensing technologies have 
opened up new possibilities in exploration geophysics and passive seismology (Lindsey & Martin,  2021; 
Zhan, 2019), especially in difficult terrain like glaciers and volcanoes (Klaasen et al., 2021; Walter et al., 2020) 
or on the bottom of the ocean (Lindsey et al., 2019; Williams et al., 2019). For more background information on 
fiber-optic sensing, the reader is referred to Hartog (2017).

In the context of natural hazards, Brillouin-based distributed fiber-optic sensing systems (BOTDA) have been 
utilized for landslide and deformation monitoring (Iten et al., 2008; Minardo et al., 2018), and coherent optical 
time-domain reflectometry was successfully used for ground motion and deformation measurements on land-
slides (Yu et  al.,  2018). The suitability of OTDR systems like the Silixa iDAS(TM) DAS unit (used in this 
study) for the recording of acoustic emission precursors in soil in a laboratory setting was also already estab-
lished several years ago (Michlmayr et al., 2017). The study by Walter et al. (2020) used a similar DAS system 
to successfully monitor rockfalls and icequakes on a glacier. Early studies by Prokop et  al.  (2014) explored 
avalanche monitoring with fiber-optic sensing systems for avalanche detection and runout distance monitoring. 
Since the frequency response of the Silixa iDAS system is well studied and known (Lindsey et al., 2020; Paitz 
et  al.,  2021) for the frequency ranges expected for avalanche signals between 0.1 and 50 Hz (Pérez- Guillén 
et al., 2016), we believe it is suited for applications in avalanche dynamics and early warning applications. In 
an initial study, we showed that a simple frequency-based characterization of avalanches as discussed in Pérez- 
Guillén et al. (2016) can be extended to single and multichannel DAS applications (Fichtner et al., 2021; Lindner 
et al., 2021). Since mass-movements are 3D phenomena, this simple classification based on single measurement 
points does not catch the full spatiotemporal characteristics of an avalanche. Therefore, measurements with high 
spatial resolution, such as DAS, pose a great potential in avalanche dynamics research, since they can capture 
avalanche-induced ground motion as a function of both space and time.
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2. Experiment Setup and Recorded Avalanches
We utilized a Silixa iDAS (TM) v2.4 interrogation unit on an existing fiber-optic cable at the Vallée de la Sionne 
avalanche test site in Switzerland from October 2020 to March 2021. A map and a photograph of the test site are 
shown in Figure 1. The test site has been operated by the WSL Institute for Snow and Avalanche Research SLF for 
over 20 years (Ammann, 1999). Several sensor points within the avalanche paths and runout zones feature seis-
mic, pressure, and radar sensors and are connected via fiber-optic cables to a bunker at the valley bottom where 
data are stored and processed. The length of the interrogated fiber was around 800 m, and the interrogator was 
located in the bunker, positioned at the bottom of the path. The fiber crosses the La Sionne creek around 700 m 
from the topmost monitoring point. Over the entire array, the (single-mode) fiber is installed in a conduit that was 
excavated to a depth of less than a meter during the construction of the test site. This protects the fiber against 
avalanche damages. The sampling rate of the interrogator was 1 kHz at a spatial sampling of 2 m. Measurements 
of conventional seismic sensors in the vicinity of avalanches have been studied at this test site in the past. In 
an initial investigation by Lindner et al. (2021) and Fichtner et al. (2021), we found a good correspondence of 
single-channel DAS data with close by seismometers and showed that it is possible to characterize avalanches 
based on the cumulative energy within different frequency bands according to the classification of Pérez- Guillén 
et  al.  (2016). Since this simplified classification does not encode spatiotemporal information, we decided to 
compare the DAS data to the GEODAR data as opposed to single-station seismometers. The GEODAR is a 
pulsed doppler radar that measures reflected radar intensity relative to a background signal with a spatial resolu-
tion of 0.75 m and a temporal resolution of 111 Hz (Köhler, McElwaine, & Sovilla, 2018). The GEODAR record-
ings have been cropped to fit the same spatial extent as the DAS data. Whereas the GEODAR data correspond to 
snow-related phenomena with an areal coverage (particles larger than 5 cm, related to the dense layer and snow 
clustering), the DAS data correspond to subsurface strain along the fiber. Since the propagation of the avalanche, 
however, effects both GEODAR and DAS data to a similar extent, we are using the former as a ground truth 
confirmation for the occurrence and spatiotemporal distribution of an avalanche. It, however, must be mentioned 
that the observed physical quantities and measurement characteristics are different. It also must be mentioned that 
the simple fiber-layout in our experiment only measures strain-rate along a single line, projecting the complex 3D 
phenomenon of each avalanche onto the fiber. The geometry was dictated by the existing installation, and in the 
future, a more complex fiber-layout could be envisioned.

At the experimental site of the Vallee de la Sionne, the avalanche activity is monitored continuously through-
out the winter season, thanks to seismic sensors located along the avalanche path recording the ground motion 

Figure 1. Test site overview. (a) Map view of the Vallée de la Sionne avalanche test site. Map from SwissTopo (2021). 
(b) Photograph of the test site area with the approximate fiber position indicated in red. The Distributed Acoustic Sensing 
interrogation unit was located in the bunker (building in the lower right corner).
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generated by snow avalanche and other sources of vibrations, and serving as a trigger for all measuring devices 
situated in the path and inside the bunker, including the GEODAR, a Doppler radar and a camera. The trig-
ger system includes two seismic stations with three-component seismometers (Ammann, 1999; Pérez- Guillén 
et al., 2016) and the data acquisition is triggered when the seismic signal exceeds a threshold. By comparing 
seismic triggers with GEODAR and Doppler radar data, as well as images collected by an automatic camera, it is 
possible to discern between the real avalanche signal and false alarms and thus build an extremely accurate and 
comprehensive catalog of avalanche events. This catalog, which to date contains more than 1,000 avalanches, is 
maintained by the SLF but is not officially published. During the data acquisition period, more than 20 events 
have been registered in the SLF database and were recorded with our DAS system. We cover examples of the 
entire spectrum of avalanches recorded throughout the measurement period. In this manuscript, we first discuss 
the key characteristics for one example (denoted “avalanche 3023”). This one was selected since it contains 
key features while still being not too complex. For additional events, the data are visualized in the Supporting 
Information S1. The recorded data of the observed avalanches cover large transitional powder snow avalanches 
with partial flow regime transitions and depositional regimes (avalanches 3009, 3022, and 3023) and smaller 
avalanches without a clearly distinguishable transition (avalanches 3016, 3020, and 3021). A summary of the 
measured avalanches is given in Table B1 in the appendix.

