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Abstract
Wind energy potential in complex terrain is still poorly understood and difficult to quantify.
With Switzerland’s current efforts to shift to renewable energy resources, it is now becoming
even more crucial to investigate the hidden potential of wind energy. However, the country’s
topographymakes the assessment very challenging.We present twomeasurement campaigns
at Lukmanier and Les Diablerets, as representative areas of the complex terrain of the Swiss
Alps. A general understanding of local wind flow characteristics is achieved by compar-
ing wind speed measurements from a near-surface ultra-sonic anemometer and from light
detection and ranging (LiDAR)measurements further aloft. Themeasurements show how the
terrainmodifies synoptic wind for example through katabatic flows and effects of local topog-
raphy. We use an artificial neural network (ANN) to combine the data from the measurement
campaign with wind speed measured by weather stations in the surrounding area of the study
sites. The ANN approach is validated against a set of LiDAR measurements which were not
used for model calibration and also against wind speed measurements from a 25-meter mast,
previously installed at Lukmanier. The statistics of the ANN output obtained frommulti-year
time series of nearby weather stations match accurately the ones of the mast data. However,
for the rather short validation periods from the LiDAR, the ANN has difficulties in predicting
lowest wind speeds at both sites, and highest wind speeds at Les Diablerets.
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1 Introduction

Ongoing climate change with its increasingly severe impacts and negative consequences for
the natural and built environment, society, population, and management of natural resources
has put a large pressure on implementing sustainable power generation and renewable energy
supply systems. Depending on the geographic situation of a region or a country, resources
and solutions are seen in solar, wind, hydropower, geothermal, biogas, and other energy
production systems. Most of these renewable energy sources are still under-exploited and a
large potential for optimized use is seen in most of these domains (Sait et al. 2019). Wind
power is one of these with untapped potential, especially in mountain areas (Clifton et al.
2014; Kim et al. 2017).

Following the Fukushima nuclear disaster in 2011, the Federal Department of the Envi-
ronment, Transport, Energy and Communications (DETEC) of Switzerland has decided to
examine the energy strategy for a long-term sustainable energy policy. The Federal Coun-
cil has developed the ‘Energy Strategy 2050’ (SFOE 2018) with the strategic objectives to
increase energy efficiency, increase the use of renewable energy and reduce nuclear energy.
In 2021, a large part of energy for Switzerland is still imported, at approximately 70.3%, and
non renewable (Federal Administration of Switzerland, 2021). The non renewable energy
sources come from petroleum at one third of total consumption, nuclear energy with one fifth
and natural gas with one tenth (Federal Administration of Switzerland, 2021).

Domestically, the energy resources in Switzerland are currently still dominated by
hydropower (Federal Administration of Switzerland, 2022). Hydropower provides 62% of
domestic electricity production, nuclear 29%andapproximately 9%comes fromconventional
power plants and (new) renewable energy facilities (Federal Administration of Switzerland,
2021). Using hydropower, maximum production occurs during the summer season, due to
snow melt and precipitation dynamics (Bavay et al. 2009). However, the energy consump-
tion of Switzerland increases in the winter time for heating and lighting creating a mismatch
between consumption and production trends (Dujardin et al. 2017). Therefore, wind power
production, which can be enhanced during winter at particular locations, could be a signif-
icant contributor to the envisioned mix of renewable energy sources (Dujardin et al. 2021).
Also, a general wind speed increase over North and Central Europe during the winter time
has been reported by Grams et al. (2017), Clark et al. (2017), Graabak and Korpås (2016)
and Archer and Jacobson (2013). This leads to a strong motivation to explore wind power
potential to close the seasonality gap.

It is challenging to assess the wind resources in complex terrain, such as the Swiss Alps
(Kruyt 2019; Kruyt et al. 2018). We suggest a new methodology, a combination of ground-
based remote sensing at a relatively short deployment time with long-term near-surface
atmospheric measurements. A light detection and ranging (LiDAR) instrument is chosen
because of its ability to measure wind speed over a wide vertical range (Wang et al. 2016)
and its simpler deployment compared to a tall mast. While LiDAR remote sensing technol-
ogy is increasingly used to collect wind speed data, such measurements in complex terrain
remain rather challenging. They may be subject to a large bias due to the heterogeneous flow.
Assuming horizontal homogeneity, the horizontal velocity measured by the LiDAR may be
underestimated by up to 10% in extreme cases (Pitter et al. 2012).

While the interpretation of LiDAR measurements in complex terrain is challenging, a
recent publication by Dujardin and Lehning (2022) introduces a deep learning approach
(artificial neural network, ANN) to predict wind speed at 10ms above ground level (a.g.l.)
called Wind-Topo. Local topography at a 2-m resolution and the state of the atmosphere
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from a numerical weather prediction (NWP) model are used as input. Data from automatic
measurement stations are used to calibrate the model, which successfully shows ridge accel-
eration, sheltering, and deflection mechanisms.

The objective of this study is to propose a method to estimate and assess the wind energy
potential in complex terrain by combining LiDAR measurements with meteorological data
from spatially distributed weather stations. This novel approach will allow us to generate
long-term time series of wind from the relatively short-term LiDAR deployment, under
the condition of having a full data set of stations in the vicinity for the long-period target.
This method is particularly useful in complex terrain since the wind characteristics vary
substantially depending on the location, and it is challenging to have full coverage (no data
gaps) from measurement stations.

