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A B S T R A C T   

Tree growth varies closely with high–frequency climate variability. Since the 1930s detrending climate data prior 
to comparing them with tree growth data has been shown to better capture tree growth sensitivity to climate. 
However, in a context of increasingly pronounced trends in climate, this practice remains surprisingly rare in 
dendroecology. In a review of Dendrochronologia over the 2018–2021 period, we found that less than 20 % of 
dendroecological studies detrended climate data prior to climate-growth analyses. With an illustrative study, we 
want to remind the dendroecology community that such a procedure is still, if not more than ever, rational and 
relevant. We investigated the effects of detrending climate data on climate–growth relationships across North 
America over the 1951–2000 period. We used a network of 2536 tree individual ring-width series from the 
Canadian and Western US forest inventories. We compared correlations between tree growth and seasonal 
climate data (Tmin, Tmax, Prec) both raw and detrended. Detrending approaches included a linear regression, 
30-yr and 100-yr cubic smoothing splines. Our results indicate that on average the detrending of climate data 
increased climate–growth correlations. In addition, we observed that strong trends in climate data translated to 
higher variability in inferred correlations based on raw vs. detrended climate data. We provide further evidence 
that our results hold true for the entire spectrum of dendroecological studies using either mean site chronologies 
and correlations coefficients, or individual tree time series within a mixed-effects model framework where 
regression coefficients are used more commonly. We show that even without a change in correlation, regression 
coefficients can change a lot and we tend to underestimate the true climate impact on growth in case of climate 
variables containing trends. This study demonstrates that treating climate and tree-ring time series “like-for-like” 
is a necessary procedure to reduce false negatives and positives in dendroecological studies. Concluding, we 
recommend using the same detrending for climate and tree growth data when tree-ring time series are detrended 
with splines or similar frequency-based filters.   
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1. Introduction 

The study of climate–growth relationships in dendroecology tradi-
tionally relies on the standardization of tree-growth (TG) data (Cook, 
1987; Fritts, 1976). Standardization procedures typically start with the 
detrending of individual tree–ring series in order to remove biological 
growth trends (Cook, 1985; Cook and Peters, 1981; Melvin and Briffa, 
2008). Initially, biological growth trends were dealt with by applying an 
a priori deterministic curve - i.e., a mathematical function with a con-
strained shape, such as generalized or modified negative exponential 
curves or straight lines with a null or negative slope. As the discipline 
expanded into closed-canopy forests, with more frequent disturbances 
and stronger tree-to-tree competition, more flexible solutions were 
needed to deal with randomly occurring slow or fast increases and de-
creases in growth. Cubic smoothing splines were introduced as a novel 
detrending method (Cook and Peters, 1981). Splines belong to the group 
of stochastic detrending methods (they can have any (random) shape) 
and the family of digital filters that have certain controllable 
frequency-altering characteristics. That is, variability at specific wave-
lengths is removed, dampened, or retained, regardless of its cause 
(growth trend, or disturbance), by defining a 50 % frequency response 
cutoff at a wavelength of N years, colloquially termed N-year spline 
(Cook and Peters, 1981). Regardless of the detrending method (e.g., 
exponential or spline curves), ring-width residuals are then computed by 
either dividing or subtracting the observed data by those predicted 
through the detrending model. Due to naturally high levels of autocor-
relation within tree–growth series (the growth level of a tree in a given 
year is strongly correlated to the growth level in the previous year), 
detrended time series are often further pre–whitened using autore-
gressive models (Cook and Kairiukstis, 1990). The resulting tree–ring 
indices are then correlated against climate data that are, compared to TG 
data, usually not treated, filtered, or detrended (Appendix A). 

Removing low–frequency variability not only from tree-ring series, 
but also from climate time series through adapted detrending methods 
has been shown to strengthen climate–growth relationships (Fritts and 
Lough, 1985; Lyon, 1936). Routinely following such a procedure is 
particularly relevant when using TG series detrended with a flexible 
spline in a climate change context, where trends in climate are becoming 
more and more pronounced (IPCC, 2021; World Meteorological Orga-
nization, 2020, 2019). An additional key reason why trends should be 
removed in climate-growth analyses is the potential for violation of the 
demand for observations to be temporally independent in commonly 
applied statistical tests, such as linear regression or correlation analysis. 
Yet, the transformation of climate data prior to climate-growth analyses 
remains surprisingly rare in the literature. We reviewed 256 papers 
published in Dendrochronologia, one of the primary journals featuring 
tree-ring studies (Battipaglia et al., 2020; Eckstein and Schweingruber, 
2009), between February 2018 and February 2021 (volumes 47–65). We 
identified 133 papers investigating climate-growth relationships, out of 
which only 24 (i.e., ~ 18 %) transformed (detrended) climate data prior 
to analyses (Appendix A). Climate detrending methods primarily con-
sisted of high-pass filtering, such as cubic smoothing splines (n = 6) or 
first difference detrending (n = 14), the latter usually applied as an 
additional test to compare with non-detrended climate data. Of the 55 
papers that applied a cubic smoothing spline to detrend the tree-ring 
data, only 11 % (n = 6) used the same spline stiffness to detrend 
climate data. 

