
1. Introduction: Conventional Versus Ensemble End-Member Mixing Analysis
Mixing models are widely used for flux estimation and source attribution in fields ranging from marine and atmos-
pheric science to hydrology, ecophysiology, and biogeochemistry (e.g., Gessler et al., 2014; Jiskra et al., 2021; 
Klaus & McDonnell, 2013; Layman et al., 2012; Tetzlaff et al., 2014). Mixing models infer the relative contribu-
tions of sources (also termed “end-members”) to mixtures, using conservative tracers such as passive solutes or 
stable isotopes. However, conventional mixing models (e.g., Beria et al., 2020; Christophersen et al., 1990; Stock 
et al., 2018) require that all of the sources are known and sampled, and that their mean tracer signatures do not 
overlap. They further require that the number of end-members is less than the number of tracers, plus one (and 
potentially much less, when tracers are correlated; Barthold et al., 2011; Christophersen et al., 1990). The purpose 
of this paper is to show how all of these constraints can be overcome by exploiting the information contained in 
tracer fluctuations.

The simplest mixing model concerns a single tracer in two sources and a mixture, such as catchment storage and 
recent precipitation as sources contributing to streamflow, or soil water and groundwater as sources contributing 
to plant water uptake. If the tracer concentrations in the mixture and the two sources are m, v1, and v2, respectively, 
then mass conservation implies that
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𝑚𝑚 = 𝑓𝑓1𝑣𝑣1 + 𝑓𝑓2𝑣𝑣2, (1)

where f1 and f2 are the fractions of the mixture that are derived from sources 1 and 2. The mass balance of Equa-
tion 1 inherently assumes that the two sources jointly account for all of the mixture, and thus that f1 + f2 = 1. Thus 
Equation 1 can be rewritten as

𝑚𝑚 = 𝑓𝑓1𝑣𝑣1 + (1 − 𝑓𝑓1) 𝑣𝑣2, (2)

leading to the conventional end-member mixing equation

𝑓𝑓1 =
𝑚𝑚 − 𝑣𝑣2

𝑣𝑣1 − 𝑣𝑣2
, 𝑓𝑓2 = 1 − 𝑓𝑓1, (3)

which can be applied either to individual measurements of m, v1, and v2, or to their averages. From Equation 3, 
one can see that the estimated mixing fractions 𝐴𝐴 𝑓𝑓1 and 𝐴𝐴 𝑓𝑓2 will be highly uncertain unless the two end-members v1 
and v2 are much farther apart than their own uncertainties. One can also see that because the mixture measure-
ments m are also uncertain, they can lie outside the interval between v1 and v2, leading to physically impossible 
values (less than zero or greater than one) for the mixing fractions f1 and f2.

Figure 1 illustrates this issue, using three scenarios shown in three rows of panels. The three scenarios are iden-
tical in every respect (e.g., the mixing fraction is the same and the tracer fluctuations in both the sources and 
the mixture are the same), except the means of the sources are far apart in the top row and close together in the 
bottom row. As the means of the two sources converge, the mixing fractions estimated by conventional mixing 
models (Equation 3) become highly uncertain (Figures 1b, 1e, and 1h), due to fluctuations in the sources and the 
mixture.

By contrast, ensemble end-member mixing analysis (EEMMA) exploits these fluctuations and their correlations 
to estimate mixing fractions, based on the observation that if multiple sets of tracer measurements are available, 
the mixing model of Equations 1–3 can be recast as a no-intercept regression equation,

(𝑚𝑚𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖2) = 𝑓𝑓1 (𝑣𝑣𝑖𝑖𝑖1 − 𝑣𝑣𝑖𝑖𝑖2)𝑖 (4)

or equivalently

𝑦𝑦𝑖𝑖 = 𝛽𝛽 𝛽𝛽𝑖𝑖 + 𝑒𝑒𝑖𝑖, (5)

where yi = mi − vi,2, xi = vi,1 − vi,2, the subscript i denotes individual time steps, the regression slope β estimates 
f1, and the residual term ei subsumes any error in yi. This regression-based approach requires multiple sets of 
measurements of m, v1, and v2, which are often available in tracer studies. Equations 4 and 5 also assume that f1 
is a constant, although as shown in Section 3 below, it will also estimate the average of f1 if the mixing fractions 
are time-varying.

