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A B S T R A C T   

Reliable assessments of population status and trends underpin conservation management efforts but are 
complicated by the fact that imperfect detection is ubiquitous in monitoring data. We explore the most 
commonly considered variables believed to influence detection probabilities, quantifying how they influence 
detectability and assessing how occupancy rates are impacted when a variable is ignored. To do so, we used data 
from two multi-species amphibian monitoring programmes, collected by volunteers and professional surveyors. 

Our results suggest that although detection rates varied substantially in relation to commonly considered 
factors such as seasonal and annual effects, ignoring these factors in the analysis of monitoring data had 
negligible effect on estimated occupancy rates. Variation among surveyors in detection probabilities turned out 
to be most important. It was high and failing to account for it led to occupancy being underestimated. Impor
tantly, we identified that heterogeneity among observers was as high for professional surveyors as for volunteers, 
highlighting that this issue is not restricted to citizen-science monitoring. 

Occupancy modelling has greatly improved the reliability of inference from species monitoring data, yet 
capturing the relevant sources of variation remains a challenge. Our results highlight that variation among 
surveyors is a key source of heterogeneity, and that this issue is just as pertinent to data collected by experts as by 
volunteers. Detection heterogeneity should be accounted for when analysing monitoring data. Furthermore, 
efforts to increase training of field crews and collecting data to quantify differences between observer abilities are 
important to avoid biased inference resulting from unmodelled observer differences.   

1. Introduction 

Obtaining robust knowledge on species abundance and distribution, 
two important essential biodiversity variables, is one of the fundamental 
challenges in ecology and conservation (Noss, 1990; Pollock et al., 2002; 
Jetz et al., 2019). Unfortunately, imperfect detection of species hampers 
the estimation of distribution and abundance. Imperfect detection has 
long been recognised as ubiquitous in monitoring and failing to account 
for detectability when assessing population status or trends can lead to 
bias (Preston, 1979; Pollock et al., 2002; Nichols and Williams, 2006) 
which can readily impact upon conservation management (Kéry and 
Schmidt, 2008; Beaudrot et al., 2016; Cruickshank et al., 2016). In 
recognition of this issue, monitoring programmes have adapted and now 

increasingly collect the data required to estimate detection probabilities 
and account for imperfect detection (Nichols and Williams, 2006; 
Ficetola, 2015; Guillera-Arroita, 2017). Many large-scale monitoring 
programs focus upon occupancy as a state variable because repeated 
detection/non-detection data are relatively straightforward to collect 
(Kéry and Schmidt, 2008; Sewell et al., 2010; Powney et al., 2019) and 
such data can be used to estimate occupancy probabilities adjusted for 
imperfect detection using occupancy models (MacKenzie et al., 2002; 
Guillera-Arroita, 2017). However, even if detection probabilities are 
estimated and can be modelled using suitable covariates in occupancy 
models, occupancy estimates can be biased if model assumptions are not 
met. An important assumption of such models is that factors that may 
affect detection are explicitly accounted for. In particular, there should 
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be no unmodelled heterogeneity in detection probabilities (MacKenzie 
et al., 2002; Guillera-Arroita, 2017; Altwegg and Nichols, 2019). 

Many factors may affect detection of species and lead to spatial and 
temporal heterogeneity in detection, including species characteristics (e. 
g. vocalisation behaviour or cryptic patterning), spatial variation (e.g. 
habitat characteristics and local abundance), survey methodology (e.g. 
survey effort, observer skills) or temporal variation (e.g., phenology, 
weather, or time of day) (Guillera-Arroita, 2017). Appreciating the 
relative importance of different sources of detection heterogeneity is 
important because not all sources of variation are expected to influence 
and bias occupancy estimates in a similar way. Ignoring some important 
sources of detection heterogeneity can result in strongly biased occu
pancy estimates, whereas the effects of ignoring others may be negli
gible. For example, several studies demonstrated that although 
detectability of amphibians was strongly affected by temperature during 
the survey, occupancy estimates were almost identical between models 
which included or excluded these effects (MacKenzie et al., 2002; 
Schmidt, 2005). In contrast, Kéry (2004) showed that estimates of 
extinction probability of plant populations were biased when the effect 
of habitat type upon detectability was ignored. 