Our study aims to illustrate the rationale and relevance of detrending 
climate data prior to climate–growth analyses in dendroecological 
research using a geographically and ecologically unbiased tree-ring 
dataset from the systematic forest inventories of Canada and the West-
ern United States (US). These trees and forests, among many others, are 
experiencing rapid warming through anthropogenic greenhouse gas 
emissions (IPCC, 2021) and their ability to adapt to this environmental 
change is uncertain (Babst et al., 2019; Beck et al., 2011; Charney et al., 
2016; Hellmann et al., 2016). They are hence an excellent test case to 

explore how detrending climate data affects inferred climate–growth 
relationships. Our specific objective is to investigate the effects of 
detrending local climate time series on climate–growth relationships in 
trees across North America over the 1951–2000 period. We investigate if 
(i) detrending climate data strengthens climate–growth correlations and 
if (ii) this strengthening increases as the strength of the trend in the 
climate data increases. 

2. Material and methods 

2.1. Study area and tree-growth data 

Our study encompasses all the Canadian provinces and the interior 
western US (30–70◦N, 50–140◦W, Fig. 1A), the latter including Arizona, 
Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming. 
We extracted TG data from the Canadian and Western US forest in-
ventories (Fig. 2A). Forest inventories are based on sampling designs 
that systematically monitor forested conditions over a large geograph-
ical extent. Such design-based sampling preclude the emergence of 
spatial and thus ecological bias when assessing climate–growth re-
lationships and climate change impacts on forests (Charru et al., 2017; 
DeRose et al., 2017; Evans et al., 2022; Girardin et al., 2016; Klesse et al., 
2018; Mérian et al., 2013; Nehrbass-Ahles et al., 2014; Ols et al., 2022). 
Despite a low number of cored trees per plot, when individual tree-ring 
samples are crossdated, the lack of replication at the plot level (only one 
tree sampled in most cases) is by far outweighed by the level of repli-
cation in space (gridded inventories) and time (new measurements 
every year and re–measurements). 

In Canada, the dataset consisted of tree–ring increment cores 
sampled at either 1 m (in the Quebec province) or 1.30 m (all other 
provinces) above ground level. Trees were sampled from 2001 to 2010 
as part of the Canadian National Forest Inventory (NFI) program (Nat-
ural Resources Canada, 2008). The NFI consists of a system of perma-
nent sample plots located on a national grid. Within each NFI plot, up to 
twelve trees (diameter at breast height > 5 cm) were sampled (Fig. S1). 
These samples were then mounted, sanded, and crossdated (Yamaguchi, 
1991), and each annual ring was measured using either a VELMEX 
measuring device (Velmex Inc. Bloomfield, NY, USA) interfaced with a 
computer or the Coorecorder/CDendro software suite with a flatbed 
scanner (Larsson, 2013). For each tree–ring width series, crossdating 
and measurements were statistically verified using COFECHA software 
(Holmes et al., 1986). This verification procedure was applied at the 
levels of individual plots, of multiple–plot aggregates (e.g., 1.0◦ 9 1.0◦

grids), and of ecoregions (Olson et al., 2001). The quality of year as-
signments of tree–ring width measurements was also verified against 
existing networks of tree–ring chronologies (see Girardin et al., 2021 for 
more details). 

In the western US, the dataset includes tree–ring increment cores 
sampled from 2014 onwards as part of the renewed form of the Forest 
Inventory and Analysis (FIA) program (McRoberts et al., 2005) estab-
lished in 2000 and based on a national grid with randomly sampled 
permanent plots. In most cases, one tree (diameter at breast height >
12.7 cm, or ~ 5 in.) was sampled per plot (Fig. S1). Tree–ring widths 
were measured in the laboratory with a VELMEX device (Velmex Inc. 
Bloomfield, NY, USA) at a 0.01 or 0.001 mm accuracy. Tree–ring width 
series were then visually crossdated using the marker year approach and 
crossdating was statistically verified against a regional chronology when 
available using the COFECHA software (Holmes et al., 1986). 

