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Interannual climate 
variability improves niche 
estimates for ectothermic 
but not endothermic species
Dirk Nikolaus Karger 1*, Bianca Saladin 1, Rafael O. Wüest 1, Catherine H. Graham 1, 
Damaris Zurell 1,2, Lidong Mo 1,3 & Niklaus E. Zimmermann 1

Climate is an important limiting factor of species’ niches and it is therefore regularly included in 
ecological applications such as species distribution models (SDMs). Climate predictors are often used 
in the form of long-term mean values, yet many species experience wide climatic variation over their 
lifespan and within their geographical range which is unlikely captured by long-term means. Further, 
depending on their physiology, distinct groups of species cope with climate variability differently. 
Ectothermic species, which are directly dependent on the thermal environment are expected to show 
a different response to temporal or spatial variability in temperature than endothermic groups that 
can decouple their internal temperature from that of their surroundings. Here, we explore the degree 
to which spatial variability and long-term temporal variability in temperature and precipitation change 
niche estimates for ectothermic (730 amphibian, 1276 reptile), and endothermic (1961 mammal) 
species globally. We use three different species distribution modelling (SDM) algorithms to quantify 
the effect of spatial and temporal climate variability, based on global range maps of all species and 
climate data from 1979 to 2013. All SDMs were cross-validated and accessed for their performance 
using the Area under the Curve (AUC) and the True Skill Statistic (TSS). The mean performance of 
SDMs using only climatic means as predictors was TSS = 0.71 and AUC = 0.90. The inclusion of spatial 
variability offers a significant gain in SDM performance (mean TSS = 0.74, mean AUC = 0.92), as does 
the inclusion of temporal variability (mean TSS = 0.80, mean AUC = 0.94). Including both spatial and 
temporal variability in SDMs shows the highest scores in AUC and TSS. Accounting for temporal rather 
than spatial variability in climate improved the SDM prediction especially in ectotherm groups such as 
amphibians and reptiles, while for endothermic mammals no such improvement was observed. These 
results indicate that including long term climate interannual climate variability into niche estimations 
matters most for ectothermic species that cannot decouple their physiology from the surrounding 
environment as endothermic species can.

Climate has long been considered among the strongest determinants of species distributions, often imposing 
physiological limits on where a species can  occur1. Climate can influence species’  distributions2 at a variety of 
temporal and spatial scales. For instance, distributional ranges can be limited by annual seasonal variation in 
temperature or  precipitation3 or by climate fluctuations acting over hourly to daily time  steps4,5. From a spatial 
perspective, species distributions can be influenced by both general climatic conditions characteristic of a given 
region, as well as micro-climatic conditions afforded by structure in a landscape, such as the shade of a tree, 
or underside of a  rock6. As a result, detecting the impact of climate on species distributions will depend, to a 
large degree, on the temporal and spatial scale  considered7,8. Yet, while the importance of scale has long been 
acknowledged as a key driver of species’ range limits, the major approach to mapping ranges, namely species 
distribution models (SDMs), uses exclusively climate summarized over time and gridded at specific spatial 
grains. SDM studies that consider multiple spatial and temporal scales reveal improved SDMs, but this multi-
scale approach has only been applied to a limited number of ecologically well-known  species9,10. Here, we build 
on these promising, yet only marginally explored, results by evaluating the performance of SDMs when built 
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considering both temporal and spatial climate variations for 3967 species that vary in their geographic distribu-
tion, and ecological and physiological requirements.

SDMs, sometimes also termed bioclimatic envelope or habitat suitability  models11,12 characterize the environ-
mental niche of a  species13 usually based on a few key environmental factors, such as temperature and precipita-
tion. This, often limited, set of key variables is  generally14 derived from long-term means (climatologies)  alone15. 
Such aggregations of climate variability to long-term means remove however, information on the temporal inter-
annual or even daily to hourly variability that might influence species distributions. Spatial climate heterogeneity 
resulting from small-scale topography and other factors is neither represented in coarser-scale gridded datasets, 
yet it can be essential for quantifying species’ environmental  niches16,17.