EEMMA has the distinct advantage that points with v1 ≈ v2, which blow up Equation 3, have virtually no leverage 
on the solution to Equations 4 and 5. Thus the mixing fraction f1 can be reliably estimated even as the average 
difference between v1 and v2 shrinks to zero (Figures 1c, 1f, and 1i). When the means of v1 and v2 are much 
farther apart than their fluctuations (top row of Figure 1), the mean displacements between m, v1, and v2 reliably 
estimate the mixing fraction f1 in both conventional mixing models (Figure 1b) and EEMMA (Figure 1c). But as 
these mean displacements become small relative to the fluctuations, conventional mixing models become much 
less reliable than EEMMA (compare Figures 1h and 1i), because Equations 4 and 5 can exploit the information 
contained in both the mean displacements and the fluctuation correlations between the sources and the mixture. 
Mathematically this can be seen by decomposing each of the tracer concentrations into their means and fluctua-
tions around those means, recasting Equation 4 as:

(

𝑚𝑚 − 𝑣𝑣2
)

+

(

𝑚𝑚′
𝑖𝑖
− 𝑣𝑣′

𝑖𝑖𝑖2

)

= 𝑓𝑓1

[

(

𝑣𝑣1 − 𝑣𝑣2
)

+

(

𝑣𝑣′
𝑖𝑖𝑖1
− 𝑣𝑣′

𝑖𝑖𝑖2

)]

𝑖 (6)

where overbars and primes indicate means and fluctuations, respectively. From Equation 6, one can see that when 
the differences in means are large compared to the differences in fluctuations, they will have most of the influence 
on the solution (e.g., Figures 1a–1c), whereas the converse will be true when the differences in fluctuations are 
large compared to the differences in means (e.g., Figures 1g–1i).
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2. Quantifying Multiple Mixing Fractions Using a Single Tracer
Equation 4 can be straightforwardly generalized to a zero-intercept multiple regression that quantifies the mixing 
fractions of multiple sources using a single tracer:

(𝑚𝑚𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑖) = 𝑓𝑓1(𝑣𝑣𝑖𝑖𝑖1 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑖) +⋯ + 𝑓𝑓𝑖𝑖−1 (𝑣𝑣𝑖𝑖𝑖𝑖𝑖−1 − 𝑣𝑣𝑖𝑖𝑖𝑖𝑖). (7)

In principle the number of sources k is limited only by the available degrees of freedom in the measurements. At 
most two of these sources can be constants, since with just one tracer, differences between end-member means 
can constrain at most one mixing fraction. But the same limitation does not apply to correlations; here, instead, 
the theoretical limit depends primarily on the number of measurements rather than the number of tracers. The 
practical limit in real-world cases (as revealed by the standard errors of the mixing fractions) will also depend on 
how correlated the end-members are and how noisy the measurements are (as is also true of conventional mixing 
models; Barthold et al., 2011). Figure 2 shows results of 1,000 benchmark tests using 20 measurements of a single 
tracer to estimate the mixing fractions of 2, 4, and 6 sources. In each test the means of the end-members exactly 
overlap; this makes the estimation task harder because it forces Equation 7 to rely solely on the fluctuations. 
Nevertheless, as Figure 2 shows, the approach outlined here can reliably estimate multiple mixing fractions, and 
their standard errors, using a single tracer.

Figure 1. Conventional and ensemble end-member mixing, illustrated using three contrasting scenarios of synthetic stable isotope data. All three scenarios (one per 
row of panels) have identical mixing ratios (0.6 and 0.4 for end-members 1 and 2, respectively) and identical tracer fluctuations, including identical measurement errors 
(RMSE = 0.25‰) in the mixture. Only the offsets between the end-member means are different, shrinking from ∼10‰ in the top row to ∼4‰ in the middle row and 
0.3‰ in the bottom row. The middle panels (b, e, h) show mixing fractions obtained by conventional end-member mixing (Equation 3) applied to each measurement 
individually (blue points) and to the means of each measurement series (dark gray line and light gray band indicating the estimated mixing fraction and its standard 
error). The right-hand panels illustrate ensemble end-member mixing (Equation 4), which estimates average mixing fractions from zero-intercept regression slopes. As 
the end-member means converge (i.e., from top to bottom), conventional end-member mixing becomes unreliable, even exceeding the physically possible range of 0–1 
(h; note the large uncertainty range in gray). By contrast, ensemble end-member mixing (c, f, i) uses the fluctuation correlations between the mixture and end-members 
as additional constraints, reliably estimating the mixing fractions of isotope time series whose means overlap.
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3. Time-Varying Mixing Fractions
Tracer time series are often interpreted as reflecting time-varying mixing fractions, with end-member mixing 
being used to estimate mixing fractions for each time step. As the blue points in Figures 1b, 1e, and 1h show, 
these inferred mixing fractions can become unstable unless there is clear separation between the end-members. 
Ensemble end-member mixing can reliably estimate a single, ensemble estimate of the mixing fraction in such 
cases (Figure 1i), but its relationship to the individual time-varying mixing fractions is not intuitively obvious. 
However, one can show that, barring strong linear or nonlinear correlations between fluctuations in these mixing 
fractions and the end-member tracer concentrations themselves, their average will be closely approximated by the 
ensemble mixing fraction, as estimated by Equations 4 and 7 (see Supporting Information S1).

