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Abstract: Microbial communities and nutrient dynamics in glaciers and ice sheets continuously
change as the hydrological conditions within and on the ice change. Glaciers and ice sheets can be
considered bioreactors as microbiomes transform nutrients that enter these icy systems and alter
the meltwater chemistry. Global warming is increasing meltwater discharge, affecting nutrient and
cell export, and altering proglacial systems. In this review, we integrate the current understanding
of glacial hydrology, microbial activity, and nutrient and carbon dynamics to highlight their inter-
dependence and variability on daily and seasonal time scales, as well as their impact on proglacial
environments.
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1. Introduction

Although the movement of glaciers and ice sheets profoundly affects the landscape,
the most immediate protagonist of glacial influences is glacial meltwater [1]. Meltwater
accelerates the movement of glaciers, evacuates glacially eroded sediment downstream,
contributes to alpine hydrology and riparian zones, regional runoff, and ultimately sea
level rise [2,3]. From a microbial perspective, meltwater transfers nutrients and microbes
across and within the glacial mass [4,5] and eventually to proglacial ecosystems [6–8]. Flow
systems within glaciers are complex and poorly known, varying spatially and temporally and
differing between glaciers and ice sheets [9,10]. This spatial and temporal variability leads
to continuously changing biochemical activities, nutrient cycling, and microbial community
dispersion [4,11,12]. Microbial communities adapted to these icy environments transform
meltwater chemistry, including both organic and inorganic compounds [11,13,14], and enrich
glacial exiting waters with bioavailable molecules [13,15,16], making glaciers and ice sheets
low-temperature bioreactors. Glacial microorganisms transform the geochemistry of glacial
meltwater through a variety of metabolisms. For example, the microbial communities on
the glacial surface are dominated by photoautotrophs and nitrogen fixers, whereas microbial
communities in the subglacial waters can be dominated by iron reducers, sulfide oxidizers,
sulfate reducers and methanogens [17,18]. Which metabolisms are most active at a specific
time and in a specific glacial compartment highly depends on the state of the ice body [19,20].
Such data clearly indicate that glaciers and ice sheets are not inert masses, placing them as
integral components of global biogeochemical cycling.

Ice sheets and glaciers occupy 10% of the Earth’s surface and represent about 68% of
Earth’s freshwater [21]. Their retreat, and the consequent increase in released meltwater, will
have global impacts [22–25]. Meltwater discharge from glaciers and ice sheets is enormous;
the Greenland Ice Sheet alone is expected to release 357 ± 58 Gt water y−1 [26]. Meltwater
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discharges to a wide range of different proglacial systems, from glacial forefields to glacial
lakes or oceans, impacting these environments by contributing microorganisms, nutrients, and
sediment [6,27,28]. Cameron et al. (2017) estimated the export of 6.9 × 1022 cells y−1 from
Greenland alone [6], and about 1.1 × 1022 cells y−1 are expected from its surface under a
medium emission scenario in the next 80 years [29]. This export of nutrients and microorgan-
isms to proglacial systems is, therefore, thought to represent a major contribution to global
biogeochemical cycling in proglacial areas [27,30–33].

Although several recent reviews of the microbiomics of glacial systems are available [4,34,35],
this review provides an up-to-date holistic view of the interplay among glacial hydrology, microbial
activity, and geochemistry. In fact, through an extensive literature review, we compile the current
state of knowledge on glacial hydrology, microbial activity, and geochemical cycling; we explore
their interdependence and how differences in glacial meltwater flow systems influence nutrient
distributions and microbial processes. In this review, we also explore how glacial processes and
patterns influence a variety of proglacial environments, outlining the possible global impacts of
increases in meltwater discharge due to climate warming.

2. Glacial Hydrology

Glacial hydrological systems consist of interconnected micro- and macro-pathways,
their size and location being influenced by the glacial thermal regime (Box 1) and wa-
ter availability [36], which, in turn, are related to climate (e.g., latitude, altitude, wind,
precipitation, temperature, and radiation) [37,38].

Box 1. Ice temperature and permeability.

Warm atmospheric temperatures and high precipitation rates lead to temperate ice (i.e., ice
temperature above the ice melting temperature), where snow deposition can isolate surface ice from
constant subzero temperatures. On the contrary, surface cold ice (i.e., ice temperature below the ice
melting temperature) is the result of permanent cold temperatures [39]. Whereas surface glacial
ice is directly influenced by the atmospheric temperature, the temperature of the subglacial ice is
influenced only indirectly: i.e., the temperature of subglacial ice is conditioned by geothermal heat
fluxes and by the amount of heat that is generated by glacial sliding, glacial water flow, and ice
deformation, which are deeply conditioned by the supraglacial water dynamics [40]. Ice temperature
profiles are used to classify glaciers. Temperate glaciers are those entirely composed of ice with a
temperature above the ice melting temperature (i.e., temperate ice), cold glaciers are composed of ice
with a temperature below the ice melting temperature (i.e., cold ice), and polythermal glaciers have
a more complex thermal structure characterized by different ice temperatures [39]. Polythermal
glaciers often consist of temperate ice throughout the glacier body, except the first meters of the
glacial surface (typically in the ablation zone), where the ice is directly in contact with the cold
atmosphere and maintains a cold temperature across its surface ice. Examples of temperate glaciers
can be found between alpine glaciers (e.g., Arolla glacier), polythermal glaciers between Arctic
glaciers (e.g., Midtre Lovénbreen), and cold glaciers between polar glaciers (e.g., Larsbreen) [39,41].

Ice temperature influences glacier and ice sheet functioning, where small changes in ice tempera-
ture can deeply change the glacier dynamics [42,43]. For instance, ice temperature determines how
permeable the ice is [1]. Primary permeability is the movement of water at a small scale through
ice veins and only occurs in temperate ice. The volumetric water content in temperate ice has
been estimated to reach 9% of the ice volume [44]. On the contrary, cold ice is not permeable and
therefore does not present a liquid matrix between ice crystals [1].

Contrary to temperate glaciers, water only flows through crevasses, moulins, englacial channels,
and conduits (secondary permeability) in cold glaciers [45,46]. Whereas an active englacial system
(i.e., with flowing water) has been observed in a wide variety of glacial thermal regimes [36,47,48],
temperate glaciers have the most developed water discharging system compared to the other
glacier types due to the higher permeability and malleability of temperate ice [1]. Differences in
permeability, therefore, lead to the development of different water discharge networks: e.g., because
of the less developed englacial channel network in cold glaciers, water is discharged mainly through
the supraglacial environment in most systems during the summer [49], where supraglacial features
are more developed compared to those in the other ice systems [50].
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2.1. Seasonal Variation

The presence of water in glaciers is highly seasonal, as the generation of glacial water
depends on the energy available to melt snow and ice. Water input also comes from rain
events. For most glaciers in the temperate and subpolar regions, mass accumulates during
the accumulation season (e.g., winter), which is characterized by colder temperatures
and snow accumulation [1]. By comparison, mass loss, including melt, occurs during
the ablation season (i.e., summer), which is characterized by warmer air temperatures
and greater solar radiation. During this season, the lower elevation ablation zone of a
glacier is gradually exposed as the winter snow cover melts, revealing an ice surface.
In the accumulation zone, located at a higher altitude on the glacier, only some of the
accumulated snow melts, therefore accumulating and compacting it into firn (transition
stage between snow and ice) and ultimately into ice. The amount of snow gained over
winter minus the amount of snow and ice lost defines the glacial ice balance [1].

2.1.1. Ablation Season

In spring, the snowpack temperature increases through heat conduction from warm
air and via refreezing of meltwater that percolates into the cold snow (Figure 1). Once
the snowpack becomes isothermal at 0 ◦C, snow melt percolates into the entire seasonal
snowpack. In the accumulation zone, the meltwater enters the firn, forming a firn aquifer
that drains to nearby crevasses [51–53] (Figure 2). In the ablation zone, the water accumu-
lates on the ice surface and also drains into nearby crevasses [54]. Once the snow melts
off the ice in the ablation zone, a shallow weathering crust of porous ice forms, caused by
penetration of solar radiation and enhanced by the flow of meltwater and potentially warm
air [55]. The resulting weathering crust represents a photic zone a few centimeters to a few
meters deep [55–58]. Both the weathering crust and the firn aquifers are active parts of the
glacial hydrological system and contribute to accumulating, distributing, and regulating
water discharge to the englacial system [36,51–53,55,57,59,60]. Cryoconite holes can also
form on the ice surface as a result of the deposition of sediment and biological materials on
the glacial surface. These patches of material melt into the ice faster than the surrounding
ice, driven by increased heat absorption by the dark material [61–63]. Under the right
circumstances, these holes can form glacial ponds and lakes (cryo-lakes) [39,50]. Thus
the surface streams, weathering crust, cryoconite holes, and cryo-lakes form the complex
surface hydrology of glaciers [64]. This supraglacial hydrology influences the drainage
pattern and flux of meltwater into the glacial interior (i.e., englacial system) and bed and to
proglacial systems [64].
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Figure 1. Scheme of hydrological, nutrient, and microbial metabolism shifts during ablation and
accumulation season. Width and height of the colored shapes represent the occurrence and the
intensity of each specific process. X-axis represents time (accumulation and ablation seasons), whereas
the y-axis represents different glacial realms (supraglacial, englacial, and subglacial environments).
Water release from weathering crust, cryoconite holes, and especially firn aquifers is not linear as
it also goes through daily and irregular cycles. The proposed trends of hydrological [1,36,55,64],
nutrient [13,65–67], and microbial metabolism [11,17,18,68] shifts are broadly based on published
peer-reviewed studies.
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Figure 2. Water fluxes during the ablation season and main hotspots for microbial metabolisms.
Subglacial lakes (not represented in this figure) can also represent hotspots for microbial activity.

