
1. Introduction
Many rivers and stream reaches are ungauged or poorly gauged because streamflow measurements are costly 
and resource intensive. The prediction of streamflow in these watersheds is necessary and beneficial to enhance 
our understanding of hydrological processes and to improve water resources management. Although the predic-
tion in ungauged basins (PUB) program was initiated by the International Association of Hydrological Sciences 
(IAHS) in 2003 and many efforts have been made to improve predictions in ungauged watersheds (Hrachowitz 
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et  al.,  2013), PUB remains a challenging problem that requires complex physically-based or data-driven 
approaches (Besaw et al., 2010; Samaniego et al., 2010).

The most commonly used approaches to predict continuous streamflow include distributed physically-based 
hydrologic models, conceptual and semi-distributed models (e.g., HBV), and data-driven models (e.g., autore-
gressive moving average ARMA, artificial neural networks ANNs, and long short-term memory neural networks 
LSTM) (Razavi & Coulibaly, 2013). Data-driven models such as ANNs and LSTM have been increasingly used 
recently and can outperform some physically-based models in terms of predictive performance if appropriately 
utilized (Arsenault & Brissette,  2014). When using those physically-based or data-driven approaches, model 
parameters need to be estimated from independent data sources or calibrated against streamflow data. However, 
calibration becomes challenging or even impossible in ungauged watersheds in the absence of streamflow 
information.

Regionalization, which refers to the transfer of hydrologic features, model structures, or model parameters from 
gauged to ungauged or poorly gauged watersheds, is often needed to make streamflow predictions in ungauged 
or poorly gauged watersheds. However, regionalization is challenging. First, regionalization often requires water-
shed attributes (e.g., meteorological, and physiographic information), which may not be available in ungauged 
or poorly gauged watersheds. Second, due to spatial variability of watershed and streamflow characteristics, 
the predictive performance of each regionalization approach may vary substantially across watersheds (Yang 
et al., 2020). The regionalization is often performed on a case-by-case basis, and there is often no universally 
applicable approach (Arsenault & Brissette, 2014; Arsenault et al., 2019; Razavi & Coulibaly, 2013). Many stud-
ies have focused on the regionalization of flow metrics (e.g., peak flows, flow percentiles for flow duration curve) 
(Carlisle et al., 2010; Sanborn & Bledsoe, 2006) as it requires less parameters to be regionalized. In contrast, 
regionalizing continuous streamflow requires more parameters and is therefore even more challenging (Razavi 
& Coulibaly, 2013).

Existing regionalization techniques can be separated into hydrologic model -dependent and -independent 
approaches (Razavi & Coulibaly,  2013). Hydrologic model-dependent approaches transfer hydrologic model 
parameters from gauged watersheds to the target watershed for continuous streamflow simulations. Given larger 
amounts of parameters involved, complicated geospatial (e.g., spatial proximity, interpolation) and/or hydrologic 
(e.g., hydrological similarity) analyses are normally needed (He et al., 2011). Sometimes, optimization may be 
also needed (Li et al., 2010). In contrast, the hydrologic model-independent approaches transfer equation struc-
tures and relevant coefficients to the target watershed. Examples include the parameters of multiple linear regres-
sion models (MLR) (Chiang et al., 2002), or the architecture of ANNs, etc (Besaw et al., 2010).

Signal processing techniques, such as compressed sensing (CS), are potential tools to predict continuous natural 
signals such as streamflow in poorly gauged watersheds (K. Zhang, Bin Mamoon, et al., 2023). Many natural 
hydrological and environmental signals (e.g., soil moisture and temperature) are “sparse” (Katul et al., 2007; 
Parolari et al., 2021; Williams et al., 2018) when projected onto an appropriate space (Ebtehaj et al., 2015). In 
other words, these signals have a succinct (or “lower-dimensional”) representation in the frequency domain or 
show correlations in space. In such cases, with a few measurements taken, the signals can be accurately predicted 
with minimal loss of information (Candès et  al.,  2006; Donoho,  2006). For example, Figure  1a illustrates a 
synthetic signal with monthly and annual fluctuations. When transformed to a Fourier frequency space, the signal 
can be represented by only two active coefficients at frequencies of 1/30 day −1 and 1/365 day −1 (Figure 1b). 
With very few sparse measurements taken (Figure 1a), the signal can be well reconstructed (Figure 1c). This CS 
approach is used for signal compression and recovery in various contexts including medical imaging (Lustig & 
Donoho, 2008), radar imaging (L. Zhang et al., 2010), land cover data (Wei et al., 2017), and hydro-environmental 
signals such as soil moisture (Wu et al., 2014).

However, there are a few constraints in the application of CS for the prediction or regionalization of continuous 
streamflow in ungauged and poorly gauged watersheds. First, actual streamflow signals are much noisier than the 
sample signal given above, and it is unclear whether the streamflow signals are sufficiently sparse in Fourier or 
wavelet frequency spaces to allow for successful prediction. Second, CS requires taking measurements at random 
times, which is tricky, especially in ungauged watersheds. The technique of data-driven sparse sensing (DSS) 
proposed by Manohar et al. (2018) is a step toward addressing these deficiencies. First, instead of transforming 
the signals into Fourier or wavelet frequency spaces, DSS utilizes a Singular Value Decomposition (SVD), a 
dimensionality reduction tool which underpins techniques such as principal component analysis (PCA) or proper 
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orthogonal decomposition (POD), to identify the appropriate space where the signals show sparse dynamics. 
Second, instead of requiring taking measurements at random times, DSS can utilize a QR factorization algo-
rithm with column pivoting to identify the optimal times for sampling. Therefore, DSS provides a potential tool 
to enable data-driven regionalization and streamflow prediction in poorly gauged watersheds. Specifically, to 
predict the streamflow in a poorly gauged watershed, streamflow time-series in gauged watersheds nearby can be 
collected as training data. Then, a SVD can be utilized to identify the lower-dimensional space—or basis—that 
best represents the streamflow time-series training data for this region. This lower-dimensional space varies for 
different regions. However, for a specific region, we expect it to serve as a reasonable basis since watersheds 
within the same geologic or climatic region can share similar hydrologic dynamics due to similar climate (e.g., 
precipitation) patterns and geospatial (e.g., land cover and soil) properties. Therefore, streamflow signals in 
poorly gauged watersheds may be predicted accurately by projecting available measurements (e.g., obtained 
using remotely sensed data from satellites or UAVs) onto the tailored basis functions appropriate for that region 
(Figure 1).