Species often experience a wide range of climatic variation over their lifespan and within their geographical 
range. However, they can strongly differ in the degree to which they can tolerate climatic  variability18. A species’ 
ability to cope with climate variability will thus influence their spatial distribution. For instance, endotherms 
and ectotherms cope with climate variability quite differently. By generating their own heat, endotherms have a 
greater capability to buffer the influence of climate variability than ectotherms which rely on behavioral modi-
fications or micro-habitat use to maintain their body temperatures and buffer climate variation. The different 
ways species respond to climate variability might be of increasing concern since one of the major components of 
climate change is an increase in climate variability and – as a consequence – an increase of  extremes19,20. Increas-
ing climatic variability may therefore cause greater physiological stress to ectotherms compared to endotherms 
with likely severe consequences for their spatial  distribution21,22.

The influence of climate variability on species might also depend on the geographic regions in which they 
occur. In the tropics, species generally experience a lower degree of intra- and interannual climatic variation 
due to the rather stable environmental conditions they encounter throughout the  year7,23. In temperate climates 
however, the conditions a species experiences are much more variable due to the larger intra- and interannual 
variation in  climate23. Species occurring in tropical ecosystems, therefore often have a much narrower climatic 
niche than in temperate  regions24,25. In turn, this implies that the influence of temporal variability might be 
greater in areas where species are not well adapted to variation in climate, i.e. the tropics. Yet, despite the differ-
ence between the tropics and temperate climates, interannual variation in climate can pose physiological con-
straints on species, e.g. a year with poor conditions can have an effect on the reproductive success in the following 
year as shown for passerine birds in  Europe26. Interannual climate variation is also known to affect the activity 
and thermoregulation of lizards as their physiology is sensitive to too  cold27, or too  warm28 conditions that are 
outside their thermal optimum. Such species may prefer low inter-annual variation, while species with broader 
thermal tolerances might gain a competitive advantage in areas with higher interannual variation in temperatures.

A misrepresentation of spatial heterogeneity when representing or aggregating climate predictors at coarse 
grain might also more strongly impact niche estimates in the tropics compared to temperate or boreal  zones23.

Therefore, along large-scale geographic gradients both spatial and temporal variability can become important 
in estimations of a species environmental niche.

Here, we evaluate the performance of SDMs when they consider both temporal and spatial variation in esti-
mating environmental niches for 2006 ectothermic species (730 amphibian, 1276 reptile) and 1961 endothermic 
(mammal) species. We hypothesize that:

H1: The inclusion of spatial and temporal variability will positively affect the performance of SDMs,
H2: The performance of ectotherm SDMs will improve more when accounting for spatial and temporal vari-
ability than the performance of endotherm SDMs, and
H3: SDMs for tropical and mountain species will benefit more from including variability than SDMs of spe-
cies from other habitats.

We test these hypotheses by modelling the global distribution of all species as a function of current climate 
at a 0.5° spatial resolution using four different predictor groups composed of different combinations of input 
variables: mean climatic conditions, spatial climatic variability and temporal (interannual) climatic variability.

Results
Spatial patterns of the climate predictors. While mean annual 2m air temperatures and annual pre-
cipitation sums were generally higher in the tropics and decreased towards the poles (Fig. 1, upper), the spatial 
variability (spatial SD, the standard deviation across all 30 arc second grid cells within the target grid size of 0.5°) 
of these two variables is usually highest in mountainous terrain (Fig. 1, middle). Interannual variability of tem-
perature is generally higher in the northern hemisphere compared to the southern hemisphere (Fig. 1, lower), 
and increases from tropics to continental artic or boreal areas. Interannual variability of precipitation is more 
idiosyncratic, with lowest values estimated in desert areas.