The main pathways from the glacier surface and firn aquifers to the glacial interior
are moulins and crevasses. Moulins constitute a direct connection to an englacial system
of conduits, whereas crevasses drain water via a network of fractures thought to connect
to englacial conduits [69–71]. The englacial system of conduits reaches the bottom of the
glacier, where it flows along the ice-substrate interface and, if the substrate is sediment,
through the sediment as well.

Most subglacial water originates from the glacier surface, although a small flux may
originate englacially and subglacially due to frictional dissipation of heat generated by flowing
water, ice deformation, or from geothermal heat at the bottom of the glacier [72–74]. The
Antarctic ice sheet is a major exception, where the main source of subglacial water is basal
melt [75]. Generally, subglacial water flows in two main types of systems: slow flow within
a distributed network of linked cavities or confined groundwater flow within a layer of
subglacial rock debris (i.e., subglacial till), or in a quick flow system composed of a network
of subglacial channels [76,77]. Distributed systems are thought to be water-filled all year
round, whereas channels are water-filled only at high meltwater discharge [11,36,78]. Under
ice sheets, subglacial lakes may occur as stable subglacial water bodies that can be isolated
or hydrologically connected to a subglacial flow system [79,80]. Regardless of its path and
residence time within the glacier, water will eventually escape to proglacial systems via
streams or groundwater flow.

2.1.2. Seasonal Evolution

During summers with plenty of meltwater, surface streams flow over the ablation
zone, and the weathering crust, including cryoconite holes, is full of water [1] (Figure 1).
Surface water that accumulates in weathering crust and cryoconite holes drains into crevasses
and moulins, and water in surface streams commonly pours into moulins. Compared to
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supraglacial systems, water accumulated in firn aquifers is less connected to the rest of the
glacial system, and it occasionally drains into nearby crevasses [54]. Englacial and subglacial
channels (quick flow) are thought to be filled when water discharge reaches its daily maximum
and are less full early the following morning when the air temperature is the coolest, and the
sun is just beginning to warm the snow and ice [81,82]. The subglacial distributed systems are
thought to be continually water filled [11]. In addition to daily cycles of glacial runoff, longer
variations occur with the occurrence of warm and cool weather systems [81,82]. Episodic
floods may also occur due to the sudden release of ponded water within the glacier or to the
sudden drainage of glacier-dammed lakes [83–85].

At summer’s end and the beginning of winter’s accumulation season, much less water
is present in the glacial system due to the low air temperatures and reduced solar radiation,
which largely eliminates surface melt, and while precipitation falls mostly as snow [1].
Some water may remain unfrozen over winter in subsurface weathering crust and firn
aquifer due to the insulating effects of a deep snow cover [63]. Over winter, the englacial
and subglacial channels collapse due to ice pressure and the absence of a counteracting
pressure from flowing water [36,86,87]. However, due to a decrease in water flow, water
pockets may form within the englacial or subglacial system [88,89]. Glacial streamflow also
often continues through the winter, albeit at very low discharge. This may be due to the
drainage of water resident in the glacier as well as meltwater produced by geothermal heat
and by deformation within the ice [54,81].

2.2. Hydrological Residence Times

The residence time of water in various parts of the glacial hydrological system varies
(Table 1) and influences in situ geochemical processes [90]. The extent to which microbial
communities can develop and contribute to geochemical modification depends both on
microbial doubling times [31,58] and on how long they can reside in a specific glacial com-
partment (i.e., water residence time). Furthermore, different residence times create a variety
of conditions for microbial metabolism [5,12]. For example, the lower the residence time,
the better ventilated a system is with the consequent creation of oxic waters. Oxic waters
will promote aerobic or facultative anaerobic microbial metabolism, such as nitrification
and iron oxidation, whereas anoxic waters will promote the growth of anaerobic organisms,
such as methanogens and sulfate-reducing bacteria and archaea [19].

Table 1. Water availability and residence times in glacial/ice sheet compartments.

Location
Water Presence in

Accumulation
Season

Residence Time and Water Flow Important
References

Ice-lidded
cryoconite holes

Yes, but some can
completely freeze

during
accumulation

season

Years, but occasionally connected to
the rest of the system during

accumulation season. Estimates say
that ~50% of the cryoconite holes

hydrologically connect to the
supraglacial system every

accumulation season.

[61,91]

Open cryoconite
holes No

During accumulation season, they
have a higher connectivity to the

glacial system than ice-lidded
cryoconite holes, showing lower

permanence times.

[39,63]

Weathering crust Yes, if insulated by
a snowpack.

Several days, water is released to the
glacial when the system is saturated.

Water flow is slow in the
interstitial space.

[55,58,60]
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Table 1. Cont.

Location
Water Presence in

Accumulation
Season

Residence Time and Water Flow Important
References

Supraglacial
streams No

Depending on the ablation stage of
the system, water can flow at

different rates.
[64]

Supraglacial
ponds and lakes

Yes. Lakes can form
ice lids and

maintain water
during

accumulation
season.

Years; water is released to the glacial
when the system is saturated.

Smaller ponds can be drained by
meltwater streams.

[39,50,61,64]

Firn aquifer Yes Perennial; water is released to the
glacial when the system is saturated. [52,92–95]

Englacial conduits

Yes, when the
presence of solutes
and particles lowers

water freezing
temperature.

Fast-flowing systems with
permanence of hours up to a day.
However, water can be present all
year round and even for multiple

years if water pockets are formed by
collapsed conduits. Depending on

the ablation stage of the system,
water can flow at different rates.

[88,96,97]

Ice veins Yes

Residence times in the ice veins are
unknown. However, due to the low
water flowing rate, we assume it to

be in the order of years (at the
very least).

[98]

Subglacial cavities Yes Days to months, and water is usually
present all year round. [99–101]

Subglacial
channels No Hours, water is usually present only

during peak ablation season. [99–101]

Subglacial till Yes Potentially all-year round. [36,78]

Subglacial lakes Yes
Years; some systems have estimated

water residence times of millions
of years.

[79,80,102]

The residence times of water in a glacier depend on the glacier’s size, where the bigger
the glacier, the longer the water takes to flow through the system because of longer routing
pathways [67]. Meltwater residence in ice sheets is, therefore, generally higher than in
glaciers [9,81]. In the photic zone on and just below the glacier surface, water residence
times in the weathering crust are at least several days during the ablation season [58,60];
weathering crust can store some water in winter if covered with a thick snowpack [55].
Ice-lidded cryoconite holes found on ice sheets and polar glaciers store water from days
to months, and isolated cryoconite holes that melt within the ice and refreeze annually
without connecting to the surface or subsurface hydrologic system may store water for more
than a decade [61,91,103]. Open cryoconite holes on temperate and polythermal glaciers
are connected to the supraglacial hydrological system and may have residence times of
a few minutes to hours [39,63]. Water residence times in supraglacial lakes and ponds
vary similarly to those of cryoconite holes [50,61,64]. Supraglacial streams are usually fast
water-flowing systems where water fluxes vary based on the glacial system state [64].

Below the photic zone, within the firn aquifer of the ablation zone, water residence
times can range from hours to days [54,104]; perennial firn aquifers have also been ob-
served [51,52,92–94,105]. Within the englacial realm, two very different water-flowing
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systems exist. A quick flow system of conduits may have residence times of hours and
perhaps up to a day [88,96,97]. A very slow system exists along the boundaries of the ice
crystals, where three or more crystals meet, creating a small flow passage (i.e., ice vein) [98].
In ice veins, water flows at very slow rates and is easily blocked by air bubbles. However,
these veins can host viable microorganisms [106]. Residence time in these veins is unknown.
At the bottom of the glacier, channels residence time can be hours, whereas, in slow-flow
distributed subglacial systems, it can be days to months [99–101], reaching estimated water
permanence times of millions of years in subglacial lakes under ice sheets [79,80,102].

