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A B S T R A C T   

European beech (Fagus sylvatica L.) forests have recently experienced severe diebacks that are expected to in-
crease in future. Oriental beech (Fagus sylvatica spp. orientalis (Lipsky) Greut. & Burd) is a potential candidate for 
assisted migration (AM) in European forests due to its greater genetic diversity and potentially higher drought 
resistance. Yet AM entails not only benefits, but also risks, and it is therefore important to monitor the pro-
gression of introduced (sub)species. Here, we demonstrate the potential of leaf spectroscopy to replace resource- 
intensive genetic analysis and field phenotyping for the discrimination and characterization of these two beech 
subspecies. 

We studied two European beech forests, one in France and one in Switzerland, where Oriental beech from the 
Greater Caucasus was introduced over 100 years ago. During two summers (2021, 2022), we measured leaf 
spectral reflectance, leaf morphological and biochemical traits from genotyped adult trees. Subspecies prediction 
models were developed separately for top-of-canopy leaves (amenable to remote sensing) and bottom-of-canopy 
leaves (easier to harvest) using partial least squares discriminant analysis (PLS-DA) and different sets of spectral 
predictors. 

Morphological, biochemical and spectra-derived leaf traits indicated that Oriental beech trees at the sites 
studied were characterized by higher lignin and nitrogen per unit leaf area than European beech, suggesting 
more protein-rich leaves on a per-area basis. The model based on top-of-canopy leaf reflectance spectra in the 
short-wave-infrared region (SWIR I: 1450–1750 nm) most accurately distinguished Oriental from European 
beech (BA = 0.86 ± 0.08, k = 0.72 ± 0.15), closely followed by models based on SWIR II, and on spectra-derived 
traits (BA ≥ 0.84, k ≥ 0.67). 

This study provides a proof-of-principle for the development of spectroscopy-based approaches when moni-
toring introduced species, subspecies or provenances. Our findings hold promise for upscaling to large forest 
areas using airborne remote sensing.   

1. Introduction 

Current rates of global change outpace the ability of species to adapt 
and decouple tree populations from the environments to which they are 
locally adapted (Aitken et al., 2008; Anderson and Wadgymar, 2020). 
While slow migration rates delay many taxa from populating newly 
suitable climatic regions (Corlett and Westcott, 2013), the increasing 
frequency and duration of extreme climatic events challenge the limits 

of physiological tolerance for many species, whose morphological and 
biochemical acclimation mechanisms are no longer sufficient (Anderegg 
et al., 2019). These trends may push populations of major temperate tree 
species beyond their physiological recovery margins and could lead to 
massive die-off events (Forzieri et al., 2021; Neumann et al., 2017; Senf 
et al., 2018; Stanke et al., 2021). 

Among the species which appear to suffer from global change in their 
current range is European beech (Fagus sylvatica L.) (Martinez del 
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Castillo et al., 2022): a widespread, ecologically and economically 
important species in Europe (Geßler et al., 2007). The distribution of 
European beech is limited in its southern and southeastern extent by 
drought (Jump et al., 2006; Peñuelas et al., 2008), but damage and die- 
off events associated with direct and indirect impacts of droughts have 
been recorded in the center of the species range as well (Obladen et al., 
2021). In 2018, a severe, hot summer drought resulted in widespread 
premature leaf senescence in large parts of Germany and Switzerland, 
with continuously increasing cumulative tree mortality recorded in the 
following years (Frei et al., 2022; Klesse et al., 2022). Martinez del 
Castillo and colleagues (2022) suggested that the Europe-wide pervasive 
beech growth rate declines observed in the past decades will increase in 
the future, with 20% to over 50% less growth by 2090 depending on the 
climate change scenario and the region; and that only sites located to-
wards the northern edge of the species range in Denmark, Norway and 
Sweden, and at higher elevation in mountain regions, will be able to 
maintain or increase current growth rates. 

Oriental beech (Fagus sylvatica subsp. Orientalis (Lipsky) Greut. & 
Burd) is a subspecies of European beech, growing in the southeastern 
Balkans (Bulgaria and Greece), in the Pontic and Taurus Mountains 
(Turkey), in the Greater Caucasus (Georgia and Armenia) and in the 
Elbruz Mountains (Iran) (Kandemir and Kaya, 2009). Oriental beech is 
older than European beech and harbors high levels of genetic diversity 
across its range (Cardoni et al., 2022; Kurz et al., 2023). Oriental beech 
further inhabits some sites which are warmer and drier than those 
inhabited by European beech, and thus it is thought that some prove-
nances might better acclimate to future climatic conditions in Europe 
(Bogunović et al., 2020; Fang and Lechowicz, 2006; Mellert and Seho, 
2022). 

Assisted migration (AM) is the human-aided translocation of in-
dividuals to mitigate the adverse effects of climate change by increasing 
forest diversity and thus resilience (Aitken and Whitlock, 2013; McLa-
chlan et al., 2007). While such dynamic conservation measures entail 
ecological risks related to invasiveness of exotic species or outbreaks of 
new diseases (Winder et al., 2011), introducing close relatives of native 
species or populations from different parts of the species range, so-called 
assisted gene flow (AGF) (or, in a forestry setting, predictive prove-
nancing; Hällfors et al., 2014), can be an efficient tool to introduce 
adaptive genetic variants, in an attempt to preserve a species rather than 
replace it with a new one (Aitken and Bemmels, 2016). However, AGF 
may also imply risks that could become apparent only in later genera-
tions, due to outbreeding depression (Grummer et al.; 2022), calling for 
monitoring. Yet, the similar appearance of introduced genotypes, and 
their hybridization, with the native provenances or subspecies, poses a 
challenge. Differences in leaf morphology, e.g., leaf size, shape and 
number of veins, between individuals of European and Oriental beech 
have been reported (Denk et al., 2002); however, these differences are 
not sufficient to distinguish the two with confidence, especially in the 
presence of hybrids. Genetic screening, therefore, currently represents 
the only reliable tool for accurate subspecies discrimination (Kurz et al., 
2023). This is associated with high costs and multi-step extraction and 
analysis procedures, limiting our ability to monitor large geographic 
areas. 

Reflectance spectroscopy, i.e., capturing the profile of light scattered 
back from leaves and canopies across a range of wavelengths, has 
emerged as an important tool for characterizing plant phyla and func-
tional groups (Cavender-Bares et al., 2022; Meireles et al., 2020). 
Because the chemistry and structure of plant tissues govern their optical 
properties, plant reflectance spectra represent integrated measures of 
plant phenotypes, allowing for classification of taxa (Kothari and 
Schweiger, 2022). Yet, the use of reflectance spectroscopy to capture 
taxonomic patterns is not trivial, as environmental filtering effects and 
biotic interactions modulate the connection between species (and ge-
notypes) and phenotypes in complex ways (Asner and Martin, 2011; 
Durán et al., 2019; Meireles et al., 2020; Siefert et al., 2015). High- 
dimensional spectral data has been used to classify genotype groups 

and species across climate zones and ecosystems at various levels of 
biological organization (Castro-Esau et al., 2006; Clark et al., 2005; Czyż 
et al., 2020; Madritch et al., 2014; Meireles et al., 2020), for monitoring 
invasive species (Asner et al., 2008), and for the development of 
biodiversity indicators (Schweiger et al., 2018). Spectral discrimination 
capacity, however, decreases with decreasing hierarchical levels of 
biological organization and with increasing trait similarity, as is ex-
pected among more closely related taxa (Cavender-Bares et al., 2016; 
Petibon et al., 2021). 

Here, we examine the potential of leaf reflectance spectroscopy to 
distinguish European from Oriental beech at two European beech forests 
in France and Switzerland, where Oriental beech from the Caucasus was 
introduced>100 years ago. We conducted our investigation across two 
growing seasons in one site, and across two sites in one growing season, 
to account for year- and site-specific effects. We aimed to evaluate 
whether leaf spectra allow subspecies discrimination and, more specif-
ically, (1) understand the physiological mechanisms behind a successful 
- or unsuccessful – subspecies separation by investigating spectra- 
derived and laboratory measured leaf functional traits; (2) understand 
whether leaves at the top of the canopy (more amenable to remote 
sensing in view of a potential upscaling) and at the bottom of canopy 
(easier to sample) hold equal discrimination potential, and (3) identify 
parts of the spectrum that best discriminate subspecies, including the 
full electromagnetic spectrum, individual spectral regions, and indi-
vidual bands combined as functional trait indices. 