Performance scores of the SDMs with different predictors for the different taxa. Overall, the 
predictive performance of the SDMs was high with an average AUC of 0.92 and ranging from 0.90 to 0.95 
between different groups of predictors and different SDM algorithms. For TSS, the average value was 0.75 with 
a minimum 0.68 and a maximum of 0.82 across different groups of predictors and different SDM algorithms 
(generalized additive models, GAM; generalized linear models GLM; random forests, RF). SDMs based only 
on long-term mean climate predictors performed worst among all groups, with average AUC and TSS scores 
of 0.90 and 0.71, respectively (GAM: 0.91; 0.73, GLM: 0.90; 0.73, RF: 0.90; 0.68). SDMs based on long-term 
mean climate predictors plus spatial variability performed slightly better, with average AUC and TSS scores of 
0.92 and 0.74 (GAM: 0.93; 0.77, GLM: 0.92; 0.76, RF: 0.91; 0.70). SDMs based on mean climate predictors plus 
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temporal variability performed better still, with average AUC and TSS scores of 0.94 and 0.80 (GAM: 0.94; 0.81, 
GLM: 0.94; 0.81, RF: 0.94; 0.77). SDMs containing mean climate predictors plus spatial and temporal variability 
showed average AUC and TSS scores of 0.94 and 0.80 (GAM: 0.95; 0.82, GLM: 0.93; 0.81, RF: 0.94; 0.77).

A linear mixed effects model to assess the SDM performance with different predictor groups revealed that 
adding predictors that account for either spatial or temporal variability increased predictive performance of 
models across all vertebrate taxa. Models including temporal variability outperformed models including spatial 
variability for amphibians and reptiles, while performance of these models was equal for mammals. Models 
including both spatial and temporal variation performed best across all taxa. Fig. 2 illustrates these results using 
effect-size plots (below boxplots) for TSS; the results for AUC are equivalent (see Supplemental Fig. S1).

Figure 1.  Spatio-temporal variation in 2 m air temperature and precipitation used as predictors in the different 
SDMs based on CHELSA V1.2. Mean annual values (upper row) show the annual mean for temperature, and 
the mean annual sum for precipitation averaged over the years 1979–2013 and aggregated to 0.5° from a 30 
arc second spatial grain by taking the mean of a 0.5° grid cell. Spatial variation (middle) indicates the standard 
deviation (SD) of all temperature values of a 30 arc second grid of temperature or precipitation overlapping with 
a 0.5° grid cell. Temporal variation (lower row) shows the standard deviation (SD) of temperature over years 
between 1979 and 2013, and the relative standard deviation (RSD) calculated as the coefficient of variation for 
precipitation over the same time period.
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Figure 2.  Comparison of the performance of three different SDM algorithms (GLM generalized linear model, 
GAM generalized additive model, RF random forests) calculated with four different sets of predictors for 
amphibians, reptiles, and mammals measured by the True Skill Statistic (TSS). Colored lines connect pairs of 
SDMs based on different predictor sets for the same species, with red and blue lines indicating pairs in which 
TSS values increased and decreased between predictor groups from left to right. Plots below the boxplots 
shows the coefficient estimates of a linear mixed effects model with TSS as response, the groups (mean, spatial, 
temporal, sp-temp) as predictor, and the model (GLM, GAM, RF) as well as the species ID as random effects. 
Coefficients are in relation to the performance of SDMs with the predictor set: mean.
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Geographic differences. The performance of SDMs is highly variable across the globe (Fig. 3). The mean 
predictor group performed worst in mountainous terrain, such as the Andes or the Himalayas, but also Mada-
gascar showed low TSS and AUC scores (Supplementary Figs. S1, S2 for AUC). Including spatial variability in 
temperature and precipitation in SDMs improved the models in these areas but showed a slight decline in per-
formance in desert and arctic areas (Fig. 3: spatial). Adding temporal variability to the models containing mean 
predictors resulted in improved SDM performance in almost all areas (Fig. 3: temporal). Including both spatial 
and temporal variability resulted in a slight improvement as compared to models that included only spatial or 
temporal variability alone (Supplementary Fig. S1: spatio temporal).