As with meltwater discharge, water residence times change seasonally, with the
shortest residence time being in the summer [90]. In winter, after the system closes down
and various components are no longer linked due to the lack of water flow, the freezing of
passageways or ductile closure of passageways causes residence times to increase [90].

3. Hydrology Influences on Glacial Nutrients and Microbial Communities
3.1. Deposition of Nutrients and Microorganisms on Glacial Surfaces

Dry and wet deposition of atmospheric aerosols transports diverse chemistry and biology
to the glacier surface [107–111]. Their chemistry and concentration depend on patterns of
atmospheric circulation, distance to source regions, and type of source emissions [112–114].
The distribution of chemical compounds across a glacier can be heterogeneous due to variable
aeolian deposition [115]. For example, mineral dust is more highly concentrated at the margins
of a glacier due to its proximity to bare rock and soils [116].

Bioaerosols (particulates containing microorganisms) may inoculate glacier surfaces,
and subsequent microbial community development depends on the surface environment
and microbial adaptations [117–119]. Such microbial communities typically include both
endemic and cosmopolitan microorganisms [120–125]. Considering the dynamic and ever-
shifting nature of glacial ice sheet systems, these communities will experience a broad
range of icy micro-environments and will shift accordingly as they transit through the
system [34,35].

3.2. Microbial and Geochemical Dynamics during the Ablation Season
3.2.1. Supraglacial Realm

In the supraglacial environment, organic and inorganic nutrients and carbon are often
available in dissolved forms released by the biochemical weathering of deposited parti-
cles [13,126]. With the onset of the ablation season, nutrients and carbon deposited during
the accumulation season progressively percolate through the snowpack into the weathering
crust, cryoconite holes, and glacial ponds (ablation zone) [12,55], and microorganisms are
able to resume metabolic activity shortly after thawing [20] (Figure 1).

In the photic layer of the weathering crust, UV- and visible-light-driven chemical
transformations lead to the dissolution of iron oxide and silicates in mineral particles
and Fe3+ reduction in ice-hosted sediment particles [13,55,127]. Nutrient concentrations,
particularly dissolved organic nitrogen (DON) and P are generally higher in weathering
crust compared to supraglacial streams and cryoconite holes [128]. Cryoconite holes are
widely recognized as hotspots of microbial activity [63,91,129,130] (Figure 2). The waters
are generally oxic environments, and ice-lidded cryoconite holes in Antarctica can be
supersaturated in O2 [103,131]. However, within thick cryoconite granules (aggregates
of microorganisms and organic and inorganic nutrients present in both open and ice-
lidded cryoconite holes), the environment can become anoxic [132]. The oxidation state of
cryoconite holes is important as it dictates the oxidation state of key nutrients. For example,
the most common Fe ions, Fe2+ and Fe3+, are soluble only within certain pH and dO2
conditions, affecting their capacity to associate with other ions (e.g., chloride and hydroxide
ions) or to adsorb onto ice crystal surfaces [13].

With the onset of the ablation season, during which the primary nutrient input is from
snowmelt, the exposed component of the supraglacial environment (e.g., weathering crust)
is dominated by prokaryotic photoautotrophs (e.g., Cyanobacteria in cryoconite holes) and
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ice algae (e.g., Ancylonema nordenskiöldii, and Mesotaenium berggrenii on the surface of the
ice/weathering crust) [111,133]. These organisms can directly affect melt rates and surface
morphology (Box 2) and play an important role in fixing atmospheric CO2 and N2 when
nitrogen-fixing cyanobacteria, such as Nostoc and Anabaena, are present [134,135]. Microbial
activity changes as the ablation season progresses (Figure 1). For example, during initial
phases of snowmelt early in the ablation, excess concentrations of inorganic nitrogen (NO3

−

and NH4
+) flush from the snowpack and are utilized by microbial communities, while later

in the season (after the inorganic flush and when concentrations are low) microbial activity
switches to dinitrogen fixation [136–138]. Phototrophic communities help to produce
dissolved organic nutrients (i.e., dissolved organic carbon, nitrogen, and phosphorous),
enriching the glacial surface with organic and inorganic nutrients that would be otherwise
limiting factors for heterotrophic microbial activity [124,128,139]. Phosphorous is typically
sourced from supraglacial particles via geochemical and physical processes and from
microbial necromass via biological activity [139,140]. Microbial exudates and necromass on
the glacial surface are essential for the functioning of the heterotrophic component of the
microbial community. In this context, it has also been observed that different exudates are
differentially utilized by microorganisms [141,142] within a complex glacial microbiome
where heterotrophic organisms present a wide range of metabolisms [17,49,142]. Bradley
et al. (2023) observed that more than 50% of bacterial cells (dominated by Actinomycetota,
Pseudomonadota, and Planctomycetota) are translationally active on glacial surfaces [20].
Most of the deposited and transformed nutrients in the supraglacial realm are then exported
to the rest of the glacial system [31,35]. With the development of warmer conditions due to
the progression of the ablation season, weathering crust and cryoconite holes contribute
nutrients and microbial cells to the rest of the glacier [29,58,143,144].

Box 2. Albedo and bioalbedo: how nutrients and microorganisms influence glacial hydrology.

Although the subject of this review is how glacial hydrology influences nutrient and microbial
distribution, the contrary is also true. The distribution of nutrients and microbial cells influences
supraglacial water flux. Albedo (i.e., the proportion of light that is reflected by a surface) is lower
for darker surfaces compared to lighter surfaces. Therefore, higher input of mineral dust and black
carbon on the glacial and ice sheet surfaces decreases the albedo, causing higher heat absorption
and increased melting, which influences the morphology of the ice surface [145]. Bioalbedo is a new
term created to specifically refer to the decrease in albedo provoked by snow and ice algae, which
are dark-pigmented, on the glacial surface [146,147]. A change in albedo and bioalbedo, therefore,
directly influences glacial hydrology by promoting glacial and ice sheet surface melting.

3.2.2. Englacial Realm

Snowmelt also enters into the firn aquifer. No studies reporting biological processes in
firn aquifers are available. However, there are indications of microbial activity: Holland et al.
(2022) observed similar NO3

− concentrations between the ice-snow interface meltwater
and the snowpack [128]. However, DON and NH4

+ concentrations were variable, possibly
indicating microbial activity at the ice-snow interface. The chemical composition of the
meltwater that enters the englacial system varies across the ablation season. Whereas melt-
water at the beginning of the ablation season is likely to reflect the chemical composition of
the snow, microbial processes and particle weathering ensure that meltwater that enters
the englacial system later in the season is enriched with carbon, macronutrients (e.g., N,
P, and Si) and ions such the dissolved inorganic forms of sulfur (e.g., SO4

2+) [148,149]. The
englacial realm, with its network of water pathways, transfers cells and nutrients within
the glacial system. It is unclear whether the englacial realm also has a role in nutrient and
carbon transformation and is characterized by a microbial community specific to englacial
pathways conditions [150]. Microbial nutrient cycling observed in fast-flowing supraglacial
streams [49] suggests that microbial processes may be significant in fast-flowing englacial
conduits. In addition, ice cores collected from englacial systems indicate that microorgan-
isms are not quiescent but maintain an active metabolism [151]. These active metabolisms
could be ascribed to chemoautotrophic organisms [151] or could rely on simple carbon
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substrates (e.g., acetic and formic acids) using NO3
− and SO4

2+, which are abundant in
meltwater deriving from supraglacial systems, as terminal acceptors [19].

In addition to englacial conduits, ice veins, with their high nutrient concentrations,
offer a favorable habitat for microbial activity [68,106,152,153], and high cell concentrations
have been measured in this environment [154]. Liquid flow in veins has long residence
times, suggesting low oxygen concentrations and anaerobic metabolism [68,155], which can
be mediated by methanogens such as Methanosphaerula and Methanococcus [156]. Despite
the high nutrient concentrations and favorable conditions for active communities, microbial
structure and function in the englacial realm are poorly understood [150,151].

3.2.3. Subglacial Realm

In subglacial systems, meltwater contacts bedrock (and subglacial till) and is conse-
quently enriched in compounds released by rock comminution and dissolution (e.g., H2 and
FeS2), creating environments where redox conditions may vary widely [65,66]. Chemical
compositions of subglacial water highly vary due to (i) supraglacial and englacial hydrol-
ogy, which controls the pattern, discharge, and biogeochemistry of meltwaters reaching the
bottom of the glacier; (ii) subglacial hydrology, which controls the discharge and residence
time of waters along the bed and influences patterns of erosion and regelation; and (iii) the
geology of the subglacial substrate [11,90,121,143,157].