DSS has been successfully applied in image reconstruction, reconstruction of two-dimensional flow and temper-
ature fields, as well as optimal sensor placement (Manohar et al., 2022; Ohmer et al., 2022). Here, we use DSS 
for the prediction of hydrologic signals and to identify optimal timings to measure streamflow in poorly gauged 
watersheds. Specifically, we ask: (a) How well can we predict stream flow time-series in poorly gauged water-
sheds using DSS? (b) In which types of watersheds does DSS-based regionalization work the best? (c) Is there 
any spatial pattern of streamflow predictability using DSS and how does it relate to watershed characteristics? 
And (d) How does the optimal sampling time relate to streamflow regimes? As detailed below, we utilized this 
approach on 543 daily-scale streamflow time series across the contiguous United States (CONUS) retrieved from 
the CAMELS data set (Newman et al., 2015). When predicting the streamflow time series in each watershed, 
we assumed the target watershed to be poorly gauged, and we used SVD to generate a tailored basis for that 
climate region from streamflow data in nearby gauged watersheds. In addition, a QR factorization algorithm with 
column pivoting is used to identify optimal timings to measure streamflow in that region. Streamflow time-series 
predictions from the optimally-timed measurements are compared against predictions made from measurements 
obtained at random and uniform intervals.

2. Data and Methods
2.1. Problem Formulation and Data-Driven Sparse Sensing

Hydrologic signals are normally collected as discrete time-series even though they are continuous in time. Here, 
we consider daily-scale time series of streamflow at a given station 𝐴𝐴 𝐴𝐴  over the course of a year, arranged into 
a column vector, 𝐴𝐴 𝐱𝐱𝑖𝑖 ∈ ℝ

365 . This vector can be represented by a linear combination of appropriate basis vectors 
arranged into a matrix 𝐴𝐴 𝚿𝚿 ∈ ℝ

365×365 , such that

�� = ��� (1)

Figure 1. (a) A sample signal with monthly and annual fluctuations. (b) Power spectral density (PSD) of the signal with two 
active frequencies. (c) The reconstructed time-series using compressed sensing based on sparse measurements.
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Each column 𝐴𝐴 ψ
𝑖𝑖
∈ ℝ

365 in the matrix � =
[

�1,�2. . .�365
]

 is a temporal basis function. The vector 𝐴𝐴 𝐬𝐬𝑖𝑖 ∈ ℝ
365 

contains amplitude coefficients corresponding to the individual basis functions. Like other natural signals, hydro-
logic signals can be sparse, meaning that when the discrete time series is represented in terms of an appropriate 
coordinate system or basis, only a few coefficients in 𝐴𝐴 𝐬𝐬𝑖𝑖 have large amplitudes. Often, a generic or universal basis, 
such as Fourier modes or wavelets, can represent the signal sparsely even without prior knowledge about the 
properties of the signal (see Figure 1). However, with some physical understanding of the signal to be predicted, 
or with access to prior data, it is possible to obtain a basis that is tailored for the specific signal to be predicted, 
that is, a basis in which the signal can be more sparsely represented.

Since we are interested in predicting streamflow in poorly gauged watersheds, we assume that only a subset of meas-
urements in 𝐴𝐴 𝐱𝐱𝑖𝑖 can be obtained. In other words, the available data is in the form of a vector 𝐴𝐴 𝐲𝐲𝑖𝑖 ∈ ℝ

𝑝𝑝 with 𝐴𝐴 𝐴𝐴 𝐴 365 , and

𝐲𝐲𝑖𝑖 = 𝐂𝐂𝐂𝐂𝑖𝑖 = 𝐂𝐂𝐂𝐂𝐂𝐂𝑖𝑖 (2)

where 𝐴𝐴 𝐂𝐂 ∈ ℝ
𝑝𝑝×365 is a sampling matrix populated with ones and zeros, with non-zero entries in each of the 𝐴𝐴 𝐴𝐴 rows 

representing days on which streamflow measurements are available. If the coefficient vector 𝐴𝐴 𝐬𝐬𝑖𝑖 can be estimated 
from the limited measurements 𝐴𝐴 𝐲𝐲𝑖𝑖 , the original hydrologic time series 𝐴𝐴 𝐱𝐱𝑖𝑖 can be reconstructed through inversion of 
Equation 1. However, for 𝐴𝐴 𝐴𝐴 𝐴 365 , Equation 2 represents an undetermined system of equations for 𝐴𝐴 𝐬𝐬𝑖𝑖 , meaning that 
there are an infinite number of solutions. The standard least-squares solution to Equation 2 is not sparse and typically 
results in poor reconstruction due to overfitting. Since we expect natural hydrologic signals to be sparse in an appro-
priately chosen basis, we seek the sparsest coefficient vector 𝐴𝐴 𝐬𝐬𝑖𝑖 that is consistent with the measurements 𝐴𝐴 𝐲𝐲𝑖𝑖 , that is,

𝐬𝐬𝑖𝑖 = argmin
𝐬𝐬
′

𝑖𝑖

‖𝐬𝐬′
𝑖𝑖
‖0, such that 𝐲𝐲𝑖𝑖 = 𝐂𝐂𝐂𝐂𝐬𝐬

′

𝑖𝑖
, (3)

where 𝐴𝐴 ‖𝐬𝐬′
𝑖𝑖
‖0 represents the 𝐴𝐴 𝓁𝓁0 pseudonorm of the vector 𝐴𝐴 𝐬𝐬

′

𝑖𝑖
 , or the number of non-zero entries in 𝐴𝐴 𝐬𝐬

′

𝑖𝑖
 . Unfortunately, 

the optimization problem in Equation 3 is not tractable since it involves a search over all possible sparse coeffi-
cient vectors. However, if the sampling matrix 𝐴𝐴 𝐂𝐂 meets certain conditions (Candès et al., 2006; Donoho, 2006), 
the optimization problem in Equation 3 can be relaxed to a convex 𝐴𝐴 𝓁𝓁1 -minimization problem of the form

�̂�𝐬𝑖𝑖 = argmin
𝐬𝐬
′

𝑖𝑖

‖𝐬𝐬′
𝑖𝑖
‖1, such that 𝐲𝐲𝑖𝑖 = 𝐂𝐂𝐂𝐂𝐬𝐬

′

𝑖𝑖
. (4)

In the equation above, 𝐴𝐴 ‖𝐬𝐬′
𝑖𝑖
‖1 represents the 𝐴𝐴 𝓁𝓁1 -norm of the vector 𝐴𝐴 𝐬𝐬

′

𝑖𝑖
 , or the sum of absolute values of all entries in 

𝐴𝐴 𝐬𝐬
′

𝑖𝑖
 . Equation 4 can be solved using standard algorithms. We also note that there are several alternative techniques 

that can be used to solve for the sparsest solution to Equation 2, many of which involve the use of so-called greedy 
algorithms. For further details, we point the reader to Manohar et al. (2018).