Inference from monitoring data will be most reliable and useful if the 
most problematic sources of detection heterogeneity are identified and 
incorporated into analyses. We undertook a review of 40 articles (full 
details of methods and references are provided in the supplementary 
text SI1) to describe which explanatory variables are commonly used to 
model detectability. The review revealed strong differences in the fre
quency of different explanatory variables used in occupancy studies. Of 
a sample of 40 studies, variables describing temporal variation (e.g. 
Julian date, year) were most common and were considered in 27 studies. 
Weather conditions were used in 20 studies, and habitat variables in 13. 
Nine studies considered the effects of survey methodology and effort 
upon detection probabilities. The effects of abundance and variation in 
observer skills were each included by only one study in our sample. 
Given that it has long been known that observers vary in their abilities to 
detect amphibians and other species (Kendall et al., 1996; Link and 
Sauer, 1998; Cunningham et al., 1999; Genet and Sargent, 2003; Weir 
et al., 2005; Fitzpatrick et al., 2009; Kéry et al., 2009; Dickinson et al., 
2010; Farmer et al., 2012; Lardner et al., 2015; Austen et al., 2016; 
Casula et al., 2017), it is surprising that observer effects were so rarely 
considered. For example, Kendall et al. (1996) showed that removing an 
observer's first year of observation decreased estimates of population 
trend. Thus, occupancy estimates in many studies not accounting for 
variation in observer skills may be biased (Royle, 2006). 

In this study, we use empirical data from two monitoring datasets, 
one collected by volunteers and one by professional surveyors using 
comparable field methods, to explore variation in the detection proba
bilities of 16 amphibian species in relation to survey-, site- and observer- 
specific characteristics and the effect of the choice of variables 
explaining detection probability on occupancy estimates. Specifically, 
we modelled detection in relation to annual and seasonal variation, 
differences in habitat and in abundance, differences among observers 
(including volunteers vs. professional surveyors), between observation 
types (aural vs. visual), and in relation to the presence of false-positive 
errors. We characterise patterns of detection and assess the effects of 
ignoring sources of detection heterogeneity by comparing occupancy 
estimates between models accounting for and ignoring such heteroge
neity. Our primary goal was to compare the relative importance of 
factors that may affect occupancy estimation. 

2. Methods 

2.1. Monitoring data 

We used data from two Swiss amphibian monitoring programmes to 
explore different sources of detection heterogeneity in species detection 
data. Both programmes conducted surveys in the same time period, and 

we focus on data from 15 pond-breeding species and the Pelophylax 
genus, which contains multiple hybridising and invasive species which 
are challenging to identify to species level in the field (Schmidt, 1993; 
Dubey et al., 2014). 

The monitoring programme “Monitoring the Effectiveness of Habitat 
Conservation in Switzerland” (https://biotopschutz.wsl.ch/en; here
after, we use the German acronym WBS) is an ongoing programme 
tasked with monitoring the conservation status of habitats of national 
importance across Switzerland (Bergamini et al., 2019). Monitoring was 
carried out by professional herpetologists at 240 amphibian breeding 
sites. Breeding sites were either single ponds or pond clusters (for an 
example, see map of an amphibian breeding site in Fig. 1 of Siffert et al., 
2022). Sites were selected from the national inventory of amphibian 
breeding sites of national importance (Borgula et al., 1994) using a 
stratified random selection process to ensure all biogeographic regions 
within Switzerland and all pond-breeding amphibian species were rep
resented in a sufficiently large sample of sites. The mean site size is 24.7 
± 52.3 (mean ± s.d.) hectares and includes the ponds and some sur
rounding terrestrial habitat (Borgula et al., 1994). Forty sites are sur
veyed in each year in a rotating-panel design such that all sites are 
surveyed in a 6-year period (McDonald, 2003). We used data from 2011 
to 2016 in which 49 surveyors each surveyed on average 5.2 (range 
1–36) breeding sites. Four monthly surveys were carried out at each site 
during the amphibian breeding season (March–June), in which the 
surveyor recorded all species observed within a 1-hour period. Addi
tional details of the survey methodology are given in Bergamini et al. 
(2019) and Cruickshank et al. (2020) and supplementary text SI7. 

The second dataset is from a volunteer-based monitoring programme 
which was initiated in the Swiss canton of Aargau in 1999 (Meier and 
Schelbert, 1999; hereafter, we call this programme “AMA” (amphibian 
monitoring Aargau)). It covers all known amphibian breeding sites 
within species-rich areas in the canton (see the supplement to Moor 
et al., 2022 for a map). We used data from the 587 amphibian breeding 
sites located within 10 areas designated as priority areas for amphibians 
(Meier and Schelbert, 1999). Each year, two or three of these priority 
areas are surveyed in a rotating-panel design and almost all known 
breeding sites within these areas are visited, such that all 10 priority 
areas are comprehensively surveyed in a 5-year period. We focused on 
data for the years 2011 to 2015, during which 115 volunteers surveyed 
on average 5.1 (range 1–20) amphibian breeding sites. Three surveys 
were carried out during the amphibian breeding season (April–July). 
Volunteers were allowed to participate in the surveys if they had pre
viously undertaken similar survey work, carried out a formal amphibian 
identification course, or were students committed to learning amphibian 
species through self-study. Additional details of survey methodology are 
given in Schmidt (2005), Cruickshank et al. (2019), Moor et al. (2022) 
and supplementary text SI7. Not all 16 species native to Switzerland and 
included in the WBS monitoring programme are present within the 
canton of Aargau; consequently, this dataset focusses on only the 12 
species which were present within this region. 