This paper is organized as follows. Section 2 describes the methods used for wind speed
prediction. Note here that the term prediction is not used in the sense of a forecast throughout
the paper. It follows the usual terminology in the context ofANN,where the output of anANN
is referred to as a prediction. Details about the measurement campaign locations and data
sampling configurations of the instruments are described in Sect. 2.1. Themethod to generate
the time-varyingwind speed at a given location,which includes the LiDARpost-processing in
combinationwith the data of theANN is presented inSects. 2.2 and2.3, respectively. Section 3
presents the wind speed characteristics measured by a near-surface ultra-sonic anemometer
(Sect. 3.1) and from the LiDAR measurements (Sect. 3.2), and provides a discussion about
the ANN prediction of wind potential at the measurement locations (Sect. 3.3). Finally, a
discussion of the proposedmethod and the conclusions from the obtained results are presented
in Sect. 4.

2 Methods

2.1 Measurement Station Networks

We use the Inter-Cantonal Measurement and Information System (IMIS, WSL SLF 2022)
and SwissMetNet (SMN, MeteoSwiss 2022) networks as shown from Table 1. The IMIS
network has 186 measuring stations by 2021. They are distributed throughout the Alpine
and Jura areas. An IMIS station consist of snow and wind stations. The purpose of the IMIS
network is to provide data for avalanche warnings (Lehning et al. 1999), thus they are mostly
located in the mountains at high elevation. SMN stations are used to provide data for weather
forecasting in Switzerland. Compared to IMIS, SMN has more stations at middle and low
altitudes. IMISwind speedmeasurement are conducted at approximately 7.0ma.g.l. (Lehning
et al. 1999) using R.M.Young wind monitor model 05103. SMN wind speed measurements
are at 10m a.g.l. (Kruyt et al. 2022) utilizing Lambrecht L14512 cup anemometers and Thies
2D ultrasonic anemometers (Federal Office of Meteorology and Climatology MeteoSwiss
2023).

2.2 Field Sites and Data Sampling Configuration

The present research is based on two case studies, located in two different regions of the
Swiss Alps. The first field campaign was conducted at Lukmanier, on a steep slope west of
Piz Scopi, above the Lukmanier Pass, Switzerland, at 2519m above sea level (a.s.l.) (blue
marker, Fig. 1a), from 20 October 2020 to 16 December 2020. The second field campaign
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Table 1 Details of weather stations in the proximity of the Lukmanier and Les Diablerets field sites

Station Region Lat (N)/Lon (E) Elev. (ma.s.l.) Network

Lukmanier area

COM Acquarossa/Comprovasco 46◦27′34′′/8◦56′08′′ 575 SMN

DIS Disentis 46◦42′24′′/8◦51′12′′ 1197 SMN

GUE Gütsch/Andermatt 46◦39′09′′/8◦36′54′′ 2286 SMN

MTR Matro 46◦25′36′′/8◦55′29′′ 2171 SMN

PIO Piotta 46◦30′53′′/8◦41′17′′ 990 SMN

SLFDT2 Dötra/Preda 46◦32′35′′/8◦52′08′′ 2060 IMIS

SLFDTR Dötra/Costra 46◦32′53′′/8◦51′58′′ 2391 IMIS

SLFLU2 Lukmanier/Lai Verd 46◦36′14′′/8◦46′59′′ 2550 IMIS

SLFLUK Lukmanier/Piz Gannaretsch 46◦36′43′′/8◦47′11′′ 3040 IMIS

SLFPU2 Puzzetta, Medel/Ils Plauns 46◦37′34′′/8◦51′45′′ 2195 IMIS

SLFPUZ Puzzetta, Medel/La Muota 46◦37′22′′/8◦51′25′′ 2425 IMIS

Les Diablerets area

CDM Col des Mosses 46◦23′29′′/7◦05′54′′ 1412 SMN

DIA Les Diablerets 46◦19′36′′/7◦12′14′′ 2964 SMN

SLFCH2 Chaussy/Pierres Fendues 46◦22′36′′/7◦09′50′′ 2220 IMIS

SLFCHA Chaussy/La Para 46◦22′58′′/7◦09′09′′ 2540 IMIS

SLFCON Conthey/Etang de Trente Pas 46◦17′20′′/7◦16′31′′ 2230 IMIS

SLFDIA Les Diablerets 46◦18′51′′/7◦16′30′′ 2575 IMIS

SLFFUL Fully/Grand Chavalard 46◦10′43′′/7◦06′47′′ 2898 IMIS

SLFLAU Lauenen/Lauenehore 46◦26′25′′/7◦21′16′′ 2477 IMIS

SLFNEN Nendaz/Creppon Blanc 46◦08′35′′/7◦21′15′′ 2714 IMIS

SLFOBM Gstaad/Ober Meiel 46◦25′18′′/7◦12′48′′ 2110 IMIS

SLFVD2 Arbaz, Val. Sionne/Donin du Jour 46◦19′15′′/7◦21′59′′ 2390 IMIS

SLFVDS Arbaz, Val. Sionne/Crêta Besse 46◦18′19′′/7◦21′08′′ 2696 IMIS

was carried out at the Cabane station, Les Diablerets (hereafter Diablerets), at 2523m a.s.l.
(redmarker, Fig. 1a) from 20 February 2021 to 2May 2021. Further details for both campaign
locations and measurement statistics can be found in Table 2.

2.2.1 LiDAR Scanning Configuration

During both campaigns, a Halo Photonics Streamline scanning Doppler wind LiDAR (here-
after LiDAR) was deployed. It transmits a laser beamwhich then is reflected back by aerosols
and/or cloud particles. Therefore, the return signal is highly depends on the amount of aerosol
available. From thatmechanism,we can estimate the radial velocity and derive thewind speed
component.

In both campaigns, the LiDAR used 1400 overlapping gates with a range gate length of
30m, each one shifted by 1.5m. With this gate overlapping mode, the range of radial wind
velocities that can be observed under ideal conditions is 2.1km. The closest range gates are
always contaminated with instrument noise; this range is referred to as blind region. The
blind region extends to approximately 60m from the LiDAR. Gates that fall inside the blind
region as illustrated in Fig. 2 are excluded from the analysis. Using the gate overlapping
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Fig. 1 a Field site locations of the Lukmanier (blue) and Diablerets (red) campaigns. The colored box shows
the more detailed topography at Diablerets (b) and Lukmanier (c) campaign sites. Map source: swisstopo
(Federal Office of Topography 2023)

mode reduces the distance between the gate centers compared to the regular sequential gate
configuration. This allows for retrieving Doppler wind velocities at a closer distance from
the LiDAR (Fig. 2).