Two questions arise naturally from the preceding discussion. First, what is the most appropriate basis 𝐴𝐴 𝚿𝚿 for repre-
senting streamflow time series? Second, what should be the form of the sampling matrix 𝐴𝐴 𝐂𝐂 to ensure that the best 
possible estimate for 𝐴𝐴 𝐬𝐬𝑖𝑖 (and therefore 𝐴𝐴 𝐱𝐱𝑖𝑖 ) can be obtained from the measurements 𝐴𝐴 𝐲𝐲𝑖𝑖 ? As noted previously, Fourier 
modes or wavelets can often be used to generate sparse representations of time series data. However, with access 
to prior time series data, more sophisticated data reduction techniques can be used to create a tailored basis, 𝐴𝐴 𝚿𝚿 . In 
addition, to ensure that the sparsest 𝐴𝐴 𝐬𝐬𝑖𝑖 with respect to 𝐴𝐴 𝚿𝚿 can be found, the measurements taken should represent a 
wide range of the temporal basis functions in 𝐴𝐴 𝚿𝚿 . In other words, the sampling matrix 𝐴𝐴 𝐂𝐂 , which determines when 
the measurements are taken, should be “incoherent” to the representation basis 𝐴𝐴 𝚿𝚿 (Candes & Wakin, 2008). For 
instance, if 𝐴𝐴 𝚿𝚿 comprises periodic Fourier modes, random sampling is normally the best way to ensure maximum 
incoherence. However, this requirement limits its application for streamflow prediction because measurements 
are often taken periodically, and it may not be practical to take measurements at random timings.

To create the tailored basis, we assume the availability of a library of time series data 𝐴𝐴 𝐗𝐗 = [𝐱𝐱1, 𝐱𝐱2. . .𝐱𝐱𝑛𝑛] , where 
different columns in the matrix 𝐴𝐴 𝐗𝐗 ∈ ℝ

365×𝑛𝑛 can represent data available from different years at the same station 
and/or data available from measurement stations in close geographic proximity or with shared hydrologic charac-
teristics. A singular value decomposition (SVD) of the data set

𝐗𝐗 = 𝚿𝚿𝚿𝚿𝚿𝚿
𝑇𝑇 (5)

is then used to generate a set of orthonormal temporal basis functions (left singular vectors in 
� =

[

�1,�2. . .�365
]

∈ ℝ365×365 ) and spatiotemporal correlation functions across the 𝐴𝐴 𝐴𝐴 different time series (right 
singular vectors in 𝐴𝐴 𝐕𝐕 = [𝐯𝐯1, 𝐯𝐯2. . .𝐯𝐯𝑛𝑛] ∈ ℝ

𝑛𝑛×𝑛𝑛 ). The rectangular diagonal matrix 𝐴𝐴 𝚺𝚺 ∈ ℝ
365×𝑛𝑛 contains the singular 
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values, [𝐴𝐴 𝐴𝐴1, 𝐴𝐴2, . . . ], which are sorted such that 𝐴𝐴 𝐴𝐴1 > 𝐴𝐴2 > ⋯ . The SVD yields the optimal least-squares approxi-
mation to the data at a given rank. In other words, � ≈ �1�1��1  is the best rank-1 approximation to the data set 𝐴𝐴 𝐗𝐗 . 
The best rank 𝐴𝐴 𝐴𝐴  approximation is

𝐗𝐗 ≈ 𝚿𝚿𝑟𝑟𝚺𝚺𝑟𝑟𝐕𝐕
𝑇𝑇

𝑟𝑟 , (6)

where the matrices 𝐴𝐴 𝚿𝚿𝑟𝑟 and 𝐴𝐴 𝐕𝐕𝑟𝑟 contain the first 𝐴𝐴 𝐴𝐴  columns of 𝐴𝐴 𝚿𝚿 and 𝐴𝐴 𝐕𝐕 , respectively, and 𝐴𝐴 𝚺𝚺𝑟𝑟 is a diagonal matrix 
containing the first 𝐴𝐴 𝐴𝐴 × 𝐴𝐴 block of 𝐴𝐴 𝚺𝚺 . Since the SVD yields an optimal orthonormal temporal basis (in a least 
squares sense) for the data in 𝐴𝐴 𝐗𝐗 , the target streamflow time series can be represented as

�� = ��� (7)

where 𝐴𝐴 𝐚𝐚𝑖𝑖 is a vector representing coefficients corresponding to the different basis functions in 𝐴𝐴 𝚿𝚿 . Moreover, the 
coefficient vector 𝐴𝐴 𝐚𝐚𝑖𝑖 can be estimated from the measurements 𝐴𝐴 𝐲𝐲𝑖𝑖 as

𝐲𝐲𝑖𝑖 = 𝐂𝐂𝐂𝐂𝑖𝑖 ≈ 𝐂𝐂𝐂𝐂𝑟𝑟�̂�𝒂𝑖𝑖 → �̂�𝒂𝑖𝑖 = (𝐂𝐂𝐂𝐂𝑟𝑟)
+
𝐲𝐲𝑖𝑖 (8)

to yield the following estimate for the target time series

�̂�𝐱𝑖𝑖 ≈ 𝚿𝚿𝑟𝑟�̂�𝒂𝑖𝑖. (9)

In Equation 8 above, the superscript 𝐴𝐴 + represents a Moore-Penrose pseudoinverse. Importantly, if the rank 𝐴𝐴 𝐴𝐴  is 
chosen such that 𝐴𝐴 𝐴𝐴 ≤ 𝑝𝑝 where 𝐴𝐴 𝐴𝐴 is the number of measurements in 𝐴𝐴 𝐲𝐲𝑖𝑖 , Equation 8 is no longer undetermined (c.f., 
Equation 2). Thus, this approach involving a low-rank approximation to a tailored basis can be more efficient as 
it solves a standard least-squares problem instead of the convex optimization problem in Equation 4.