2.2. Tree–growth data selection 

The selection of TG series, was limited to conifer species. To reduce 
the presence of tree–to–tree competition and species–mixture effects on 
interannual tree growth variability, we further restricted TG series to 
samples taken from dominant or codominant living conifer trees 
growing in stands dominated by a single species, i.e., where the sampled 
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tree species accounted for more than 50 % of the stand basal area. To 
target decades of strong climate trends in climate–growth analyses, we 
selected TG series covering at least the 1951–2000 period. In total, 1301 
series were selected in Canada and 612 in the Western US (Fig. 1, 
Table S1). The periods covered by these tree–ring data sets were 
1680–2010 CE and 1552–2016 CE in Canada and the Western US, 
respectively (Fig. 1 B&C). The median series length for the entire dataset 
was 81 years (interquartile range: 59–114). 

The main tree species selected were black spruce (Picea mariana 
(Mill.) Britton. et al., n = 451), subalpine fir (Abies lasiocarpa (Hook.) 
Nutt., n = 65), and lodgepole pine (Pinus contorta Douglas ex Loudon, 
n = 53) in Canada and Douglas fir (Pseudotsuga menziesii (Mirb.) Franco, 
n = 276), ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. 
Lawson, n = 197), and lodgepole pine (n = 57) in the Western US 
(Table S1). 

To investigate the impact of the detrending method used for TG se-
ries on climate–growth analyses, TG series were detrended using two 
cubic smoothing splines with a 50 % frequency cut–off at 30 and 100 
years (hereafter called the 30–yr and 100–yr spline, respectively; 
Fig. 2B). Given the median series length of 81 years, we are aware that a 
substantial number of the TG series may not be adequately detrended 
with a 100–yr spline. Detrended series were computed as ratios of 
observed to predicted growth. All detrended series were then pre-
whitened (removal of autocorrelation within the series) using 
auto–regressive models (Cook and Kairiukstis, 1990). Detrending and 
prewhitening were performed in the R environment (R Core Teams, 
2015) using the detrend function of the dplR package (Bunn, 2008). The 
two resulting sets of TG indices are hereafter referred to as TG–30 and 
TG–100. 

2.3. Climate data 

We included three climate variables in the analyses: minimum 
(Tmin) and maximum (Tmax) temperature and precipitation (Prec; 
Fig. 2A). Monthly temperature averages and monthly precipitation sums 
were extracted over the period 1950–2000 CE from the 10 km x 10 km 
resolved gridded ANUSPLIN database (McKenney et al., 2011), which 
covers Canada and the US. This climatic dataset relies on a plate–thin 
spline interpolation of monthly station data. In Canada, monthly data 
originate from the Environment Canada stations network, but some 
other regional networks have been added as well (e.g., summer fire 

weather stations, Hydro Quebec stations). In the US, monthly station 
data were primarily derived from NOAA’s National Climatic Data Center 
(NCDC) network. 

Seasonal maximum and minimum temperature averages and sea-
sonal precipitation sums were computed based on monthly variables 
over five seasons defined as follows: previous and current year summer – 
June through August, previous year autumn – September through 
November, previous winter – December through February, current year 
spring – March through May. To capture the variability of climate 
change direction across grid cells, linear trends in seasonal climate from 
1950 to 2000 and their significance were computed by regressing 
annually-resolved seasonal climate variables against calendar years. 
This was done by using the base function lm in R. Linear trends in 
climate are hereafter referred as trends. Average trends in minimum 
temperature ranged between + 0.004 ◦C.yr-1 (previous autumn) and 
+ 0.032 ◦C.yr-1 (spring); average trends in maximum temperatures 
ranged between − 0.007 ◦C.yr-1 (previous autumn) and + 0.035 ◦C.yr-1 

(spring); and average trends in precipitation ranged between 
+ 0.040 mm.yr-1 (previous winter) and + 0.613 mm.yr-1 (previous 
autumn) (Table 1). 

2.4. Climate–growth analyses 

We conducted analyses over the 1951–2000 period at the individu-
al–tree level using basic R functions (R Core Teams, 2015). The 
tree-level was preferred to site-level because of the limited number of 
trees cored per site in the Canadian and Western US forest inventory 
schemes (1–4 in most cases), which did not allow for robust site-level 
chronology development. 