At the campaign sites, the LiDAR is set to measure a velocity azimuth display (VAD)
wind profile based on a plan position indicator (PPI) scan. During the PPI scan, the elevation
angle is fixed. Several scans were performed at the Lukmanier site (see Table 3), but only
the 45◦ elevation angle step stare is used as input for the ANN (see Sect. 2.3). A 6-point step
stare PPI scan with equally spaced azimuth directions (VAD6) at 70◦ is performed on both
sites. For PPI step stare, 12 points of 30◦ azimuth resolution are used. Continuous Scanning
Method (CSM) scans yield more data points for the fit, but step stare scans allowed choosing
an extended accumulation period, which resulted in stronger returns. Under aerosol-scarce
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Table 2 Details about the two field campaigns at Lukmanier and Les Diablerets

Sites Lukmanier Les Diablerets

Campaign duration 20/10/2020–16/12/2020 20/02/2021–02/05/2021

LiDAR position 46◦35′03′′N/8◦49′08′′E 46◦20′24′′N/7◦12′54′′E
CSAT3 height 2.4m a.g.l. 2.5m a.g.l.

CSAT3 azimuth 302◦ 172◦
CSAT3 sampling frequency 20Hz 10Hz

Elevation 2519m a.s.l. 2523m a.s.l.

Max. horizontal wind speed
during campaign at 100m a.g.l.
from LiDAR

31.14ms−1 29.36ms−1

Max. horizontal wind speed
during campaign from CSAT3

14.40ms−1 18.71ms−1

Averaged horizontal wind speed
during campaign at 100m a.g.l.
from LiDAR

5.41ms−1 4.58 ms−1

Averaged horizontal wind speed
during campaign from CSAT3

3.16ms−1 3.08ms−1

Fig. 2 Illustration of the LiDAR
blind region (gray box) and gate
overlap. The gates marked in red
cannot be used, while the gates
marked in green are outside of
the blind region and are reliable.
Adapted from HALO (2014)

Table 3 LiDAR scan sequence at
Lukmanier and Les Diablerets
site

Sites Scanning method Elevation angle (degrees)

Lukmanier 6-point PPI step stare 70

PPI CSM 27

12-point PPI step-stare 27 and 45

PPI CSM 45 and 70

12-point step-stare PPI 70

Diablerets 6-point PPI step stare 70

conditions, the step-stare mode yielded successful wind retrievals while the CSM scans were
not. The scan sequence at the Lukmanier and Diablerets site was repeated every 5 and 10min
respectively.

2.2.2 LiDAR Post-Processing

Raw LiDAR data are filtered and quality controlled to obtain a coherent, high-quality data
set. All LiDAR scans, including VAD and PPI, need to pass the quality control described
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below. We use several filters during the conversion process of radial velocity VR into wind
speed components u, v and w (Table 4).

The first filter is the blind region filter, which removes the data of the first 60ms of the
radial distance. The second filter is the intensity (SNR+1) filter, which removes Doppler
velocities with an intensity number < 1.02. Signal to noise ratio (SNR) refers to the ratio of
the mean squared signal to the mean square of the noise. Next, a median to absolute deviation
(MAD) filter is used to remove data outside the range of the upper and lower threshold as
defined below. This is achieved in several steps: (a) The median of the Doppler velocity at a
specific range gate height (〈x〉) is calculated. (b) The absolute value of the distance between
each data point xi and the median (〈x〉) is calculated. (c) The median of all values calculated
in (b) (MAD, see Eq. 1) is calculated. (d) MAD is used to calculate the lower and upper limit
of the MAD filter by multiplying MAD with a coefficient (qmad). The coefficient is chosen
using a data-driven approach. We tested qMAD = 7.0 from Mauder et al. (2013). The value
is also chosen as a compromise between the quality and amount of the filtered data. Data
points passing this filter need to be larger than the lower limit of MAD and smaller than the
upper limit of MAD (Eq. 2):

MAD = 〈|xi − 〈x〉|〉, (1)

〈x〉 − MAD · qMAD ≤ xi ≤ 〈x〉 + MAD · qMAD. (2)

To be able to perform a reliable sine curve fitting (Eq. 5), a filter checking the amount of
available data per fit is applied (“Amount of data” filter). The CSM method yields a larger
number of data points compared to the step-stare method. Thus,for the CSMmethod, at least
50% of the data points need to be available to pass this filter. For the step-stare method, a
minimum of 8 out of 12 data points is required. For the VAD6 wind profile, which consists
of only 6 points per gate, we set the threshold to 5 out of 6 points.

To create a good sinusoidal fitting, in addition to the amount of data, the distribution of
data is important. Therefore, we split the data into 6 bins based on the azimuth distribution of
VAD6. Each bin consists of 60◦ azimuth degrees. It is required that all azimuth bins contain
at least one data point. An exception is applied to VAD6, due to the limited number of data
points. VAD6 is required to fill at least 5 out of 6 bins, following the requirement from the
“amount of data” filter.