3. Seismogenesis of Mass Movements
Most avalanches considered in this study propagated on top of the fiber-optic cable. Therefore, the data contain 
a superposition of near-field observations of seismo-acoustic sources, as well as ground vibrations from sources 
that can potentially be further away. Note that we prefer the term “seismo-acoustic” over “seismic” as seismic 
records of avalanches may contain signatures of waves traveling through the air (Heck, Hobiger, et al., 2019). 
For particulate gravity currents like snow avalanches, various theoretical models for seismogenesis have been 
recently proposed, which form the basis for the following discussion. Nevertheless, air waves such as infrasound 
may also contain important information about avalanche volumes and dynamics and could influence our DAS 
records (Allstadt et al., 2018; Marchetti et al., 2021).

For multiphase flows (granular flow in dense flow regimes and turbulent flow in the aerial components) such as 
snow avalanches, different seismic source mechanisms have been considered in the past: (a) (quasi-)static defor-
mation as a response to instantaneous weight and frictional shear forces (Wenner et al., 2022) and (b) (snow) 
particle-ground impacts (Tsai et al., 2012), (c) turbulent flow (Gimbert et al., 2014) and, by (d) abrupt stopping of 
mass movement due to friction (Tregaskis et al., 2022), and by (e) changes in traction due to mass deposition and 
erosion (Edwards & Gray, 2015). A schematic avalanche propagating over our fiber array is shown in Figure A1 
in the appendix.

3.1. DAS Data

3.1.1. Time-Distance Domain

The raw data of avalanche 3023 are visualized in Figure 2. The total duration of the avalanche propagating over 
the array is about 2 minutes. The ground truth of the avalanche is confirmed by measurements of the GEODAR 
system (Keylock et al., 2014; Köhler, McElwaine, & Sovilla, 2018). The extent of the avalanche as measured by 
the GEODAR is highlighted in transparent blue colors in Figure 2. Different parts of the avalanche can be distin-
guished (where the numbers correspond to the features highlighted in the figure): (a) The earlier, faster part of the 
avalanche between 2.5 and 3 min time, and (b) a slower, later part of the avalanche between 3 and 4.5 min. What 
is also visible is that (5) there are signals arriving over the entire array before the avalanche front moves on top 
of the cable (at times before 2.75 min). Other observable features include (4) noisier channels (e.g., at 310 m), 
and (c) high amplitude and velocity events (nearly horizontal in the plot), spanning about 100 m in distance each. 
These events could be interpreted as (abrupt) stopping events, where parts of the avalanche abruptly decelerate, 
hence creating a high amplitude strain-change in the subsurface. Other potential explanations for these events 
include snowpack collapses. However, the fact that the strain-rate amplitudes of the mass-movement are signif-
icantly lower after these events makes the abrupt stop hypothesis more likely. It must be noted that for distances 
above 200 m along the fiber, there is no clear DAS signal visible in the raw and low-frequency data, whereas the 
GEODAR outline still records an avalanche signal there. A possible reason for that is the difference between the 
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two observed quantities. Whereas the GEODAR system measures the reflectivity of snow-related phenomena, 
the DAS data see the ground deformation due to seismic waves and gravitational mass-movements at the inter-
face between the atmosphere and the ground. This would mean that for the given example, the GEODAR signal 
for distances >200 m along the fiber corresponds to predominant effects of low seismic energy and is hence not 
caught by the DAS system, whereas for shorter distances from the top, effects observed by DAS and GEODAR 
are directly coupled. The low-frequency time-offset strain rate data are also visualized in Panel b) of Figure 2. 
The two main parts of the avalanche (1) and (2), as well as the stopping mechanisms (3) are still visible, and the 
data look less noisy compared to the raw data in Figure 2a).

3.1.2. Frequency-Wavenumber Domain

Since the fiber is approximately straight with equal channel spacing over the entire array, it is straightforward to 
analyze the data in the frequency-wavenumber domain. The frequency-wavenumber representation of the data is 
defined as a 2-D Fourier Transform (over time and over space):

�̇�𝜖(𝑓𝑓𝑓 𝑓𝑓) = ∫
𝑥𝑥
∫
𝑡𝑡

�̇�𝜖(𝑡𝑡𝑓 𝑥𝑥) 𝑒𝑒−2𝜋𝜋𝜋𝜋𝑓𝑓𝑡𝑡 𝑒𝑒−2𝜋𝜋𝜋𝜋𝑓𝑓𝑥𝑥 𝑑𝑑𝑡𝑡 𝑑𝑑𝑥𝑥𝑓 (1)

for the strain rate 𝐴𝐴 𝐴𝐴𝐴  , time t, distance x, frequency f, and wavenumber k (the inverse of the wavelength). This 
representation allows for analysis of the frequency and apparent phase velocity content of the data and can reveal 
dispersive behavior, that is, frequency dependence of the velocity of individual wave modes.