2. Materials and methods 

2.1. Study sites 

This study was set at two, 100-year-old beech forest stands where 
Oriental beech was planted next to European beech. The first stand was 
located close to the town of Allenwiller (48◦39′00.0′’N, 7◦21′00.0′’E, 
314 m a.s.l.) in northern Alsace, France. Oriental beech of the Greater 
Caucasus origin was planted there in 1923 (Klein, 1981; Kurz et al., 
2023). At the time of our study, approximately 60 adult Oriental beech 
trees were identified in a 0.5 ha forest patch surrounded by a European 
beech forest except for a spruce plantation on its north side. The total 
size of the beech stand is 4.5 ha with trees reaching up to 40 m in height 
and having a mean DBH of 41 cm. The second forest stand is located 
close to the town of Wäldi (47◦37′46.0′′N, 9◦06′17.4′′E, 610 m a.s.l.) in 
the canton of Thurgau, in Switzerland (Kurz et al. 2023). An unknown 
number of Greater Caucasus-origin Oriental beech trees were planted 
there in 1921, but at the time of our study, only eight mature adult trees 
were present according to the cantonal forest service (Ulrich Ulmer, 
personal communication). Nevertheless, during the genotyping, we 
discovered six smaller but adult (DBH > 19 cm) Oriental beech trees. 
The size of the beech stand was approximately 3.3 ha, surrounded by a 
European beech forest to the south, and by agricultural land on all other 
sides, with trees reaching 40 m in height and having a mean DBH of 48 
cm. 

2.2. Selection of target trees 

We selected a total of 94 adult trees for leaf reflectance spectroscopy 
measurements and functional trait determination at the two forest 
stands. Tree positions were recorded using a GPS (Trimble Geoexplorer 
6000 series GeoXH) and imagery was acquired with a multispectral 
camera (Micasense RedEdge-MX DUAL) onboard an off-the-shelf unoc-
cupied aerial vehicle (UAV; DJI Matrice 210, DJI Technology Co., Ltd., 
Shenzhen, China) and used to generate true-color orthomosaics of the 
study areas (Fig. 1 a,b). 

Sampling was performed in Allenwiller in 2021 and 2022 (Table S1). 
We preferentially sampled trees for which the tops of canopies were 
easily accessible, which resulted in a bias towards larger Oriental beech 
individuals. In 2022, we adjusted our sampling to correct for this bias 
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and sampled other Oriental and European beech individuals of similar 
size (Fig. 1, Table S1). In 2021, we collected 23 samples of both Euro-
pean and Oriental beech trees on 17–19 July, 31 of August and 1–2 
September 2021 (only 6 and 9 samples for bottom leaves, Table S1), 
while, in 2022, we sampled 19 and 13 individuals of European and 
Oriental beech, on 19–22 July 2022. Overall, 9 individuals were 

sampled in both years. In Wäldi, we collected samples of 24 European 
and 14 Oriental beech individuals during 11–13, 18 and 25 of July 2022 
(only 14 samples for European beech top canopy, Table S1). 

Fig. 1. Distribution (a, b) and diameter at breast height (DBH; c-h) of European (F. sylvatica) and Oriental (F. orientalis) beech trees sampled at the top and bottom of 
the canopy for leaf reflectance spectroscopy measurements and functional traits determination in Allenwiller, France (summer 2021 and 2022) and Wäldi, 
Switzerland (summer 2022). Orthomosaics (a, b) were generated from imagery acquired with multispectral sensor onboard an unoccupied aerial vehicle (UAV). In 
Wäldi (b) two of the mature Oriental beech trees are located about 100 m away in a forest patch not covered by the orthomosaic. 
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2.3. Microsatellite genotyping 

To confirm the taxonomic identity of the sampled trees, we geno-
typed leaf samples using 16 microsatellite loci (Lefèvre et al., 2012). 
Kurz and colleagues (2023) showed that these loci were sufficient to 
distinguish the two subspecies and their F1 hybrids unambiguously. 
DNA isolation and microsatellite genotyping were performed according 
to Kurz et al. (2023). Of the selected adult trees, 9 of those in Wäldi and 
15 of those in Allenwiller were previously genotyped (Kurz et al., 2023). 
Thus, in Wäldi, 29 additional trees and in Allenwiller, 41 additional 
trees were genotyped for this study. 

2.4. Field spectroscopy measurements 

Leaves were sampled from the sunlit top third of the canopy as well 
as from the predominantly shaded bottom third to allow for large dif-
ferences in canopy leaf traits associated with light exposure (Bachofen 
et al., 2020). Twigs at the bottom of the canopy were sampled using a 
handheld extendable pruner and twigs at the canopy top were mostly 
sampled using the DeLeaves twig sampling tool (DeLeaves, Sherbrooke, 
Canada, Charron et al., 2020), operated from a UAV (DJI Matrice 600, 
DJI Technology Co., Ltd., Shenzhen, China). The DeLeaves sampling tool 
comprises a carbon-fiber rod on which a grasping mechanism, a rotating 
saw, a branch-holding mechanism and a camera are installed (for de-
tails, see Charron et al., 2020). In a few cases, when trees were sub- 
dominant, the pruner was used for top-of-canopy sampling, because of 
difficulty in accessing these canopies using the drone-mounted system. 
Trees were sampled by climbing when the pruner or DeLeaves sampling 
device could not be employed. The sampling time window spanned from 
ca. 09:30 am to ca. 05:30 pm on prevalently sunny days and targeted one 
twig of ca. 0.5–1 cm diameter per canopy position and tree. The sampled 
twigs were immediately placed in water buckets and measured for leaf 
spectroscopy within half an hour of cutting. 

Leaf spectroscopy reflectance measurements were performed using a 
portable spectroradiometer (FieldSpec 4 S/N 18739, ASD Inc., Boulder, 
CO, USA) coupled with a plant probe plus leaf clip extension. The 
FieldSpec spectroradiometer included three detectors covering the 
visible and near infrared (VNIR) to the shortwave infrared (SWIR) range, 
from 350 to 2500 nm (ASD, 2015). The plant probe was equipped with 
an internal standardized halogen light source allowing the measurement 
to be taken independently of external illumination. Measurement un-
certainties associated with a similar set-up have been found to vary 
between 0.2 and 3% of the mean leaf reflectance in the VNIR and 
averaging 0.08% in the SWIR, according to Petibon and colleagues 
(2021), who reported that these uncertainties are small compared to the 
biological variation in leaf reflectance within and between individuals of 
European beech. Petibon and colleagues (2021) used a more complex 
protocol, measuring every leaf in front of both black and white standard 
leaf clip backgrounds and calculating reflectance from these measure-
ments combined with measurements of the bare backgrounds, based on 
a simple model of leaf optical properties (5 spectra per condition). 
Because we were interested in relative differences between subspecies, 
we measured leaves only in front of the standardized black background 
of the leaf clip, thus measuring predominantly light scattered back from 
the leaf surface, and not back-scattered from a white background after 
initial penetration of the leaf. For this, three fully expanded healthy 
green leaves, taken from three different ramifications of the same twig, 
were selected for measurement. Leaf spectra were acquired from the 
adaxial leaf surface, at or close to the mid-point between the main vein 
and the leaf edge, and approximately half-way from petiole to leaf tip. 
One measurement was performed per leaf after waiting a few seconds for 
the spectrum, displayed live by the ASD software, to stabilize. 

2.5. Field and laboratory measurements of leaf traits 

For independent trait determination based on traditional field and 

lab protocols, we selected four traits known for their strong linkage with 
overall plant functioning, namely leaf thickness (LT), leaf mass per area 
(LMA), leaf carbon (C) and nitrogen (N) content (Hikosaka, 2004; 
Poorter et al., 2009; Wright et al., 2004). This set of measured traits was 
meant to complement and validate specifically for beech spectra-derived 
traits known to be more difficult to estimate from reflectance spectra due 
to overlap or absence of specific absorption features. 