Comparable survey protocols (time-constrained visual and aural 
surveys) were used in both monitoring programmes, with observers 
instructed to report the presence of species based on detections of any 
life-stage (eggs/larvae/juvenile/adult) or the detection of calls. Sur
veyors were also instructed to count the number of individuals whenever 
possible (e.g., egg masses, adults, calling males). In WBS, visual de
tections were reported separately from detections of calls, allowing 
distinction between these two observation types. In both datasets, all 
visits to a site within a given year were carried out by the same surveyor. 

The monitoring programmes focussed on the detection of species 
within breeding ponds. However, differences in breeding phenology 
mean that not every species would have been present in the ponds 
during every survey (i.e. available for detection; Kéry and Schmidt, 
2008; Nichols et al., 2009). We therefore carried out species-specific 
dataset filtering prior to analysis in order to assure population closure 
as recommended by MacKenzie et al. (2002). Within each dataset and 
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year, we identified the first and last date that each species was reported 
and considered these dates the start and end of the breeding season for 
that species (MacKenzie et al., 2002). Surveys carried out outside of the 
breeding season for each species were excluded from the analyses. The 
mean effective number of surveys available per species and monitoring 
programme is given in SI2. The AMA monitoring data are available from 
the WSL repository “envidat” (Moor et al., 2021). 

2.2. Data analysis 

We used Bayesian occupancy modelling (MacKenzie et al., 2002; 
Royle and Kéry 2007; Kéry and Schaub 2011). The assumptions of oc
cupancy models are: (1) occupancy status at each site does not change 
over the survey season such that sites are “closed” to changes in occu
pancy; (2) the probability of occupancy is constant across sites, or dif
ferences in occupancy probability are modelled using covariates; (3) the 
probability of detection is constant across all sites and surveys or is a 
function of site-survey covariates; there is no unmodeled heterogeneity 
in detection probabilities; and (4) detection of species and detection 
histories at each location are independent (MacKenzie et al., 2016, p. 
104). The goal of the analysis was to examine heterogeneity in detection 
probabilities in relation to sources of heterogeneity and to estimate 
occupancy rates. Models were fitted independently to each of the two 
datasets and species. As our focus was on the effect of detection het
erogeneity on occupancy rates, we used an intercept-only model (i.e. no 
covariates) to estimate a constant occupancy probability for all sites, 
varying only the specification of the detection process. We considered 
seven factors which might induce detection heterogeneity, allowing 
detection probabilities to vary in relation to: i) year, ii) seasonality 
(Julian date), iii) habitat area, iv) abundance, v) heterogeneity among 
observers, vi) differences in observation type (aural or visual), and vii) 
the presence of false-positive errors. Weather data were not available. 
We compared the occupancy estimates for each model to a null model 
which assumed constant detection across all sites. Furthermore, to test 
the impact of species availability on detectability (sensu Kéry and 
Schmidt, 2008; Nichols et al., 2009), we also ran a null model upon the 
datasets prior to data filtering. 

To examine annual differences in detection, we treated year as a 
categorical factor influencing detection probability. Seasonal and 
habitat area effects were modelled using a linear and quadratic effect of 
Julian date or habitat area upon detection probability, respectively. 
Priors for the regression coefficients were specified as Uniform (− 10,10) 
for analysis of habitat area effects, and Normal (0,0.01) for the analysis 
using Julian dates. 

We fitted observer identity as a random effect to examine differences 
among surveyors in detection probability (within data sets, i.e., within 
the AMA and within the WBS data set), using the vague prior specifi
cations of Stolen et al. (2019). As can be seen in the code in the sup
plement SI3, the prior distribution for the surveyor effect was Normal(0, 
σ2) where σ was given a truncated half-normal(0, 1/2.252, 7) prior 
distribution (Stolen et al., 2019, following Gelman et al., 2008). To 
compare observer heterogeneity in visual and aural detections, we 
applied the same approach to the WBS dataset in which these two 
detection types were separately recorded. For the analysis of visual 
detections and call surveys, the dataset was split up. Any observations 
where N(calls) > 0 counted as a detection of calls, and all observations 
with N(seen) > 0 as a detection of observed animals. This means that a 
single survey can count as a detection for both classes simultaneously. 
Abundance-induced variation in detection probabilities (Dorazio, 2007; 
Tanadini and Schmidt, 2011) was assessed using the model of Royle and 
Nichols (2003), with λ (the parameter for the average abundance) 
modelled using a Uniform (0,10) prior. In the Royle-Nichols model, the 
estimated detection probability is for an individual at a site (in contrast 
to the detection of the species at a site, as in all other models). 