Figure  3 shows scenarios similar to those in Figure  1, but with mixing fractions that vary through time. As 
Figure 3 illustrates, time-varying mixing fractions (orange lines, Figures 3b, 3e, and 3h) make tracers in the 
mixture more variable (dark blue lines, Figures 3a, 3d, and 3g), and thus add scatter to the EEMMA regressions 
(Figures  3c, 3f, and  3i). Nonetheless EEMMA closely approximates the true average mixing fraction of 0.6 
for source #1, even when the end-members overlap and conventional end-member mixing becomes unreliable 
(compare the uncertainties in Figures 3h and 3i). Benchmark tests show that EEMMA approximates the average 
mixing fraction in time-varying systems, including those with more than two sources (Figure S1 in Supporting 
Information S1). Although EEMMA cannot estimate mixing fractions for individual time steps, it can be applied 
to contrasting time periods (e.g., comparing different seasons or weather patterns), thus quantifying how mixing 
fractions differ among contrasting ambient conditions.

4. Incomplete Mixing Models and Unmeasured End-Members
Conventional end-member mixing analysis requires measurements for all the end-members (meaning all sources 
that contribute to the mixture in the real world, not just in a theory, a model, or a sampling program). This require-
ment often cannot be met.

By exploiting information contained in correlations between sources and mixtures, by contrast, EEMMA can 
estimate mixing fractions even when some end-members are missing. Consider a case with tracer measure-
ments in a mixture m and one or more sources v1…vk. The mixture may also reflect unmeasured sources (either 
time-varying or constant). These unmeasured sources can be combined into a single end-member u, representing 
their volume-weighted average.

Mass conservation implies that at each time step i (i = 1…n),

𝑚𝑚𝑖𝑖 = 𝑓𝑓1𝑣𝑣𝑖𝑖𝑖1 +⋯ + 𝑓𝑓𝑘𝑘𝑣𝑣𝑖𝑖𝑖𝑘𝑘 + (1 − 𝑓𝑓1⋯ − 𝑓𝑓𝑘𝑘) 𝑢𝑢𝑖𝑖𝑖 (8)

where f1…fk are the fractions of the mixture that are derived from the measured end-members v1…vk, and 
(1 − f1…−fk) is the mixing fraction fu of the unmeasured end-member u. If the unmeasured end-member ui is 

Figure 2. Benchmark tests of ensemble end-member mixing, using a single tracer to quantify mixing fractions of 2, 4, and 6 end-members (a, b, and c, respectively). 
Each plot has 1,000 points; each point shows the mixing fraction of the first end-member, obtained from analyzing a random synthetic data set of 20 time steps (e.g., 
Figure 1). Error bars (light blue) indicate one standard error. True mixing fractions are randomly chosen, so values near 1 become rarer as the number of end-members 
increases. All end-members are uncorrelated, with means = 0 and standard deviations = 1. The mixture contains random noise with standard deviation = 0.25, so the 
signal-to-noise ratios in the mixture decrease from 8 to 4 and 2.7 in panels a, b, and c, respectively (because the signal variance in the mixture decreases proportionally 
to the number of end-members). Estimated mixing fractions from Equations 4 and 7 generally conform closely to the true mixing fractions, with standard errors 
typically intersecting the 1:1 line. Thus both the mixing fractions and their uncertainties are accurately quantified.
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uncorrelated with the measured end-members vi,j, Equation 8 is equivalent to the conventional linear regression 
equation