Leaf thickness was measured in the field on the same three leaves 
selected for spectroscopy. Measurements were performed at three 
interveinal regions at the middle of the leaf and on one side of the 
midvein, using a digital micrometer and a dial test indicator with a low 
measuring force of ≤ 0.15 N to allow consistent thickness measure-
ments, e.g., not affected by leaf hairs or trichomes (Helios Preisser, 
model 0715, accuracy 0.002 mm). A brass cylinder was affixed to the 
ball tip of the dial test indicator with the flat surface flush against the 
micrometer, to ensure uniform and gentle pressure and avoid com-
pressing the leaf at the ball point. Contact pressure was further mini-
mized by approaching the point of zero displacement of the dial 
indicator. Leaves were next wrapped in tinfoil and stored on ice in 
coolers for transport within a few days to the laboratory, for further 
processing. 

To determine LMA, 0.12 cm2 discs were punched from three middle 
interveinal regions on each leaf, oven dried at 60 ◦C for 48 h and 
weighed using a precision balance to determine dry weight. A slightly 
different protocol was used during the August 2021 Allenwiller 
campaign, when fresh leaf area was determined using leaf scanned im-
ages and analyzed with the open-source ImageJ software (Abràmoff 
et al., 2004). The leaf disc protocol was chosen for subsequent cam-
paigns due to the higher efficiency and reproducibility, and better cor-
respondence with leaf spectroscopy measurements. Oven-dried samples 
were next ground and homogenized using a ball mill (Retsch M200, 
Haan, Germany) and subsequently analyzed using an elemental analyzer 
(Flash EA, Thermo Italy, Rhodano, Italy) to obtain nitrogen and carbon 
concentrations per unit mass. The equivalent nitrogen (NA) and carbon 
(CA) content per unit leaf area were calculated using the LMA, to be in 
line with their estimation based on leaf spectra using a fixed-area leaf 
clip. 

2.6. Statistical analysis 

2.6.1. Subspecies classification from genetic data 
Kurz and colleagues (2023) identified five genetic clusters of Ori-

ental beech corresponding to five distinct mountain ranges within its 
distribution. Following Kurz and colleagues (2023), we used the 
Bayesian clustering method implemented in the software Structure 
version 2.3.4 (Pritchard et al., 2000) to estimate the taxonomic identity 
of the newly genotyped trees and to test if they also originate from the 
Greater Caucasus. We used the model with correlated allele frequencies 
and admixture and considering models from one to seven clusters (K 
values). We eliminated the first 1,000,000 iterations as a burn-in period, 
and we used the following 500,000 iterations for estimation. Kurz and 
colleagues (2023) found that the assignment of new individuals to 
previously identified clusters using the USEPOPINFO model of Structure 
performed less well than applying the clustering algorithm to a full data 
set composed of a reference data set (i.e., samples from the natural 
range) and individuals of unknown origin. Therefore, we did not use the 
USEPOPINFO model for assignment. We ran ten independent chains for 
each K and averaged them using CLUMPAK (Kopelman et al., 2015). We 
also used STRUCTURE HARVESTER version 0.6.94 (Earl and vonHoldt, 
2012) to estimate the number of clusters that best explained our data, 
considering the log likelihood of each K (L(K) method; Pritchard et al., 
2000) and the ad hoc statistic ΔΚ (Evanno method; Evanno et al., 2005). 

2.6.2. Leaf reflectance spectra and spectra-derived traits 
All reflectance spectra were trimmed to 400–2400 nm by removing 

ends characterized by high noise and corrected for radiometric steps 
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occurring at the transition regions between detectors due to temperature 
changes (Hueni and Bialek, 2017). Spectra measured in close sequence 
on three leaves of the same twig were next averaged to obtain one mean 
spectrum per individual tree, campaign, and canopy position. In the 
initial screening, data from sites and years were pooled together to in-
crease the sample size, but top- and bottom-canopy leaves were 
analyzed separately. Intraspecific variation in leaf reflectance for each 
tree and subspecies was quantified through the coefficient of variation 
(CV), calculated as the standard deviation divided by the mean over all 
individuals’ spectra. Interspecific variation was instead quantified using 
the spectral separability index (SSI), indicating the importance of each 
wavelength in distinguishing between the two subspecies and calculated 
as: 

SSI =
⃒
⃒μλOrientalis − μλSylvatica

⃒
⃒

sλOrientalis + sλSylvatica
(1)  

where µλclass is the mean reflectance value at a given wavelength and 
sλclass is the standard deviation of the wavelength within the given leaf 
class, i.e., sylvatica or orientalis (Asner et al., 2018). 

Spectra-derived traits were obtained based on existing indices ob-
tained from the literature (see Table 1). Indices were obtained by 
combining reflectance at wavelengths sensitive to the presence and 
concentration of a specific leaf constituent, i.e., showing an absorption 
feature, and a constituent-independent reference wavelength. For N and 
LMA, linear regression and Pearson correlation coefficients were 
computed for spectra-derived traits versus laboratory measurements. 
Next, we conducted a Principal Component Analysis (PCA) on the scaled 
spectra-derived trait data to determine whether leaf traits co-vary in a 
coordinated manner and how subspecies arranged within the trait space. 

2.6.3. Trait variation within and between subspecies 
To examine the variance explained by site, year, canopy position, 

DBH and subspecies on individual leaf traits (i.e., either derived from 
spectra or through field and lab protocols), we used linear mixed-effect 
models (LMM) on pooled data with site, year, canopy position, DBH and 
subspecies as fixed effects, and with tree ID included as a random effect 
to account for pseudo-replication on the tree level, as a few trees were 
sampled twice, once in July and once in August (different twigs). Next, 
to examine subspecies differences more closely in leaf traits and to 
investigate whether they persist across canopy positions, sites, and 
years, we used LMM on individual canopy position / site / year data 
subsets. Subspecies was considered a fixed effect and tree 10 cm DBH 
class was incorporated as a random effect influencing the model inter-
cept. For the dataset collected in Allenwiller in 2021, tree ID was further 
included as a random effect to account for replicate measure at the tree 
level. The restricted maximum likelihood (REML) method was used to fit 
LMMs and obtain estimates and significances of effects using Matlab 
(version 9.5.0 R2018b). REML is known to be more robust in accom-
modating unbalanced designs characterized by an unequal number of 
observations, as is common in ecological studies (Spilke et al., 2005). 
Homoscedasticity and normality of residuals were verified visually. The 
significance and the effect size of subspecies on traits were evaluated 
based on p-values and Cohen’s d value, calculated as the difference 
between group means divided by the pooled standard deviation (Sulli-
van and Feinn, 2012). 

2.6.4. Subspecies classification from spectral data 
We used partial least square discriminant analysis (PLS-DA) to test 

the potential of leaf reflectance spectra to discriminate individuals of 
Oriental and European beech. PLS-DA is suitable for overdetermined 
datasets where the number of independent variables is larger than the 
sample size because it transforms a set of correlated explanatory vari-
ables into a new set of uncorrelated variables (Chevallier et al., 2006; 
Wold et al., 2001). PLS-DA still requires a large sample size to improve 
prediction performance. We thus used pooled data across sites and 
years, which also allowed us to test whether the two subspecies can be 
discriminated irrespective of the variation across sites and years. We 
assessed the utility of different sets of predictor variables for discrimi-
nating between the two subspecies, subsequently referred to as models. 
A total of twelve models differing by canopy position from which 
measured leaves originated, i.e., top or bottom, and by set of predictors, 
were evaluated. Predictor sets included reflectance at wavelengths 
encompassing: (i) the full spectrum (400–2400 nm), (ii) the visible (VIS: 
400–750 nm), (iii) the near-infrared (NIR: 750–1300 nm), (iv) the short- 
wave-infrared I (SWIR I: 1450–1750 nm), or (v) the short-wave-infrared 
II (SWIR II: 1950–2400 nm) spectrum, and (vi) nine spectra-derived 
traits. Logarithmic transformation and autoscaling (i.e., centering and 
variance scaling) was applied on the spectra-derived traits data to 
reduce skewness and obtain a comparable measurement scale (Ballabio 
and Consonni, 2013). A preliminary screening of the discriminatory 
power of spectra-derived trait predictors was performed using Wilks’ 
lambda, ranging between 0 and 1, with lower values indicating a higher 
capability of the predictor variable to separate the considered classes. 
Since Wilks’ lambda values represents univariate predictor indicators, 
all spectra-derived traits were still kept in the final model to explore the 
combined discrimination power. 