Finally, we examined the impact of false-positive detections (Royle 
and Link, 2006) upon detection and occupancy rates using a single- 

season version of the false-positive occupancy model as presented in 
Cruickshank et al. (2019). This model uses informative Beta (2,1) and 
Beta (1,2) priors for the true-detection probability and false-positive 
error rates (a similar approach can be found in Griffin et al., 2020), 
respectively, and works well as long as false positive detection proba
bilities are smaller than 0.15. For all other models, vague priors were 
used for all parameters. All model code and prior specifications are given 
in SI3. Occupancy parameters were given a Uniform (0,1) prior in all 
models except the Royle-Nichols model, which derives the occupancy 
probability from the proportion of sites where the abundance is non- 
zero. All models were run in JAGS (Plummer, 2003) using the R-pack
age jagsUI (Kellner, 2019) using a burn-in of 5000, 3 chains, and thin
ning 1 in 5, with 10,000 iterations for all models except for those 
examining observer heterogeneity or false-positive observations; these 
models required 50,000 iterations to ensure convergence. Convergence 
was assessed using the Brooks-Gelman-Rubin statistic (Roy, 2020). 

3. Results 

3.1. No variation in detection probability 

Models with a constant detection probability, i.e. null models, pro
duced occupancy estimates which were generally higher in WBS than in 
the AMA programme (which had a smaller geographic extent), although 
there were some species where occupancy rates were similar in both 
datasets (e.g., B. variegata, E. calamita, Pelophylax species). Detection 
probabilities for null models were mostly high. Across species, they 
ranged from 0.44 to 0.81 in AMA and from 0.44 to 0.75 in WBS. In 
general, detection probabilities were lower for newts than for anurans 
(Table S4.1). As such, the probability of a population going undetected 
after several visits was low (Fig. S5.1, S5.2). The occupancy rate of the 
null models differed only slightly from the naïve occupancy rate (sensu 
MacKenzie et al., 2002; i.e. assuming perfect detection; Table S4.1). 

3.2. Availability for detection 

Although our data filtering process (to ensure population closure) 
removed visits for all species which were deemed outside of the species' 
breeding season, occupancy probabilities were largely unchanged when 
we ran models on the unfiltered data (Fig. 1, Table S4.1). Detection 
probabilities, however, were reduced strongly without filtering for five 
species (E. calamita, H. arborea, H. intermedia, T. cristatus, and 
T. carnifex) and declined slightly for the remaining species within the 
WBS programme. In contrast, for the AMA monitoring programme the 
filtering step had a negligible effect on detection probabilities, perhaps 
because visits were done later in the year and over a shorter period of 
time (Table S4.1). 

3.3. Temporal effects 

Detection probabilities often differed substantially between years 
(Fig. S5.3; it should be noted that due to the rotating panel design in 
both datasets different sites were visited in different years). The mean 
range of detection probabilities across the 5-year period of Aargau 
monitoring was 0.43 ± 0.21 (average across species ± SD), which was 
much higher than the range seen in the 6 years of the WBS programme 
(0.31 ± 0.16). 

When detection probabilities were modelled as a function of Julian 
date, detection tended to increase through the breeding season within 
the WBS programme, whereas the AMA programme showed detection 
probabilities that remained constant or declined slightly over this period 
(Fig. S5.4). The uncertainty around these trends (i.e. the width of 95 % 
credible intervals [CRI]) was comparable between datasets; in both 
cases the CRI were sufficiently high for rarer species such as 
P. ridibundus, T. cristatus, L. vulgaris, and E. calamita that it was not 
possible to determine whether seasonal trends in detection were present. 
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While mean detectability varied among years, the effect of Julian date 
was largely consistent across years and species (Fig. S5.5). 

Despite sometimes substantial differences in detection probability 
both among and within years, accounting for this variation had only 
negligible effect on estimated occupancy probabilities (Fig. 1, 
Table S4.1), with the exception of H. arborea and T. cristatus, for which 
occupancy probabilities within the AMA programme were substantially 
elevated when accounting for annual fluctuations. 

3.4. Habitat area 

The area of habitat was only available for a subset of the WBS sites; 
we therefore carried out this analysis on the WBS sites for which area 
data were available. Detection probabilities for the majority of species 
were unaffected by the amount of habitat area (Fig. S5.6), despite the 
fact that all surveys were of fixed duration irrespective of site size. 
Detection probabilities for a number of species decreased or increased 
above a habitat area of 100 ha; an area that only few sites exceeded. 
Occupancy probabilities remained unchanged by the inclusion of a 
habitat area effect on occupancy (Fig. 1, Table S4.1). 