First, we computed four sets of climate data that include 15 seasonal 
variables each (3 variables × 5 seasons): one set with raw data (hereafter 
C–raw), one set with climate data detrended using a linear regression 
(C–lin), and two sets with climate data detrended using cubic smoothing 
splines, with a 50 % frequency cut–off at 30 and 100 years, respectively 
(C–30 and C–100; Fig. 2B). The detrending of climate data followed the 
same procedures as that of TG data. Climate indices were computed 
using ratios (division) for precipitation data and residuals (subtraction) 
for temperature data, some temperature series being incompatible with 
ratio procedures (contrasting positive vs. negative values). Unlike TG 
series, detrended climate series usually have very little temporal auto-
correlation. Here, 903 (2.9 %) out of 31, 140 climate time series (519 

Fig. 1. A. Location of the 1301 selected tree–growth series. B. & C. Number of tree–ring series available for each calendar year in Canada and in the Western US, 
respectively. The gray shading delineates the 1951–2000 study period. 
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Fig. 2. Visual summary of the Material and Methods Section.  
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grid cells × 3 climate variables × 5 seasons × 4 four sets of data) had an 
absolute first–order autocorrelation (|AR1|) > 0.3, which is less than 
what would be expected by chance alone. Detrended climate series were 
therefore not prewhitened. 

We then computed Pearson correlation coefficients between each of 
the two detrended TG datasets (TG–30 and TG–100) and two of the 
climate datasets (C–raw and C–lin). In addition, we computed correla-
tions between TG–30 and C–30 and between TG–100 and C–100 
(Fig. 2C). The ensemble of correlation coefficients between TG–30 and 
the three climate datasets are hereafter referred to as TG–30|C–raw, 
TG–30|C–lin, and TG–30|C–30. Similarly, correlation coefficients 
computed with TG–100 are hereafter referred to as TG–100|C–raw, 
TG–100|C–lin, and TG–100|C–100 (Fig. 1C). We further denote R–raw 
as the general term for all correlation coefficients computed with raw 
climate data and R–det as those calculated based on detrended climate 
data. In total 117,090 correlation coefficients were computed (1301 TG 
series × 3 climate variables × 5 seasons × 6 detrending combinations). 
We accounted for false discovery rates by using the Benjamini and 
Hochberg (1995) method and the p.adjust function in R (Fig. S2). 

2.5. Analytical approach 

To examine the effect of detrending climate data on the strength of 
climate–growth correlations, we tested the difference between the mean 
absolute value of R–det and the mean absolute value of R–raw (|R–det| 
vs. |R–raw|; Fig. 2D) using a two–tailed paired sample t–test (Student, 
1908). This test, performed for each seasonal climate variable, is a sta-
tistical procedure used to determine whether the mean difference be-
tween two sets of correlations is significantly different from zero – i.e., 
whether |R–det| < |R–raw| or |R–det| > |R–raw|. The absolute value of 
correlations was used so that results could be compared regardless of the 
sign of the correlation (e.g., positive or negative). To ensure meaningful 
results, we restricted t–test analyses to climate seasons and variables 
with at least 30 pairs of |R–det| vs. |R–raw| observations (for number of 
pairs per climate variable and season t-test see Fig. S2). We excluded 
about 6 % of all possible pairs from the analysis where a switch in sign 
from R–raw to R–det was observed. This mostly occurred when R–raw 
was close to 0. Each t–test analysis was computed for two input datasets, 
one including all TG series (set A) and one restricted to only TG series of 
sites where we found a significant (P < 0.05) trend in the focal seasonal 
climate variable (set B). We considered including two additional types of 
input dataset, one restricted to TG series significantly (P < 0.05) 

correlated with C–raw (set C) and another restricted to TG series not 
significantly (P < 0.05) correlated with C–raw (set D). However, the 
number of TG series in set C was not sufficient to perform robust t–tests 
(less than 30 pairs in most cases; Fig. S3) and the set D was similar at 
99.2 % to set A (i.e., most TG series did not correlate significantly with 
raw climate), which resulted in identical t–test results for sets A and D 
(Fig. S3). In total, we computed 60 t-tests for set A and set B. Their 
associated P values were so skewed towards very small values (n [<
0.05] = 73) that correction for false discovery rate by the Benjamini and 
Hochberg (1995) method left their distribution unchanged (Fig. S4). We 
therefore decided to use uncorrected P values. 