Depending on the mineral composition of the glacier and ice sheet beds, subsurface
meltwater can be influenced by the weathering of pyrite (i.e., pyrite oxidation) and/or
carbonates (i.e., carbonate dissolution) [27,158]. The dissolution of pyrite releases protons,
and the dissolution of carbonate rocks releases dissolved inorganic carbon (e.g., CO2), which
then creates carbonic acid in aqueous environments [18]. Pyrite oxidation is the prevalent
form of mineral weathering in subglacial environments and has been observed to drive
subglacial microbial metabolism [18,157]. The acidic environment resulting from pyrite
oxidation also drives carbonate and silicate weathering [159]. The presence of subglacial
tills also influences meltwater chemical compositions [36,160,161], and glacial beds can also
be connected via aquifers to subterranean water sources [162]. All these factors further
influence meltwater chemical composition and shape microbial community input to the
subglacial environment [11,162,163].

As in the supraglacial and englacial realms, subglacial microbial communities are largely
composed of heterotrophic microorganisms. However, contrary to the supraglacial realm, the
primary producers of subglacial communities are chemolithotrophs. These organisms rely
on nutrients transported from the glacial surface but also those released by rock weathering,
and they accelerate mineral weathering of the glacial bed and chemical transformations
within the subglacial system [13]. Biotic pyrite (FeS2) dissolution is rapid both in oxic and
anoxic conditions [13,164], where O2 and Fe3+ can be used as sulfide oxidants [66]. Sulphide
oxidation in oxic conditions uses pyrite, oxygen, and water to produce H+, Fe(OH)3 (iron
(oxyhydr)oxides), and SO4

2. Fe(OH)3 dissociates to Fe3+ in the acidic subglacial environment
(created by a high concentration of H+ due to rock dissolution) [13]. Anoxic pyrite dissociation
can then occur: pyrite, Fe3+, and water react to form Fe2+, SO4

2−, and H+. Anoxic pyrite
dissociation is faster than oxic dissociation because of the higher H+ production, which
accelerates rock dissolution and weathering [13,165]. These weathering reactions are mediated
by iron/sulfur-oxidizing bacteria, such as Thiobacillus and Sideroxydans species, and iron-
reducing bacteria, such as Desulfosporosinus, Geobacter and Rhodoferax species [18,157,165,166].
Other microbial-mediated processes in the subsurface environment include denitrification,
Mn4+ reduction, SO4

2− reduction, methanogenesis, and nitrification [19,108,167–169]. In this
environment, complex microbial interactions occur where, under anaerobic conditions, SO4

2−

reducing bacteria compete with methanogens for carbon substrates [170].
While meltwater that reaches subglacial systems is mostly oxygenated, as it is sourced

from well-ventilated environments (e.g., supraglacial streams, moulins, and fast-flowing
englacial conduits), oxygen levels in the subglacial environment can significantly vary
based on the morphological characteristics of the system and, consequently, on water
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residence times [11,159]; whereas channelized subglacial systems are characterized by
oxic waters thanks to their fast-flowing waters [11], anoxia and higher rock dissolution
rates are observed with longer water permanence times and typically indicate higher rates
of microbial activity and respiration [11,159]. In distributed drainage systems, there is
a progressive development of anoxic conditions due to slow water flow, which creates
favorable conditions for the uptake and use of organic matter by heterotrophic organisms
via oxidative cellular respiration [67]. Despite these shifts in water oxygen levels, in general,
microbial metabolism is thought to be driven by the mineralization of organic carbon and
nitrogen under oxic conditions [19], whereas microbial communities performing sulfate
reduction and methanogenesis prevail with the development of anoxic conditions [171].

3.3. Microbial and Geochemical Dynamics during the Accumulation Season

Most of the studies on glacial microbial communities take place during the summer
ablation season at temperate and polythermal glaciers, where geochemical and microbial
processes are most active due to the presence of meltwater and nutrients in the system [172].
Consequently, little information is available on microbial processes during winter.

Even in winter, water in ice veins, englacial pockets, and subglacial regions [11,19,68]
may retain sufficiently high solute concentrations to sustain basal microbial metabolism
(e.g., DNA repair mechanisms) [173] or even microbial growth. During the accumulation
season, the prevalent microbial metabolism is likely to be chemoautotrophy in all glacial en-
vironments; the newly secreted nutrients and remnant nutrients from ablation seasons could
also sustain metabolism in heterotrophic organisms. Active microbial communities have
been identified in systems that are only minimally influenced by ablation/accumulation
seasonal differences, such as subglacial lakes in ice sheets [174–176]. Furthermore, in
glaciers during the accumulation season (when nutrient input from the surface is largely
absent), nutrients can be sourced from glacial bedrock where H2 is released abiotically
from rock comminution and can be oxidized in both aerobic and anaerobic conditions,
fueling microbial chemolithotrophy [65,177–179]. Thus, even during the accumulation
season, glaciers can harbor biogeochemical transformations thanks to microbial-mediated
processes. This is also supported by observations of active heterotrophic communities in
snowpacks incubated in cold and dark conditions [180].

4. Glaciers and Ice Sheets as Bioreactors

Considering the array of microbial processes active on, in, and under glaciers and
ice sheets, these systems can be thought of as bioreactors. Nutrient concentration and
bioavailability increase from supraglacial input waters to exiting subglacial waters. Exiting
subglacial waters are enriched with dissolved iron (i.e., Fe2+ and Fe3+) and iron nanopar-
ticulates (e.g., Fe (oxyhydr)oxides and Fe2+-bound compounds), which are bioavailable
for microbial uptake [13,181]. Similarly, other metals are more bioavailable in glacial flour
(i.e., fine rock particles formed by rock comminution) than in other dust [182]. Organic
carbon (DOC) also follows similar trends [183]. The DOC proteinaceous component (DOC
that is microbially produced and secreted) is higher compared to humic and fulvic acids
(DOC transported by aerosol deposition and terrestrial transport) in glacial meltwater
compared to other water systems such as rivers and lakes [16], indicating a strong involve-
ment of glacial microbial communities in carbon cycling, and in the export of labile carbon.
Kellerman et al. (2020) observed a shift in protein-like fluorescence with the progression of
the ablation period indicating microbial communities as a source of DOC [184]. Barker et al.
(2006) also showed that supraglacial and subglacial water had similar DOC concentrations
but different fluorescence signals in three different glaciers, clearly indicating shifts in
DOC quality due to microbial transformation [15]; this further points to a microbial role in
DOM release [7,185]. An increase in microbial cell concentrations in glacial water flowing
from the surface to the subsurface of glaciers has also been reported [6] (Table 2). Cell
concentrations in subglacial water are usually in the order of 105 cells mL−1 compared
to concentrations in supraglacial water which are an order of magnitude lower (with the
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exception of ice veins where observed concentrations were 106–108 cells mL−1) (Table 2).
These clear patterns in the enrichment of cell, nutrient, and bioavailable compounds show
how glaciers serve as bioreactors for a range of biogeochemical transformations, which in
turn can deeply influence proglacial systems.

Table 2. Cell concentration in different water environments. VLP: Viral-Like Particles.

Cell Concentration Source Sampling Ablation Season Reference

1.0–4.5 × 104 cells mL−1

(3.97–12.7 × 104 VLP mL−1)
Cryoconite holes, Midtre Lovénbreen 2000 and 2001 [186]

1.38 × 104–4.84 × 104 cells mL−1 Supraglacial meltwater runoff and
cryoconite holes, Midtre Lovénbreen 2004 [187]

5.4 ± 1.6 × 104 cells mL−1 Cryoconite holes, Austre
Broggerbreen 2005 [31]

3.4 ± 1.2 × 104 cells mL−1 Cryoconite holes, Midtre Lovénbreen 2005 [31]

4.1 ± 3.8 × 104 cells mL−1 Cryoconite holes, Rotmoosferner 2004 [31]

3.7 ± 1.4 × 104 cells mL−1 Cryoconite holes, Stubacher
Sonnblickkees 2007 [31]

1.3 ± 8.2 × 104 cells mL−1 Cryoconite holes, blue ice close to
Patriot Hills 2002 [31]

4.4 ± 2.4 × 104 cells mL−1 Cryoconite holes, Canada,
Commonwealth, and Taylor glaciers 2005 [31]

2 × 104 cells mL−1 Supraglacial meltwater runoff, Midtre
Lovénbreen 2010 [188]

8.38 × 103 ± 9.85 × 103 cells mL−1 Supraglacial meltwater runoff,
Russell glacier 2012 [6]

2.2 × 104 ± 5.5 × 104 cells mL−1 Weathering crust, Northern
Hemisphere glaciers 2014, 2015 and 2016 [29]

6 × 104 cells ml−1 Subglacial brine, Blood Falls 2004 [174]

106–108 cells mL−1 Ice vein water / [154]

4.7–5.7 × 105 cells mL−1 Subglacial water, Skaftá
subglacial lake 2006 [189]

4.4 ± 2.2 × 105 cells mL−1 Subglacial water, East Skaftárkatlar
subglacial lakes 2007 [162]

1.3 × 105 cells mL−1 Subglacial water, subglacial
lake Whillans 2013 [190]

1.3 × 105 cells mL−1 Subglacial water, subglacial
lake Whillans 2013 [191]

1.15 × 105 ± 1.38 × 105 cells mL−1 Subglacial meltwater runoff,
Leverett glacier 2012 [6]

5. Proglacial Systems

Glacial meltwater is an important source of cells and nutrients in outflow systems,
carrying bioavailable Fe, DOC, N, P, Si, and rare metals, together with sediments and glacial
flour [183,192–197]. How the proglacial system impacts downstream systems [198–201]
depends on different factors, where the morphology of the proglacial system (i.e., land or
maritime terminating) and its nutrient state (e.g., oligotrophic vs. eutrophic) play important
roles [202].