After completing the “amount of data” filter, a first sine curve fitting is performed. We
propose the use of an additional partialMADfilter to remove data points with large deviations
from the curve fit. We calculate the deviation of the remaining data points xi to the value
which would be expected according to the fitting curve fitx , instead of the median. Hence,
MADpart is the median of the absolute values of the difference of xi from the fitted curve fitx
(Eq. 3). The upper and lower limit of the partial MADfilter then is determined bymultiplying
MADpart with qMAD (Eq. 4). We use the same qMAD as the previous filter after checking the
effect on our cases. After applying the filter, the retained data then is re-fitted with a new
sinus curve:

MADpart = 〈|xi − fitx |〉, (3)

fitx − MADpart · qMAD ≤ xi ≤ fitx + MADpart · qMAD. (4)

The final filter taking into account the coefficient of determination R2 shows the quality
of the fitted curve (R2 filter). A minimum R2 of 0.7 is needed for the radial velocities to be
considered valid. Under the assumption of horizontal homogeneity, the data points obtained
from the LiDAR measurement should fit into the sinusoidal curve (Eq. 5). A summary of the
filters is shown in Table 4, which also includes an example of target case for illustration. We
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Table 4 LiDAR data post-processing filters

Filter name Explanation Example of target case

Blind region filter Removal of data within 60m radial
distance from LiDAR

–

Intensity (SNR+1) filter Removal of data with intensity (SNR+1)
< 1.02

–

MAD filter Removal of data beyond upper and lower
limit of MAD filter

Amount of data filter Removal of gate height containing less
than a specified data limit

a. Step-stare mode is limited to at least 8
out of 12 data points

b. CSM mode needs to have more than
50% of data compared to the original

c. VAD6 only valid if 5 out of 6 data
points pass previous filters

Data distribution filter a. Step-stare and CSM mode: Remove
gate height with empty azimuth bin

b. VAD6 is only valid if 5 out of 6 bins
are filled with data

Partial MAD filter Removal of data beyond upper and lower
partial MAD filter

R2 filter Removal of wind speed with R2 < 0.7 in
the sine curve fitting
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note that this sequential filtering implies a risk of too heavy data manipulation. However, the
independent validation of the ANN performance shown below justifies ex-post the choices
made.

The percentage of data availability fromeachfilter is shown inTable 5.Weuse twomethods
to represent the percentage used: percentage of eliminated data points and percentage of the
eliminated gates. The percentage of eliminated data points is used when the filter target the
data points, and the other is used when the filter target all data points within one gate. For the
data points category, we pick three heights as examples: 100m a.g.l., 150m a.g.l., and 200m
a.g.l. for SNR, MAD andMADpart filters. For the eliminated gate category, we calculate the
gate up to 200m a.g.l..

After the filtering process, instantaneous wind vectors composed of the Cartesian com-
ponents of u, v and w are derived from the instantaneous radial velocity obtained by the PPI
LiDAR scans using the VAD retrieval technique and assuming a horizontally homogeneous
wind field. Radial wind velocity VR , as a function of azimuth, follows a sine curve according
to Eq. (5) where, θ is the azimuth angle, with zero value at the north direction, and ϕ is the
elevation angle. The wind components u, v, andw are defined as positive when pointing east,
north and vertical directions, respectively:

VR = u sin(θ) cos(ϕ) + v cos(θ) cos(ϕ) + w sin(ϕ). (5)

2.2.3 CSAT3

During the Lukmanier field campaign, the Campbell Scientific CSAT3 3-dimensional ultra-
sonic anemometer (CSAT3) was installed at approximately 4m horizontal distance south
of the LiDAR at 2.4m above ground. The CSAT3 was facing north-west at 302◦ azimuth
and sampled at 20Hz. During the Diablerets field campaign, the CSAT3 was installed at
approximately 20m horizontal distance south of the LiDAR at 2.5m above ground. The
CSAT3 was facing south at 172◦ azimuth and sampled at 10Hz. In both cases, the CSAT3
was installed over a slight slope, with implications on the vertical wind velocity components
(see Sect. 3.1). The CSAT3 orientation was selected based on the expected dominant wind
directions. For the Lukmanier site, we chose the direction along the main valley axis and
for the Diablerets site the westerly direction. The implementation of the orientation angle
is to avoid wind direction from inconvenient angles (i.e. from sectors behind the instrument
sampling volume, which may create wakes and disturbances).

2.2.4 Mast

The 25m height mast measurement was implemented by an external company during the
period from October 2011 until April 2016. The mast is located at the middle station of the
Stgegia, Piz Scopi (46◦35′03′′N/8◦49′07′′E). The wind was measured using R.M. Young
Wind Monitor model 05103.

2.3 Temporal Extension of the LiDAR Campaigns with Machine Learning

Long time series of wind speed at the height of a wind turbine hub, typically covering several
years, are essential for a reliable assessment of the wind energy potential. The procedure
described above provides accurate wind speeds for the duration of the campaign. However,
estimating the wind speed for a multi-year period still remains a problem which needs to be
addressed.
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To assess the wind speed during periods beyond our measuring campaigns we apply an
ANN to predict a multi-year time series of wind speed at the two study sites. This method is
also known as Measure Correlate Predict (MCP, Jain 2016; Carta et al. 2013). The ANN uses
long time series of measurements from surrounding weather stations as inputs (predictors),
but not for calibration (predictands). Instead, the LiDAR data is used for calibration. The
model then acts as a surrogate for the LiDAR data and models potential LiDAR output (wind
speed profile) based on the measurements of the surrounding stations. This way it is possible
to obtain a wind speed profile at the location of the LiDAR at any time when the required
data from the weather stations is available. This prediction uses the long, multi-year data
records of the surrounding automatic weather stations of the Inter-Cantonal Measurement
and Information System (IMIS,WSLSLF2022) andSwissMetNet (SMN,MeteoSwiss 2022)
networks. As a first step, suitable stations in the surrounding proximity of the LiDAR location
are selected. Details of these stations are summarized in Table 1.