To investigate the effect of trends in climate time series on the impact 
of detrending climate data on climate–growth relationships, we 
compared the difference |R–det| – |R–raw| against the trend of the focal 
climate variable for each seasonal climate variable. 

2.6. Supplementary analysis 

We repeated the analysis above with 828 chronologies from the In-
ternational Tree Ring Data Bank (ITRDB, Zhao et al., 2019) that span the 
entire 1951–2000 period and climate data extracted from CHELSA 
(Karger et al., 2017) to investigate whether the effect of detrending 
climate data on correlation changes is similar when working with mean 
site chronologies. Here, we focused on the TG–30|C–raw and TG–30| 
C–30 scenarios. Site chronologies were averaged with Tukey’s bi-weight 
robust mean. We also repeated the analysis covering only the 
1971–2000 period to show the effect of treating climate and tree-ring 
data like-for-like for a shorter period length of 30 years that is 
commonly used in moving-window analyses. In such shorter periods 
correlation coefficients are more volatile by nature and climate trends 
can be stronger. 

Modern analytical frameworks such as mixed-effect models usually 
report regression coefficients instead of correlation coefficients. There-
fore, we also report changes in regression coefficients using linear 
regression before and after detrending climate data. We show this 
analysis for both individual tree-ring time series (North American NFI 
data) and mean site chronologies (ITRDB). 

3. Results 

3.1. Effect of detrending climate data on the value of climate–growth 
correlations 

3.1.1. Set A – analyses including all TG series 
In 28 out of 60 t-tests, detrending climate data significantly 

strengthened climate–growth correlations (|R–det| > |R–raw|) by 4.2 % 
on average, relative increases ranging between 0.6 % and 13 % 
(Fig. 3A). Correlation changes for TG-30 and temperature variables 
(regardless of season) were stronger and much more consistently posi-
tive than for TG100 (Fig. 3A). These patterns held true regardless of the 
detrending method applied to the climate data (linear or spline 
detrending) – e.g., results for TG–30|C–lin were similar to those ob-
tained for TG–30|C–30. In 18 out of 60 t-tests, roughly half of which 
involved temperature variables and half precipitation variables, 
detrending climate had no impact on climate-growth correlations. No 
clear pattern emerged regarding the seasonal climate variables and the 
type of TG- and C-detrending involved. In the remaining 14 out of 60 t- 
tests, detrending climate data significantly weakened climate-growth 
correlations (|R–raw| > |R–det|) by 3 % on average, relative decreases 
ranging between − 0.01 and − 7.6 %. These cases mostly (57 %) 
involved correlations between TG-100 and previous summer and 
autumn precipitation variables. However, most of the TG series included 
in set A did not correlate significantly to raw climate data. 

Table 1 
Statistics on the distribution of trends in seasonal climate variables across sites of 
TG series covering the 1951–2000 period. Trends are indicated in ◦C.yr–1 for 
seasonal minimum (Tmin) and maximum (Tmax) temperature averages and in 
mm.yr–1 for seasonal precipitation sums (Prec). Seasons include previous year 
summer (pSum), autumn (pAut), and winter (pWin), and current year spring 
(Spr) and summer (Sum). Statistics include minimum, first quantile, median, 
third quantile, and maximum values. Bold font indicates the highest absolute 
value in absolute terms for a given variable and quantile.  

Var. Season Min. 1st Qu. Median Mean 3rd Qu. Max 

Tmin pSum -0.009 0.009 0.015  0.014  0.021  0.041  
pAut -0.020 -0.005 0.006  0.004  0.012  0.039  
pWin -0.058 0.002 0.017  0.021  0.051  0.083  
Spr -0.017 0.025 0.034  0.032  0.043  0.070  
Sum -0.009 0.007 0.014  0.012  0.018  0.040 

Tmax pSum -0.016 0.001 0.009  0.009  0.017  0.032  
pAut -0.034 -0.013 –0.007  -0.007  -0.002  0.013  
pWin -0.038 0.005 0.014  0.019  0.032  0.084  
Spr -0.011 0.025 0.036  0.035  0.043  0.074  
Sum -0.015 0.002 0.008  0.008  0.016  0.030 

Prec pSum -0.345 0.221 0.436  0.494  0.758  1.542  
pAut -0.538 0.194 0.590  0.613  0.925  3.443  
pWin -1.453 -0.333 –0.052  0.040  0.271  4.151  
Spr -0.625 0.034 0.407  0.465  0.765  3.780  
Sum -0.360 0.139 0.385  0.436  0.704  1.478  
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3.1.2. Set B – analyses restricted to TG series sampled at sites with 
significant trends in seasonal climate 