The retreat of land-terminating glaciers exposes soil in the proximity of the glacier
(i.e., forefield), where soils show a gradient in texture and chemical characteristics from the
ice edge: newly exposed soils are usually characterized by low nutrient levels and little
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or no vegetation, and are impacted by microorganisms and nutrient from glacial meltwa-
ter [135,203–205]. Subglacial water from land-terminating glaciers also flows into rivers
and streams, which will then export nutrients to other water bodies (e.g., lakes, rivers, and
seas) [206]. Glacial streams and lakes typically show different dissolved inorganic nitrogen
and phosphate concentrations than similar water bodies without glacial water input, and
silica concentrations are lower in glacial streams compared to non-glacial streams [200].
Streams and lakes are also enriched with nitrogen deriving from glacial water in North
America [207,208], where an increase in nitrogen concentration influences microbial struc-
ture and diversity (e.g., planktonic diatoms) [209]. Warner et al. (2017) also observed higher
algal biomass in glacial lakes (c.f. non-glacial lakes) [199]. Lake connectivity to glacial water
influences microbial communities due to the import of nutrients and the shift between
turbidity and clear water conditions [210].

During the transport in the river, glacial meltwater undergoes chemical modifications.
For instance, Fe and DOC are sequestered by precipitation and adsorption during the glacial
meltwater transport in rivers and streams in Svalbard [211]. Nitrogen was also observed
to decline in downstream glacial lakes in North America [199]. However, DOC increased
during its flow in proglacial streams in Iceland, probably due to carbon mineralization
and microbial transformation [212]. These contrasting results show how the processes
in the proglacial streams are regulated by many local factors. Even if exported nutrient
concentrations (e.g., Fe) decrease during their flow through the rivers and estuaries, glacial-
fed streams are still able to export nutrients to the ocean [213]. Glacial meltwater from
land-terminating glaciers enters the sea/ocean through estuaries. Here, the glacial water
creates a top layer of sediment-rich water which can inhibit primary productivity in the
proximity of the land because of the decrease of light filtration in the system [214,215]
(Figure 3A). Whereas this is often the case in the Arctic, land-terminating glaciers in the
Antarctic can have positive effects because water is so oligotrophic that even the import of
low nutrient concentrations can increase primary production [202,213,216,217].

Subglacial water from marine-terminating glaciers provides carbon, macronutrients (e.g.,
nitrogen), and micronutrients (e.g., iron) to the surrounding marine system [214,218,219].
Organic carbon and other macronutrients are generally less concentrated in subglacial water
than in seawater but more bioavailable [183,192,220]. In addition, glacial meltwater causes
an upwelling of nutrient-rich deep seawater due to the buoyancy of the glacial cold water
(Figure 3B), therefore enriching the surface seawater column with deep sea macronutri-
ents [220–223]. Micronutrients (e.g., Fe) are generally more concentrated in subglacial waters
compared to seawater [193], although the destiny and availability of these nutrients are still
under debate [193,195,221].

The impact that subglacial discharge has on the coastal system depends on two main
factors: the seawater depth at which subglacial water is discharged and the nutrient state
of the marine system [224,225]. Meltwater from marine-terminating glaciers enters the
marine environment at different depths in the seawater column depending on the kind
of glacier (e.g., tidewater or ice shelf) and glacier thickness [225]. If the discharge of cold
subglacial waters creates an upwelling of deep nutrient-rich waters that reach the photic
zone of the seawater column, an increase in primary productivity (e.g., higher chlorophyll
concentration) is observed thanks to the import of nitrogen, ammonium, phosphate, and
silicate in the Arctic marine coastal environment where the seawater is generally nitrogen
depleted [220–222,224]. However, the upwelling of nutrient-rich waters might not reach
the photic zone in the case of deep or shallow marine-terminating glaciers, causing limited
primary productivity in Arctic waters [225]. Contrary to the Arctic seawater, which is
generally nitrogen depleted, the Southern Ocean is mainly limited by low concentrations
of bioavailable Fe (e.g., Fe2+ and colloidal Fe) [224,225], and it, therefore, relies less on the
inputs of macronutrients by deep seawater upwelling, but rather more on the import of
micronutrients from glacial waters themselves [195,226,227].
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Generally, nutrient export increases with meltwater export to the proglacial sys-
tems [148]. This is the result of the release of the nutrients trapped in glaciers and ice
sheets, which act as storage for different elements such as carbon, and also of the higher
presence of water in the system, which promotes geochemical and microbial processes in
supraglacial and subglacial realms [183]. Whereas it is clear that an increase in nutrient
release affects geochemical cycles, trophic chains, and microbial diversity [23,228,229],
an increase in nutrient export from the glacial system does not always correspond to an
increase in the proglacial system primary production [221,230].

Changes in water residence times in glaciers could cause drastic shifts in proglacial
environments. In particular, a decrease in glacial residence times with a consequent increase
of glacial water released to outlet systems is observed due to global warming [9,231,232].
For example, a change in the glacial water runoff and nutrient export can correspond to
a change in water acidity in the coastal environment caused by a variation in carbonate
concentrations, sediment input and burial, water stratigraphy and turbidity, and nutrient
import into the system, leading to a change in environmental dynamics and primary
productivity in proglacial systems [148,233–238] (Figure 3C).

6. Conclusions

Supraglacial and subglacial microbial communities have been widely studied and
characterized in the last few decades, with many studies showing how biotic and abiotic
processes in these systems are linked to global biogeochemical cycles [4,34,35]. It is also
common knowledge that climate warming affects the interconnectivity among glacial hy-
drology, microbial community, and geochemistry and that increases in meltwater discharge
from glaciers and ice sheets impact the proglacial systems [20,198–201]. Therefore, whereas
it is clear that climate warming affects and will affect dynamics within glaciers and ice
sheets and in their out-stream environments, little information is present on how glacial
microbial communities will be impacted. In order to fully understand these impacts, we
believe a more holistic understanding of how microbial communities, nutrient cycling,
and glacial meltwater hydrology function and interact is necessary. For example, nutrient
cycling and microbial activity in the yet unexplored englacial channels and firn aquifers
should be explored, together with biotic and abiotic processes during the accumulation
season. Further, better estimates of water residence times in different compartments of
glaciers and ice sheets are needed to more confidently estimate microbial activity and
conditions for nutrient cycling. Whereas more comprehensive information on glacial and
ice sheet hydrology will inform on microbial activity and nutrient composition, the oppo-
site is also true, where a deeper understanding of microbial and nutrient distribution and
transformations could further inform on water paths within glaciers.

Author Contributions: Conceptualization, G.V., P.H.L. and A.G.F.; writing—review and editing, G.V.,
A.G.F., P.H.L., B.F., A.M.A. and D.A.C.; visualization, G.V.; funding acquisition, D.A.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swiss Polar Institute (grant No. TEG-2022-002) and the
National Research Foundation (grant No. 129227).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We thank the University of Pretoria for providing postdoctoral bursaries for G.V.
and P.L. We also thank the Swiss Polar Institute (grant No. TEG-2022-002) and the National Research
Foundation for funding support (grant No. 129227).

Conflicts of Interest: The authors declare no conflict of interest.