The frequency-wavenumber (fk) representation of the raw data of avalanche 3023 is visualized in Figure 2d. From 
the fk representation of the data, a clear separation can be observed between high-frequency seismic (10–30 Hz) 

Figure 2. (a) Raw strain rate data of avalanche 3023. The amplitudes are clipped at 0.5% of the global maximum within the visualized window. (b) Band-pass filtered 
low-frequency strain rate data of avalanche 3023 (fourth order Butterworth band-pass filter from 0.001 to 4 Hz). The amplitudes are clipped at 7% of the global 
maximum within the visualized window. (c) Band-passed high-frequency strain rate data of avalanche 3023 (fourth-order Butterworth band-pass filter from 10 to 
100 Hz). The amplitudes are clipped at 0.1% of the global maximum within the visualized window. For (a to c), the ground truth of the extent of the avalanche is 
highlighted in gray-blue shading of the measurements of the GEODAR system. (d) Frequency-wavenumber (fk) representation of the raw data from avalanche 3023. 
The red lines indicate apparent phase velocities along the array in m/s. Negative wavenumbers indicate energy propagating from the top to the bottom of the slope 
(downward), and positive wavenumbers indicate coherent energy propagating upward. The distance starts at the Northwest end of the cable (uphill) at 0 m and ranges 
down to the Southeast end of the cable in the bunker, where the interrogator was located (Figure 1).
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and low-frequency (0.01–10 Hz) signals. The two different parts of the avalanche observed in the raw data are 
also visible in the fk domain (features (1) and (2)) for frequencies below 1 Hz. The fk visualization associates 
these low-frequency (<1 Hz) downward propagating signals with phase velocities of between 5 and 20 m/s (1), 
and 2 m/s (2). In addition, high-velocity events are visible for frequencies between 5 and 30 Hz, propagating both 
upward and downward at speeds of about 650 m/s. Such apparent velocities and the omnidirectional propagation 
suggest that these events are seismic waves generated by the avalanche.

4. Signal Classification
In order to automatically identify and distinguish between the signals shown in Figure 2, we propose the use of 
unsupervised machine learning algorithms. In the past, unsupervised algorithms have proven useful in a geophysical 
context to extract subsets of signals with similar properties from large data sets (Grimm, 2021; Grimm & Poli, 2022; 
Martin et al., 2018). In a cryoseismic context, Grimm (2021) extracted different physical classes from continuous 
DAS recordings on a glacier, characterizing crevassing events, stick-slip icequakes and background noise in an 
automated way. Similarly, Grimm and Poli (2022) used spatial coherency features of an urban DAS data set from 
Grenoble (France) to identify spatiotemporally repeating events. Martin et al. (2018) utilized signal features from 
data segments that had been transformed using the continuous wavelet transform and minibatch-optimized K-means 
to find classes of coherent properties of the seismic wavefield from DAS data. Here, we propose to use unsupervised 
clustering to identify characteristic properties of avalanche recordings with DAS. Since the dimensionality of the 
DAS data is too high to perform clustering on raw data, we first extract representative features. This is a common first 
step in applied machine learning workflows, and the features have to be chosen problem-dependent (Alpaydin, 2020).

4.1. Feature Extraction

Automatic and (near) real-time processing for warning applications require signal feature extraction within small 
time- and space windows. These windows contain either avalanche signals and/or background noise, which 
includes natural (e.g., earthquake) and anthropogenic (e.g., road and air traffic) signals. We set the window sizes 
to 5 s in time and 50 m in space (with adjacent windows overlapping by 3 s and 30 m). The window size and over-
lap were chosen empirically such that coherent signals in time and space are detected, while small-scale changes 
are still captured. The chosen features introduced below aim to encode the apparent phase velocities along the 
fiber, frequency content, dominant propagation direction, and total strain rate energy within each window, and 
hence describe physical properties that are potentially important for avalanche characterization and discrimina-
tion from other signals like earthquakes.

An overview of the proposed features and their representation is visualized in Figure 3. In the first step, the raw data 
are windowed and transformed to the fk domain (see Equation 1). In the fk domain, the contents of the amplitude 
spectrum of velocity-frequency bins are analyzed, resulting in cumulative fk amplitudes 𝐴𝐴 �̇�𝐴 for each bin, where the 
dot indicates that the cumulative fk amplitudes are associated with a transformation of strain rate 𝐴𝐴 𝐴𝐴𝐴 rather than strain.

�̇�𝐴(𝑣𝑣1, 𝑣𝑣2, 𝑓𝑓1, 𝑓𝑓2) =
∑

𝑓𝑓,𝑓𝑓

|�̇�𝜖(𝑓𝑓, 𝑓𝑓)|; ∀ 𝑣𝑣 =
𝑓𝑓

𝑓𝑓
∈ {𝑣𝑣1, 𝑣𝑣2} ∩ 𝑓𝑓 ∈ {𝑓𝑓1, 𝑓𝑓2}, (2)

where the local phase velocity v can be described in terms of frequency f and wavenumber k, following v = f/k. The 
frequency and velocity bins range from f1 to f2 and from v1 to v2, respectively. The above equation maps our data from 
the fk domain into a discrete velocity-frequency (vf) domain. In the next step, we find n numbers of local maxima 
in this domain and extract the corresponding frequency and apparent velocity of these maxima, for both positive 
and negative wavenumbers. This results in n local maxima for positive wavenumbers and negative wavenumbers:

𝑀𝑀𝑛𝑛
+
(𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ ) = max

(
�̇�𝐴(𝑣𝑣, 𝑓𝑓 )

)
; ∀ 𝑛𝑛+ ∈ {1. . .𝑛𝑛} ∩ 𝑘𝑘 𝑘 0 (3)

𝑀𝑀𝑛𝑛
−
(𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− ) = max

(
�̇�𝐴(𝑣𝑣, 𝑓𝑓 )

)
; ∀ 𝑛𝑛− ∈ {1. . .𝑛𝑛} ∩ 𝑘𝑘 𝑘 0 (4)

For each of these peaks Mn(vn, fn), we compute the ratio Rn(vn, fn) between the cumulative fk amplitudes 𝐴𝐴 �̇�𝐴 of 
positive and negative wavenumber, giving us an indication of a preferable directionality in propagation:

𝑅𝑅𝑛𝑛
+
(𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ ) =

�̇�𝐴(𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ )

�̇�𝐴(−𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ )
; ∀ 𝑛𝑛+ ∈ {1. . .𝑛𝑛} ∩ 𝑘𝑘 𝑘 0 (5)
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𝑅𝑅𝑛𝑛
−
(𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− ) =