In addition, instead of taking measurements randomly, the 𝐴𝐴 𝐴𝐴 = 𝑝𝑝 sampling points, referring to the times when 
streamflow measurements are recorded, can be optimized to best sample the 𝐴𝐴 𝐴𝐴  basis modes 𝐴𝐴 𝚿𝚿𝑟𝑟 . These optimal 
sampling points can be obtained using QR factorization with column pivoting (Manohar et al., 2018):

𝚿𝚿𝑟𝑟

𝑇𝑇
𝐂𝐂

𝑇𝑇
= 𝐐𝐐𝐐𝐐, (10)

where 𝐴𝐴 𝐂𝐂 is a column permutation matrix, 𝐴𝐴 𝐐𝐐 is a unitary matrix, and 𝐴𝐴 𝐑𝐑 is an upper-triangular matrix, all of which 
are obtained from the matrix 𝐴𝐴 𝚿𝚿𝑟𝑟 . Through an iterative process to maximize the 𝐴𝐴 𝓁𝓁2 norm within all modes in the 
library, the QR factorization yields 𝐴𝐴 𝐴𝐴  column indices in 𝐴𝐴 𝐂𝐂 that best sample the 𝐴𝐴 𝐴𝐴  basis modes 𝐴𝐴 𝚿𝚿𝑟𝑟 . These 𝐴𝐴 𝐴𝐴  columns 
represent the optimal timings to take measurements.

In summary, the DSS framework developed here obtains a tailored coordinate system or basis via an SVD from 
a training set or library of streamflow data. Furthermore, the optimal timings to take measurements are obtained 
using QR factorization of the tailored basis. If a small number of measurements can be taken at these optimal 
sampling times for ungauged watersheds, then the full streamflow time-series can be reconstructed or predicted 
(Figure 2). In this study, we assume the target watersheds to be poorly gauged, with sparse measurements extracted 
from the full data set. In real applications, sparse measurements in the watersheds could be obtained from remotely 
sensed data, from either satellites, for example, Surface Water and Ocean Topography, SWOT, or UAVs.

2.2. CAMELS Data Set

We collected daily-scale streamflow data at 671 gauges from 1981 to 2010 throughout CONUS from the CAMELS 
data set (Newman et al., 2015). The gauges span across the 18 hydrologic units (i.e., 2-digit HUCs) in the US, 
and they were further categorized into nine geologic regions (Figures 3a and 4a). The CAMELS data set includes 
streamflow time-series and hydrometeorological and geophysical watershed attributes for 671 watersheds across 
CONUS. For this analysis, we chose 543 watersheds out of the watershed pool by filtering out the gauges with 
continuous missing data that amounted to more than 1% of the time series (Figure 3a). There are nested and 
non-nested watersheds. These watersheds cover different geographic and climatic regions, and watershed sizes 
range from 4 to 14,269 km 2 (Figure 3b).

We normalized the streamflow by watershed area into specific streamflow (mm/d) for ease of prediction and 
cross-watershed comparison. In addition to continuous streamflow data, we also retrieved hydrometeorological 
and geophysical watershed attributes in these 543 gauges, including the fraction of precipitation falling as snow 
(referred to as snow fraction), baseflow index, and fractions of sand and clay. These watershed attributes were 

 19447973, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034092 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [02/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ZHANG ET AL.

10.1029/2022WR034092

6 of 17

not used in the streamflow prediction but to provide some physical interpretation of the resulting prediction 
efficiency.

2.3. Scenarios of Analysis

We used the DSS to predict daily streamflow during 1981–2010 in each of the 543 gauges. MATLAB R2021a 
was used for the analysis. The MATLAB code for DSS was initially retrieved from the Github repository by 

Figure 3. (a) Locations of 543 watersheds in the CAMELS data set analyzed in this study. (b) Distribution of watershed size.

Figure 2. Methodologies and roadmaps of data-driven compressed sensing (DSS). The streamflow training data set X (a) (in nearby gauges) is used to identify the 
tailored basis through singular value decomposition (SVD) (b) and determine the optimal sampling times through QR factorization (c). With sparse measurements taken 
in the optimal times (d–e), the streamflow in the target gauge is reconstructed/predicted (f).
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Krithika Manohar (https://github.com/kmanohar/SSPOR_pub) and customized for this study. To fit the predic-
tion model for each target gauge, we randomly selected 75% of the gauges in the same HUC (with the target 
gauge excluded) as the training set to construct the tailored bases (Figure 4a). To make sure that the prediction 
performance did not change by varying the training set, we repeated the selection of training gauges 10 times 
when predicting each target gauge. The final predicted time series is derived by averaging over the 10 predicted 
signals. A training-to-validation ratio of 75:25 is within the normal range adopted in most data-driven studies, 
especially in hydrology and environmental science (Nolan et al., 2015; Reza Md Towfiqul Islam et al., 2021). 
In addition, we checked that repeating the selection of training gauges 10 times is sufficient to cover most of the 
combinations in the training gauges.

Sparse measurements need to be taken in the target watersheds in order to predict streamflow. We tested three 
different sampling schemes and compared the prediction efficiency across these schemes (Figure 4b). First, a 
regular sampling scheme was adopted to mimic satellite overpasses, meaning that the measurements for signal 
reconstruction were taken periodically at a constant interval. The exact interval varies depending on the number 
of measurements (𝐴𝐴 𝐴𝐴 = 𝑟𝑟 ) to be acquired over the course of a year. The interval decreases proportionally when 
more measurements are taken. Second, a random sampling scheme was adopted to ensure incoherence between 
the measurement and the signal, meaning that the measurements were taken randomly within a year. Third, an 
optimal sampling scheme was adopted, meaning that the optimal times for measurement were determined using 
QR factorization (Equation 10) (Figure 4b).