Microorganisms 2023, 11, 1153 16 of 24

References
1. Hooke, R. Principles of Glacier Mechanics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020.
2. Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock Glaciers and Mountain Hydrology: A Review. Earth-Sci. Rev. 2019,

193, 66–90. [CrossRef]
3. Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer,

I.; et al. Global Glacier Mass Changes and Their Contributions to Sea-Level Rise from 1961 to 2016. Nature 2019, 568, 382–386.
[CrossRef] [PubMed]

4. Hotaling, S.; Hood, E.; Hamilton, T.L. Microbial Ecology of Mountain Glacier Ecosystems: Biodiversity, Ecological Connections
and Implications of a Warming Climate. Environ. Microbiol. 2017, 19, 2935–2948. [CrossRef] [PubMed]

5. Cameron, K.A.; Müller, O.; Stibal, M.; Edwards, A.; Jacobsen, C.S. Glacial Microbiota Are Hydrologically Connected and
Temporally Variable. Environ. Microbiol. 2020, 22, 3172–3187. [CrossRef] [PubMed]

6. Cameron, K.A.; Stibal, M.; Hawkings, J.R.; Mikkelsen, A.B.; Telling, J.; Kohler, T.J.; Gözdereliler, E.; Zarsky, J.D.; Wadham, J.L.;
Jacobsen, C.S. Meltwater Export of Prokaryotic Cells from the Greenland Ice Sheet: Microbial Export from the Greenland Ice
Sheet. Environ. Microbiol. 2017, 19, 524–534. [CrossRef]

7. Fegel, T.; Boot, C.M.; Broeckling, C.D.; Baron, J.S.; Hall, E.K. Assessing the Chemistry and Bioavailability of Dissolved Organic
Matter From Glaciers and Rock Glaciers. J. Geophys. Res. Biogeosci. 2019, 124, 1988–2004. [CrossRef]

8. Kohler, T.J.; Vinšová, P.; Falteisek, L.; Žárský, J.D.; Yde, J.C.; Hatton, J.E.; Hawkings, J.R.; Lamarche-Gagnon, G.; Hood, E.;
Cameron, K.A.; et al. Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers. Front.
Microbiol. 2020, 11, 669. [CrossRef]

9. Chu, V.W. Greenland Ice Sheet Hydrology: A Review. Prog. Phys. Geogr. Earth Environ. 2014, 38, 19–54. [CrossRef]
10. Simkins, L.M.; Greenwood, S.L.; Munevar Garcia, S.; Eareckson, E.A.; Anderson, J.B.; Prothro, L.O. Topographic Controls on

Channelized Meltwater in the Subglacial Environment. Geophys. Res. Lett. 2021, 48, e2021GL094678. [CrossRef]
11. Tranter, M.; Skidmore, M.; Wadham, J. Hydrological Controls on Microbial Communities in Subglacial Environments. Hydrol.

Process. 2005, 19, 995–998. [CrossRef]
12. Dubnick, A.; Kazemi, S.; Sharp, M.; Wadham, J.; Hawkings, J.; Beaton, A.; Lanoil, B. Hydrological Controls on Glacially Exported

Microbial Assemblages: Subglacial Hydrology and Microbiology. J. Geophys. Res. Biogeosci. 2017, 122, 1049–1061. [CrossRef]
13. Raiswell, R.; Hawkings, J.; Elsenousy, A.; Death, R.; Tranter, M.; Wadham, J. Iron in Glacial Systems: Speciation, Reactivity,

Freezing Behavior, and Alteration During Transport. Front. Earth Sci. 2018, 6, 222. [CrossRef]
14. Margesin, R.; Collins, T. Microbial Ecology of the Cryosphere (Glacial and Permafrost Habitats): Current Knowledge. Appl.

Microbiol. Biotechnol. 2019, 103, 2537–2549. [CrossRef]
15. Barker, J.D.; Sharp, M.J.; Fitzsimons, S.J.; Turner, R.J. Abundance and Dynamics of Dissolved Organic Carbon in Glacier Systems.

Arct. Antarct. Alp. Res. 2006, 38, 163–172. [CrossRef]
16. Dubnick, A.; Barker, J.; Sharp, M.; Wadham, J.; Lis, G.; Telling, J.; Fitzsimons, S.; Jackson, M. Characterization of Dissolved

Organic Matter (DOM) from Glacial Environments Using Total Fluorescence Spectroscopy and Parallel Factor Analysis. Ann.
Glaciol. 2010, 51, 111–122. [CrossRef]

17. Anesio, A.M.; Laybourn-Parry, J. Ecology of Arctic Glaciers. In Arctic Ecology; Thomas, D.N., Ed.; Wiley: Hoboken, NJ, USA, 2021;
pp. 133–158. ISBN 978-1-118-84654-4.

18. Boyd, E.S.; Hamilton, T.L.; Havig, J.R.; Skidmore, M.L.; Shock, E.L. Chemolithotrophic Primary Production in a Subglacial
Ecosystem. Appl. Environ. Microbiol. 2014, 80, 6146–6153. [CrossRef]

19. Hodson, A.; Anesio, A.M.; Tranter, M.; Fountain, A.; Osborn, M.; Priscu, J.; Laybourn-Parry, J.; Sattler, B. Glacial Ecosystems. Ecol.
Monogr. 2008, 78, 41–67. [CrossRef]

20. Bradley, J.A.; Trivedi, C.B.; Winkel, M.; Mourot, R.; Lutz, S.; Larose, C.; Keuschnig, C.; Doting, E.; Halbach, L.; Zervas, A.; et al.
Active and Dormant Microorganisms on Glacier Surfaces. Geobiology 2023, 21, 244–261. [CrossRef]

21. Jain, S. Fundamentals of Physical Geology; Springer Geology; Springer India: New Delhi, India, 2014; ISBN 978-81-322-1538-7.
22. Buytaert, W.; Moulds, S.; Acosta, L.; De Bièvre, B.; Olmos, C.; Villacis, M.; Tovar, C.; Verbist, K.M.J. Glacial Melt Content of Water

Use in the Tropical Andes. Environ. Res. Lett. 2017, 12, 114014. [CrossRef]
23. Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.;

Hannah, D.M.; et al. Glacier Shrinkage Driving Global Changes in Downstream Systems. Proc. Natl. Acad. Sci. USA 2017, 114,
9770–9778. [CrossRef]

24. Biemans, H.; Siderius, C.; Lutz, A.F.; Nepal, S.; Ahmad, B.; Hassan, T.; von Bloh, W.; Wijngaard, R.R.; Wester, P.; Shrestha, A.B.;
et al. Importance of Snow and Glacier Meltwater for Agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2019, 2, 594–601.
[CrossRef]

25. Catania, G.A.; Stearns, L.A.; Moon, T.A.; Enderlin, E.M.; Jackson, R.H. Future Evolution of Greenland’s Marine-Terminating
Outlet Glaciers. J. Geophys. Res. Earth Surf. 2020, 125, e2018JF004873. [CrossRef]

26. Slater, T.; Shepherd, A.; McMillan, M.; Leeson, A.; Gilbert, L.; Muir, A.; Munneke, P.K.; Noël, B.; Fettweis, X.; van den Broeke, M.; et al.
Increased Variability in Greenland Ice Sheet Runoff from Satellite Observations. Nat. Commun. 2021, 12, 6069. [CrossRef] [PubMed]

27. Torres, M.A.; Moosdorf, N.; Hartmann, J.; Adkins, J.F.; West, A.J. Glacial Weathering, Sulfide Oxidation, and Global Carbon Cycle
Feedbacks. Proc. Natl. Acad. Sci. USA 2017, 114, 8716–8721. [CrossRef]

https://doi.org/10.1016/j.earscirev.2019.04.001
https://doi.org/10.1038/s41586-019-1071-0
https://www.ncbi.nlm.nih.gov/pubmed/30962533
https://doi.org/10.1111/1462-2920.13766
https://www.ncbi.nlm.nih.gov/pubmed/28419666
https://doi.org/10.1111/1462-2920.15059
https://www.ncbi.nlm.nih.gov/pubmed/32383292
https://doi.org/10.1111/1462-2920.13483
https://doi.org/10.1029/2018JG004874
https://doi.org/10.3389/fmicb.2020.00669
https://doi.org/10.1177/0309133313507075
https://doi.org/10.1029/2021GL094678
https://doi.org/10.1002/hyp.5854
https://doi.org/10.1002/2016JG003685
https://doi.org/10.3389/feart.2018.00222
https://doi.org/10.1007/s00253-019-09631-3
https://doi.org/10.1657/1523-0430(2006)38[163:AADODO]2.0.CO;2
https://doi.org/10.3189/172756411795931912
https://doi.org/10.1128/AEM.01956-14
https://doi.org/10.1890/07-0187.1
https://doi.org/10.1111/gbi.12535
https://doi.org/10.1088/1748-9326/aa926c
https://doi.org/10.1073/pnas.1619807114
https://doi.org/10.1038/s41893-019-0305-3
https://doi.org/10.1029/2018JF004873
https://doi.org/10.1038/s41467-021-26229-4
https://www.ncbi.nlm.nih.gov/pubmed/34725324
https://doi.org/10.1073/pnas.1702953114