3.5. Abundance 

Estimates of detection estimated from the Royle-Nichols occupancy 
model differ from those of the other models presented in that they 
represent the per-individual detection probability. Per-individual 
detection probabilities ranged from 0.29 (T. cristatus in WBS) to 0.77 
(H. arborea in WBS) and were higher in the WBS programme (mean ±

SD = 0.62 ± 0.15) than in the AMA programme (0.55 ± 0.12, 
Table S4.1). Abundance estimates at occupied sites were low (Fig. S5.7), 
which is further emphasised by the fact that for many species, the per- 
individual detection probabilities were not much lower than species- 
level detection probabilities (Fig. 1, Table S4.1). Occupancy estimates 
from this model were in most cases comparable with estimates from the 
null models, although accounting for abundance-induced heterogeneity 
in detection probabilities resulted in a substantially increased estimate 
of occupancy in one species, H. intermedia (Fig. 1, Table S4.1). There was 
a strong positive correlation between species occupancy probabilities 
and mean estimated abundance at occupied sites (r27 = 0.93, p < 0.001). 

3.6. Observer effects 

Detection probabilities were extremely heterogeneous among ob
servers for all species in both datasets (Fig. 2). In the WBS monitoring 
programme, the range between the lowest and highest detection prob
abilities varied from 0.05 for T. carnifex to 0.91 for B. variegata (mean ±
SD across all species: 0.70 ± 0.23). The range was slightly higher in the 
AMA volunteer programme; observers were most consistent at detecting 
L. vulgaris (range = 0.57) and least consistent with Pelophylax species 
(range = 0.96) with the mean range of detection probabilities across all 
species of 0.80 ± 0.10. Furthermore, the distribution of observer 
detection probabilities was more evenly spread for the professional 
programme, whereas the volunteer programme tended to be more 
skewed (Fig. S5.8) and characterised by a large number of observers 
with relatively low probabilities and a small number of observers with 
detection rates as high (or higher) than the highest rates attained by 
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professionals. Consequently, the mean detection probability of all ob
servers was higher within the WBS programme (mean across all species: 
0.43 ± 0.18) than in the AMA programme (0.30 ± 0.16). 

Allowing for variation among observers led to substantially higher 
occupancy estimates for all species as well as lower precision (Fig. 1, 
Table S4.1), with greater increases seen within the AMA volunteer 
programme than in the WBS programme. Estimated occupancy proba
bilities were 322 ± 257 % and 179 ± 106 % higher than the corre
sponding null models for the two monitoring programmes, respectively. 

3.7. Detection type 

Within WBS, distinctions were made between visual and aural spe
cies detections. When averaged across species and observers, detection 
probabilities of anurans were similar between these two detection types; 
the detection probability of calls was 0.30 ± 0.18 and for visual obser
vations 0.29 ± 0.13. There was substantial variation among observers 
with a small number of observers having high call detection probabili
ties. Notable exceptions to this pattern are H. arborea, A. obstetricans and 
Pelophylax species, which all had a more evenly spread distribution of 
call detection probabilities (Fig. 3). Similar patterns of variation within 
and among species were found in the detection rates by visual encoun
ters. The estimated occupancy probabilities were higher than those 
predicted by null models, and in most cases were comparable with the 
more general models which allowed for heterogeneity among observers 

in relation to the detection of any sign of the species (Fig. 1, Table S4.1). 
One notable exception is H. intermedia, a species with loud calls; the 
occupancy rate estimated from visual observations of the species was 
extremely low, reflecting the fact that this species is rarely seen during 
surveys. 

3.8. False positives 

Allowing for some detections to be false-positives led to high esti
mates of true-detection probability (Fig. S5.9). False-positive errors 
occurred at negligible rates for all but the most common species (B. bufo, 
I. alpestris, R. temporaria, Pelophylax species) but also in T. carnifex and 
H. intermedia, two species which occur only in southern Switzerland. For 
these species false positive errors were much more prevalent in the WBS 
monitoring programme. The probability of a professional surveyor 
making a false-positive observation of R. temporaria during a survey at a 
site unoccupied by the species was as high as 25 %; in contrast, the 
highest rate for volunteers was 7 % for I. alpestris. Accounting for false- 
positive observations led to a reduction in occupancy probabilities: 
species occupancy probabilities were only 85 ± 10 % the rates estimated 
in the null models within the professional monitoring programme, and 
82 ± 12 % for the volunteer programme. 