The ANN maps its inputs (station wind speed and height a.g.l. for which a prediction is
desired) into the value of wind speed that mimics what the LiDAR would have measured
for this particular moment and particular height. By repeating the predictions for a series of
heights above ground, a wind speed profile can be generated. This model can be used for any
moment when required station data is available as input, hence over multiple years. Prior to
training the model, the LiDAR data (wind speeds) generated with the procedure described
in Sect. 2.2 passes an additional filter. We only use data points where a valid measurement
is available at the range gate above and below it. To make it comparable to the station data,
hourly averages of the selected LiDAR data are calculated.

To choose data from the best LiDAR set-up as predictand, the Mean Absolute Error
(MAE) value between the prediction and the LiDAR data is continuously monitored during
the training and validation process to obtain the lowest possible value. Based on this selection
process, for the Lukmanier site, the wind speed profile from the 45◦ elevation angle step-stare
method is chosen to train the ANN. For the Diablerets site, the 6-point step stare PPI at 70◦
elevation angle is used. To allow for training and validation, we split the LiDAR data into
10 periods. The first 80% of each period is used to train the model and the last 20% of each
period is used for validation. Furthermore, as events with high wind speed are rather rare and
not necessarily well distributed between the training and validation sets, a random selection
of 80% of the moments with a wind speed larger than 7ms−1 is placed in the training set,
while the remaining 20% are placed in the validation set. From this process, we obtain for the
Diablerets and Lukmanier sites 201 and 88h of validation data, respectively, selected from
the LiDAR data with 1728 and 1392 hourly averages, respectively.

The ANN is composed of four hidden layers with 32, 16, 8, and 4 neurons respectively.
The activation functions of Continuously Differentiable Exponential Linear Units (CELU,
Barron (2017)) can be expressed by CELU(x) = max(0, x) + min(0, exp(x) − 1). The loss
functionL (Eq.6) is themean squared error (MSE) scaled by the inverse of the probability of
occurrence of the targeted wind speed: Data with high wind speed, which occurs less often,
are given more importance in the loss function. This adaptation of the MSE was critical to
obtaining correct distributions of wind speed:

L = 1

N

N∑

i=1

(ŷi − yi )2

0.01 + P(yi )
, (6)

where ŷi is the predicted wind speed, yi is the measured wind speed, P(yi ) is the probability
of yi being in the training set and N is the batch size used for training. The model is trained
using the ADAM optimizer with a learning rate of 10−4 and a batch size of 32. Convergence
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Fig. 3 Flowchart of temporal extension of LiDAR campaign with Machine Learning

is reached after a dozen of epochs. For the multi-year prediction of wind speeds with the
ANN,measurements of 12, and 11 stations in the surroundings of Diablerets, and Lukmanier,
respectively, are collected (Table 1). It is necessary to have a complete set of input data for all
stations to generate a prediction with the ANN. Therefore, we need to eliminate periods of
one or more empty data values from the station data sets. The availability of data determines
the duration of the target predictions, ideally as long as possible. The validation process using
the validation period of the LiDAR data for both field sites is further described in Sect. 3.3.
Summary of Sect. 2.3 can be seen in Fig. 3.

3 Results and Discussion

3.1 Near-Surface Measurements

In this section, characteristics of local near-surface wind measurements from the 3-D ultra-
sonic anemometer (CSAT3) are presented. Given their lower measurement height compared
to the LiDAR measurements, data from the CSAT3 are more suitable to represent the near-
ground situation at the campaign sites.

Figure 1b shows the topographical situation at the Lukmanier site. The main wind direc-
tions at the Lukmanier site during the campaign period, measured by the CSAT3, range
from north-east to south-east (Fig. 4). The horizontal and vertical wind speed distribution
during the Lukmanier campaign can be seen in Fig. 5a, b respectively. The largest values
of the vertical wind speed are associated with the sector 90◦–180◦ (Fig. 5e, green and red
color), which occurs in combination with the majority of high horizontal wind speed from the
south-easterly sector (Fig. 4). This could be with the synoptic wind coming from southerly
directions which is influenced by Piz Vallatscha and forced to move parallel to the terrain
contour lines (Fig. 1b). Vertical wind speed components are mostly negative at the mea-
surement location (Figs. 1b and 5c). The negative vertical wind component at Lukmanier
is interpreted as a result of a superposed downslope wind component from Piz Vallatscha,
located east of the measurement site, similar to a katabatic wind.

Figure5e shows the correlation between the vertical and horizontal wind speed compo-
nents. The different correlations indicate different characteristics for the three wind direction
sectors: 0◦–90◦ (blue and orange dots), 90◦–180◦ (green and red dots), and 270◦–360◦ (pink
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Fig. 4 Wind roses based onCSAT3measurements a at the Lukmanier site between 20/10/2020 and 16/12/2020
andb at theDiablerets site between20/02/2021 and02/05/2021.The average horizontalwind speed per azimuth
sector is shown in color

and light green dots). The three observed regimes can be associated with the local topography
around the measurement site. The first regime of near-zero vertical velocity includes winds
from sectors 0◦–90◦ where horizontal wind velocities cover a wide range of wind speeds
compared to the vertical velocities. These characteristics are related to the wind blowing par-
allel to the contour lines of Piz Vallatscha. The second regime includes winds from sectors
90◦–180◦, where the vertical wind component becomes more negative for increasing hori-
zontal wind speed. This sector comprises strongly deviated synoptic winds from southerly
or south-westerly, as well as katabatic winds down the western slope of Piz Vallatscha (see
map in Fig. 1b). The third regime including sectors 270◦–360◦ features positive vertical wind
speed components at rather moderate horizontal velocity, compared to the other two regimes.
This regime represents the synoptic and valley winds from a north-westerly direction, which
are forced up-slope due to the orographic obstacle.