�̇�𝐴(−𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− )

�̇�𝐴(𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− )
; ∀ 𝑛𝑛− ∈ {1. . .𝑛𝑛} ∩ 𝑘𝑘 𝑘 0 (6)

In addition to the values of the peaks 𝐴𝐴 𝐴𝐴
+|−
𝑛𝑛 (𝑣𝑣𝑛𝑛, 𝑓𝑓𝑛𝑛) in the vf domain, we extract information on the summed ampli-

tude spectrum S, defined as follows:

𝑆𝑆+ =
∑

𝑓𝑓𝑓𝑓𝑓

|�̇�𝜖(𝑓𝑓𝑓 𝑓𝑓)|; ∀ 𝑓𝑓 𝑘 0 (7)

𝑆𝑆− =
∑

𝑓𝑓𝑓𝑓𝑓

|�̇�𝜖(𝑓𝑓𝑓 𝑓𝑓)|; ∀ 𝑓𝑓 𝑘 0 (8)

The last feature we extract is the ratio of cumulative amplitudes between positive and negative wavenumbers C 
within the specific time-space window:

𝐶𝐶 =
𝑆𝑆+

𝑆𝑆−
. (9)

For each window, a total of 11 features are extracted per picked peak n as summarized in Table 1. This reduces 
the dimensionality for each window from 62,500 (2,500 samples for 25 channels) to 11 ⋅ n, which is <0.1% of the 
dimensionality of the raw data. In our case, n was chosen to be three in order to capture first, second, and third 
order effects within each window.

Figure 3. Example of the windowed algorithm proposed to extract signal properties used to detect and characterize avalanche data. (a) In a first step, the data are 
windowed in both time and space (indicated by the black rectangle). In our example, the length of the window is 50 m and 5 s. (b) The windowed data are then tapered 
(in both time and space) and transformed to the fk domain. The fk domain is then binned into frequency ranges (indicated by the horizontal blue lines) and velocity 
ranges (indicated by the magenta diagonal curves). For each bin, the absolute values of the fk amplitudes are then summed and normalized over the number of samples 
per bin. The fk domain amplitudes are displayed in dB relative to the maximum fk amplitudes. (c and d) The output of the bottom left is then arranged by frequency and 
velocity, and local maxima are extracted. This results in a number of n (in this example n = 3) extracted peaks, with corresponding frequency and velocity ranges, as 
well as summed fk amplitude values. The process is done for positive wavenumber values and for negative wavenumber values. For each peak, the ratio of positive to 
negative fk amplitude is also stored as a feature. For the bottom panel of (b) and the panels (c and d), the y-axes are in log-scale. The x-axes in panels (c and d) are also 
in log-scale.
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4.2. Bayesian Gaussian Mixture Models: Unsupervised Clustering

The features in Table 1 are used in an unsupervised clustering algorithm to identify groups of data with similar 
properties. We chose a Bayesian Gaussian mixture model after evaluating the performance of various clustering 
algorithms including K-means, minibatch K-means, and affinity propagation (Bishop & Nasrabadi, 2006; Press 
et al., 2007).

Bayesian Gaussian mixture models are probabilistic models that fit training data onto a finite number of Gauss-
ian distributions, utilizing the Expectation-Maximization algorithm (see Bishop and Nasrabadi  (2006); Press 
et al. (2007) for details). This way, each feature set of the training data is associated to a cluster or class (one 
of the Gaussian distributions). Compared to other conventional clustering algorithms like K-Means, Gaussian 
mixture models have the advantage that a trained model can predict a class from data that it was not trained with. 
Furthermore, instead of associating one class to a set of features (hard assignment of data points to a cluster), 
the probability of the data for being a part of each subclass is estimated (soft assignment of data points to a class 
from the posterior probabilities for each class) (Bishop & Nasrabadi, 2006), which in our case becomes important 
where low-frequency low-velocity mass movements are within the same space time window as high-frequency 
seismic waves. We use the python package scikit-learn (Pedregosa et al., 2011) for the implementation of Bayes-
ian Gaussian mixture models. Based on trial and error, we decided to set the number of classes to 10, initializing 
the weights, means, and covariances with the K-means algorithm, and using a Dirichlet process for the weight 
concentration prior. Increasing the number of classes resulted in a higher number of “noise” classes without 
improving the signal classification. Decreasing the number of classes led to inconsistent clustering results for 
multiple stages of training.

We train the model with 92,367 windows from 13 potential avalanche candidates, including windows containing 
environmental and anthropogenic noise, avalanches, and earthquake recordings. In total, 246,118 feature sets are 
used as input for the training (where for some of the windows, less than 3 feature sets could be extracted). After 
training, the model can be used to estimate the probability of each class for all recorded time windows.

4.3. Clustering Results

The results of the Bayesian Gaussian mixture model analysis are visualized in Figure 4 for avalanche 3023. 
They show the predicted classes with a probability higher than 0.3 for each window based on the trained model, 
together with a Gaussian kernel density estimation (Scott, 2015) for each class over both space and time. In addi-
tion to the normalized kernel density, their normalized cumulative values are also shown in panels b) and c) of 
Figure 4. We can observe that the entire avalanche is classified within the same class S2 and that class S1 emerges 
30 s before the avalanche propagates over the fiber-optic array. In addition, classes S3 and S4 are also associated 
with the avalanche, following the time after class S2 emerges. From the comparison of the kernel densities of the 
clustering result to the normalized cumulative GEODAR intensity, we can see a correlation of classes S2 to S4 
with the ground truth of the GEODAR data.