In addition, we tested three different strategies for determining which period of streamflow data were used for 
training (i.e., for identifying the tailored basis and optimal sampling times from the training gauges) and valida-
tion (i.e., for testing time series predictions for the target gauge) (Figure 4c). We further compared the prediction 
efficiency across these strategies. First, an overlapping training-validation approach was adopted. The training 
and validation sets of streamflow data were both obtained from the period 1981–2010 (30 years) (training and 
validation from different gauges). Second, a cross-period training-validation approach was adopted. The training 

Figure 4. (a) Selection of training set in each hydrologic unit (2-digit HUC). (b) Comparison of three sampling schemes in the watersheds with streamflow to be 
predicted. (c) Comparison of three training-validation strategies.
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data set was obtained from streamflow time series in the period 1981–1995 (15 years) in the training gauges, and 
the validation set was done on the period 1996–2010 (another 15 years) for the target gauge. The third method is 
similar to the second method because it does not involve an overlap between the training and validation datasets. 
However, this approach makes use of a migrating window of training data. For example, we obtained the train-
ing data set from 1980 to 1995 to predict streamflow data for the year 1996 at the target gauges. Then, data for 
the year 1996 at the training gauges were included into the training set when predicting streamflow data for the 
year 1997 at the target gauge, and so on. The first overlapping approach is expected to perform better than the 
other two approaches because the training data set includes information from the period for which predictions 
are made for the target gauges. In other words, this approach represents offline or a posteriori reconstruction of 
streamflow time series in poorly gauged watersheds. The second and third approaches could potentially be used 
for online reconstruction (and potentially, future prediction) because they only make use of historic (i.e., existing) 
streamflow measurements for training. Indeed, the third approach is perhaps the most realistic in practice and is 
expected to perform better than the second approach since it continuously updates the training data set as more 
streamflow data become available. With continuous updates of the training data set, the non-stationarity in the 
streamflow data, which could be caused by a change in climate and watershed characteristics and changes in flow 
measurement settings (e.g., sensor replacement, re-calibration of sensor), can be better handled, and the optimal 
times for streamflow measurements can be better identified. Note that, in all three cases, no data from the target 
gauge are used for identifying the tailored basis or optimal sampling times.

The Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) (Equation 11) was used to quantify the goodness 
of fit between the measured (𝐴𝐴 𝐱𝐱𝑖𝑖 ) and reconstructed/predicted time series of streamflow (𝐴𝐴 �̂�𝐱𝑖𝑖 ):

NSE = 1 −
‖𝐱𝐱𝑖𝑖 − �̂�𝐱𝑖𝑖‖

2

2

‖𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖‖
2.

2

 (11)

NSE determines the relative magnitude of the residual variance between predictions and measurements, that is, 
𝐴𝐴 ‖𝐱𝐱𝑖𝑖 − �̂�𝐱𝑖𝑖‖

2

2
 , compared to the measured data variance, that is, 𝐴𝐴 ‖𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖‖

2

2
 . Since NSE is sensitive to extreme values, 

the modified NSE (NSEm) (Krause et al., 2005) was also calculated as a complementary indicator to represent the 
goodness of fit more comprehensively for both high and low flows:

NSE𝑚𝑚 = 1 −
‖𝐱𝐱𝑖𝑖 − �̂�𝐱𝑖𝑖‖1

‖𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖‖1
 (12)

We calculated NSE and NSEm values for different numbers of measurements taken to evaluate whether DSS can 
effectively predict streamflow time series in ungauged or poorly gauged watersheds. In addition, we evaluated 
spatial distributions in NSE and NSEm across CONUS and analyzed the relationship between NSE and NSEm 
values and watershed hydrometeorological and geophysical attributes to better understand what types of water-
sheds are more amenable for streamflow prediction using DSS. In addition, we compared the optimal timings for 
measurement (different months in each year) across watersheds and tried to identify relationships between these 
optimal sampling times and streamflow regime characteristics (e.g., peak streamflow and streamflow variance in 
each month) across watersheds. It should be noted that two watershed classification schemes were used, including 
(a) 18 HUCs and (b) nine geologic regions. The watersheds were classified into 18 HUCs when the training and 
prediction of streamflow were performed. In addition, the watersheds were classified into nine geologic regions 
when the results of streamflow prediction were discussed for ease of interpretation.

3. Results
3.1. Prediction Efficiency of Different Sampling Schemes

DSS can effectively predict streamflow in poorly gauged watersheds if the optimal sampling scheme is adopted. 
Figure 5 shows the predicted streamflow in the period 1981 to 2010 in 5 representative gauges using DSS with 
an optimal sampling scheme (with 50 measurements taken, corresponding to 13.7% of daily data). Although 
the high flows at the Potecasi Creek were underestimated, the technique performed well in predicting the whole 
time-series (Figure 5b), including both low and high flows (Figure 5c), and in reproducing flow duration curves 
in all five gauges (Figure 5d).

DSS failed to predict streamflow with the regular and random sampling schemes. With an optimal sampling 
scheme and the number of streamflow measurements (𝐴𝐴 𝐴𝐴 ) varying from 2 to 75 in a year, the median NSE (NSEm) 
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was 0.25 (0.13) (Figure 6a and Figure S1 in Supporting Information S1). However, with a regular sampling 
scheme and the same number of daily streamflow measurements, the median NSE (NSEm) value was −10.6 
(−2.6). With a random sampling scheme, the median NSE (NSEm) value was −4.7 (−1.6) (Figure 6a and Figure 
S1 in Supporting Information S1). The NSE and NSEm represent the relative magnitude of residual variance 
compared to the measured data variance. Thus, the near-zero and negative NSE and NSEm values obtained by 
the regular and random samplings mean that the DSS failed because the model predictions are not as accurate 
as the  mean of the observed streamflow data. As a result, the following sections only consider reconstructions 
obtained using the optimal sampling scheme.

3.2. Prediction Efficiency of Different Training-Validation Approaches

The prediction effectiveness, represented by NSE and NSEm values, increased with the number of measurements 
considered. With overlapping training and validation datasets 𝐴𝐴 𝐴𝐴 = 5 measurements over a year (1.4% of data), the 

Figure 5. Predicted flow discharge time-series in selected watersheds using the scenarios with overlapping training and that considered 50 measurements in prediction 
as an example. DSS refers to data-driven sparse sensing. (a) Spatial distribution of the selected watersheds and the watersheds for comparison, that is, Fish River in 
HUC1, Potecasi Creek in HUC3, Manistique River in HUC4, Bobtail Creek in HUC14, and Naselle River in HUC17. (b) Observed versus predicted time series. (c) 
Scatter plots of observed versus predicted daily streamflow. (d) Observed versus predicted flow duration curves showing flow discharge versus exceedance probability.
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median NSE (NSEm) value was 0.09 (0.08) across all watersheds. With 50 measurements (13.7% of data), the 
median NSE (NSEm) increased to 0.52 (0.26) (Figure 6b and Figure S1 in Supporting Information S1).