The unique changes in TSS that are due to including either the spatial or temporal variability in addition to 
long-term means vary not just by taxon, but also across geographic regions (Fig. 3). For the ectothermic groups, 
amphibians and reptiles, the temporal predictor group increases the TSS in almost all areas except the western 
mountainous areas of the Americas, as well as the Himalayas, where the spatial predictor is still more impor-
tant (Fig. 3). For mammals, the spatial predictor is much more important in mountainous terrain, while the 
temporal predictor only increases TSS in less heterogeneous terrain (Fig. 3). Latitudinal trends were specifically 
pronounced in Amphibians, were the inclusion of variability increases the performance of SDMs especially in 
higher latitudes (Supplementary Fig. 5). For mammals only the mid latitudes shows a higher performance than 
the average, while for reptiles no latitudinal trend emerged (Supplementary Fig. 5).

Discussion
While SDM performance increases for all taxa when including climate variability additionally to long-term 
means, confirming our first hypothesis, this increase is not equal across the three taxonomic groups analyzed 
here. Although both spatial and temporal variability matter for all groups, the effect of temporal variability seems 
much larger for the ectothermic groups compared to the endothermic mammals.

The two ectothermic groups (amphibians and reptiles) show a significantly higher SDM performance when 
temporal climate variability is included over the case when only spatial variability is included. SDMs for the 
endothermic mammals do not differ significantly when either spatial or temporal variability are added to the 
mean climate.

Figure 3.  Comparison of the unique contributions in TSS of either the spatial (upper row), or temporal 
(interannual variability) predictors compared to mean climate as predictor, for all three taxonomic groups. 
The bottom row shows the differences in performance gain between spatial and temporal predictors, with blue 
indicating that accounting for spatial variability outperforms models that account for temporal variability, and 
red indicating that temporal outperforms spatial, indicating where each of the predictor types matters more. 
To test if different predictor groups have different performances in different regions, we used the gridded range 
map at 0.5° resolution from IUCN and assigned the value of the respective test metric (TSS, AUC) to the entire 
range in which a species is present. All ranges were then stacked and the mean of all TSS and AUC values 
covering a 0.5° grid cell calculated and differences (ΔTSS) have been calculated pairwise per species and then 
averaged over all species.
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This difference between groups might be explained by the differences in physiology between these groups 
consistent with our second hypothesis. All three groups have evolved differently in response to their environ-
ment, with ectothermic groups being much less adaptable to climatic variations than endothermic  groups29. 
Such evolved differences in physiology ultimately affect how organisms interact with and are constrained by 
their  environment30. Ectothermic species for example cannot buffer climate variation as well as endothermic 
 species31–34 which have evolved the physiological capacity to regulate temperatures to some  extent35. When 
building SDMs from long-term climatic means alone, thus neglecting the interannual dimension of climate, 
we miss out on important constraints especially for ectothermic species distributions, ultimately limiting the 
accuracy of niche  estimations36.

Model formulation and parametrization certainly plays a role in the observed differences between predictor 
groups. More predictors in a model usually lead to a better overall fit of a  model37 which can partly explain the 
increase in predictive power when the predictors based on mean climate are complemented with either spatial or 
temporal variability. However, as both the spatial and temporal predictor groups have the same number of vari-
ables, this effect does not apply when comparing TSS or AUC values resulting from these two predictor groups. 
Also, we observed both increasing and decreasing performance when including spatial or temporal variability 
compared to SDM including mean climate only (Fig. 3), meaning that the number of predictors alone could 
not satisfactorily explain the observed differences. Combining mean with spatial and temporal variability lead 
to an additional improvement. Yet, at this point, the parametrization of the model has not plateaued and model 
performance still increases when using both spatial and temporal variability as  predictors37–40. Using different 
SDM algorithms affects the absolute performance of the SDMs in terms of the specific test metric (AUC, TSS). 
However, it did not affect the relative difference in model performance between SDMs calculated from different 
predictor groups, confirming that the observed differences are robust towards algorithm selection.