The three regimes are also visible in the form of a quasi-sinusoidal pattern when vertical
wind speed is plotted against the wind direction (Fig. 5g). The light blue color represents the
wind speed during the daytime of 0900 UTC+1–2100 UTC+1 and the purple color represents
the wind speed during the nighttime of 2100 UTC+1–0900 UTC+1. Separating the diurnal
cycle in a daytime and nighttime period shows, in general, a slight increase in the amplitude
of the vertical wind speed component during the day. This underlines the strong diurnal effect
at the Lukmanier site, especially for a wind direction of 100◦–200◦.

Figures 1c show the terrain situation at theDiablerets site. The datawere collected during a
2.5months period in spring 2021. According to the CSAT3-basedwind rose (Fig. 4), themain
wind direction at the Diablerets site is from thewest. Secondary dominant wind directions are
north-easterly to south-easterly winds. The westerly wind is the terrain-influenced synoptic
flow coming from the wide-open area of Lake Geneva. The flow is then channeled through
the Ormont valley and experiences a strong orographic lifting when it reaches Diablerets
mountain massif. Figure5b, d show the time series of the horizontal and vertical wind speed
components, respectively, during the campaign period. The mean horizontal wind speed is
3.08ms−1. The maximum horizontal and vertical wind speeds are aligned with the main
wind directions (Fig. 4). From 20 to 22 March 2021, a strong wind event is apparent in the
vertical and horizontal wind velocity measurements (Fig. 5b) from the west sector (pink and
brown color, Fig. 5d).
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Fig. 5 Measurements of the CSAT3 3-D ultra-sonic anemometer at the Lukmanier (20/10/2020–16/12/2020,
left panel) and Diablerets (20/02/2021–02/05/2021, right panel) sites. a Horizontal and c vertical wind speed,
e correlation of horizontal and vertical wind speed, and g correlation of vertical wind speed and wind direction
at the Lukmanier site. b Horizontal and d vertical wind speed, f correlation of horizontal and vertical wind
speed, and h correlation of vertical wind speed and wind direction at the Diablerets site. Wind direction is
color-coded sector-wise, and day/night periods are marked blue and red, respectively
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The correlation between vertical and horizontal wind speed is shown in Fig. 5f. Positive
vertical wind components are strongly increasingwith the increase ofwind speed for thewind
direction sector 270◦–360◦ (pink and light green dots) over a wide range of wind speeds.
The other sectors show only moderate vertical components: N to NE slightly positive (blue
dots), NE to SE slightly negative but for strong winds (orange and green dots), SE to S
slightly negative at weaker winds (red dots). Winds with a positive vertical component are
mostly from 225◦ to 360◦, i.e. SW to N (Fig. 5h), which is coherent with the impact of the
orographic obstacle (Fig. 1c). Winds with a negative vertical component are occupying the
remaining sectors from 45◦ to 225◦, i.e. NE to SW (Fig. 5h), again coherent with the sloping
terrain. Southerly winds may have two different origins: (a) strong Foehn winds crossing
the Diablerets mountain massif, and (b) cold katabatic winds draining the Zanfleuron glacier
(see Fig. 1c).

Overall, from both sites, we see a strong terrain effect in the near ground measurement
data. The wind local characteristics are also strongly influenced by the interplay between the
synoptic wind and the local terrain. Thus, it is important to consider both the local terrain
and synoptic scale wind when assessing the wind energy potential at a given site.

3.2 Characteristics of LocalWind Flow Above the Ground

To harvest the wind energy potential, we also need to study the wind flow at a typical
operating height ofwind turbines. In this section,wewill discuss the localwind characteristics
measured by the LiDAR at altitude levels higher above the ground. By comparing the local
wind characteristics at the study sites from both the near-surface measurements (Sect. 3.1)
and the measurements at the operating height of a wind turbine (Sect. 3.2), the characteristics
of wind flow can be summarized.

For the Lukmanier site at 100m a.g.l., the horizontal wind speed statistics show an average
wind speed of 5.41ms−1, which is higher than the near-surface measurement of 3.16ms−1.
The maximum wind speed is 31.14ms−1 coming from the direction of 158◦ on 5 December
2020. This agrees with the event of maximumwind measured by the CSAT3 near the ground.
Figure 6 shows the wind rose at various heights above ground level obtained from LiDAR
measurements (left), the Consortium for Small-scale Modeling (COSMO-1) analysis (mid-
dle), and theWind Atlas Switzerland (right, Koller and Humar 2016). COSMO-1 is available
at 1.1km resolution in hourly intervals and covers the entire area of Switzerland. The Wind
Atlas of Switzerland provides the average annual wind speed at several heights above ground
level in 100ms horizontal resolution. From the LiDAR measurements, we see that the major
wind direction at the Lukmanier site is more concentrated in the north to north-eastern and
the southern sectors, compared to results from the CSAT3 measurements (Fig. 4). The con-
centrated wind direction from the LiDAR is likely the synoptic wind that is following the
main valley axis and is less influenced by katabatic effects. With increasing altitude, wind
from the southern sector is also becoming more frequent. This could be due to the mountain
range to the south of the Lukmanier site (Pizzo del Sole, Pizzo d’Era and Pizzo di Campello)
(Fig. 1b), which obstructs the southerly flow at lower altitude. The campaign site is located at
2519m a.s.l., while the highest point of Pizzo del Sole is 2773m a.s.l. The height difference
could explain the obstruction of the southerly wind that comes from Valle Leventina.

COSMO-1 analysis (Fig. 6, second column) identifies the southerly sectors as the main
wind direction during the campaign period. Taking a closer look into the terrain situation
(Fig. 1b), it is likely that the southerly wind from Valle Leventina moves over the mountain
ridge of Pizzo del Sole and then turns to the north in the direction of Val Medel. This is
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in agreement with high wind speeds from the southern direction by COSMO-1. However,
COSMO-1 seems to be unable to represent the interplay between katabatic flow from the
ridge of Piz Scopi, PizMiez, and PizVallatscha, which is prevalent in the near-surface CSAT3
measurements, with the synoptic wind blowing through Val Medel. Therefore, we cannot see
the high northerly to north-easterly wind speeds at the lower elevation levels in the COSMO-
1 analysis. Another reason could be the coarse COSMO-1 resolution, which is not able to
resolve the detailed terrain structures and hence its effect on small-scale wind patterns.