A. obstetricans

B. variegata

B. bufo

E. calamita

H. arborea

H. intermedia

I. alpestris

L. helveticus

L. vulgaris

Pelophylax spp

P. ridibundus

R. dalmatina

R. latastei

R. temporaria

T. carnifex

T. cristatus

0.0 0.2 0.4 0.6 0.8 1.0
Detection probability

WBS AMA

Fig. 2. Detection probabilities of individual observers. Blue points represent detection probabilities attained by each volunteer surveyor in the AMA dataset, and 
green points represent professional surveyors in the WBS dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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4. Discussion 

Ensuring that monitoring programmes provide reliable information 
to inform conservation management requires an understanding of the 
factors which determine how effectively species can be detected. Our 
results demonstrate that species detection probabilities are affected by a 
broad range of factors which vary between surveys, between sites, be
tween methods, and between observers (Fig. 2-3, Fig. S5.3-S5.6). 
However, the consequences of accounting for these sources of variation 
during data analysis varied substantially. Even though detection prob
abilities were strongly influenced by commonly considered sources of 
variation, ignoring some sources of variation had little impact on esti
mated occupancy probabilities (e.g., year effects). In contrast, failing to 
account for observer-induced detection heterogeneity, i.e., differences 
in the abilities of surveyors to detect species, led to serious underesti
mation of species occupancy probabilities, as predicted by statistical 
theory (Royle and Nichols, 2003; Royle, 2006; Dorazio, 2007; Miller 
et al., 2015). 

Several covariates which are commonly used to model detection 
probability, such as season and year, had strong effects on detectability 
whereas others, such as habitat area or method, had smaller effects on 
detectability. All these variables had in common that models that did or 
did not include these covariates produced very similar estimates of oc
cupancy, independent of their effect on detectability (Fig. 1). This sug
gests that these variables, although commonly reported in scientific 
publications (see Supplement S2), may not be the most important var
iables to be used in the analysis of data from monitoring programmes if 
the goal is to estimate occupancy. In the data sets that we analysed, 
average detectability was high and sites were visited multiple times such 
that cumulative detection probabilities were high (Fig. S5.1 and S5.2). 
In other data sets where cumulative detection probabilities are lower, 
these covariates may turn out to be of greater importance than in this 
study. 

The closure assumption is a key assumption in occupancy modelling 
(MacKenzie et al., 2002) because occupancy status must not change 

during the time when surveys are done. This implies that the species has 
to be available for detection during the surveys (Kéry and Schmidt, 
2008). We used the filtering approach recommended by MacKenzie et al. 
(2002) to truncate the data sets in such a way that the species were al
ways available for detection. Surprisingly, and in contrast to previous 
studies (Royle and Dorazio, 2006; Kéry and Schmidt, 2008), non- 
availability for detection had negligible effects on occupancy esti
mates; for reasons unknown to us, a notable exception was the common 
frog Rana temporaria. In WBS, most species were available during most 
of the period during which surveys were undertaken (first as adults, then 
eggs, larvae and metamorphic juveniles) but AMA begins later such that 
the early-breeding species are generally only observable as tadpoles. 
Additionally, detection probabilities were high when species were 
available for detection. This may have negated the effects of non- 
availability on estimates of occupancy. Whether this is true in other 
systems remains to be evaluated. 

The phenology of species is related to the closure assumption as 
species may not always be available for detection and detection proba
bilities may vary seasonally (Schmidt, 2005; Weir et al., 2005; Canessa 
et al., 2012). Therefore, monitoring is often planned to coincide with 
important phenological events such as breeding activity. The number of 
individuals present within sites is likely to vary over such periods, and 
consequently the detectability of the species will also vary (Tanadini and 
Schmidt, 2011; McCarthy et al., 2013). This consideration likely moti
vates the high proportion of studies which model seasonal variations in 
detection probabilities (e.g., Weir et al., 2005; Supplement S1), how
ever, our results demonstrate that the presence of such variation need 
not have strong effects on occupancy estimates. 

While many covariates for detection probabilities had negligible ef
fects on occupancy estimates, allowing for false positives had strong 
effects in some species. For some of the common species, occupancy 
estimates derived from these models were much lower than those 
derived from models which did not allow for false positives. It is 
therefore important to train field crews to only report observations 
where species detection is unambiguous. Alternatively, they might flag 
an observation as uncertain and data analysts may either model certain 
and uncertain detection separately (Molinari-Jobin et al., 2012) or they 
may not use uncertain observations. Cruickshank et al. (2019) suggested 
that some observations which appear to be false positives may arise from 
spatiotemporal patterns of habitat use. For example, if adults are present 
at the ponds for only a short time (e.g., in explosive breeders such as 
Rana temporaria and Bufo bufo or species that switch ponds within a 
season, such as Hyla arborea; this would be a violation of the closure 
assumption) and tadpoles are difficult to observe, then one may get 
detection histories which have only a single observation. A false positive 
model may then erroneously treat such an observation as a false posi
tive, especially if detection probability in wetlands which are used 
during the entire breeding season (when surveys are conducted) is high 
(see Sutherland et al., 2013). 