TG series sampled at sites with significant trends in the target sea-
sonal climate variable represented 28.4 % of the dataset. We identified 
2813, 1342, and 1379 ‘TG series-season’ combinations (out of 6505) of 
significant trends in Tmin, Tmax, and Prec, respectively. In 25 out of 
56 t-tests, detrending did not affect the strength of climate–growth re-
lationships (Fig. 3B). In 23 out of 56 t-tests, detrending significantly 
strengthened climate-growth correlations (|R–det| > |R–raw|) by 7.4 % 
on average, relative increases ranged between + 0.1 and + 16.8 %. 
Similar to Set A, these t-tests mostly included correlations computed 
between TG–30 and seasonal temperatures (Tmin and Tmax), particu-
larly C-30 (Fig. 3B). These patterns were observed regardless of the 
detrending method applied to the climate data. In only 8 out of 56 t- 
tests, detrending climate data significantly weakened climate-growth 
correlations by 9.9 % on average, relative decreases ranging between 
0.3 and − 12.6 %. These t-tests mostly involved correlations based on 
TG-100 and previous summer and autumn precipitation (Fig. 3B). 
Lastly, t-tests could not be computed in 4 cases due to a lack of data (less 
than 30 time series with significant trends in previous autumn Tmax; 
Fig. S2). 

3.2. Link between linear trends in climate and the effects of detrending 
climate data on climate–growth relationships 

The variance of the |R–det| – |R–raw| differences increased with 
increasing linear trend in the seasonal climate variable, regardless of the 
climate variable (Fig. 4), i.e., absolute changes were larger on average 
with larger climatic trends. This result was more pronounced when a 
linear (C–lin) or 100–yr spline (C–100) detrending was applied to the 
climate data (Fig. 4A–C–D). In the C-30 comparison we found notable 
changes in the correlations in cases without linear trend in the climate 
time series (Fig. 4B), i.e. there was no wedge-shaped pattern around the 

origin of the plot as in the other three comparisons (Fig. 4A-C-D). The 
absolute difference between |R–det| and |R–raw| ranged between 
− 0.36 and + 0.27, with extreme values of − 0.2 and + 0.2 found for 
almost all climate variables and seasons (Fig. 4). 

All presented observed effects and results using individual tree time 
series are supported by the re-analysis using mean site chronologies of 
the ITRDB (Fig. S5). The general pattern, as well as the magnitude of 
maximum changes for Tmin (+0.20), Tmax (+0.13), and precipitation 
(+0.10), are indistinguishable from the pattern shown in Fig. 4B. 

The effect of detrending climate data on correlations using a shorter 
period of 30 years results in an even more pronounced pattern of cor-
relation changes (Fig. S6), with a stronger fanning out with increasing 
trends in the climate data and stronger correlation changes. 

Our analysis of changes of regression coefficients shows a strong 
positive linear relationship with the changes in correlation coefficients 
(Figs. S7, S8). However, and more interestingly, there is a significant 
positive offset (all intercepts p < 0.05). This means that even in the 
absence of correlation changes absolute regression coefficients system-
atically increase after detrending climate data. Therefore, not detrend-
ing climate data likely leads to an underestimation of climate impacts on 
tree growth. 

4. Discussion 

We investigated the effects of detrending climate data on climate–-
growth relationships for conifer trees growing in Canada and the 
Western US as well as for site chronologies of the ITRDB from across the 
globe. In the context of accelerating climate change, our results high-
light that the detrending of climate time series can significantly influ-
ence the strength of inferred TG response to climate. This influence: (i) is 
mainly observed for temperature variables and is positive, but shows 
slightly negative effects with precipitation (Fig. 3), (ii) is more common 
when tree-ring series are detrended with a flexible 30-year spline 