Microorganisms 2023, 11, 1153 17 of 24

28. Delaney, I.; Adhikari, S. Increased Subglacial Sediment Discharge in a Warming Climate: Consideration of Ice Dynamics, Glacial
Erosion, and Fluvial Sediment Transport. Geophys. Res. Lett. 2020, 47, e2019GL085672. [CrossRef]

29. Stevens, I.T.; Irvine-Fynn, T.D.L.; Edwards, A.; Mitchell, A.C.; Cook, J.M.; Porter, P.R.; Holt, T.O.; Huss, M.; Fettweis, X.; Moorman,
B.J.; et al. Spatially Consistent Microbial Biomass and Future Cellular Carbon Release from Melting Northern Hemisphere Glacier
Surfaces. Commun. Earth Environ. 2022, 3, 275. [CrossRef]

30. Anderson, S.P. Biogeochemistry of Glacial Landscape Systems. Annu. Rev. Earth Planet. Sci. 2007, 35, 375–399. [CrossRef]
31. Anesio, A.M.; Sattler, B.; Foreman, C.; Telling, J.; Hodson, A.; Tranter, M.; Psenner, R. Carbon Fluxes through Bacterial

Communities on Glacier Surfaces. Ann. Glaciol. 2010, 51, 32–40. [CrossRef]
32. Hawkings, J.; Wadham, J.; Tranter, M.; Telling, J.; Bagshaw, E.; Beaton, A.; Simmons, S.-L.; Chandler, D.; Tedstone, A.; Nienow, P.

The Greenland Ice Sheet as a Hot Spot of Phosphorus Weathering and Export in the Arctic: THE GREENLAND ICE SHEET P
CYCLE. Glob. Biogeochem. Cycles 2016, 30, 191–210. [CrossRef]

33. Wadham, J.L.; Hawkings, J.R.; Tarasov, L.; Gregoire, L.J.; Spencer, R.G.M.; Gutjahr, M.; Ridgwell, A.; Kohfeld, K.E. Ice Sheets
Matter for the Global Carbon Cycle. Nat. Commun. 2019, 10, 3567. [CrossRef]

34. Boetius, A.; Anesio, A.M.; Deming, J.W.; Mikucki, J.A.; Rapp, J.Z. Microbial Ecology of the Cryosphere: Sea Ice and Glacial
Habitats. Nat. Rev. Microbiol. 2015, 13, 677–690. [CrossRef]

35. Anesio, A.M.; Lutz, S.; Chrismas, N.A.M.; Benning, L.G. The Microbiome of Glaciers and Ice Sheets. npj Biofilms Microbiomes 2017,
3, 10. [CrossRef]

36. Fountain, A.G.; Walder, J.S. Water Flow through Temperate Glaciers. Rev. Geophys. 1998, 36, 299–328. [CrossRef]
37. St Germain, S.L.; Moorman, B.J. Long-Term Observations of Supraglacial Streams on an Arctic Glacier. J. Glaciol. 2019, 65, 900–911.

[CrossRef]
38. Cook, S.J.; Swift, D.A.; Kirkbride, M.P.; Knight, P.G.; Waller, R.I. The Empirical Basis for Modelling Glacial Erosion Rates. Nat.

Commun. 2020, 11, 759. [CrossRef]
39. Irvine-Fynn, T.D.L.; Hodson, A.J.; Moorman, B.J.; Vatne, G.; Hubbard, A.L. Polythermal glacier hydrology: A review. Rev. Geophys.

2011, 49. [CrossRef]
40. Clason, C.; Mair, D.W.F.; Burgess, D.O.; Nienow, P.W. Modelling the Delivery of Supraglacial Meltwater to the Ice/Bed Interface:

Application to Southwest Devon Ice Cap, Nunavut, Canada. J. Glaciol. 2012, 58, 361–374. [CrossRef]
41. Hambrey, M.J.; Glasser, N.F. Discriminating Glacier Thermal and Dynamic Regimes in the Sedimentary Record. Sediment. Geol.

2012, 251–252, 1–33. [CrossRef]
42. Pittard, M.L.; Galton-Fenzi, B.K.; Roberts, J.L.; Watson, C.S. Organization of Ice Flow by Localized Regions of Elevated Geothermal

Heat Flux. Geophys. Res. Lett. 2016, 43, 3342–3350. [CrossRef]
43. Marmoni, G.M.; Martino, S.; Salvatore, M.C.; Gaeta, M.; Perinelli, C.; Scarascia Mugnozza, G.; Baroni, C. Numerical Modelling of

Geothermal Heat Flux and Ice Velocity Influencing the Thermal Conditions of the Priestley Glacier Trough (Northern Victoria
Land, Antarctica). Geomorphology 2021, 394, 107959. [CrossRef]

44. Pettersson, R.; Jansson, P.; Blatter, H. Spatial Variability in Water Content at the Cold-Temperate Transition Surface of the
Polythermal Storglaciären, Sweden: Spatial Variability in Water Content. J. Geophys. Res. 2004, 109, F02009. [CrossRef]

45. Vatne, G.; Irvine-Fynn, T.D.L. Morphological Dynamics of an Englacial Channel. Hydrol. Earth Syst. Sci. 2016, 20, 2947–2964.
[CrossRef]

46. Badgeley, J.A.; Pettit, E.C.; Carr, C.G.; Tulaczyk, S.; Mikucki, J.A.; Lyons, W.B.; MIDGE Science Team. An Englacial Hydrologic
System of Brine within a Cold Glacier: Blood Falls, McMurdo Dry Valleys, Antarctica. J. Glaciol. 2017, 63, 387–400. [CrossRef]

47. Temminghoff, M.; Benn, D.I.; Gulley, J.D.; Sevestre, H. Characterization of the Englacial and Subglacial Drainage System in a
High Arctic Cold Glacier by Speleological Mapping and Ground-Penetrating Radar. Geogr. Ann. Ser. A Phys. Geogr. 2019, 101,
98–117. [CrossRef]

48. Hansen, L.U.; Piotrowski, J.A.; Benn, D.I.; Sevestre, H. A Cross-Validated Three-Dimensional Model of an Englacial and Subglacial
Drainage System in a High-Arctic Glacier. J. Glaciol. 2020, 66, 278–290. [CrossRef]

49. Bergstrom, A.; Gooseff, M.N.; Singley, J.G.; Cohen, M.J.; Welch, K.A. Nutrient Uptake in the Supraglacial Stream Network of an
Antarctic Glacier. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005679. [CrossRef]

50. Bagshaw, E.A.; Tranter, M.; Wadham, J.L.; Fountain, A.G.; Basagic, H. Dynamic Behaviour of Supraglacial Lakes on Cold Polar
Glaciers: Canada Glacier, McMurdo Dry Valleys, Antarctica. J. Glaciol. 2010, 56, 366–368. [CrossRef]

51. Miller, O.L.; Solomon, D.K.; Miège, C.; Koenig, L.S.; Forster, R.R.; Montgomery, L.N.; Schmerr, N.; Ligtenberg, S.R.M.; Legchenko,
A.; Brucker, L. Hydraulic Conductivity of a Firn Aquifer in Southeast Greenland. Front. Earth Sci. 2017, 5, 38. [CrossRef]

52. Montgomery, L.N.; Schmerr, N.; Burdick, S.; Forster, R.R.; Koenig, L.; Legchenko, A.; Ligtenberg, S.; Miège, C.; Miller, O.L.;
Solomon, D.K. Investigation of Firn Aquifer Structure in Southeastern Greenland Using Active Source Seismology. Front. Earth
Sci. 2017, 5, 10. [CrossRef]

53. Kendrick, A.K.; Schroeder, D.M.; Chu, W.; Young, T.J.; Christoffersen, P.; Todd, J.; Doyle, S.H.; Box, J.E.; Hubbard, A.; Hubbard, B.; et al.
Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland. Geophys. Res. Lett. 2018, 45, 10474–10481. [CrossRef]

54. Fountain, A.G. Effect of snow and firn hydrology on the physical and chemical characteristics of glacial runoff. Hydrol. Process.
1996, 10, 509–521. [CrossRef]