PLS-DA was performed using Matlab (version 9.5.0 R2018b) routines 
modified from Ballabio and Consonni (2013). For each data set, we ran 
100 iterations in which we randomly split the data into 50% calibration 
and 50% validation sets (new split each time) using identical subspecies 
class proportions and making sure the same individual never appeared 
in both calibration and validation sets. Model calibration was performed 
on the calibration set and included the selection of optimal number of 
latent variables (LVs) based on a 5-fold venetian blinds cross-validation 
procedure. The optimal number of LVs was selected as the number 
minimizing both the error rate and the number of unassigned samples. 

Table 1 
Spectral indices used for the estimation of spectra-derived traits.  

Spectra-derived trait Spectral index Reference 

Leaf mass per area 
(sLMA) 

Normalized difference index 
for LMA: 

NDLMA =
R1368 − R1722

R1368 + R1722 

Féret et al., 2011 

Nitrogen (sN) Normalized Difference 
Nitrogen Index: 
NDNI =

log
( 1

R1510

)

− log
(

1
R1680

)

log
( 1

R1510

)

+ log
(

1
R1680

)

Fourty et al., 1996; 
Serrano et al., 2002 

Cellulose (sCell) Cellulose Absorption Index: 
CAI =

0.5(R2000 +R2200) − R2100 

Daughtry et al., 2004 

Lignin (sLig) Normalized Difference Lignin 
Index: 
NDLI =

log
( 1

R1754

)

− log
(

1
R1680

)

log
( 1

R1754

)

+ log
(

1
R1680

)

Fourty et al., 1996; 
Serrano et al., 2002 

Chlorophyll (sChl) Leaf Chlorophyll Index: 

LCI =
R850 − R710

R850 + R680 

Datt, 1999; le Maire 
et al., 2004 

Chlorophyll 
Carotenoids ratio 
(sChlCar) 

Chlorophyll/Carotenoid index: 

CCI =
R528 − R645

R528 + R645 

Gamon et al., 2016 

Anthocyanin (sAnth) Anthocyanin Reflectance 
Index: 

ARI2 = R800*
( 1

R550
−

1
R700

)

Gitelson et al., 2001 

Water (sWater) Normalized Difference Water 
Index: 

NDWI =
R857 − R1241

R857 + R1241 

Gao, 1996 

Wax (sWax) Leaf Wax index: 

EWI = R625*
( 1

R736
−

1
R832

) Camarillo-Castillo 
et al., 2021  
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Model learning and predictive ability were evaluated based on the area 
under the curve (AUC) of the receiver operating characteristics (ROC) 
curve for calibration and validation sets, respectively, averaged over 
100 iterations. For the optimal threshold values, which minimize the 
risk associated with omission (sensitivity) and commission (1-speci-
ficity) errors during class assignment, we computed confusion matrices, 
from which balanced accuracy (BA) and Cohen’s kappa coefficient (k) 
performance metrics were derived and averaged over the 100 iterations. 
Although BA is commonly used, it can be misleading as it only considers 
positive instances, while k represents a more robust metric also for un-
balanced datasets, producing a high score only if the prediction is good 
in all four confusion matrix categories (Cohen, 1960). The number of 
samples not assigned (na) to any of the classes was further considered to 
evaluate classification performance. 

3. Results 

3.1. Subspecies classification from genetic data 

In agreement with Kurz and colleagues (2023), we found that the 
best supported number of clusters was six, with five distinct Oriental 
beech clusters (Fig. S1). Further, we could assign all newly genotyped 
Oriental beech trees to the Greater Caucasian cluster (Fig. 2). The ge-
netic clustering analysis thus confirmed that we sampled 31 European 
and 25 Oriental beech trees in Allenwiller, and 24 European and 14 
Oriental beech trees in Wäldi. 

3.2. Leaf reflectance spectra and spectra-derived traits 

Intra- and interspecific subspecies variation in leaf reflectance 
differed by wavelength at the top (N = 105; Fig. 3a) and at the bottom 
(N = 84; Fig. 3b) of the canopy. Variation within a subspecies was 
greatest (CV > 20%) for top-of-canopy leaves in the visible region (VIS: 
400–700 nm), while between-subspecies variation (SSI > 30%) was 
observed in the VIS near 518 nm and 680 nm (Fig. 3c). The greatest 
variation between subspecies (SSItop = 29%, SSIbottom = 20%) and 
lowest variation within subspecies (CVtop = 5%, CVbottom = 6%) was 
found in the near-infrared region (NIR: 750–1300 nm), with Oriental 
beech trees characterized by higher reflectance in the NIR plateau. In the 
shortwave-infrared region (SWIR: 1300–2400 nm), relative variation 
between versus within subspecies strongly varied by wavelength and 
was driven by absorption features. The two water absorption features, 
centered at 1450 nm and 1850 nm, explained > 10% of variation 
observed within and between subspecies at the top of the canopy 
(Fig. 3c). Large variation (≥20%) between subspecies was also observed 

at the top and bottom of the canopy between 1650 and 1750 nm (Fig. 3c, 
d). We also tested for within-tree spectral variation and found a similar 
pattern as for within-subspecies variation, with the VIS region and the 
two water absorption features characterized by the highest variation 
(Fig. S2). 

In a PCA of the 9 spectra-derived traits, the first principal component 
(PC1) explained 48% (top of canopy; Fig. 4a) and 59% (bottom of 
canopy; Fig. 4b) of the overall variation. Variables related to leaf 
structure and nutrient content, such as spectra-derived leaf mass per 
area (sLMA), lignin (sLig), cellulose (sCell) and nitrogen in proteins (sN) 
(Table S2), had the highest loading on PC1 for both bottom- and top-of- 
canopy leaves. PC2 explained 21% (top of canopy; Fig. 4a) and 19% 
(bottom of canopy; Fig. 4b) of variance, and mainly represented indices 
for pigments and waxes. Thus, traits correlated with PC2 are closely 
related to photosynthesis and photoprotection of leaves during high 
irradiance. The two subspecies appeared separated along PC1 in the 
multidimensional trait space for leaves at the top of the canopy (Fig. 4a). 
Specifically, Oriental beech had thicker leaves with higher protein-N 
(higher PC1 scores), while European beech had lower PC1 scores. In 
contrast, subspecies separation was not evident along PC2 or for leaves 
at the bottom of the canopy. 

For the two traits, N and LMA, determined using both, spectral 
indices and laboratory protocols, linear regression analysis revealed 
strong positive relationships (N: r ≥ 0.77, p < 0.001; LMA: r ≥ 0.82, p <
0.001; Fig S3). 

3.3. Trait variation within and between subspecies 

Linear mixed-effects model on the pooled data revealed significant 
effects (p < 0.05) of canopy position, site and year on nearly all traits 
(Table S3). Canopy position showed the strongest effect, confirming 
well-known morphological and biochemical trait gradients along the 
canopy (see also Figs. 5-6). Overall, the second most important effect on 
trait variance was year, followed by site, which was found to have sig-
nificant but weaker effects as compared to canopy position and year. 
Subspecies had a significant effect on leaf N, lignin, cellulose and Chl 
estimated from spectra, and for N and LT measured in the laboratory or 
field. Overall, DBH class had little effect on trait variation (Table S3). 

Linear mixed-effects models for individual sites, years and canopy 
positions showed that at the top of the canopy, spectra-derived leaf ni-
trogen (sN) and lignin (sLig) differed between subspecies (p ≤ 0.05, d ≥
0.77; Table 2). N per unit leaf area measured in the laboratory, also 
differed between subspecies, yet was only marginally significant 
inWäldi (p ≤ 0.077, d ≥ 0.72; Table 2). For all sites and years, Oriental 
beech had higher sLig and sN (and N; Fig. 6a-c) as compared to European 

Fig. 2. Genetic characterization of the European and Oriental beech populations sampled in Allenwiller and Wäldi. Genetic clustering was performed using the 
software Structure assuming six clusters. Each bar corresponds to a sampled individual and each color to a genetic cluster that corresponds to the mountain ranges/ 
regions considered in Kurz et al. 2023. 
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beech (Fig. 5 a-f). For all other traits, significant subspecies effects were 
found for at most one or two (e.g., sChl, sChlCar, p ≤ 0.01; Fig. 5 t,v,x) 
site-year instances. We note that traits linked with leaf structure, i.e., 
LMA and LT, for which we found significant subspecies effects in the first 
year of sampling (2021) in Allenwiller (Table 2, Fig. 5j, Fig. 6g,j), did not 
differ at either of the two sites in the following year (2022). 