TheWind Atlas Switzerland, on the other hand, shows high wind speeds coming from the
northern sector. The absence of the increasing southerly wind with height (as seen from the
LiDAR andCOSMO-1wind roses) suggests thatWindAtlas Switzerlandmay not capture the
floweffects created byblockage from the ridge ofPizzodel Sole.However, this is a speculative
explanation because the differences between the wind roses may also be explained by the fact
that the Wind Atlas Switzerland represents the annual mean while the CSAT3 and LiDAR
measurements represent the wind conditions during the winter campaigns. It is possible that
the other seasons involve other wind flow mechanisms, which are not well represented by
the short term LiDAR measurements and COSMO simulation.

For Diablerets, the wind rose from the LiDARmeasurements, the COSMO-1 analysis, and
the Wind Atlas Switzerland show a similar tendency of main wind direction from the north-
eastern and south-western sectors (Fig. 7). A less frequent but strong wind from the south is
also observed in theLiDARmeasurements and in theCOSMO-1 analysis.At higher levels,we
further see a more prominent wind speed coming from the north-eastern sector, compared
to the more varying wind directions measured by the CSAT3. This could be due to the
weaker katabatic effect of the Oldehore peak compared to what we see from the near-surface
measurements, similar to the mechanism discussed for the Lukmanier site (Sect. 3.1). This
interplay between katabatic flow andwind forced dynamically by themain terrain topography
is causing the upper-level wind to show a distribution peak in the north-east direction, along
the main axis of the Ormont valley.

Overall, at the Lukmanier site, we see different wind roses during the campaign period
(from LiDAR and COSMO-1) and annual period (from the Wind Atlas Switzerland). One
of the reasons could be that the flow effect caused by blockage from Pizzo del Sole is
not represented well in the Wind Atlas Switzerland. Another reason is that there are other
seasonal wind flow mechanisms which are not well represented during the campaign period.
For Diablerets site, however, we see a good agreement between the wind roses from the
campaign period and the annual period. Thismight suggest that thewind rose thatwe obtained
during the short term campaign is relatively representative of the annual mean in Diablerets.
Even if the wind flowmechanisms are expected to change with season, the terrain channeling
effect in Diablerets leads to similar wind patterns throughout the year, thus the similar shape
of wind rose. For both study sites (Lukmanier and Diablerets) a similar range of average
and maximum wind speeds are observed, even though the two sites are far apart, located
in the eastern and western parts of Switzerland, featuring different situations of complex
topography. These similar statistics could be explained by the similar elevation above sea
level (Table 2), therefore making both sites influenced by similar synoptic scale wind. The
shift in wind direction between LiDAR and CSAT3 measurements shows that close to the
surface terrain effects, such as katabatic flows, play an important role.At a higher levels,where
wind turbines operate, the larger scale topographic features, such as the valley orientation,
play a more important role. The shift between the principal wind flow near the surface and
further aloft needs to be put into consideration in the planning process of harvesting wind
energy in complex terrain.
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Fig. 6 Wind roses at the Lukmanier site based on LiDAR measurements from 20/10/2020 to 16/12/2020 (left
column), COSMO-1 from 20/10/2020 to 16/12/2020 (middle column), and the Wind Atlas Switzerland (right
column) for a one-year duration. The elevation levels are 50m, 75m, 100m, 125m, and 150m a.g.l. for each
row, respectively. The average horizontal wind speed per azimuth sector is shown in color
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Fig. 7 Wind roses at the Diablerets site based on LiDAR measurements from 20/02/2020 to 02/05/2021 (left
column), COSMO-1 from 20/10/2020 to 16/12/2020 (middle column), and the Wind Atlas Switzerland (right
column) for a one-year duration. The elevation levels are 75m, 100m, 125m, and 150m a.g.l. for each row,
respectively. The average horizontal wind speed per azimuth sector is shown in color

3.3 Wind Speed Prediction byMachine Learning

The spatial and temporal variation of wind speed throughout the year also needs to be con-
sidered, therefore a long-term time series of wind speed is needed for planning purposes. For
each study site, the ANN is used to predict time series of wind speed at various heights above
ground as long as the input data set is available. At the Lukmanier site, we check the model
performance during the validation period and with measurements from the mast. Figure8a
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shows the averaged result of the predicted wind speed profile at the LiDAR site during the
mast measurement period. It shows an increasing trend of wind speed with height (black
line). This predicted profile also perfectly coincides with the average wind speed measured
by the mast (red star). Figure8d shows a quantile–quantile plot to compare the data distribu-
tions by their quantile values during the mast measurement period. The dark line shows the
theoretical expectation for a perfect model and the red dots show the actual prediction from
theANN. Between 1ms−1 and 5ms−1, the ANN slightly underestimates the wind speed. For
the first quantile, the ANN predicts some negative wind speed values, which indicates that
the model did not get sufficient low wind speed data during the training and therefore extrap-
olates poorly for low wind speed. For the rest of the analysis, negative values are replaced by
zero. Figure8e shows the histogram of wind speed from the mast (black) and ANN (red) at
25m a.g.l. during the mast measurement period. AWeibull distribution is then fitted for both
mast (green cross) and ANN (blue line). A good match of the Weibull fits from the ANN
prediction (and the mast measurements) can be seen. From the histogram, we also see the
underestimation tendency at the low wind speed that we observed in the quantile–quantile
plot.