Table 1 
Features Extracted in Each Sub-Window of the Distributed Acoustic Sensing Record That Are Used for the 
Characterization of the Data

Feature Description

𝐴𝐴 𝐴𝐴+(𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ ) Local maxima in the vf domain for positive k

𝐴𝐴 𝐴𝐴−(𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− ) Local maxima in the vf domain for negative k

𝐴𝐴 𝐴𝐴𝑛𝑛+ , 𝐴𝐴𝑛𝑛− Apparent phase velocity of the local maximum M for pos. (+) and neg. (−) k

𝐴𝐴 𝐴𝐴𝑛𝑛+ , 𝐴𝐴𝑛𝑛− Frequency of the local maximum M for pos. (+) and neg. (−) k

𝐴𝐴 𝐴𝐴+(𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ ) Ratio between 𝐴𝐴 𝐴𝐴+(𝑣𝑣𝑛𝑛+ , 𝑓𝑓𝑛𝑛+ ) and corresponding vf amplitudes of neg. K

𝐴𝐴 𝐴𝐴−(𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− ) Ratio between 𝐴𝐴 𝐴𝐴−(𝑣𝑣𝑛𝑛− , 𝑓𝑓𝑛𝑛− ) and corresponding vf amplitudes of pos. K

S + Cumulative amplitude spectrum in the fk domain for positive k

S − Cumulative amplitude spectrum in the fk domain for negative k

C Ratio between S + and S −
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5. Discussion: Physical Interpretation of the Classes
Because the only available ground-truth data with spatial extent in the form of GEODAR data to highlight the 
physical extent of the avalanches, it is difficult to verify the hypotheses presented in this chapter. The provided 
physical interpretation given in this section should be seen as a highly speculative first attempt to illuminate the 
DAS avalanche recordings. Nevertheless, our interpretations are backed up by physical evidence from the prop-
erties of the different classes.

Since Bayesian Gaussian mixture models give us a probability distribution of any feature set being part of one 
specific class, we can predict the classes of our data to extract apparent phase velocity ranges, frequency content, 
and dominant propagation direction of the measured signals. The clustering results for avalanche 3023 as well as 
all investigated avalanches are visualized in Figure 5 together with the mean feature values and standard devia-
tions. The results are consistent over all events and we show details of the space-time dependent classification of 
the DAS signals for Avalanche 3023 in Figure 4.

Figure 4. (a) Results of the predicted classes with a probability above 0.3 for each window of the Bayesian Gaussian mixture 
model clustering for avalanche 3023. The raw strain-rate data are plotted in the background (see colorbar at the bottom right, 
clipped to 0.5% of the total maximum amplitude), whereas the predicted classes are color-coded for each class. Multiple 
classes for any given time-window are possible and highlighted with different markers and colors. Six different “noise” 
classes could be identified which are not visualized here (N1 to N6). These classes most likely capture environmental and 
anthropogenic noise, as well as self-noise of the instrumentation. The signal classes of the Distributed Acoustic Sensing 
system are labeled S1 to S4. (b) Estimated probability density from a Gaussian kernel density over the samples within each 
class over time. The black line indicates the normalized GEODAR amplitudes for the given window denoted GEO in the 
labels. For a smoother display, only every 15th GEODAR datapoint is plotted in panel (b). (c) Estimated probability density 
from a Gaussian kernel over the samples within each class over space. The black line indicates the normalized cumulative 
GEODAR amplitudes for the given window. The transparent lines in (b and c) in the background give the normalized 
cumulative Gaussian kernel density corresponding to the normalized kernel densities. The corresponding figures for the other 
events mentioned in this manuscript are available in the Electronic Supplement to this manuscript.
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Figure 5 shows that whereas the classes denoted as noise exhibit consistently low values in fk amplitudes (features 
M and S), they can be distinguished from each other in terms of apparent phase velocities and frequency ranges. 
Classes N1 and N2 consist of windows with dominant frequencies of ≤0.5 Hz. The noise classes N5 and N6 contain 
mainly frequencies above 5 Hz at apparent phase velocities higher than the ones from class N1 to N3 (>350 m/s).

Class S3 is associated with the highest overall fk amplitudes at a mean frequency of around 16 Hz and a mean 
velocity of 1075 m/s, propagating both uphill and downhill along the cable (mean C ≈ 1.05). This class can be 
interpreted as the seismic near-field, as this class is dominant on channels during the time the avalanche is on 
top of the cable. These values are realistic for seismic waves in sediment layers (Boore & Joyner, 1997; Michel 
et al., 2014), especially considering that near-field signals consist of multiple seismic phases including P-waves. 
These are faster than Rayleigh phases, which are the dominant far-field response to vertical particle-ground 
impacts (Sánchez-Sesma et al., 2011).

Class S2 has a significantly lower mean frequency (3.4 Hz) and apparent velocity (238 m/s). This class has the 
highest mean C value (1.2), meaning that the dominant propagation direction of these signals is downhill. It could 
be interpreted as the mass-movement class. The apparent velocities are exceptionally low but could be explained 
by slow Biot's waves propagating through the pore space of snow within the avalanche and/or the underlying 
substrate (Capelli et al., 2016).

Based on the apparent velocity content (mean 703 m/s) of class S1, we interpret it as the seismo-acoustic far-field 
generated by the avalanches. This apparent velocity is reasonable for surface and S-waves in generic rock sites 
(Boore & Joyner, 1997). The frequency content (mean 9.6 Hz) of this class is comparable to the frequency range 
of seismic waves generated by avalanches observed in the literature (Pérez- Guillén et al., 2016; Van Herwijnen 
& Schweizer, 2011). The probability of class S1 increases already 30 s before the avalanche arrives at the cable. 
With the above mean frequency, mean velocity and typical avalanche speeds of several meters per second, this 
likely corresponds to a time when the avalanche is several wavelengths away from the cable, which supports our 
hypothesis of seismic far-field waves.