3.4. Subspecies classification from spectral data 

For the trait-based model, a preliminary screening of the discrimi-
nation power of individual trait predictors using Wilks’ lambda 
confirmed spectra-derived lignin (sLig) and nitrogen (sN), to have a 
relatively greater discrimination capacity for top-of-canopy leaves, 
indicated by Wilks’ lambda values below 0.8 (Fig. S4). 

Leaf canopy position was highly determinant in classification per-
formance, regardless of the set of spectral predictors used in the model. 
Models based on leaves from the top third of the canopy always out-
performed models using leaves originating from the bottom third, with 
mean AUC indicating moderate to high (AUCtop = 0.75 – 0.93) versus 
low (AUCbottom = 0.52 – 0.75) discriminatory capacity over all thresh-
olds, respectively (Fig. 7). This was confirmed by mean statistics ob-
tained from confusion matrices for optimal threshold values, with fair to 
substantial agreement between predicted and actual classes using top- 
of-canopy leaves (BAtop = 0.71–0.86; ktop = 0.40 – 0.72) and poorer 
agreement using bottom-of-canopy leaves (BAbottom ≤ 0.68; kbottom ≤

0.34; Table 3). Samples that could not be assigned to any of the classes 
remained the same for European beech (na = 0 –3%) but decreased for 
Oriental beech when using leaves originating from the top of the canopy 
(natop = 0 – 4%; nabottom = 0–8%; Table 3). The same improvement of 
top- over bottom-of-canopy leaves was found for model learning per-
formances based on the calibration sets (Fig. S5, Table S5). 

The best separation between Oriental and European beech in-
dividuals was obtained based on leaves from the canopy top by the 
model using as predictors bands in the 1450 –1750 nm region of the 

spectrum (SWIR I). This model resulted in a high mean classification 
accuracy, as evidenced by AUCtop = 0.93 ± 0.03 (Fig. 7d), BAtop = 0.86 
± 0.08 and ktop = 0.72 ± 0.15 (Table 3), obtained over the 100 model 
iterations. This model was followed by models using as predictors 
spectra-derived traits, bands in the SWIR II, and the full spectrum, 
resulting in good classification performances for top-of-canopy leaves. 
We found the model based on the VIS region (400–750 nm) to have the 
worst performance, with low (AUCbottom = 0.53 ± 0.08; Fig. 7h) to fair 
(AUCtop = 0.75 ± 0.06; Fig. 7b) mean classification accuracy for bottom- 
and top-of-canopy leaves, respectively, according to ROC curve analysis. 
Similarly, confusion matrix statistics indicated poor (kbottom < 0.1) to 
fair (ktop = 0.40 ± 0.13) mean agreement between predicted and actual 
classes using the VIS region at the bottom and top of the canopy, 
respectively (Table 3). Surprisingly, as it was in disagreement with what 
the spectral separability analysis based on SSI and CV indices seemed to 
suggest (Fig. 3), the NIR model showed the second-worse mean classi-
fication performance using the validation set. Models’ performances 
ranked similarly for both, their learning and their predictive abilities, 
evaluated respectively on the calibration (Fig. S5, Table S5) and on the 
validation datasets (Fig. 7, Table 3). Interestingly, the percentage of 
unclassified samples was the metric least affected by model type, e.g., 
we found 4% of the Oriental beech individuals could not be assigned to 
any class by either the overall best (SWIR I) and the overall worst (VIS) 
performing model. 

4. Discussion 

We present a proof-of-principle study discriminating European and 
Oriental beech using leaf spectroscopy, and discuss physiological im-
plications related with the functioning of the two subspecies under the 
same environmental conditions at two 100-year-old forest stands, as 
well as operational implications related with the choice of sensor and 
related wavelengths required for discrimination. We also discuss the 
next lines of research in terms of beech subspecies trait variation and 

Fig. 3. Spectral variance within and between subspecies shown as original leaf reflectance spectra (a, b) and as coefficient of variation (CV) and spectral separability 
index (SSI, blue lines) (c, d). Results are shown for top F. orientalis (N = 50) and F. sylvatica (N = 55) and bottom F. orientalis (N = 32) and F. sylvatica (N = 52) canopy 
leaves measured for adult trees in Allenwiller, France (summer 2021 and 2022) and Wäldi, Switzerland (summer 2022). Leaf reflectance spectra were measured using 
a portable spectroradiometer acquiring in the visible (VIS: 400–750 nm), the near-infrared (NIR: 750–1300 nm), and the short-wave-infrared (SWIR: 1450–2400 nm). 
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classification approaches in support of assisted gene flow. 

4.1. Differences in leaf physiology of the two beech subspecies 

At the leaf level, reflectance in the VIS is mainly driven by rapid 
pigment interconversion dynamics that occur in function of changing 
light conditions (D’Odorico et al., 2021). It follows that the high within- 
species spectral variance for top canopy leaves in the VIS (Fig. 3) is likely 
the result of sampling taking place over the course of an entire day and 
associated differences in leaves’ light histories. The high between- 
subspecies spectral variance at the top of the canopy (SSI > 30%), 
observed near 518 nm and 680 nm (Fig. 3c), might instead result from 

subspecies differences in seasonal adjustments of carotenoid and chlo-
rophyll pigment pools (Wong et al., 2019); a hypothesis that remains to 
be clarified using laboratory measures. In the NIR, variance between 
subspecies is likely associated with differences in leaf cell structure and 
light scattering within the leaf spongy mesophyll layer that determine 
leaf optical properties in this spectral region (Ollinger, 2011). Finally, in 
the SWIR, which we found to be the most informative region for 
discriminating Oriental and European beech, light-plant interactions at 
the leaf level are governed by non-pigment leaf constituents, including 
lignin, cellulose and N in proteins, influencing leaf optical properties 
directly through their individual absorption features, and indirectly via 
their relationship with structural and microstructural leaf traits such as 
cell wall composition and epidermis thickness (Ollinger, 2011; Poorter 
et al., 2009; Wright et al., 2004). Collectively, this suite of traits 
affecting SWIR reflectance reveals leaf construction investments sup-
porting functions related to foliar longevity and defense, and controlling 
many physiological functions linked with photosynthetic capacity and 
stress avoidance (Kokaly et al., 2009; Kozhoridze et al., 2016; Wright 
et al., 2004). Strong absorption features of ligno-cellulose constituents of 
plant tissues and cell walls are found in the SWIR at 1680 nm and 1750 
nm and from 2100 nm to 2300 nm (Curran, 1989; Serrano et al., 2002), 
and were used here to compute spectral indices for the estimation of 
these constituents (see Table 1). While these absorption features are 
affected by water content and overlay with other absorption features, 
cellulose and lignin are present in great abundance in leaves compared 
to other constituents which absorb in these regions (except for water) 
(Kokaly et al., 2009; Ollinger, 2011). Nitrogen, in contrast, is associated 
with more complex leaf optical properties (Kokaly, 2001). Low con-
centrations and partly overlapping absorption features of N-containing 
constituents with water and other dry matter constituents make its 
estimation from plant spectra challenging (Fourty et al., 1996; Féret 
et al., 2021). Nevertheless, our validation against laboratory determined 
leaf N (r = 0.88, p ≤ 0.001; Fig. S3 a) suggests that it is feasible, 
consistent with several other studies (Ely et al., 2019; Kothari et al., 
2023b,a; Serbin et al., 2014; Serrano et al., 2002). Nitrogen is present in 
leaves in many forms, which warrants caution in the formulation of 
physiological implications. Here, we estimated N using wavelengths in 
the SWIR (see NDNI in Table 1), linked with its presence in proteins (i.e., 
Ribulose-1,5-bisphosphate carboxylase/oxygenase, i.e., Rubisco), con-
taining up to 50% of N of green leaves as compared to only 2% contained 
in Chl pigments (Hikosaka and Terashima, 1996). N allocated to cell 
walls may also have contributed, yet its concentration is reported to be 
relatively low (around 2.2%)(Onoda et al., 2004; Takashima et al., 
2004). In addition to spectral indices, plant traits can be estimated from 
spectra also using other empirical and physical approaches. Among 
these, are physically-based radiative transfer models (Féret et al., 2021) 
and empirical models based on multivariate techniques such as partial 
least squares regression (PLSR) (see review by Kothari and Schweiger, 
2022). These approaches are particularly interesting for traits that are 
characterized by overlapping or weak absorption features and that are 
lacking dedicated spectral indices. 