At the Lukmanier site, during the validation period, the ANN predicts a vertical profile
with higher wind speed than what the LiDAR measured (Fig. 8b). The vertical profile from
the LiDAR is constructed by taking the mean value of all available data, gate-wise. This
explains its non-smoothness, which is the result of all the data gaps. For the ANN, which can
produce data without gaps, a smooth profile (black) is generated, which contains also data
from range gates,where theLiDARhas no data. Therefore, for better comparison,we generate
another profile (blue) by excluding data from the ANNwhere the LiDAR had gaps. It is worth
noticing that despite its overestimation, the ANN reproduces well the shape of the vertical
profile. The aforementioned overestimation is due to the incapacity of the ANN to predict
some very lowwind speeds during the validation period. Figure8f depicts the distributions of
wind speed from LiDAR and ANN during the validation period and illustrates this problem
clearly. Compared to the histogram from the long mast period (Fig. 8e), the histogram from
the short validation period is less smooth. This is due to the small amount of data available.
From the mast measurement, we obtained approximately 9890h of data for comparison. For
the validation period, we compare only 88 and 201 hourly data for Lukmanier and Diablerets
sites, respectively. At Diablerets, Fig. 8c shows that here ANNunderestimates the wind speed
compared to the LiDAR measurement. From the histogram in Fig. 8g, we see that the ANN
has the same difficulty of predicting low wind speed events during the validation period at
Diablerets. In addition, it does not predict any wind speed larger than 12ms−1. While the
ANN was able to predict high wind speed at Lukmanier, we can speculate that the more
complex topography of Diablerets, leading to highly sheared and temporally varying wind
profiles, is the reason for the lower performance at this site.

Figure 9 shows the distributions of wind speed predicted by the ANN for the long-term
period at various levels for Lukmanier (left column) and Diablerets (right column). The
long-term predictions for Lukmanier cover 20 October 2016–18 December 2020. 22% of
the original data was removed due to the unavailability of one or more of the stations. For
Diablerets, 19.5%of the data from the period of 12April 2018–2May 2021 had to be removed
because of missing values. A summary of the mean wind speed from LiDAR measurements,
theWindAtlas Switzerland, and the long-termANNpredictions are given in Table 6. Overall,
at Lukmanier, the average wind speeds from Wind Atlas Switzerland and from the ANN are
in good agreement. For Diablerets site, the ANN prediction is shifted towards lower wind
speeds compared to the Wind Atlas Switzerland, which results in a lower mean wind speed
(Fig. 9).
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 8 a Average wind speed profile from ANN at the Lukmanier site for the period of mast measurements
from October 2011 until April 2016. The red star shows the average wind speed from the mast at 25m a.g.l.
Mean wind speed profile fromANN at b Lukmanier and c Les Diablerets during the validation period. The red,
black, and blue lines show the LiDAR measurements, the ANN, and the ANN with data gaps as in the LiDAR
data, respectively. dQuantile–Quantile plot from the Lukmanier site for the period of mast measurements. Red
dots show the prediction and the black line shows the expected values. Weibull distribution of wind speed at
the Lukmanier site during e the mast measurement period, f the validation period, and g at the Les Diablerets
site during the validation period. Red colored bars show the predicted values and black bars show observation
values from the mast at 25m a.g.l. and LiDAR at 75–150m a.g.l. The blue line shows the Weibull fit for the
prediction value and the green dots show the Weibull fit for the mast and LiDAR
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Fig. 9 Histograms of wind speed based on the long-term ANN predictions at Lukmanier (20/10/2016–
18/12/2020, left) and Les Diablerets (12/04/2018–02/05/2021, right), respectively, at a, b 50m a.g.l., c, d
75m a.g.l., e, f 100m a.g.l., g, h 125m a.g.l. and i, j 150m a.g.l. Weibull distributions are shown for the ANN
prediction (red line) and for the Wind Atlas Switzerland (black line). The dashed lines show the average wind
speed from Wind Atlas Switzerland (black) and the ANN prediction (red)
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Table 6 Comparison ofmeanwind speed at different heights above ground between the LiDARmeasurements
during the campaign period, the Wind Atlas Switzerland for annual average values, and ANN prediction for
long-term period results

Height (m a.g.l.) Meanwind speed from
LiDAR during cam-
paign (ms−1)

Meanwind speed from
wind atlas Switzerland
(ms−1)

Meanwind speed from
ANN for long term
period (ms−1)

Lukmanier

50 4.6 4.5 4.2

75 5.0 4.7 4.4

100 5.0 4.9 4.7

125 5.4 5.1 5.1

150 5.9 5.3 5.6

Les Diablerets

50 – 5.6 3.9

75 4.5 5.7 4.0

100 4.6 5.7 4.0

125 4.6 5.8 4.1

150 4.7 5.9 4.2

4 Conclusions

Thewind energy assessment process in complex terrain remains a challenging process. Using
the combination of data from two field campaigns in the Alpine region of Switzerland and
including near-surface CSAT3 and higher altitude LiDAR measurements, we are able to
obtain both a general overview and a detailed understanding of the local wind dynamics. It is
important to take into account the interplay between katabatic, anabatic and terrain-influenced
synoptic winds at various height levels. Wind potential was investigated by combining data
from two field campaigns and from long-termmeasurements of surrounding weather stations
using an artificial neural network (ANN). The result from this technique has shown a very
good agreement with data obtained at a 25m tall mast at the Lukmanier site. While long-term
statistics are well reproduced by the ANN at Lukmanier site, results on shorter time scales
show that additional data from longer LiDAR measurement campaigns could be beneficial.
The difficulties of the ANN in predicting low or high wind speed events could be alleviated
with more training data. The good agreement between the shapes of the measured and pre-
dicted vertical profiles of wind speed indicates that this new ANN technique is a promising
tool for assessing wind power potential in mountainous areas and particularly in complex
terrain.
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