𝑚𝑚𝑖𝑖 =

𝑘𝑘
∑

𝑗𝑗=1

𝑣𝑣𝑖𝑖𝑖𝑗𝑗𝛽𝛽𝑗𝑗 + 𝛼𝛼 + 𝑒𝑒𝑖𝑖𝑖 (9)

where each regression slope βj estimates the corresponding fj, the regression intercept α estimates 𝐴𝐴 (1 − Σ𝑓𝑓𝑗𝑗)
(

𝑢𝑢
)

 , 
and the residual term ei subsumes 𝐴𝐴 (1 − Σ𝑓𝑓𝑗𝑗) 𝑢𝑢

′
𝑖𝑖
 plus any error in mi. (In contrast to Equations 4–7, Equation 9 

requires an intercept, to account for the unmeasured end-member.) One can also estimate the time series of the 
missing end-member as

�̂�𝑢𝑖𝑖 =
𝛼𝛼 + 𝑒𝑒𝑖𝑖

1 −
𝑘𝑘
∑

𝑗𝑗=1

𝑓𝑓𝑗𝑗

.
 (10)

The reliability of such estimates will depend primarily on how much of the residual is due to the effects of the 
unknown end-member versus random sampling and measurement error. As Figures 4a and 4b and Figures S2a 

Figure 3. Conventional and ensemble end-member mixing when mixing fractions vary through time. Three scenarios are shown in the three rows of panels. These 
are identical to the scenarios in Figure 1, except the mixing fraction of source #1 varies between 0.10 and 0.96, with an average of 0.6 (orange lines; these are identical 
in all three rows, but look different because the axes differ). Only the offsets between the end-member means vary, shrinking from ∼10 to ∼4‰ and 0.3‰ in the top, 
middle, and bottom rows, respectively. The middle panels (b, e, h) show mixing fractions obtained by conventional end-member mixing (Equation 3) applied to each 
time step individually (blue points) and to the means of each measurement series (dark gray line and light gray band indicating the estimated mixing fraction and its 
standard error). The right panels illustrate ensemble end-member mixing (Equation 4), which estimates average mixing fractions from zero-intercept regression slopes. 
Conventional end-member mixing accurately identifies the mixing fractions of individual time steps when the end-member means are far apart (b), but becomes 
unreliable as the means converge (h; note the large uncertainty range indicated in gray). The zero-intercept regressions of ensemble end-member mixing (c, f, i) cannot 
estimate mixing fractions for individual time steps, but reliably estimate their averages, even when the end-members substantially overlap.
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and S2b in Supporting Information S1 show, this approach can accurately infer mixing fractions for measured and 
unmeasured sources, and accurately reconstruct an unmeasured source's time series.

However, the assumption that the unmeasured end-members are not strongly correlated with the measured ones 
is crucial, because such correlations can distort the estimated mixing fractions of the measured sources. Consider 
the simple case of two potentially correlated end-members, one (v1) that has been measured and another (v2) that 
has not. Propagation of covariance leads directly to the following formula for the expected regression slope when 
the mixture m is plotted as a function of the measured end member v1 alone:

E
(

𝛽𝛽𝑚𝑚𝑚𝑚𝑚1

)

= 𝑓𝑓1 + 𝑓𝑓2 𝑟𝑟𝑚𝑚1 𝑚𝑚𝑚2
𝑠𝑠𝑚𝑚2

𝑠𝑠𝑚𝑚1
𝑚 (11)

where 𝐴𝐴 𝐴𝐴𝑣𝑣1 and 𝐴𝐴 𝐴𝐴𝑣𝑣2 are the standard deviations of v1 and v2, and 𝐴𝐴 𝐴𝐴𝑣𝑣1 ,𝑣𝑣2 is the correlation between them. Figures 4c 
and 4d illustrates how positive correlations between measured and unmeasured sources lead to exaggerated esti-
mates of the mixing fraction of the measured source, and thus to distorted inferences concerning the unmeasured 
source. Figure S2 in Supporting Information S1 shows that Equations 8 and 9 accurately estimate mixing frac-
tions for measured and unmeasured sources that are uncorrelated, and that Equation 11 correctly describes how 
these mixing fractions are distorted by correlations between measured and unmeasured sources.