Fig. 3. Difference between the mean of |R–det| and the mean of |R–raw| over the 1951–2000 period for different detrending of tree–growth (TG–) and seasonal 
climate (C–) data. Differences in absolute mean were investigated using two–tailed paired sample t–tests. T–tests were computed for two input datasets: A. all TG 
series (set A); B. TG series sampled at a site where the seasonal climate in focus shows a significant trend (set B); Red rectangles indicate comparisons with a 
significantly (P < 0.05) higher mean for |R–det| compared to |R-raw|, blue rectangles comparisons with a significantly (P < 0.05) higher mean for |R–raw|, and gray 
rectangles comparisons with a non–significant difference between the two means. White rectangles with a black cross indicate cases for which the t-test could not be 
computed (less than 30 TG series verifying the selection criterion that is here sampled at sites where trends in previous autumn maximum temperature 
were significant). 
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Fig. 4. Difference between |R–det| and |R–raw| as a function of trends in local seasonal climate over the 1951–2000 period. The differences are displayed for 
different detrending procedures on tree–growth (TG–) and climate (C–) time series. Climate variables tested include average seasonal minimum and maximum 
temperatures (Tmin and Tmax) and precipitation sums (Prec). Results for different climate seasons are indicated by different colors and seasons span from previous 
year summer through current year summer. Cases where R–det and R–raw differed in sign were excluded from analyses. 
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(Fig. 3), and (iii) generally increases in variability and magnitude with 
stronger linear trends in climate (Fig. 4). 

The observed greater sensitivity to detrended temperature time se-
ries was most pronounced for current year spring and summer variables 
(Fig. 3). This was particularly true when TG series were detrended with a 
30-yr spline, i.e., a detrending method removing any low frequency and 
hence longer-term trends (Fig. 3A, Fig. 4A-B) and emphasizes that 
high–frequency ring–width variability is better explained by high–pass 
filtered climate data (Fritts, 1976; Fritts and Lough, 1985; Lyon, 1936). 
Given that our TG series were on average 93 years long (101 and 90 
years in Canada and the Western US, respectively), a 30–yr spline may 
be more appropriate for approximating age effects on radial tree growth 
(Cook, 1985). In comparison, a spline with a cut–off at 100 years may be 
too stiff, so that ontogenetic effects as well as other disturbances (such as 
stand dynamics) may still be present and can potentially distort clima-
te–growth relationships. 

We reported a systematic strengthening of correlation coefficients for 
temperature variables, yet we observed a rather stable-to-weakened 
sensitivity of tree–ring indices to detrended seasonal precipitation var-
iables – in comparison to their sensitivity to raw precipitation time series 
(Fig. 3). This might seem somewhat surprising given that tree growth at 
high latitudes has been reported to be increasingly driven by soil 
moisture conditions (Babst et al., 2019; Choat et al., 2012; Trahan and 
Schubert, 2016). However, precipitation time series generally have 
strong interannual variability and weak-to-no linear trend, so that 
high–pass filtering might have little impact on the strength of clima-
te–growth correlations. A decrease in absolute correlation after 
detrending climate time series (Figs. 3 and 4) can also point to spuri-
ously high correlations that were initially amplified by common trends 
or shared lower frequency variability in the absence of an actual 
meaningful relationship between climate and growth at the inter-annual 
time scale. Another strategy to safeguard against spurious correlations, 
which is commonly applied in dendrochronological climate re-
constructions, is to take first-differences or apply other high-pass filter 
techniques to both tree-ring and climate time series (e.g., Buckley et al., 
2018; D’Arrigo et al., 2015). Ultimately, climate-growth correlations 
should be very similar whether the analysis is performed with both 
high-pass filtered TG and climate data, or with raw climate data and TG 
data that were detrended to contain the full spectrum of high- to 
low-frequency variability. 

Using a large-scale dendroecological dataset, we showed that the 
stronger the trend in climate data, the greater variability in the differ-
ence between the strength of climate correlations using detrended vs. 
raw climate data (Fig. 4). The pattern and magnitude are supported by 
additional analyses using site chronologies of the ITRDB (Fig. S5). In a 
controlled setting using simulated time series, Klesse (2021) also 
revealed a negative effect of increasing trends in climate data on cor-
relations with spline-detrended TG series, when climate data are not 
detrended. Both these examples underline the importance of detrending 
climate data prior to climate-growth analyses. This becomes particularly 
important for the frequently applied moving-window analyses (e.g., 
Wilmking et al., 2020) that use 30-year or even shorter periods to 
investigate temporal stability in climate-growth responses. Trend dis-
tortions on correlation coefficients are much more pronounced in such 
short periods (Fig. S6) and if not properly accounted for likely influence 
results and interpretations of these type of analyses. Even though the 
effect of the two detrending procedures applied on climate data (linear 
vs. spline) in our study was quite similar for a given detrending pro-
cedure for TG data (Fig. 3A), we strongly recommend, as a rule, using 
the same detrending for climate and TG data, especially when TG series 
are detrended with a flexible cubic smoothing spline, as is commonly 
done in dendrochronological literature (Klesse, 2021). Splines are tools 
derived from time–series analysis and should be treated as mathematical 
functions removing desired wavelengths from time series (not biological 
age or size trends in the series). Following time–series analysis theory 
(Shumway, 1988), if TG and climate data are to be detrended with 