Among the three training-validation strategies, the prediction efficiency was greater when the training and vali-
dation took place during the same period or overlapped (median NSE of 0.09–0.52; median NSEm of 0.08–0.26) 
compared to the cross-period training and validation (median NSE of −0.02–0.06; median NSEm of −0.01–0.02). 
DSS with the overlapping training was more sensitive to the number of measurements considered than DSS with 
cross-period training. For the overlapping training, when the number of measurements taken increased from 5 
(1.4% of data) to 50 (13.7% of data), the median NSE (NSEm) increased from 0.09 to 0.52 (from 0.08 to 0.26). 
However, for the cross-period training, the median NSE (0.01–0.04) and NSEm (−0.01–0.07) remained almost 
unchanged (Figure 6b and Figure S1 in Supporting Information S1).

3.3. Spatial Variability of Prediction Efficiency

The prediction efficiency of streamflow using DSS varied spatially. Comparatively, the prediction efficiency was 
the highest in the Rocky Mountain region in the West. With 5 measurements considered in prediction, corre-
sponding to 1.37% of the data, the streamflow in most of the gauges in this region can be predicted with a median 
NSE > 0.75 (NSEm > 0.5) (Figure 8 and Figures S1 and S3 in Supporting Information S1). In the Mountain 
region, the median NSE (NSEm) increased from 0.75 to 0.93 (from 0.56 to 0.76) when the number of measure-
ments considered increased from 5 to 50 (Figure 7). The spatial distribution of NSEm showed similar patterns 

Figure 6. Nash-Sutcliffe efficiency (NSE) under (a) different sampling schemes and (b) different training-validation 
strategies and number of measurements considered for prediction. These plots only show results from overlapping 
training-validation datasets. In panel (a), the results obtained using different numbers of measurements (from 2 to 75 in a 
year) were combined. In panel (b), the measurements were taken based on the optimal sampling scheme, and the three gray 
solid lines from lighter to darker shades refer to NSE and/or NSEm of 0.25, 0.5 and 0.75.
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as the one for NSE (Figure S3 in Supporting Information S1), and those obtained from cross-period validations 
also showed similar patterns as the one obtained by overlapping validation (Figures S2 and S3 in Supporting 
Information S1).

The streamflow in the New England, Middle Atlantic (i.e., northeast coast), and the Pacific (i.e., west coast) 
regions was not well predicted with only 5 measurements. But the streamflow in these regions showed a substan-
tial increase in prediction efficiency with more measurements taken (Figure 7, Figures S2–S4 in Supporting 
Information S1). When the number of measurements increased from 5 to 50, in the New England region, the 
median NSE (NSEm) increased from 0.27 to 0.71 (from 0.17 to 0.43); in the Middle Atlantic region, the median 
NSE (NSEm) increased from 0.14 to 0.55 (from 0.11 to 0.32); and in the Pacific region, the median NSE (NSEm) 
increased from 0.17 to 0.65 (from 0.15 to 0.41) (Figure 7, Figures S2–S4 in Supporting Information S1).

The prediction efficiency was relatively low and did not significantly increase with more measurements taken 
in the central United States, especially the East-South and West-South Central regions. For most watersheds in 
these regions, streamflow was not well predicted even with 50 measurements considered for prediction (Figure 7, 
Figures S2–S4 in Supporting Information S1). More measurements may be needed to obtain a reasonable predic-
tion in these regions. It should be noted that although the NSE values in these regions were lower, the method can 
still capture the general pattern of streamflow regimes.

3.4. Relationship Between Prediction Efficiency and Watershed Geophysical Properties

The prediction efficiency using DSS was found to be greater in watersheds with a higher snow fraction than in 
rainfall-dominated watersheds. Although most of the watersheds have a low snow fraction (e.g., 0–0.2), we find 
a clear positive relationship between prediction efficiency and snow fraction (R 2 = 0.387 for NSE; R 2 = 0.441 

for NSEm). For watersheds with snow fractions <0.2, NSE values were scat-
tered between 0 and 1 with most of the watersheds having efficiencies around 
0–0.5. In contrast, NSE values were >0.6 for watersheds with a snow fraction 
>0.5 (Figure 8a and Figure S5 in Supporting Information S1). The prediction 
efficiency was high in some watersheds with low snow fractions possibly 
because the snow fraction is averaged spatially over the whole watershed area 
and temporally over each year while the streamflow regime is more domi-
nated by flow coming from the upland and during months with snowmelt. 
Similar relationships were found between NSE values and the elevation of 
watersheds, the NSE value was higher for watersheds with higher elevations, 
corresponding to watersheds with more snowmelt (Figure S6 in Supporting 
Information S1).

Our results also show that the prediction efficiency using DSS is higher 
in watersheds with a higher baseflow index (Figure  8b and Figure S5 in 
Supporting Information S1). In addition, the prediction efficiency using DSS 
is slightly higher in watersheds with a higher sand fraction (Figure 8c and 

Figure 7. Spatial distribution of median Nash-Sutcliffe efficiency (NSE) over the validation period using data-driven sparse sensing with overlapping training and 
different numbers of measurements considered for prediction (a-1 to a-2) 5 measurements; (b-1 to b-2) 20 measurements; (c-1 to c-2) 50 measurements.

Figure 8. Relationship between (a) fraction of precipitation falling as snow, 
(b) baseflow index, (c) sand fraction, and (d) clay fraction and median 
Nash-Sutcliffe efficiency (NSE) over the validation period using the scenarios 
that considered 50 measurements in prediction as an example.
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Figure S5 in Supporting Information  S1) and a lower clay fraction (Figure  8d and Figure S5 in Supporting 
Information S1). No statistically strong relationship was observed between prediction efficiency and the other 47 
watershed characteristics (Figures S6–S11 in Supporting Information S1).