Class S4 contains frequencies below 1 Hz, which we interpret as quasi-static ground deformation in response to 
the instantaneous avalanche weight and frictional shear forces. Waves of such quasi-static ground deformation 

Figure 5. Mean feature values (dots) and 𝐴𝐴
1

2
 standard deviation (error bars) for each clustered feature set. Black color indicates positive wavenumber values (downward 

propagating energy, superscript  +) and red indicates negative wavenumbers (upward propagating energy, superscript  −) along the fiber for avalanche 3023. The 
purple and light red colors indicate the features for the entire training data set, including all events that were used in the clustering process for positive and negative 
wavenumbers, respectively.
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can result from flow depth, velocity, or particle concentration perturbations traveling within the avalanche body 
(Viroulet et al., 2018) and erosion-deposition mechanisms (Edwards & Gray, 2015). This explains the apparent 
phase velocities (<6 m/s) associated with avalanche motion rather than seismic energy propagation of classes 
S1-S3. The motion of the avalanche front and major secondary surges induce wavelets with periods of 10 seconds 
or longer (Figure 2b, e.g.,), which are not resolvable with our 5 s time window sizes. Nevertheless, class S4 seems 
to capture the highest frequencies of these signals. C values of larger than 1.1 indicate that S4 signals propagate 
preferentially downhill. Uphill propagation, however, is also possible and can be explained by shock wave disper-
sion (Liu & Mei, 1994).

So far we have discussed the avalanche signal in terms of dominant classes. However, this binary (dominant/
nondominant) characterization is not always justified since several classes may reach similar probabilities at the 
same location in space and time. This is particularly apparent for Avalanche 3016, whose DAS signals and kernel 
densities have a simple appearance since the avalanche consists of only one surge (Figure 6). During times when 
Avalanche 3016 covers the cable, further signal details are visible and might be interpreted as the avalanche 
front (a), internal roll waves (b) or erosion-deposition waves (c) and stopping phases (d) (Razis et  al.,  2014; 
Tregaskis et al., 2022; Viroulet et al., 2018), traveling at different and variable speeds (different event move-outs 
in Figure 6). In addition to class S4, classes S2 and S3 can also be expected to characterize these internal dynamic 

Figure 6. (a) Distributed Acoustic Sensing strain-rate data of avalanche 3016 in the frequency range from 0.001 to 5 Hz for 
apparent velocities between 1 and 250 m/s (corresponding to the mass-movement class S2, see colorbar at the bottom right, 
clipped to 7% of the total maximum amplitude). We can observe that the internal structure of the avalanche is more complex 
than for avalanche 3023. The group velocity of the avalanche front (1) is approximately 40 m/s, whereas the phase velocity 
inside the avalanche (2) is around 160 m/s. The later part of the avalanche lacks these high-velocity arrivals and instead 
consists of events that decrease from 40 m/s until they stop (3). In the deposit area, other events (4) also seem to propagate 
at apparent phase velocities of >160 m/s downhill. (b) Estimated probability density from a Gaussian kernel density over the 
samples within each class over time. (c) Estimated probability density from a Gaussian kernel over the samples within each 
class over space. The transparent lines in the background of (b and c) give the normalized cumulative Gaussian kernel density 
corresponding to the normalized kernel densities.
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processes within the avalanche as like class S4, they dominate during times when the avalanche locates above the 
cable. In fact, for Avalanche 3016, kernel densities of classes S2, S3, and S4 increase and decrease parallel to each 
other and have comparable peaks (Figure 6 panel b)).

From this figure, we can also observe that the avalanche front propagates at a relatively high apparent group 
velocity of about 40 m/s (labeled (1)). Internal apparent phase velocities of up to 160 m/s are present in the earlier 
part of the avalanche (2). We can also observe the transition from class S2 toward S4 (panel b). This may be 
related to the transition from the erosive and intermittent flow-regime characteristic of the avalanche front toward 
the depositional flow regime at the avalanche tail (3) after around 3 min. The internal velocities of up to 160 m/s 
within the avalanche that are higher than the front propagation speed of around 40 m/s suggest that internal 
phases may be processes related to roll-waves activity taking place at the surface of the denser basal layer (Razis 
et al., 2014; Viroulet et al., 2018).

The above discussion shows that although different classes can be associated with characteristic ranges of 
frequencies and propagation velocities, their relative occurrences can be utilized to describe a range of avalanche 
dynamics. The arrival of the front with its instantaneous increase in local weight will induce low-frequency, 
quasi-static elastic deformation (class S4). This adds to weight variations resulting from snow entrainment, which 
for powder snow avalanches can take the form of violent eruptions (Carroll et al., 2012; Sovilla et al., 2006) 
and other internal phases or flow-depth variations like roll waves (Razis et al., 2014; Viroulet et al., 2018) to 
produce further low-frequency signals. At the avalanche front, we also expect the turbulent and suspended mass 
movement to couple into the ground (classes 1 and 3). Although we are not aware of theoretical descriptions 
of the seismogenesis of turbulent and laminar air-snow mixtures, an equivalent mechanism has been proposed 
for river flow (Gimbert et  al.,  2014). This leads to a mixing of signals from classes 1, 3, and 4. Similarly, 
temperature-dependent sintering produces macroscopic granules (Steinkogler et al., 2015) whose ground impacts 
generate high-frequency seismic signals (Tsai et al., 2012) constituting classes 1 and 3. It is not clear if these 
mechanisms also generate the slow seismic phases of class 2, which is a predominant signal when all avalanches 
override the cable. The existence of a potential Biot phase (Capelli et  al.,  2016) is possible but not the only 
explanation. The records of the local M 1.2 earthquake from Sanetschpass about 10  km from our recording 
site testify to the nonuniqueness of physical class meaning (see event 3036 in the Supporting Information S1, 
occurring on 03 March 2021, 00:38:14 UTC): The DAS earthquake records lack class S4, which is expected 
as the earthquake does not generate slowly propagating signals corresponding to the quasi-static elastic ground 
deformation induced by an avalanche. On the other hand, the earthquake records are predominantly classified 
into classes S1 and S3. Our interpretation of S3 as near-field seismic signals at frequencies resolvable within 5 s 
time windows is questionable since the earthquake located 10 km away from the cable. The absence of class S2 
suggests that this class is indeed characteristic for mass movements, even though an explanation of its rather slow 
seismic propagation speeds remains elusive.