The results clearly show that among-observer heterogeneity in 
detection probability had the greatest effect on occupancy estimates of 
all tested covariates. Accounting for the large differences in detection 
probability between observers in our study led to substantial changes in 
estimated occupancy probabilities. Many studies have previously iden
tified differences among observers participating in monitoring datasets 
(Sauer et al., 1994; Cunningham et al., 1999; Kéry and Plattner, 2007; 
Kéry et al., 2009; Lardner et al., 2015; Casula et al., 2017) and failing to 
explicitly model such heterogeneity has long been recognised as a 
potentially serious problem in wildlife studies and monitoring data 
(Burnham and Overton, 1978; Link and Sauer, 1998; Royle, 2006). 
When multiple surveys are carried out at a site, the probability of a 
species remaining undetected generally falls rapidly with an increasing 
number of site visits (Pellet and Schmidt, 2005; Canessa et al., 2012; 
Cruickshank et al., 2016), and consequently most sites at which a string 
of non-detections occur will be inferred to be unoccupied. However, if 
there is detection heterogeneity, the least-effective observers will 

A. obstetricans

B. variegata

B. bufo

E. calamita

H. arborea

H. intermedia

Pelophylax spp

P. ridibundus

R. dalmatina

R. latastei

R. temporaria

0.00 0.25 0.50 0.75 1.00
Detection probability

calls seen

Fig. 3. Differences in detection probabilities within the WBS monitoring pro
gram between detections made through calls, and visual observation of the 
species. Orange points represent detection probabilities for calls attained by 
each professional surveyor, and green denote visual detection probabilities. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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generate strings of non-detections while effective observers will 
generate strings of detections. Detection heterogeneity leads to an 
overestimation of detection probability and as a consequence to an 
underestimation of occupancy (this is easy to verify using simulation; 
see Supplement 6). Thus, explicitly accounting for observer differences 
in detection probability will lead both to higher estimates of occupancy, 
and a higher degree of uncertainty surrounding the estimates (Royle and 
Nichols, 2003; Royle, 2006; Miller et al., 2015; Altwegg and Nichols, 
2019). The latter happens because the precision (or uncertainty) of an 
occupancy estimate depends, among other things, on the estimate of 
detection probability. If detection probability is high, then the precision 
of the occupancy estimate will be high. If there is detection heteroge
neity, then detection probability will be overestimated and the occu
pancy will be more precise than when one accounts for detection 
heterogeneity. Thus, unmodelled detection heterogeneity leads to 
biased occupancy estimates and the estimates have little uncertainty, 
meaning that one will have too much confidence in them. Thus, it is 
important to account for differences among observers in the analysis of 
species occurrence data (Johnston et al., 2023). 

Species detection probabilities were overall lower within the 
volunteer-collected dataset than that collected by professional sur
veyors. Nevertheless, at least some volunteers had very high detection 
probabilities (Figs. 2, 3). This adds further support to the growing evi
dence that volunteers can carry out monitoring as reliably as expert 
surveyors (Genet and Sargent, 2003; Szabo et al., 2012; Aceves-Bueno 
et al., 2017; Callaghan et al., 2020). Furthermore, for most species there 
were volunteer surveyors who achieved detection probabilities at least 
as high as those of the best-performing professionals. Such patterns 
reflect the fact that participants in volunteer monitoring come from a 
wide range of backgrounds and many will likely have extensive 
knowledge of the species in question (some are professional biologists; 
Groom et al., 2017) but new participants in the monitoring programmes 
may have lower detection probabilities (Kéry et al., 2009). 

Accounting for differences between observers not only influenced 
the estimated occupancy rate, but also decreased the precision of these 
estimates. In our analysis, we used random effects to model differences. 
However, the precision of occupancy estimates is likely to increase if the 
abilities of surveyors can be accurately quantified and incorporated as 
an explanatory variable into models; for example, through qualitative 
assessments of experience (Genet and Sargent, 2003; Weir et al., 2005; 
Kéry et al., 2009) or the use of detection test scores (McClintock et al., 
2010; Miller et al., 2015) which are then used as covariates to describe 
surveyor-specific detection probabilities. However, the success of these 
variables in predicting observer detection probabilities has thus far been 
mixed (Genet and Sargent, 2003; Lotz and Allen, 2007; Kéry et al., 2009; 
McClintock et al., 2010; Miller et al., 2015). Furthermore, evidence 
suggests that self-reported measures of experience or confidence relate 
poorly to true performance, and so should be avoided if possible (Farmer 
et al., 2012; Austen et al., 2018). Nonetheless, monitoring programmes 
should increase efforts to better quantify and model differences among 
observers. Furthermore, monitoring programmes should invest into the 
training of field crews and should perhaps switch to more reliable 
methods. For example, capturing individuals may lead to more reliable 
detections than visual detections from a distance. It might also be 
feasible to ask observers with little experience to visit sites more often 
than experienced surveyors (Barata et al., 2017), but this increases the 
costs of the monitoring programme. Training and methodological 
changes will undoubtedly increase the precision and reliability of oc
cupancy estimates derived from such studies. It may nevertheless be best 
to model both known observer differences (e.g., new vs experienced 
observers) and unstructured heterogeneity (i.e., using a random effect 
for observer into the models). 