It will normally be impossible to empirically verify whether the measured end-members are correlated with any 
unmeasured ones, precisely because they are unmeasured. Testing for correlations between 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 (Equation 10) and 

Figure 4. Estimation of mixing fractions when an end-member is unmeasured. In (a) and (c), end-member #1 (light blue) contributes 40% to the mixture (dark blue), 
and end-member #2 (gray circles), which is unmeasured, contributes 60%. When the two end-members are uncorrelated (r < 0.05: top panels), ensemble end-member 
mixing analysis correctly estimates the mixing fraction of the measured end-member (b), and correctly infers the unmeasured end-member time series (orange squares, 
panel a) via Equation 10. However, when the two end-members are strongly correlated (r ≈ 0.5: bottom panels), the unmeasured end-member inflates the correlation 
and regression slope of the measured end-member with the mixture (d), and thus inflates its apparent mixing fraction. Thus the mixing fraction of the unmeasured 
end-member is underestimated, and its inferred time series (orange squares, panel c) lies far from the true values (gray circles), although they are strongly correlated 
(r ≈ 0.75).
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the measured end-members won't help; these correlations are always zero, whether or not the true unmeasured 
end-member is similarly uncorrelated. Nevertheless, in assuming that any unmeasured end-members are uncor-
related with the measured ones, EEMMA is less restrictive than conventional mixing models, which require that 
no unmeasured end-members exist at all. If Σfj is statistically indistinguishable from 1, the set of end-members 
could be assumed to be complete, in which case no “missing” end-member should be estimated (its uncertainties 
would anyhow be very large).

Whether the set of measured end-members is complete or not, the fitted slopes in nonzero-intercept regressions like 
Equations 8 and 9 depend only on correlations, and thus can be used to estimate mixing fractions in systems that 
have been corrupted by (constant) fractionation or measurement bias, even if unknown. By contrast, conventional 
mixing models typically must assume that fractionation and measurement biases are precisely known, or are zero.

5. Mixing Fractions for Systems With Memory
In many applications, tracers are sampled infrequently enough relative to the system's residence time (e.g., 
monthly sampling of tree xylem) that the mixture is completely replaced between samplings, consistent with 
the assumptions underlying both conventional end-member mixing analysis and Equations 4–7 above. In other 
applications, however, the sampling frequency may be high enough relative to the system's residence time (e.g., 
weekly sampling of soil water or groundwater) that the mixture at each time step may partly consist of carryover 
from the previous time step.

Conventional end-member mixing cannot account for these memory effects, but in EEMMA this is straightfor-
ward. In incomplete mixing models, where one or more sources are unmeasured, the regression model of Equa-
tion 9 can be extended by adding a term for the lagged mixture,

𝑚𝑚𝑖𝑖 =
𝑘𝑘
∑

𝑗𝑗=1

𝑣𝑣𝑖𝑖𝑖𝑗𝑗𝛽𝛽𝑗𝑗 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑖𝑖−1 + 𝛼𝛼 + 𝑒𝑒𝑖𝑖𝑖 (12)

where each mixing fraction fj is estimated by βj/(1 − βm), the regression intercept α estimates 𝐴𝐴 (1 − Σ𝑓𝑓 )
(

𝑢𝑢
)

 , and the 
residual term ei subsumes 𝐴𝐴 (1 − Σ𝑓𝑓 ) 𝑢𝑢′

𝑖𝑖
 plus any error in mi (as in Section 4 above, any unmeasured sources must 

not be strongly correlated with any measured ones).

Alternatively, if all end-members have been sampled, a system with memory can be described by the zero-intercept 
regression,

(𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑖𝑖−1) = 𝛽𝛽1(𝑣𝑣𝑖𝑖𝑖1 − 𝑚𝑚𝑖𝑖−1) +⋯ + 𝛽𝛽𝑘𝑘 (𝑣𝑣𝑖𝑖𝑖𝑘𝑘 − 𝑚𝑚𝑖𝑖−1)𝑖 (13)

where the coefficient of the lagged mixture is estimated by βm = 1 − ∑βj and each mixing fraction is estimated 
by fj = βj/(1 − βm) = βj/∑βj.

The memory coefficient βm can be considered as the “old water fraction,” that is, the fraction of the mixture that 
is inherited from the previous time step. It can be used to infer the residence time τ of the mixture as τ = −∆t/
ln(βm), where ∆t is the time interval between tracer samples. The individual βj coefficients can be considered 
“new water fractions” in the sense of ensemble hydrograph separation (see Sections 4 and 5.4 of Kirchner, 2019); 
they quantify the fraction of the mixture originating from source j during each time step (averaged over all time 
steps). The mixing fractions fj, by contrast, quantify the fraction of the mixture originating from source j at any 
time in the past.