3.5. Optimal Sampling Time

The optimal timings to take measurements obtained from DSS were distinct across regions and showed seasonal 
patterns. In most of the regions, the best sampling time was from late winter to early summer (i.e., January to 
July), represented by the large distances between the points and the origin during these months in the white polar 
diagrams in Figure 9. Measurements taken during summer and fall (e.g., August to December) add less predictive 
performance (Figure 9).

The variability of the ideal timing for measurement also differed among regions. The optimal timing for measure-
ment was more concentrated in time in New England, Middle Atlantic, East North Central, West North Central, 
and Mountain regions, given that the polygons formed by the points protrude in a specific direction in the white 
polar diagrams in Figure 9. This trend is especially obvious when only 5 measurements are taken. Ideal sampling 
times are in May in the New England region, during February to May in the Middle Atlantic and East North 
Central regions, during April to July in the West North Central region, and during June to July in the Mountain 
region (Figures 9a–9d, and 9h).

The optimal timings to take measurements show some correlation with the flow regime, as characterized by 
the peak and variance of streamflow. Overall, our findings show that measurements are ideally taken during 
or approximately 1  month after the periods with greater peak flows and variances (Figure  9). For example, 
for the New England area, it is ideal to take measurements in May when the streamflow shows high peaks and 
pronounced variance (Figure 9a). In the Mountain area, sampling is most beneficial in June to July, the season 
with the highest peaks and flow variance (Figure 9h).

Figure 9. (a–i) Distribution of optimal timing for taking measurements throughout the year relative to the characteristics of flow regimes characterized by monthly 
median peak (mm/d) and variance of streamflow (mm 2/d 2). The polar plots in white represent the optimal timing for taking measurements, while those in gray represent 
the characteristics of the flow regimes.
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4. Discussion
4.1. Low-Dimensional Watershed Dynamics

The prediction of streamflow using data-driven sparse sensing (DSS) relies on the shared meteorological, hydro-
logical, and/or geological properties between the watersheds in the training set and the target watershed for which 
predictions are made. Thus, the spatial variation of streamflow prediction efficiency and its relationship with 
watershed attributes, for example, snow fraction, baseflow index, fractions of sand and clay, observed in this 
study can be attributed to the presence or absence of shared low-dimensional dynamics between the watersheds. 
Streamflow in watersheds with high snow fractions such as the Rocky Mountains can be most efficiently predicted 
with a few measurements because snowmelt-dominated watersheds are less affected by temporal and spatial vari-
ability in precipitation than rainfall-driven watersheds. Better predictability in snowmelt-dominated watersheds 
is consistent with many existing studies relying on physically-based (Knoben et al., 2020; Pool et al., 2019; Pool 
& Seibert, 2021) and data-driven models (Pham et al., 2021). Flow regimes in these regions show more consist-
ent seasonal patterns across watersheds (Brunner et al., 2020). Similarly, streamflow in watersheds with higher 
baseflow indices can be more efficiently predicted than streamflow in watersheds with lower baseflow, possibly 
because baseflow-dominated watersheds are more dependent on subsurface storage than precipitation which is 
more variable. The streamflow in these baseflow-dominated watersheds is also less affected by precipitation 
variability. In addition, streamflow in watersheds with higher sand fractions but lower clay fractions can be more 
efficiently predicted than streamflow in watersheds with low sand and high clay fractions. This might be related 
to their higher hydrologic connectivity (Tetzlaff et al., 2009). In summary, watersheds with temporally consistent 
(less intermittent) streamflow signals filter rainfall variability (i.e., randomness) and are more dominated by 
storage processes. Therefore, streamflow in storage-dominated systems is more predictable than streamflow in 
rainfall-dominated, higher-dimensional systems.

4.2. Optimal Sampling Times in Relation to Flow Regimes

DSS can predict streamflow effectively only if sampling times are optimized. Prediction does not work well with 
fixed intervals and random sampling. This corroborates findings by Manohar et al. (2018) who applied DSS to 
predict 2-dimensional flow fields. However, this observation is different from that obtained by Pool et al. (2017), 
who tested the impact of streamflow measurement times on the calibration of physically-based models and found 
that the model's performance in predicting flow duration curves of streamflow was not very sensitive to the 
sampling schedule.

The optimal sampling times for DSS are related to the flow regime. DSS performed best with sampling during, 
or approximately 1 month after, periods with greater peak flows and variances. This finding might be related 
to the wider range of streamflow magnitudes captured during these periods, that is, these periods contain more 
“information” than other periods with more consistent regimes. As observed by Etter et al. (2018), the stream-
flow prediction performance of a model can be higher if trained on observations distributed throughout the year. 
Although Pool et al. (2017) found the exact sampling time was not crucial for the performance of streamflow 
prediction (as mentioned above), they recognized that the streamflow can be better predicted if the measurements 
represent the full range of streamflow magnitudes.

4.3. Limitation and Potential Extension for Data-Driven Sparse Sensing

In this study, we show that DSS is a promising technique for the prediction of streamflow in poorly gauged 
watersheds. With the optimal sampling times identified, the prediction efficiency of DSS significantly improves 
compared to regular (i.e., fixed interval) and random sampling. Although DSS requires data for training, its 
requirement in training set is much smaller than other machine learning techniques and it can predict the full 
streamflow time-series with sparse measurements. Sparse measurements have been used to gain information for 
streamflow prediction in poorly gauged watersheds in previous studies, but mostly in a physically-based mode-
ling context (Pool et al., 2017, 2019; Pool & Seibert, 2021). The present DSS approach replaces physically-based 
models with features extracted from existing data. In many watersheds (e.g., snowmelt-dominant watersheds; 
Rocky Mountain region), streamflow can be reasonably predicted with just 2–5 measurements (0.5%–1.4% of 
data) per year. DSS can not only predict the low flows (or flow medians, represented by the NSEm) but also the 
high flows (or high flow percentiles, represented by the NSE). In addition, DSS can identify the optimal timings 
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for taking measurements. This could be beneficial for applied streamflow prediction when new gauges are to be 
planned or existing gauges are to be relocated.