The frequency content of our signal classes associated to the avalanches falls within the same range as for existing 
studies investigating the frequency content of avalanche recordings from conventional seismometers as, for exam-
ple, in Pérez- Guillén et al. (2016), and validates our automatic classification and interpretation. The cumulative 
kernel densities introduced can furthermore be seen as spatiotemporal extension of the conventional avalanche 
characterization based on frequency-content in the existing literature, such as in Pérez- Guillén et al.  (2016), 
Suriñach et al. (2005, 2020).

To summarize, there exist distinct signal classes, which are shared among all of the recorded avalanches (classes 
S1 to S4). Class S1 is interpreted as the seismo-acoustic far-field that arrives at the cable before the mass move-
ment itself. Classes S2–S4 are associated with low-frequency, quasi-static ground deformation, near-field ground 
shaking and other yet-to-be-confirmed signals generated as the avalanches override the cable. Although these 
interpretations may differ for other seismic sources like earthquakes, the signal classification seems to be charac-
teristic for all of our avalanches and could be used for automatic detection.

5.1. Internal Avalanche Characteristics

We identified that class S2 is most likely related to the physical properties of the mass-movement inside the 
avalanche. We can use this to further analyze the internal structure of the avalanche propagating over the 
fiber-optic array. Since avalanche 3023 does not have a complex internal avalanche structure, but a well separated 
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slow and fast part, we will look at a different avalanche. We chose avalanche 3016 for this analysis, since it is a 
single surge avalanche with a complex internal structure. From the clustering analysis, we know the frequency 
and apparent phase-velocity ranges of the mass-movement class S2. Hence, we focus on frequencies <5  Hz 
and apparent phase velocities <250 m/s (only downward propagating). The DAS data of a zoomed-in version 
of  avalanche 3016 within this frequency and velocity range are displayed in Figure 6.

Accordingly, we explain the low apparent phase velocities (<6 m/s) with the avalanche's bulk mass motion, which 
may vary between avalanche events or even between surges of a single avalanche (Figure 2). Hence, in terms of 
avalanche processes, the classes S2 and S4 could be associated with different flow regimes within the avalanche—
where the earlier class S2 may correspond to the high-energy processes occurring at the front of the avalanche, 
such as entrainment of snow or impacts of the (turbulent) suspensions with the ground, and class S4 may be related 
to the signal generated by the following dense basal layer and its deposition (Köhler, McElwaine, & Sovilla, 2018).

Another observation is that the presence of some mass movement classes by themselves require additional anal-
ysis. A regional M 1.5 earthquake from Sanetschpass (see event 3036 in the Supporting Information  S1) is 
predominantly classified into classes S1 and S3. The classification of S1 and S3 during the regional earthquake 
also indicate that additional signals might be included in these classes. The absence of class S2 indicates that 
there is no mass movement present during the earthquake, but this nonuniqueness of the classification needs to 
be kept in mind for potential automatic classifications in the future.

6. Perspectives for Snow Avalanche Monitoring
DAS enables the distributed measurement of ground deformation in response to avalanche flow with high tempo-
ral and spatial resolution. There exist specific reasons why this could be a game changer for avalanche monitoring 
and warning applications. Our analysis shows that nonsupervised classification of DAS recordings containing both 
noise and avalanche signatures are capable of separating the two. Although this method has to be applied to longer 
(multiple months) DAS records to evaluate its accuracy, the signal classes shared among all recorded avalanches 
suggests that automatic detections are feasible. The consistent detections of class S1 signals tens of seconds 
prior to the avalanche arrivals at the cable are particularly encouraging: interrogating preinstalled communication 
cables seems to be sensitive enough to detect avalanche seismograms remotely. This is important for the more 
realistic case where fiber-optic infrastructure locates parallel to pass roads or train lines, which are threatened 
by avalanche hazards in the lateral slopes and couloirs. For such cases, snow avalanches will cross rather than 
propagate along fiber optic cables and longitudinal wave propagation as presented here will be reduced. We can 
nevertheless expect to measure the seismic phases of classes S1, S2, and S3, which could be used to distinguish 
between powder snow avalanches containing a turbulent flow and pure dense snow avalanches (Köhler, Fischer, 
et al., 2018). How exactly such flow regime distinction manifests itself in the recognition of class S1, S2, and 
S3 signals remains to be seen. It may be necessary to further support classification with transition probabilities 
between states as has been done in previous application of machine learning algorithms to avalanche seismo-
grams (Hammer et al., 2017; Heck et al., 2018). Finally, we stress the advantage of our Gaussian mixture models 
allowing for different states to coexist at the same time rather than identifying one single dominant state. Future 
classification could thus be improved with relative probabilities so that the “state mix” describes different parts 
and kinds of avalanches. Even though this could in theory be done with the presented  data set, more data from 
different installations and test sites should be considered for this to quantify the generalizability of our approach.

Our processing leverages signal coherence over a set of spatially distributed seismic sensors. Equivalent signal 
processing has already been used in the past for seismic signals of avalanches in the form of array methods (Heck, 
Van Herwijnen et al., 2019; Lacroix & Helmstetter, 2011). In the present case, the unprecedented amount of 
seismic sensing locations was combined with unsupervised machine learning to automatically classify signals. 
To this, future applications could add waveform features (Chmiel et al., 2021) and image processing to further 
improve classification accuracy (Thrastarson et al., 2021). In any case, we do not expect user-defined threshold 
rules to perform better than our machine learning scheme since such methods cannot distinguish between signals 
with similar seismic amplitudes and frequency content.

6.1. Extension to Other Mass Movement Phenomena

Whereas this study focused on snow avalanches, the proposed DAS observation and signal classification could 
also be applied to other granular media like debris flows, rock-ice avalanches and smaller slope failures. Given 
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seismogenesis of water turbulence (Gimbert et al., 2014), flood waves could be monitored and detected, as well. 
Our signals show that DAS is able to detect complex internal processes originating from avalanches propagating 
over the cable, most likely related to internal avalanche characteristics, which could be manifestations of roll 
waves or shock waves. These internal waves are general features of open surface flows (Liu & Mei, 1994). Shock 
waves propagate as flow depth perturbations with larger waves traveling faster, which allows them to grow by 
“swallowing” smaller waves. The successive merging explains pulsing behavior of granular flows and frontal 
flow depths, which are much larger and thus more destructive than expected for steady flow (Razis et al., 2014; 
Viroulet et al., 2018; Zanuttigh & Lamberti, 2007). The detection of internal waves, which our DAS measure-
ments provide, could therefore be a tool for better understanding and predicting maximum flow depths of gran-
ular flows and floods.