Including temporal variability of predictors into broad-scale SDMs leads to a greater improvement of model 
performance than the inclusion of sub-grain spatial variability of these predictors. These findings suggest that 
especially the inclusion of interannual climate variability has a large potential of improving the estimation of 
niche characteristics across a broad range of taxa, and especially narrow range species. Including temporal pre-
dictor variability increased the performance of SDMs in almost all areas across the globe, though to differing 
degrees and differently for the three groups at different latitudes. Especially prominent is the increase in areas 
with marked seasonality such as in tropical monsoon climates, tropical wet and dry climate, or areas that receive 
very infrequent precipitation such as the Horn of  Africa41. Temporal variability does also increase the perfor-
mance of SDMs in mountainous regions potentially indicating that temporal variability in a climate variable is 
also capable to capture the niche limitations that are otherwise captured by spatial variability. One reason for the 
performance gain when including temporal variability, especially interannual variability, is that it expresses the 
degree of climatic extremes which can physiologically limit the distribution of  species36. Although, the degree 
to which extremes are represented in such variability predictors certainly depends on the temporal resolution of 
the climatic input dataset. In the case presented here, we used interannual variation, which means that extreme 
events are restricted to extremely dry or wet years, or extremely hot or cold years. Using more detailed temporal 
analyses would allow us to refine the representation of climatic extremes further.

As expected, the inclusion of the spatial variability improves SDMs mainly in mountainous areas where 
climate is extremely heterogeneous over short distances. The improvement was specifically strong in tropical 
mountains where species usually occur in narrow elevational bands with little or no intra-annual  variability23,42. 
This improvement especially for narrow range species is also visible when predicted vs. observed range sizes are 
compared after inclusion of either spatial, temporal, or spatio-temporal variability into SDMs (Supplementary 
Fig. S5). In topographically less heterogenous terrain however, we observed a decline in the predictive power of 
SDMs. Almost all over Africa, Australia, and the low elevation parts of Eurasia and North America spatial vari-
ability has no effect, or even a negative effect on the performance of SDMs. In these areas spatial heterogeneity 
is low and inclusion of spatial variability in climate predictors seems biologically unimportant, which leads to a 
decrease in their  performance43–46.

Our SDMs were calibrated using distribution data from expert range maps for the three taxonomic groups 
studied. This may lead to a bias compared to the use of exact point locations (such as those available in GBIF and 
other global databases), as distribution maps are not very accurate in terms of the geographical location of species 
observations. Their advantage lies in the almost complete coverage of the range, while their disadvantage lies in 
the difficulty of determining more precisely where a species is present or absent. Range polygons are generally 
not drawn with great precision and may therefore cover small regions of absence (and therefore contain false 
occurrences) or fail to distinguish small outliers of presence (and therefore contain false absences). In contrast, 
the approximate extent of occurrence is well documented and the main regions of absence are also well mapped. 
Therefore, models based on range maps should not be analyzed with a spatial resolution that is too fine for the 
precision with which the polygons were drawn. Previous studies have shown that a resolution of 0.5° to 1.0° is 
 appropriate47,48. Point-based observations, such as those available in GBIF, have the advantage of allowing more 
accurate estimates of the niche characteristics of a species, as they are often available with a geographical preci-
sion of 1 km or finer. This allows full use of modern climate and environmental data such as  CHELSA49–51 for 
SDM modelling. This is an advantage over polygon-based distribution data, as niches can be calibrated more 
precisely. However, such data have a major drawback: the sample selection is biased and information on absences 
is missing. Firstly, most GBIF sample points today come from citizen scientists, and they can submit (e.g. via 
iNaturalist and other portals) any observations they  find52,53. Therefore, observations can include specimens 
from the natural range of a species, but also from private or botanical gardens, or from the invaded range (in the 
case of invasive species) of a species. Furthermore, the distribution of sampling sites does not follow a statistical 
design. Some sites are heavily oversampled, while large areas are completely  undersampled54,55. In addition, the 
precision of geolocation is not always clear, and may partly be huge, despite having many significant digits on 
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 coordinates52. These problems occur because the data originate from a plethora of different sampling efforts and 
many of these do not carefully consider the major issues around sampling distributions (even sampling in space, 
accurate information on geolocation and its uncertainty). Considerable efforts are therefore needed, species by 
species, to postprocess species distribution data from such databases before it can be  used56,57, or to combine 
the two differing data  sources58. Since we analyzed our large species groups only at a comparably coarse spatial 
grain of 0.5°, we considered the use of range polygons as appropriate