This study represents a first step towards the spectral and functional 
characterization of two beech subspecies. Overall, our dataset suggests 
that in the two examined forest stands, Oriental beech trees are char-
acterized by leaves with more lignin per unit leaf area and thus are likely 
tougher as compared to leaves from European beech trees growing 
under the same environmental conditions. While this was supported also 
by higher LMA and LT values for Oriental beech in 2021, this pattern 
was not apparent from the data collected in 2022, suggesting the effect 
of genotype × environment interactions. Indeed, the summers of 2021 
and 2022 had drastically different meteorological conditions: 2021 was 
exceptionally wet and 2022 was exceptionally dry. Lower average air 
temperature (Ta) and irradiance (Rad), and higher relative humidity 
(RH) and precipitation (Precip), were recorded in both spring and 
summer of 2021 as compared to 2022 (Table S4). Preceding- and 
current-year conditions might have triggered greater environmental 

Fig. 4. Principal component analysis (PCA) of the 9 spectra-based leaf func-
tional traits for top- (a; N = 105) and bottom- (b; N = 84) of-canopy leaves from 
F. sylvatica and F. orientalis in Allenwiller, France (summer 2021 and 2022) and 
Wäldi, Switzerland (summer 2022). Spectra-derived traits include: chlorophyll 
carotenoid pigment pools ratio (sChlCar), water content (sWater), cellulose 
(sCell), leaf mass per area (sLMA), lignin (sLig), nitrogen (sN), wax (sWax), 
chlorophyll pigments (sChl) and anthocyanin pigments (sAnth). 

P. D’Odorico et al.                                                                                                                                                                                                                              



Forest Ecology and Management 541 (2023) 121056

9

Fig. 5. Spectra-derived leaf traits of F. sylvatica (Fs) and 
F. orientalis (Fo) tree subspecies in Allenwiller, France 
(summer 2021 and 2022) and Wäldi, Switzerland (sum-
mer 2022). Violin plots show trait distributions, with 
circles representing median values and darker-colored 
areas representing intervals between the 25th and 75th 
quartiles. The number of samples for each subspecies (Fs, 
Fo) is indicated under the subspecies label. Asterisks 
above the violin plots indicate significant differences be-
tween subspecies at either bottom or top of canopy (* p ≤
0.05, ** p ≤ 0.01, *** p ≤ 0.001) according to linear 
mixed effect models, with subspecies as fixed effect and 
diameter at breast height class as random effect (for 
Allenwiller 2021, tree ID was additionally considered as 
random effect in the model). Spectral (s) indices used for 
estimation of leaf traits: nitrogen (sN; a-c), lignin (sLig; d- 
f), cellulose (sCell; g-i), leaf mass per area (sLMA; j-l), 
water content (sWater; m-o), wax (sWax; p-r), chlorophyll 
pigments (sChl; s-u), chlorophyll carotenoid pigment 
pools ratio (sChlCar; v-x), and anthocyanin pigments 
(sAnth; y-aa), are reported in Table 1.   
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plasticity of morphological traits in Oriental beech (Table S4). Irradi-
ance and air temperature are known to affect the programming of the 
leaf within the bud as well as cell expansion and number of cell layers in 
newly emerging leaves (Poorter et al., 2009; Uemura et al., 2000). High 
plasticity in these morphological traits may support more rapid adap-
tation to future warmer and drier conditions, for instance by allowing 
for leaves with reduced leaf transpiration surfaces. Last but not least, 
Oriental beech individuals at the two examined forest stands were 
characterized by top-of-canopy leaves with higher N and in 2022 also 
higher Chl per unit leaf area, suggesting greater ability to maximize leaf 
photosynthetic activity than European beech for comparable leaf area 
(Wright et al., 2004). Notably, subspecies trait divergence at our two 
sites was particularly evident for leaves at the top of the canopy, where 
conditions can become less favorable when high irradiance occurs in 
combination with decreasing water availability. 

4.2. Operational implications for subspecies classification using remote 
sensing 

The design of future species monitoring approaches relying on 
spectral datasets starts from the choice of sensor and related wave-
lengths required for discrimination. We found reflectance in the SWIR to 
discriminate the two beech subspecies most effectively (BA = 0.86 ±
0.08, k = 0.72 ± 0.15; Table 3, Fig. 7), likely due to the strong influence 
of defined spectral features in this region, with NIR predictors out-
performing only predictors in the VIS region. This suggests that future 

spectral screening approaches would not be required to employ expen-
sive spectrometers acquiring over a wide range of wavelengths, but 
could instead be limited to instruments measuring in a few SWIR bands. 
Narrowing down to the most conservative set of predictors can further 
facilitate the transition to airborne and satellite-based sensors that 
usually acquire in fewer bands. 

The majority of studies using spectral data for species discrimination 
focused on differences in productivity among functional groups and thus 
built on information in the visible near-infrared (VNIR) region, gov-
erned by strong pigment absorption at the leaf level and structure at the 
canopy scale (as reviewed by Ustin and Gamon, 2010; Fassnacht et al., 
2016). Fewer investigations concentrated on light-plant interactions in 
the SWIR. For example, Buitrago and colleagues (2018) found the SWIR 
region to accurately (k = 0.93) differentiate 19 herbaceous and woody 
species of different taxonomic families, spanning from the tropics to 
temperate regions. The authors found similar performance when using 
the mid-wave (2.5–6 μm) and long-wave (6–20 μm) infrared, which, 
however, have the drawback of rarely being available in current field, 
airborne and spaceborne sensors. Further studies in (sub-)tropical for-
ests corroborate the improvement in species spectral separability ob-
tained using the SWIR region in comparison to information in the VNIR 
(Bao et al., 2021); improvement that was also observed by Ferreira and 
colleagues (2019) at the canopy scale, leveraging new SWIR sensing 
capabilities offered by the WorldView-3 satellite sensor. Worth 
mentioning are also full spectrum transformation approaches such as 
wavelet transforms (Jach 2016), which was used as a discriminant 

Fig. 6. Leaf traits of F. sylvatica (Fs) and 
F. orientalis (Fo) tree subspecies in Allenwiller, 
France (summer 2021 and 2022) and Wäldi, 
Switzerland (summer 2022). Violin plots show 
trait distributions, with circles representing 
median values and darker-colored areas repre-
senting the intervals between the 25th and 75th 
quartiles. The number of samples for each sub-
species (Fs, Fo) is indicated under the species 
label. Asterisks above the violin plots indicate 
significant differences between subspecies at 
either bottom or top of canopy (* p ≤ 0.05, ** p 
≤ 0.01, *** p ≤ 0.001) according to linear 
mixed effect models, with subspecies as fixed 
effect and diameter at breast height class as 
random effect (for Allenwiller 2021 tree ID was 
additionally considered as random effect in the 
model). Leaf traits: nitrogen per unit leaf area 
(N; a-c), carbon per unit leaf area (C; d-f), leaf 
mass per area (LMA; g-i), leaf thickness (LT; j-l).   
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Table 2 
Summary of the analysis of variance using linear mixed effect models having spectra-derived or lab traits for top or bottom of canopy leaves as the response variable, 
subspecies as the fixed factor and tree diameter at breast height class as random factor influencing the model intercept. The model for the Allenwiller 2021 dataset 
further includes tree ID as random factor to account for pseudoreplication on tree level.  