splines, these splines must have the same characteristics (i.e., retain, 
dampen, and remove similar frequency domains) to avoid interfering 
with the estimation of climate–growth relationships. We illustrate this in 
Fig. S9 and show that in the presence of lower frequency variability in 
the climate time series, correlations with tree growth are lower with 
increasing difference in the flexibility of the detrending method of the 
growth time series and climate time series. The biggest differences in 
absolute correlations in our hypothetical example (Fig. S9) are of the 
same order of magnitude as in our observations with |R-det| - |R-raw| 
≥ 0.2 (Fig. 4), which is considerable given commonly reported 
climate-growth correlations. 

The reason the differences between TG-100|C-lin and TG-100|C-100 
are relatively small, is that on a 50-year time scale the 100-yr spline 
almost behaves like a straight line and removes less than ~10 % vari-
ability on the wavelength of 50 years (cf. Fig. 3.6 in Cook and Kairiuk-
stis, 1990) in addition to the linear trend. The longer the climate time 
series and the analyzed period, the larger the potential differences be-
tween a straight linear fit and a 100-yr spline will become, and hence 
differences in |R-raw| and |R-det| between those two methods will also 
increase. 

Detrending climate time series that do not contain a linear trend over 
the study period (i.e., |trend| < 0.001 ◦C.yr–1 or < 0.01 mm.yr–1) with a 
linear method did not alter climate–growth correlations (|R–det| – | 
R–raw| ranging between –3.57 ×10-3 and +3.45 ×10-3; Fig. 4A & C). 
Detrending the same trend-free climate time series with a 30–yr spline, 
however, will dampen some of its remaining “mid–frequency” vari-
ability (c.f. Fig. S9D). The 30-yr spline removes all variability of wave-
lengths longer than 90 years, dampens 30–yr frequencies by half, and 
preserves full variability at 10 years. Any variability on the wavelength 
of 50 years will be dampened by ~90 %, whereas the 100-yr spline only 
dampens about 10 % of variability on this wavelength (Cook and Kair-
iukstis, 1990). This likely is why in the TG-30-C-30 scenario changes in 
climate–growth correlation coefficients varied considerably (|R–det| – | 
R–raw| ranging between –0.112 and +0.112; Fig. 4B) even without any 
climate trend, and the effects of climate data detrending appear to be 
more homogeneous along the gradient of climate trends. However, even 
without a change in correlation coefficients, the effect on regression 
coefficient is systematically positive (Figs. S7, S8) leading to an under-
estimation of the true impact of climate on growth. This is logical, 
because high-pass filtering almost always decreases the standard devi-
ation of a time series, thereby increasing the product of cor(climate, 
growth) and sd(growth)/sd(climate), which is the equivalent notation of 
the simple linear regression coefficient. 

The climate data we used contained little autocorrelation and 
therefore did not need prewhitening. Future studies that work with 
other climate variables that contain possibly higher levels of autocor-
relation, such as the Palmer Drought Severity Index (PDSI) (Katz and 
Skaggs, 1981), should also test how the prewhitening of climate data 
influences climate-growth correlations. Analyses conducted on time 
series having significant first order autocorrelation will necessarily 
violate assumptions of independence of samples when determining the 
significance of relationships. Further, it would be valuable to investigate 
the impact of detrending climate data on climate–growth relationships 
for other climate–sensitive wood characteristics such as annual and 
intra–annual tree–ring density, lumen size, and stable isotope ratios (see 
for instance Briffa et al., 2004; D’Arrigo et al., 1992; Kirdyanov et al., 
2003). 

5. Conclusion 

Our analyses suggest that detrending climate data should be more 
broadly applied in dendroecology. This study based on individual tree 
ring-width time series from North American NFIs as well as site mean 
chronologies from the ITRDB indicated that we can expect a slight 
strengthening of correlations primarily for temperature comparisons 
and less so for precipitation. Our results corroborate recent theoretical 
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work (Klesse, 2021) showing the stronger the trend in the climate data 
the larger the possible effect of detrending both time series equally. The 
rationale for detrending climate data is not new (1930s) but seems to 
have been largely ignored (Appendix A). Thus, the relevance of 
detrending climate data is increasingly clear in a time of rapidly 
changing climate (set A vs set B), particularly when tree-ring data are 
treated with a flexible detrending method. 
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