55. Cook, J.M.; Hodson, A.J.; Irvine-Fynn, T.D.L. Supraglacial Weathering Crust Dynamics Inferred from Cryoconite Hole Hydrology:
Weathering Crust Hydrology Observed in Cryoconite Holes. Hydrol. Process. 2016, 30, 433–446. [CrossRef]

https://doi.org/10.1029/2019GL085672
https://doi.org/10.1038/s43247-022-00609-0
https://doi.org/10.1146/annurev.earth.35.031306.140033
https://doi.org/10.3189/172756411795932092
https://doi.org/10.1002/2015GB005237
https://doi.org/10.1038/s41467-019-11394-4
https://doi.org/10.1038/nrmicro3522
https://doi.org/10.1038/s41522-017-0019-0
https://doi.org/10.1029/97RG03579
https://doi.org/10.1017/jog.2019.60
https://doi.org/10.1038/s41467-020-14583-8
https://doi.org/10.1029/2010RG000350
https://doi.org/10.3189/2012JoG11J129
https://doi.org/10.1016/j.sedgeo.2012.01.008
https://doi.org/10.1002/2016GL068436
https://doi.org/10.1016/j.geomorph.2021.107959
https://doi.org/10.1029/2003JF000110
https://doi.org/10.5194/hess-20-2947-2016
https://doi.org/10.1017/jog.2017.16
https://doi.org/10.1080/04353676.2018.1545120
https://doi.org/10.1017/jog.2020.1
https://doi.org/10.1029/2020JG005679
https://doi.org/10.3189/002214310791968449
https://doi.org/10.3389/feart.2017.00038
https://doi.org/10.3389/feart.2017.00010
https://doi.org/10.1029/2018GL079787
https://doi.org/10.1002/(SICI)1099-1085(199604)10:4&lt;509::AID-HYP389&gt;3.0.CO;2-3
https://doi.org/10.1002/hyp.10602


Microorganisms 2023, 11, 1153 18 of 24

56. Hoffman, M.J.; Fountain, A.G.; Liston, G.E. Near-Surface Internal Melting: A Substantial Mass Loss on Antarctic Dry Valley
Glaciers. J. Glaciol. 2014, 60, 361–374. [CrossRef]

57. Christner, B.C.; Lavender, H.F.; Davis, C.L.; Oliver, E.E.; Neuhaus, S.U.; Myers, K.F.; Hagedorn, B.; Tulaczyk, S.M.; Doran,
P.T.; Stone, W.C. Microbial Processes in the Weathering Crust Aquifer of a Temperate Glacier. Cryosphere 2018, 12, 3653–3669.
[CrossRef]

58. Irvine-Fynn, T.D.L.; Edwards, A.; Stevens, I.T.; Mitchell, A.C.; Bunting, P.; Box, J.E.; Cameron, K.A.; Cook, J.M.; Naegeli, K.;
Rassner, S.M.E.; et al. Storage and Export of Microbial Biomass across the Western Greenland Ice Sheet. Nat. Commun. 2021,
12, 3960. [CrossRef]

59. Christianson, K.; Kohler, J.; Alley, R.B.; Nuth, C.; Pelt, W.J.J. Dynamic Perennial Firn Aquifer on an Arctic Glacier. Geophys. Res.
Lett. 2015, 42, 1418–1426. [CrossRef]

60. Stevens, I.T.; Irvine-Fynn, T.D.L.; Porter, P.R.; Cook, J.M.; Edwards, A.; Smart, M.; Moorman, B.J.; Hodson, A.J.; Mitchell, A.C.
Near-Surface Hydraulic Conductivity of Northern Hemisphere Glaciers. Hydrol. Process. 2018, 32, 850–865. [CrossRef]

61. Fountain, A.G.; Tranter, M.; Nylen, T.H.; Lewis, K.J.; Mueller, D.R. Evolution of Cryoconite Holes and Their Contribution to
Meltwater Runoff from Glaciers in the McMurdo Dry Valleys, Antarctica. J. Glaciol. 2004, 50, 35–45. [CrossRef]

62. MacDonell, S.; Fitzsimons, S. The Formation and Hydrological Significance of Cryoconite Holes. Progress. Phys. Geogr. Earth
Environ. 2008, 32, 595–610. [CrossRef]

63. Cook, J.; Edwards, A.; Takeuchi, N.; Irvine-Fynn, T. Cryoconite: The Dark Biological Secret of the Cryosphere. Progress. Phys.
Geogr. Earth Environ. 2016, 40, 66–111. [CrossRef]

64. Pitcher, L.H.; Smith, L.C. Supraglacial Streams and Rivers. Annu. Rev. Earth Planet. Sci. 2019, 47, 421–452. [CrossRef]
65. Dunham, E.C.; Dore, J.E.; Skidmore, M.L.; Roden, E.E.; Boyd, E.S. Lithogenic Hydrogen Supports Microbial Primary Production

in Subglacial and Proglacial Environments. Proc. Natl. Acad. Sci. USA 2021, 118, e2007051117. [CrossRef] [PubMed]
66. Bottrell, S.H.; Tranter, M. Sulphide Oxidation under Partially Anoxic Conditions at the Bed of the Haut Glacier d’Arolla,

Switzerland. Hydrol. Process. 2002, 16, 2363–2368. [CrossRef]
67. Wadham, J.L.; Tranter, M.; Skidmore, M.; Hodson, A.J.; Priscu, J.; Lyons, W.B.; Sharp, M.; Wynn, P.; Jackson, M. Biogeochemical

Weathering under Ice: Size Matters: Glacial Biogeochemical Weathering. Glob. Biogeochem. Cycles 2010, 24, GB3025. [CrossRef]
68. Maccario, L.; Sanguino, L.; Vogel, T.M.; Larose, C. Snow and Ice Ecosystems: Not so Extreme. Res. Microbiol. 2015, 166, 782–795.

[CrossRef]
69. Fountain, A.G.; Jacobel, R.W.; Schlichting, R.; Jansson, P. Fractures as the Main Pathways of Water Flow in Temperate Glaciers.

Nature 2005, 433, 618–621. [CrossRef]
70. McGrath, D.; Colgan, W.; Steffen, K.; Lauffenburger, P.; Balog, J. Assessing the Summer Water Budget of a Moulin Basin in the

Sermeq Avannarleq Ablation Region, Greenland Ice Sheet. J. Glaciol. 2011, 57, 954–964. [CrossRef]
71. Lampkin, D.J.; Amador, N.; Parizek, B.R.; Farness, K.; Jezek, K. Drainage from Water-filled Crevasses along the Margins of

Jakobshavn Isbræ: A Potential Catalyst for Catchment Expansion. J. Geophys. Res. Earth Surf. 2013, 118, 795–813. [CrossRef]
72. Llubes, M.; Lanseau, C.; Rémy, F. Relations between Basal Condition, Subglacial Hydrological Networks and Geothermal Flux in

Antarctica. Earth Planet. Sci. Lett. 2006, 241, 655–662. [CrossRef]
73. Fisher, A.T.; Mankoff, K.D.; Tulaczyk, S.M.; Tyler, S.W.; Foley, N.; The WISSARD Science Team. High Geothermal Heat Flux

Measured below the West Antarctic Ice Sheet. Sci. Adv. 2015, 1, e1500093. [CrossRef]
74. Lösing, M.; Ebbing, J.; Szwillus, W. Geothermal Heat Flux in Antarctica: Assessing Models and Observations by Bayesian

Inversion. Front. Earth Sci. 2020, 8, 105. [CrossRef]
75. Beem, L.H.; Jezek, K.C.; Van Der Veen, C.J. Basal Melt Rates beneath Whillans Ice Stream, West Antarctica. J. Glaciol. 2010, 56,

647–654. [CrossRef]
76. Nanni, U.; Gimbert, F.; Roux, P.; Lecointre, A. Observing the Subglacial Hydrology Network and Its Dynamics with a Dense

Seismic Array. Proc. Natl. Acad. Sci. USA 2021, 118, e2023757118. [CrossRef]
77. Scholzen, C.; Schuler, T.V.; Gilbert, A. Sensitivity of Subglacial Drainage to Water Supply Distribution at the Kongsfjord Basin,

Svalbard. Cryosphere 2021, 15, 2719–2738. [CrossRef]
78. Ronayne, M.J.; Houghton, T.B.; Stednick, J.D. Field Characterization of Hydraulic Conductivity in a Heterogeneous Alpine Glacial

Till. J. Hydrol. 2012, 458–459, 103–109. [CrossRef]
79. Siegert, M.J.; Ross, N.; Le Brocq, A.M. Recent Advances in Understanding Antarctic Subglacial Lakes and Hydrology. Philos.

Trans. R. Soc. A 2016, 374, 20140306. [CrossRef]
80. Bowling, J.S.; Livingstone, S.J.; Sole, A.J.; Chu, W. Distribution and Dynamics of Greenland Subglacial Lakes. Nat. Commun. 2019,

10, 2810. [CrossRef]
81. Jansson, P.; Hock, R.; Schneider, T. The Concept of Glacier Storage: A Review. J. Hydrol. 2003, 282, 116–129. [CrossRef]
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