Designing monitoring programmes that can effectively deal with 
imperfect detection is an ongoing challenge, motivated by the fact that 
failing to disentangle biological and observation effects can readily 
impact species management (Tingley and Beissinger, 2009; Cruickshank 

et al., 2016). Monitoring programmes often collect a broad suite of 
variables in order to account for factors influencing detectability, yet our 
results suggest that including these variables in analyses may have little 
to no influence on estimates of occupancy. However, differences among 
observers are an underappreciated form of heterogeneity in detection 
probability, and accounting for observer effects leads to substantial 
changes in occupancy estimates. Our literature survey (Supplement S1) 
suggests that inter-observer differences are not often accounted for, 
despite the existence of a large body of literature exploring inter- 
observer differences in volunteer datasets (Sauer et al., 1994; Cun
ningham et al., 1999; Weir et al., 2005; McClintock et al., 2010; Dennett 
et al., 2018; Johnston et al., 2018). We do not want to suggest that 
commonly used covariates for detection should be abandoned but rather 
that models for detectability of occupancy models should include 
observer effects. Ignoring detection heterogeneity in monitoring pro
grammes can have unwanted consequences for conservation because 
ignoring heterogeneity in detection probability can lead to the under
estimation of occupancy probabilities. 
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Kéry, M., Schaub, M., 2011. Bayesian Population Analysis Using WinBUGS. Academic 
Press, Waltham.  
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Breitenmoser-Würsten, C., Wolfl, S., Fasel, M., Kos, I., Wolfl, M., Breitenmoser, U., 
2012. Monitoring in the presence of species misidentification: the case of the 
Eurasian lynx in the Alps. Anim. Conserv. 15, 266–273. 

Moor, H., Bühler, C., Bergamini, A., Vorburger, C., Holderegger, R., Schmidt, B.R., 
Egger, S., 2021. Amphibian observation and pond data (Aargau, Switzerland). 
EnviDat. https://doi.org/10.16904/envidat.270. Deposited 23 December 2021.  

Moor, H., Bergamini, A., Vorburger, C., Holderegger, R., Bühler, C., Egger, S., Schmidt, B. 
R., 2022. Bending the curve: simple but massive conservation action leads to 
landscape-scale recovery of amphibians. Proc. Natl. Acad. Sci. U. S. A. 119, 
e2123070119. 

Nichols, J.D., Williams, B.K., 2006. Monitoring for conservation. Trends Ecol. Evol. 21, 
668–673. 

Nichols, J.D., Thomas, L., Conn, P.B., 2009. Inferences about landbird abundance from 
countdata: recent advances and future directions. In: Thomson, D.L., Cooch, E.G., 
Conroy, M.J. (Eds.), Modeling Demographic Processes in Marked Populations. 
Springer, Boston, pp. 201–235. 

Noss, R.F., 1990. Indicators for monitoring biodiversity: a hierarchical approach. Cons. 
Biol 4, 355–364. 

Pellet, J., Schmidt, B.R., 2005. Monitoring distributions using call surveys: estimating 
site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 
27–35. 

Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using 
Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed 
Statistical Computing, 124, pp. 1–10. 

Pollock, K.H., Nichols, J.D., Simons, T.R., Farnsworth, G.L., Bailey, L.L., Sauer, J.R., 
2002. Large scale wildlife monitoring studies: statistical methods for design and 
analysis. Environmetrics 13, 105–119. 

Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.E., 
Isaac, N.J.B., 2019. Widespread losses of pollinating insects in Britain. Nat. Comm. 
10, 1018. https://doi.org/10.1038/s41467-019-08974-9. 

Preston, F.W., 1979. The invisible birds. Ecology 60, 451–454. 
Roy, V., 2020. Convergence diagnostics for Markov Chain Monte Carlo. Ann. Rev. Stat. 

App. 7, 387–412. 
Royle, J.A., 2006. Site occupancy models with heterogeneous detection probabilities. 

Biometrics 62, 97–102. 
Royle, J.A., Dorazio, R.M., 2006. Hierarchical models of animal abundance and 

occurrence. J. Agric. Biol. Env. Stat. 11, 249–263. 
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