With an increasing need in biodiversity modeling for current, past, and future predictions a better under-
standing of the climatic predictors that quantify the ecological niche of a species is needed. Here, we show 
that specifically the inclusion of temporal variability offers a promising improvement in modelling the current 
distribution of species. Yet, also the inclusion of spatial (sub-grain) variabilities can improve model accuracies, 
primarily in mountains and most clearly in tropical mountains. In summary, we anticipate that a more detailed 
inclusion of interannual climate variability offers a highly promising avenue for improving species distribution 
modelling in the future for groups that have a strong connection to the environment such as ectotherms.

Methods
Species data. We used global distribution maps provided by the Amphibian, Mammal, and Reptile Red List 
 Assessment59. Grid cells within the distribution range of each species were converted to 0.5° grid cells, which is 
close to 50 km at the equator, a resolution suggested as  appropriate47 and often  used60–62 when gridding polygon 
range maps at the global scale. Grid cells intersecting with a range map polygon were assigned as presence cells, 
while those not intersecting were treated as absence cells. We only considered species for which the presences 
cover at least 72 0.5° grid cells so that a minimum of six data points per predictor variable (including quadratic 
terms) was available for model building. We also removed domestic and aquatic species.

Climate predictor groups. We used global climate data from CHELSA V1.249,63 and built several groups of 
predictors (Fig. 4, Table 1) by aggregating CHELSA V1.2 to the 0.5° grid of the species data by taking the mean 
of all 30 arc second grid cells overlapping with a 0.5° grid cell. To calculate sub-grid heterogeneity of a climatic 
variable (hereafter: spatial) within a 0.5° grid cell, we used the standard deviation of all CHELSA 30 arc second 
grid cells overlapping with 0.5° grid cells. To calculate the interannual variability (hereafter: temporal) we calcu-
lated the standard deviation of mean annual 2m air temperature for each year from 1979 to 2013 from CHELSA 
V1.2 per grid cell. For temporal precipitation variability we used the relative standard deviation (temporal RSD, 
equivalent to the coefficient of variation) of the annual precipitation sum across all years from 1979 to 2013 from 
CHELSA V1.2 per grid cell. Based on the data aggregated as explained above, we generated four different groups 
of predictors for annual temperature and precipitation, with different combinations of spatial and temporal vari-
abilities (Table 1).

Species distribution modelling. We used three algorithms to relate presences and absences with the 
selected environmental predictor sets: generalized linear models (GLM)64, generalized additive models (GAM)65, 
and random forests (RF)66. GLMs were run using linear and quadratic terms, GAMs were run using thin plate 
splines setting an upper limit of 4 degrees of freedom (k = 5). In both cases, we set weights such that the sum of 
weights of presences equaled the sum of weights of  absences67. A classification RF was fitted using 1500 trees, 
while sub-sampling was restricted to contain equal numbers of presences and absences.

To assess model performance, we tested SDM predictions only within a buffer around each species’ range 
polygon. By doing so we account for biogeographic history and explicitly test how well a model predicts the 
actual range of a species rather than how well it also makes predictions in regions far outside a species’ range, 
yet with suitable climate. We applied a buffer of 3000 km around each range polygon and fitted and tested SDMs 
only within this extent.

As absences we used all grid cells within the 3000 km buffer around each IUCN range map that do not overlap 
with a 0.5° grid cell, as presences all cells that overlap with a 0.5° grid cell. Therefore the SDMs are a combination 
of environmental suitability and dispersal constraints to better estimate the distribution of a species. The use of 
3000 km is a compromise to balance between buffering presences such that absences sampled within the buffer 
are meaningful as the buffer is large enough to constrain distribution models accurately between suitable and 
unsuitable habitats, and small enough to avoid excessive overprediction of species’ distributions. The choice 
of the buffer size is also due to the coarse resolution of the grids (0.5°). A very small buffer would hardly leave 
any absences in this case, while a too large buffer might inflate the performance statistics by sampling absences 
anywhere far away from species occurrences. Additionally, it also enhances the discrimination between presence 
and absence observations as sufficient absences are sampled nearby to  presences68,69. The number of presences vs. 
absences using this approach, can however, be quite imbalanced, with small range species having more absences, 
and large range species less absences in this case. To counterweight this imbalance in presences vs. absences we 
used an inverse weighting of the presences and absences so that the sum of the absences equals the sum of the 
presences. We used a World Azimuthal Equidistant (EPSG: 9001) projection for the buffer.