Response variable Allenwiller 2021 Allenwiller 2022 Wäldi 2022 

Top of canopy N = 46 N = 31 N = 28 
Spectral traits F p d F p d F p d 
sN 50.4 <0.001 2.25 5.6 0.024 0.77 14.2 <0.001 1.35 
sLig 65.8 <0.001 2.62 9.1 0.005 1.06 8.3 0.008 1.11 
sCell 3.4 0.073 0.63 5.7 0.024 − 0.99 1.0 0.331 − 0.36 
sLMA 13.2 <0.001 1.21 0.4 0.526 − 0.33 0.1 0.788 0.14 
sWater 8.2 0.006 0.91 1.9 0.172 − 0.50 0.2 0.685 − 0.11 
sWax 1.9 0.171 0.37 0.4 0.515 0.09 7.5 0.012 1.01 
sChl 2.6 0.114 0.42 7.6 0.010 0.86 26.2 <0.001 1.88 
sChlCar 4.3 0.044 − 0.60 <0.1 0.992 0.06 

− 0.86 
10.3 0.003 − 1.18 

sAnth 0.4 0.550 − 0.13 5.9 0.022 1.2 0.275 0.41  

Lab traits          
N [mg cm− 2] 10.35 0.003 1.03 16.26 0.001 1.19 3.4 0.077 0.72 
C [mg cm− 2] 2.39 0.13 0.60 0.22 0.641 − 0.26 0.07 0.791 0.02 
LMA [g m− 2] 4.1 0.05 0.75 0.09 0.773 − 0.19 0 0.985 0.11 
LT [µm] 9.89 0.004 1.10 0.23 0.637 0.17 1.96 0.185 0.42  

Bottom of canopy N = 15 N = 31 N = 38 
Spectral traits F p d F p d F p d 
sN 1.9 0.194 0.70 1.1 0.312 0.35 0.8 0.388 0.42 
sLig 11.1 0.005 1.23 1.5 0.237 0.41 <0.1 0.864 0.23 
sCell 0.4 0.544 − 0.41 1.4 0.239 − 0.41 18.4 <0.001 − 1.41 
sLMA 4.6 0.050 1.04 0.1 0.741 − 0.14 <0.1 0.932 0.05 
sWater 4.4 0.055 1.09 0.2 0.651 − 0.17 3.7 0.063 − 0.64 
sWax 4.2 0.060 0.46 2.0 0.170 0.51 0.2 0.686 − 0.08 
sChl 1.0 0.346 0.59 5.3 0.029 0.82 0.1 0.785 0.23 
sChlCar 1.5 0.243 − 0.51 2.3 0.142 − 0.54 0.1 0.806 0.01 
sAnth 1.2 0.290 − 0.65 0.3 0.614 0.18 1.2 0.280 0.36  

Lab traits          
N [mg cm− 2] 31.37 0.002 1.73 1.16 0.292 0.36 0.14 0.711 0.18 
C [mg cm− 2] 10.78 0.007 1.07 0.09 0.77 0.08 0.01 0.938 0.02 
LMA [g m− 2] 7.49 0.019 0.97 0.01 0.937 − 0.04 0 0.968 0.06 
LT [µm] 13.79 0.005 − 0.26 3.91 0.058 0.70 0.04 0.851 0.03 

N: number of sampled trees; LMA: leaf mass per area; LT: leaf thickness; F: F-values from Fisher’s test; p: p-values showed in bold when p < 0.05; d: Cohen’s d effect size 
(d = 0.20 small effect, d = 0.50 medium effect, d = 0.80 large effect). 

Fig. 7. Receiver operating characteristic (ROC) prediction curves calculated from the partial least square discriminant analysis (PLS-DA) of two beech subspecies 
(F. orientalis; F. sylvatica) based on spectra of leaves at the top (a-f) and bottom (g-l) of the canopy acquired in Allenwiller, France (summer 2021 and 2022) and 
Wäldi, Switzerland (summer 2022). Six models, differing in predictor variables: full spectra (400–2400 nm; a, g), VIS spectra (400–750 nm; b, h), NIR spectra 
(750–1300 nm; c, i), SWIR I spectra (1450–1750 nm; d, j) and SWIR II spectra (1950 – 2400 nm; e, k) and a set of 9 spectra-derived traits (f, l; see Table 1 for list of 
traits), are compared. Curves are displayed for 100 model iterations, each based on a new validation set corresponding to 50% of total samples. Black dots represent 
optimal threshold values, minimizing omission (sensitivity) and commission (1-specificity) errors. The mean ROC Area Under the Curve (AUC; ± 1 std) are given over 
the 100 model iterations. 
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analysis precursor in classification studies employing airborne hyper-
spectral data, from pine species (Banskota et al., 2011) to tropical tree 
species (Zhang et al., 2006). 

4.3. Future lines of research 

In this study, we examined spectral and functional differences be-
tween European and Oriental beech at two central European forest 
stands both having the same Greater Caucasian provenance of Oriental 
beech, and thus not covering the entire trait distribution of the sub-
species across their natural ranges. European beech is characterized by 
high phenotypic plasticity, and studies based on provenance trials have 
found adaptive response capability encompassing several traits associ-
ated with phenology, growth, and resistance to drought (Bresson et al., 
2011; Frank et al., 2017; Müller et al., 2020; Stojnić et al., 2015). Among 
these are also morphological leaf traits, such as LMA and LT which, in a 
study by Stojnic and colleagues (2015), were found to vary among Eu-
ropean beech provenances grown under marginal conditions. Interest-
ingly, the same authors indicated that adaptation to unfavorable growth 
conditions was not necessarily associated with beech provenances from 
southern and dry sites, but instead observed for certain Central and 
Eastern European provenances originating from mesic sites. This re-
inforces the fact that identification and use of appropriate beech seed 
sources for assisted migration requires a priori evaluation that is best 
achieved through high-throughput phenotyping approaches, like the 
one presented in this study based on spectral data, in combination with 
multi-provenance plantation networks spanning a wide range of envi-
ronmental conditions. Notably, these networks should include marginal 
sites, where environmental filtering effects and phenotypic plasticity 
shape the tails of trait distributions (Gárate-Escamilla et al., 2019). The 
network of Oriental beech planting sites identified by Kurz and col-
leagues (2023) could be exploited for further physiological phenotyping, 
especially because Oriental beech provenances other than the Greater 
Caucasian are also present in this network. 

Although this study focused on leaf spectroscopy for subspecies 

discrimination, it has clear implications for crown-level tree classifica-
tions from airborne or satellite-based imagery. Findings of this study 
provide a starting point for the interpretation of variability in tree crown 
reflectance. The superior discrimination capacity of leaves at the top of 
the canopy as compared to bottom-of-canopy leaves holds promise for 
the upscaling of the method using remote sensing. Unlike leaf spectra, 
tree crown spectra are influenced by background signals and acquisition 
geometry that might challenge classification, and by canopy structure 
(e.g., leaf area index, crown shape) which, for species that have unique 
and predictable combination of these parameters, could support classi-
fication at the crown level. In this respect, combining foliar biochemistry 
retrieved from optical data with structural information obtained from 
LiDAR (Light Detection And Ranging) sensors onboard UAVs or other 
aerial platforms could further extend classification possibilities (Li et al., 
2013). 

We foresee using spectral data to investigate the genetic and 
phenotypic clines between European and Oriental beech. Given the 
relatively young age of our two study sites, no mature hybrid individuals 
were identified following the genetic analysis. Yet, a testbed for this 
evaluation can be found in the natural hybrid zone in Bulgaria, where 
natural distribution ranges of the two subspecies overlap, resulting in all 
the complexity of an ongoing hybridization (Denk et al., 2002; Vettori 
et al., 2004). A spectral phenotyping approach allowing to monitor the 
rate of hybridization between native and introduced species, in addition 
to their resilience, would represent an important support tool for assis-
ted migration programs. 

5. Conclusions 

The introduction of close relatives of native species, or of populations 
from different parts of the species range, to our forests as a climate 
change mitigation strategy presents challenges for monitoring due to 
similarities in appearance of introduced and native trees. Traditional 
ground-based phenotyping methods and expensive, laborious genetic 
screening alone are not sufficient for monitoring across large geographic 
areas. Our work shows that leaf spectroscopy, particularly leaf reflec-
tance spectra in the short-wave-infrared (SWIR), was able to accurately 
discriminate individuals of European and Oriental beech subspecies, 
growing under the same environmental conditions at two 100-year-old 
central European forest stands. Discrimination capacity was mainly 
linked with higher spectra-derived lignin and protein-N found in Ori-
ental beech leaves as compared to European beech, influencing leaf 
optical properties directly through constituents’ absorption features in 
the SWIR and indirectly via their relationship with structural leaf traits. 
The superior discrimination capacity of leaves at the top of the canopy, 
as compared to bottom-of-canopy leaves, indicates the importance of 
environmental interactions in revealing these differences and holds 
promise for the upscaling of the method using airborne or spaceborne 
remote sensing. The presented proof-of-principle for discriminating 
subspecies could, in future, allow monitoring of other newly introduced 
species, as well as hybridization rates and spread of adaptive genetic 
variants upon assisted gene flow, and further improve our understand-
ing of their functional adaptation strategies based on spectral data. 
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acquisition, Resources, Project administration, Supervision, Investiga-
tion, Methodology, Data curation, Formal analysis, Writing – review & 
editing. 