7. Challenges
Since the apparent phase velocity of an event propagating along the fiber is strongly dependent on the incidence 
angle of the event, it needs to be treated as a site- and event-specific property. Hence, the transferability of the 
trained Gaussian mixture model from the given test site to other installations might be limited. Nevertheless, the 
physical intuition we gained from the analyzed avalanches can be transferred to other sites and cable layouts.

A big challenge for monitoring hazardous alpine mass movements with DAS is the existence and access to 
fiber-optic infrastructure. Whereas the Vallée de la Sionne test site had accessible infrastructure existing for 
decades, sites like this are rare. The distribution of existing fibers in rural alpine areas, especially those that 
are subject to frequent hazardous mass movements, can be limited. In addition to fiber access, stable long-term 
power access for the interrogation unit can be challenging. If no fiber-optic infrastructure for data transfer exists, 
real-time monitoring and immediate early warning require a stable data transfer from the interrogation unit to the 
local responsible authorities. In case the fiber-optic infrastructure is required to be installed, the fiber needs to be 
protected against mass movement induced damages. For avalanche monitoring this means that the cable needs to 
be trenched deep enough and be protected against erosion processes. We believe that the DAS technology can not 
only improve our understanding of hazardous mass movements from a scientific point of view by highlighting 
interactions between the mass movement and the subsurface but can also improve seismic hazard monitoring and 
early warning solutions in the near future.

8. Conclusions and Outlook
We have shown that the DAS technology is capable to measure avalanches propagating toward and on top of 
a fiber-optic cable. The avalanche signals measured from such a system include the seismo-acoustic near- and 
far-field as well as various mass movement regimes. By combining DAS with Bayesian Gaussian mixture models, 
we are able to extract key avalanche characteristics and their developments over both space and time. Significant 
importance for the classification are both the frequency content and the apparent phase velocities of the data 
within local time-space windows.

DAS adds new observations to the toolbox of mass movement research. With high-resolution recordings, DAS 
delivers data from the interface of the avalanche with the (sub)surface of the Earth. We observed indications 
of roll waves. In the future, it can be envisioned that the Froude number could be calculated from the apparent 
velocities if the depth of the flow is known (similar to Pérez- Guillén et al. (2016)). Further research in amplitude 
calibration of DAS systems for mass movements is required but a site-specific flow regime characterization based 
on DAS recordings and physical properties of strain rate measurements can be envisioned in the future.

The incorporation of subsurface strain (rate) as observed with DAS into numerical avalanche simulation tools 
could increase the usability of DAS data in the field of avalanche dynamics research even further.

Appendix A: Schematic Avalanche Propagating Over DAS Array
See Figure A1 for a schematic avalanche propagation over a DAS array.
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Appendix B: Background Information on Avalanches Discussed in This Manuscript
See Table B1 for an overview of the avalanches investigated within this manuscript.

Figure A1. Schematic avalanche processes generating seismo-acoustic signals. The velocity and density profile vary 
with depth (z). The propagation of the avalanche downhill (x) results in acoustic infrasound waves in the air, as well as 
seismo-acoustic waves due to sliding friction, depositional mechanisms, and interaction of the mass movement with the 
topography. In this experiment, the fiber-optic cable is located in a conduit in the subsurface, over which the avalanches 
propagate. Figure schematically after Pérez- Guillén et al. (2016) and Sovilla et al. (2015).

Table B1 
Avalanche Characteristics of the Events Discussed in This Manuscript

Number Date of occurrence Duration Characteristics

Avalanche 3005 2021-01-02 ? minutes - Very small avalanche

- Did not reach the cable

- No surges visible

Avalanche 3009 2021-01-15 4 min - Large transitional powder snow avalanche

- Fast and dilute component

- 3 main surges

- Depositional tail

Avalanche 3016 2021-01-25 1 min - Powder snow avalanche

- No dense transition

- Depositional tail

Avalanche 3020 2021-01-27 0.5 min - Small powder snow avalanche

- No dense transition

- One surge

Avalanche 3021 2021-01-28 1 min - Dense avalanche

- Depositional tail

- One big surge

Avalanche 3022 2021-01-28 2.5 min - Large transitional powder snow avalanche

- Depositional tail
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Appendix C: Additional Plots
Additional plots of the avalanche candidates in Table B1 with their corresponding predicted classes from the 
clustering algorithm can be found in the Supporting Information S1.

Data Availability Statement
To facilitate open research, the data used in this manuscript are available to the public. This include the DAS 
data, metadata, extracted features from the DAS data, and the trained Bayesian Gaussian Mixture Model. To 
reproduce the figures in the manuscript as well as in the Supporting Information  S1, a jupyter notebook is 
provided. All processing was performed in Python (v 3.9.13), utilizing SciPy (Virtanen et  al., 2020) NumPy 
(Harris et al., 2020), scikit-learn (Pedregosa et al., 2011), pandas (pandas development team, 2020), cmocean 
(Thyng et al., 2016) and jupyter (Kluyver et al., 2016). The DAS data, the extracted features as well as the trained 
Bayesian Gaussian Mixture Model, together with instructions (in a jupyter notebook (Kluyver et al., 2016)) to 
replicate the figures in the manuscript are available on Zenodo (https://doi.org/10.5281/zenodo.7385433) (Paitz 
et al., 2022) and are associated to the Snow and Avalanche Dynamics Community (Zenodo, 2022). The data set 
with the corresponding code examples is currently under restricted access but will be made public upon publica-
tion. The reviewers as well as the editor may request access during the review stage of this manuscript.
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