We evaluated the predictive performance of the SDMs using repeated split-sample tests: we split the data 
repeatedly into 80% training and 20% test data, fitted the model on the training data, and predicted it to the 
test data. This procedure was repeated 30 times, while we recorded predictive performance of each repeat. Each 
split was generated such that 80% of presences and absences were generated independently, thus ascertaining 
that each test was done with the same prevalence. By doing this, the individual repeats are always constructed 
the same way and do not vary in overlap. Predictive performance was assessed using a) the true skills statistic 
(TSS)70, after thresholding the predictions into presence/absence using a TSS-optimized threshold, and b) the 
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area under the curve (AUC)71. We provide the full SDM description following the ODMAP  protocol72 in Sup-
plementary Table S1.

Performance tests of predictor groups. We used a linear mixed effects  model73 with either TSS or AUC 
as response variable and the predictor group as fixed effects together with the SDM algorithm (GLM, GAM, RF) 
and the species identity as random effects. Adding the type of SDM (GLM, GAM, or RF) as random effect on the 
intercept considers that algorithms can perform differently well (e.g. have a different mean performance between 
AUC or TSS)62. To always compare the same species, but modeled with different sets of predictor groups, we also 
added the identity of the species as random affect to the intercept.

All analyses have been performed using the R language for statistical  computing74, the R packages  raster75, 
 mgcv76, and  randomForest77.

Geographic comparison of the performance of different predictor groups. To test if different 
predictor groups have different performances in different regions, we used the gridded range map at 0.5° resolu-
tion from IUCN and assigned the value of the respective test metric (TSS, AUC) to the entire range in which a 
species is present. All ranges were then stacked and the mean of all TSS and AUC values covering a 0.5° grid cell 
calculated.

Additionally, we calculated the observed range size defined as the number of pixels occupied and compared it 
to the predicted range size within the 3000 km buffer defined as the numbers of pixels occupied after threshold-
ing the probability estimates from the SDMs. The observed vs. the predicted range size has then been compared 
by calculating the mean squared deviation.

Predictor groups

mean spatial temporal sp-temp
mean annual 
2m air temperature

annual precipita�on 
sum

temperature spa�al 
SD

precipita�on spa�al 
SD

temperature 
temporal SD

precipita�on 
temporal RSD

Fitting species Distribution Models
seperate for each predictor group for 3823 species

Generalized Additive Models
(GAM)

Generalized Linear Models
(GLM)

Random Forest
(RF)

Spatial buffer around distribution
maps

Test statistics (AUC, TSS)

Figure 4.  Schematic representation of the analytical setup. Four predictor groups were formed and three 
algorithms for species distribution models (SDMs) were fitted from range maps for 3967 species of mammals, 
amphibians, and reptiles. The different SDMs were predicted spatially, and their predictive performance assessed 
within a buffer of 3000 km around observed ranges, using the area under the curve (AUC) and the true skill 
statistic (TSS) as performance measures.
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To detect latitudinal trends in the improvement of SDMs after inclusion of either spatial, temporal, or spatio-
temporal variability in SDMs, we calculated the mean and standard deviation of the difference between TSS 
values derived from SDMs only including mean climate, with either spatial, temporal, or spatio-temporal derived 
TSS values in 1° latitudinal bands.

Data availability
The data that support the findings of this study are openly available in EnviDat (envidat.ch) at https:// www. doi. 
org/ 10. 16904/ envid at. 354. Codes related to this study are available here: https:// gitla bext. wsl. ch/ karger/ sdms_ 
clima te_ varia bility.
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