Table 3 
Partial least square discriminant analysis (PLS-DA) prediction statistics of two 
beech subspecies (F. orientalis; F. sylvatica) based on spectra of leaves at the top 
(N = 105) and bottom (N = 84) of the canopy sampled in Allenwiller, France 
(summer 2021 and 2022) and Wäldi, Switzerland (summer 2022). Six models, 
using either the full spectrum (400–2400 nm) or a range of wavelengths or a set 
of 9 spectra-derived traits (see Table 1 for list of traits), are compared. Perfor-
mance metrics are averaged over 100 model iterations, each based on a new 
validation set corresponding to 50% of total samples.  

Predictors Top-of-canopy Bottom-of-canopy 

BA 
(mean ±
1std) 

k (mean 
± 1std) 

na 
[%] 

BA 
(mean ±
1std) 

k (mean 
± 1std) 

na 
[%] 

Full spectrum: 
400 – 2400 
nm 

0.82 ±
0.05 

0.63 ±
0.09 

2O 
3 S 

0.64 ±
0.13 

0.28 ±
0.25 

5O 
2 S 

VIS: 400 – 750 
nm 

0.71 ±
0.07 

0.40 ±
0.13 

4O 
3S 

0.50 ±
0.07 

< 0.1 8O 
3S 

NIR: 750 – 
1300 nm 

0.76 ±
0.07 

0.51 ±
0.13 

2O 
1S 

0.51 ±
0.07 

< 0.1 6O 
3S 

SWIR I: 1450 
–1750 nm 

0.86 ±
0.08 

0.72 ±
0.15 

4O 
1S 

0.68 ±
0.12 

0.34 ±
0.23 

7O 
3S 

SWIR II: 1950 
–2400 nm 

0.85 ±
0.05 

0.69 ±
0.10 

3O 
3S 

0.67 ±
0.14 

0.34 ±
0.26 

8O 
3S 

Spectra- 
derived 
traits 

0.84 ±
0.05 

0.67 ±
0.10 

0O 
0 S 

0.56 ±
0.09 

0.12 ±
0.17 

0O 
0 S 

VIS: visible; NIR: near-infrared; SWIR: shortwave infrared; O: F. orientalis; S: 
F. sylvatica. BA: balanced accuracy (ranges from 0 worst to 1 best); k: kappa 
statistics (<0 poor, 0.00–0.20 slight, 0.21–0.40 fair, 0.41–0.60 moderate, 
0.61–0.80 substantial, 0.81–1.00 high (Landis and Koch, 1977)); na: not 
assigned samples in %. 
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Féret, J.-B., Berger, K., de Boissieu, F., Malenovský, Z., 2021. PROSPECT-PRO for 
estimating content of nitrogen-containing leaf proteins and other carbon-based 
constituents. Remote Sens. Environ. 252, 112173 https://doi.org/10.1016/j. 
rse.2020.112173. 

Ferreira, M.P., Wagner, F.H., Aragão, L.E.O.C., Shimabukuro, Y.E., de Souza Filho, C.R., 
2019. Tree species classification in tropical forests using visible to shortwave 
infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote 
Sens. 149, 119–131. https://doi.org/10.1016/j.isprsjprs.2019.01.019. 

Forzieri, G., Girardello, M., Ceccherini, G., et al., 2021. Emergent vulnerability to 
climate-driven disturbances in European forests. Nat. Commun. 12, 1081. https:// 
doi.org/10.1038/s41467-021-21399-7. 

Fourty, T., Baret, F., Jacquemoud, S., Schmuck, G., Verdebout, J., 1996. Leaf optical 
properties with explicit description of its biochemical composition: direct and 
inverse problems. Remote Sens. Environ. 56 (2), 104–117. https://doi.org/10.1016/ 
0034-4257(95)00234-0. 

Frank, A., Pluess, A.R., Howe, G.T., Sperisen, C., Heiri, C., 2017. Quantitative genetic 
differentiation and phenotypic plasticity of European beech in a heterogeneous 
landscape: Indications for past climate adaptation. Perspectives in Plant Ecol. 
Evolution and Systematics 26, 1–13. https://doi.org/10.1016/j.ppees.2017.02.001. 

Frei, E. R., Gossner, M. M., Vitasse, Y., Queloz, V., Dubach, V., Gessler, A., . . . 
Wohlgemuth, T. 2022. European beech dieback after premature leaf senescence 
during the 2018 drought in northern Switzerland. Plant Biology, n/a(n/a). 10.1111/ 
plb.13467. 

Gamon, J.A., Huemmrich, K.F., Wong, C.Y.S., Ensminger, I., Garrity, S., Hollinger, D.Y., 
Peñuelas, J., 2016. A remotely sensed pigment index reveals photosynthetic 
phenology in evergreen conifers. Proc. Natl. Acad. Sci. 113 (46), 13087. https://doi. 
org/10.1073/pnas.1606162113. 

Gao, B.-C., 1996. NDWI—A normalized difference water index for remote sensing of 
vegetation liquid water from space. Remote Sens. Environ. 58 (3), 257–266. https:// 
doi.org/10.1016/S0034-4257(96)00067-3. 
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Petibon, F., Czyż, E.A., Ghielmetti, G., Hueni, A., Kneubühler, M., Schaepman, M.E., 
Schuman, M.C., 2021. Uncertainties in measurements of leaf optical properties are 
small compared to the biological variation within and between individuals of 
European beech. Remote Sens. Environ. 264, 112601 https://doi.org/10.1016/j. 
rse.2021.112601. 

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., Villar, R., 2009. Causes and 
consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 
182 (3), 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x. 

Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of Population Structure Using 
Multilocus Genotype Data. Genetics 155 (2), 945–959. https://doi.org/10.1093/ 
genetics/155.2.945. 

Schweiger, A.K., Cavender-Bares, J., Townsend, P.A., Hobbie, S.E., Madritch, M.D., 
Wang, R., Gamon, J.A., 2018. Plant spectral diversity integrates functional and 
phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. 
Evol. 2 (6), 976–982. https://doi.org/10.1038/s41559-018-0551-1. 

Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., Seidl, R., 
2018. Canopy mortality has doubled in Europe’s temperate forests over the last three 
decades. Nat. Commun. 9 (1), 4978. https://doi.org/10.1038/s41467-018-07539-6. 

Serbin, S.P., Singh, A., McNeil, B.E., Kingdon, C.C., Townsend, P.A., 2014. Spectroscopic 
determination of leaf morphological and biochemical traits for northern temperate 
and boreal tree species. Ecol. Appl. 24 (7), 1651–1669. https://doi.org/10.1890/13- 
2110.1. 
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Stojnić, S., Orlović, S., Miljković, D., Galić, Z., Kebert, M., von Wuehlisch, G., 2015. 
Provenance plasticity of European beech leaf traits under differing environmental 
conditions at two Serbian common garden sites. Eur. J. For. Res. 134 (6), 
1109–1125. https://doi.org/10.1007/s10342-015-0914-y. 

Sullivan, G.M., Feinn, R., 2012. Using Effect Size—or Why the P Value Is Not Enough. 
J. Grad. Med. Educ. 4 (3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1. 

Takashima, T., Hikosaka, K., Hirose, T., 2004. Photosynthesis or persistence: nitrogen 
allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 
27 (8), 1047–1054. https://doi.org/10.1111/j.1365-3040.2004.01209.x. 

Uemura, A., Ishida, A., Nakano, T., Terashima, I., Tanabe, H., Matsumoto, Y., 2000. 
Acclimation of leaf characteristics of Fagus species to previous-year and current-year 

solar irradiances. Tree Physiol. 20 (14), 945–951. https://doi.org/10.1093/ 
treephys/20.14.945. 

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol. 
186 (4), 795–816. https://doi.org/10.1111/j.1469-8137.2010.03284.x. 

Vettori, C., Paffetti, D., Paule, L., Giannini, R., 2004. Identification of the Fagus sylvatica 
L. and Fagus orientalis Lipsky species and intraspecific variability. For. Genet. 10, 
223–230. 

Winder, R., Nelson, E., Beardmore, T., 2011. Ecological implications for assisted 
migration in Canadian forests. For. Chron. 87 (06), 731–744. https://doi.org/ 
10.5558/tfc2011-090. 
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