As the benchmark tests in Figure S3 in Supporting Information S1 illustrate, memory effects in the mixture 
undermine the reliability of mixing fractions inferred from individual tracer measurements in conventional 
mixing models (blue dots in Figures S3b, S3e, and S3h in Supporting Information S1), because Equations 1–3 
no longer hold. Nonetheless EEMMA can reliably estimate the average mixing fractions of each source, as well 
as the carryover fraction βm, even if there is substantial overlap between the end-members (Figures S3c, S3f, S3i, 
and S4 in Supporting Information S1).

6. Accounting for Uncertainties in End-Members
The benchmark tests presented above have assumed that errors in the end-members themselves can be ignored. 
But if sampling and measurement errors contribute substantially to the variability of the end-members, they 
should be taken into account. Random errors in explanatory variables (e.g., end-members) inflate their variance, 
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typically creating a downward “attenuation bias” in their regression slopes (Carroll et al., 2006). Other cases are 
less simple. For example, in Equation 4, errors in v1 will lead to a conventional attenuation bias in the mixing 
fraction f1 but errors in v2 will bias f1 upward instead, because v2 is shared between the left and right sides 
(Figure S5 in Supporting Information S1). The biases that arise in multiple regressions will depend on how the 
explanatory variables (e.g., the right-hand sides of Equations 7 and 9) are correlated among themselves, as well 
their correlations with the response variables on the left-hand sides, and on any correlations among their errors. 
(Analogous biases can also arise in conventional end-member mixing models, but have not been addressed in the 
literature.) Correcting for the biases in such “measurement error models” (also called “errors-in-variables prob-
lems”) remains an open problem in statistics (Carroll et al., 2006). As described in Supporting Information S1, 
an approach first presented by Fuller (1987) can be adapted to correct these biases in the context of EEMMA, 
as confirmed by benchmark tests (Figures S5 and S6 in Supporting Information  S1). An implementation of 
this  approach is available as an option in the R script eemma.R (see Data Availability Statement).

7. Concluding Remarks
The approach outlined above will not work in some systems, such as those where only single measurements are 
available, or where measurements can't be grouped into sets or time steps. This approach will also be unnecessary 
whenever the restrictive assumptions of conventional mixing models are met. But it may find wide application 
to stable isotope tracers, which often exhibit overlapping means, rendering conventional methods infeasible. 
Stable isotopes are conservative to the extent that they do not undergo fractionation, but conventional mixing 
models require end-members with substantially different means (which thus, paradoxically, must have undergone 
substantial fractionation). By quantifying end-members that have overlapping means (Sections 1–3), EEMMA 
enables new applications for stable isotopes, which are the best available tracers for many environmental systems. 
EEMMA also allows a single stable isotope tracer to quantify more than two end-members (Section 2), reduc-
ing the urge to use non-conservative tracers (e.g., electrical conductivity or reactive solutes) to quantify mixing 
models that have many sources. And by allowing sources to be quantified even when some end-members are 
unknown or unmeasured, EEMMA further expands the scope of mixing models that can be solved.

EEMMA is amenable to several straightforward extensions. It could be generalized to treat multiple tracers simul-
taneously, thus expanding the number of end members that can be quantified from a fixed number of sampling 
times. Weighted regressions could be used to give greater influence to time steps when fluxes are highest (e.g., 
atmospheric water vapor isotopes could be weighted by humidity). If outliers are suspected, their influence could 
be limited using robust estimation methods such as Iteratively Reweighted Least Squares. In ill-posed systems in 
which end-members cannot be uniquely identified, Tikhonov regularization methods could be used to guarantee 
a stable approximate solution. Non-negative Least Squares could be employed to guarantee that the estimated 
mixing fractions are positive (at the risk of introducing an upward bias to small and uncertain values). Bayesian 
methods could be used to incorporate prior information (at the risk of just reinforcing one's preconceptions if the 
data themselves do not provide a strong constraint). Last but not least, results from EEMMA could be combined 
with flux information to infer how each end-member is partitioned among its different fates, thus determining 
where each end-member goes rather than where the mixture comes from (the end-member splitting approach; 
Kirchner & Allen, 2020). But even without such enhancements, by exploiting fluctuation information contained 
in tracer time series, EEMMA substantially expands the scope of feasible mixing models.

Data Availability Statement
An R script that performs EEMMA (eemma.R), along with an example data set and a brief user's guide, are 
available at https://www.doi.org/10.16904/envidat.410 (Kirchner, 2023). Version 1.0, build 2023.03.27, was used 
in this paper.
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