However, DSS has some limitations. First, DSS showed limited effectiveness in predicting streamflow in 
rainfall-dominated watersheds. This is because the construction of the tailored basis (through SVD) depends on 
the shared features between the target gauge and the watersheds in the training set. These shared features are less 
significant across years and sites in rainfall-dominated watersheds. To predict streamflow in these watersheds, 
higher-frequency training data in watersheds closer to the target watershed may be needed. Future extensions 
of the technique developed here can also involve the inclusion of precipitation data for streamflow prediction in 
rainfall-dominated systems. In addition, other hydro-environmental data (e.g., soil moisture, water quality, peaks of 
streamflow) and forecasts (e.g., short-term precipitation forecast) can be integrated into the training set to increase 
the possibility of capturing the dominant streamflow features (Patil & Ramsankaran, 2017; Wyatt et al., 2020). 
Second, DSS needs some measurements in the target watersheds for prediction. In practice, it is not always feasible to 
obtain ground-based streamflow data in ungauged and poorly gauged watersheds. To apply DSS in totally ungauged 
watersheds, computational simulation data can be used for training purposes (Jayaraman & Al Mamun, 2020). 
With optimal times for measurement identified from training, remotely-sensed data, for example, derived from 
the Surface Water Ocean Topography (SWOT) product (Biancamaria et al., 2016) or from measurements obtained 
by flying unmanned aerial vehicles (UAVs) (Eltner et al., 2020), could be utilized to retrieve sparse streamflow 
information. Crowdsourced data from citizen science projects could be another way to get sparse streamflow meas-
urements (Buytaert et al., 2014; Dickinson et al., 2010). Each of these data sources has some limitations. Remotely 
sensed data often have low spatial and temporal resolutions, and crowdsourced data can be irregular in availabil-
ity and accuracy. Thus, information from multiple datasets might have to be assimilated. Such multiple-data or 
data-model fusion can be of great benefit for the characterization and prediction of nonlinear dynamics in hydro-
logic or other geophysical systems (Gettelman et al., 2022; Mazzoleni et al., 2017). Although many of these data 
sources require rating curves (e.g., water level-discharge relationship) to estimate discharge, obtaining discharge 
without field measurements has become possible with the development of many computational inverse methods to 
build rating curves from remotely sensed data (Gleason & Durand, 2020; Mahdade et al., 2021; Pan et al., 2016).

There is great potential to extend the application of DSS beyond the temporal reconstruction of streamflow. The 
present paper focuses on temporal reconstruction of streamflow from a small number of measurements made 
over the course of a year. The framework developed here can also be used to identify optimal watersheds to gauge 
permanently in a given region, such that measurements from these gauged watersheds can be used to predict flows 
in ungauged watersheds. In addition, DSS can be used to optimize the spatial placement of gauges along streams. 
More specifically, process-based models, validated with ground-based measurements, can be used to calculate 
high-resolution spatial distributions of flow discharge along streams. Based on the simulated 2-dimensional flow 
discharge dynamics varying in space and time, DSS can be utilized to identify the optimal spatial points that can 
best represent the low-dimensional dynamics within the streams. These points would be the optimal locations 
for monitoring stations. Similar applications have been successfully used to identify optimal sensor locations for 
small-scale fluid dynamics, watershed-scale groundwater measurements (Ohmer et al., 2022), and global-scale 
water temperature measurements (Manohar et al., 2018). In addition, DSS can be also utilized for watershed 
classification. More specifically, instead of identifying the tailored basis that best preserves the variance in the 
training set as we did in this study, we can identify a basis in which the training set (e.g., streamflow) can be best 
classified into clusters. Then, we can project the sparse streamflow data in the target watershed to that basis and 
identify which cluster it most likely belongs to (Bai et al., 2017; Brunton et al., 2016).

5. Conclusions
Predicting streamflow in ungauged and poorly gauged watersheds is essential to develop water management 
strategies in regions with limited monitoring. This study used a novel data-driven signal processing approach, 
termed data-driven sparse sensing (DSS), to predict streamflow in poorly gauged watersheds across the contig-
uous United States (CONUS). Our results demonstrate that DSS is a promising approach to predict streamflow 
signals in poorly gauged watersheds by exploiting known patterns in streamflow data. DSS can effectively predict 
streamflow with sparse measurements when optimal sampling times are identified.

The prediction efficiency varied spatially. Streamflow in snowmelt-dominated watersheds and watersheds 
with a higher baseflow index was better predicted than streamflow in rainfall-dominated watersheds. The good 
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prediction performance in snowmelt-dominated regions may be related to the strong low-dimensional dynamics 
across watersheds and strong seasonality in their streamflow regime. The prediction efficiency was the highest 
in the Rocky Mountain region. With 5 measurements considered for prediction in a year (1.37% of the data), the 
streamflow in most of the gauges in this region can be predicted with a median NSE > 0.75 and NSEm > 0.5. 
The prediction efficiency increased more strongly with more measurements taken in the New England, Middle 
Atlantic (i.e., northeast coast), and the Pacific (i.e., west coast) than in other regions. The prediction efficiency 
was relatively low and did not significantly increase with more measurements taken in the central United States, 
especially the East-south and West-south Central regions. The spatial variability of prediction efficiency can be 
attributed to the process-driven mechanisms and dimensionality of watersheds. Watersheds with more tempo-
rally consistent (less intermittent) streamflow signals filter rainfall variability (i.e., randomness) and are more 
“storage-dominated” and less “rainfall-dominated.” Streamflow in storage-dominated systems has less dimen-
sions and is more predictable than streamflow in rainfall-dominated, higher-dimensional systems. In addition, 
this study also demonstrates that the optimal sampling time is related to the streamflow regimes. More “informa-
tive” measurements can be taken during periods that cover a wide range of streamflow magnitudes.

The DSS technique can be applied for streamflow prediction by taking a set of ground-based streamflow meas-
urements, using simulated data or remotely sensed data set (e.g., Surface Water and Ocean Topography, SWOT, 
or flying UAVs). Going beyond temporal reconstruction of streamflow, DSS can be also applied to identify opti-
mal watersheds to gauge permanently, optimize the spatial placement of gauges along streams within watersheds, 
or to classify watersheds.

Data Availability Statement
All the data and code used in this study can be accessed from CUAHSI HydroShare (K. Zhang, Luhar, et al., 2023). 
The streamflow data used in this study was retrieved from the Catchment Attributes and Meteorology for 
Large-sample Studies (CAMELS) data set (https://ral.ucar.edu/solutions/products/camels). The MATLAB code 
used for data-driven sparse sensing was retrieved from the Github repository by Krithika Manohar (https://github.
com/kmanohar/SSPOR_pub) and customized for this study.
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