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Return level calculations are widely used to determine the risks that extreme

events may pose to infrastructure, including hydropower site operations. Extreme

events (e.g., extreme precipitation and droughts) are expected to increase in

frequency and intensity in the future, but not necessarily in a homogenous way

across regions. This makes localized assessment important for understanding risk

changes to specific sites. However, for sites with relatively small datasets, selecting

an applicablemethod for return level calculations is not straightforward. This study

focuses on the application of traditional univariate extreme value approaches

(Generalized Extreme Value and Generalized Pareto) as well as two more recent

approaches (extended Generalized Pareto and Metastatistical Extreme Value

distributions), that are specifically suited for application to small datasets. These

methods are used to calculate return levels of extreme precipitation at six Alpine

stations and high reservoir inflow events for a hydropower reservoir. In addition,

return levels of meteorological drought and low inflow periods (dry spells) are

determined using a non-parametric approach. Return levels for return periods of

10- and 20- years were calculated using 10-, 20-, and 40- years of data for each

method. The results show that even shorter timeseries can give similar return levels

as longer timeseries for most methods. However, the GEV has greater sensitivity to

sparse data and tended to give lower estimates for precipitation return levels. The

MEV is only to be preferred over GPD if the underlying distribution fits the datawell.

The result is used to assemble a profile of 10- and 20-year return levels estimated

with various statistical approaches, for extreme high precipitation/inflow and low

precipitation/inflow events. The findings of the studymay be helpful to researchers

and practitioners alike in deciding which statistical approach to use to assess local

extreme precipitation and inflow risks to individual reservoirs.

KEYWORDS

return levels, extreme value statistics, extreme precipitation, reservoir inflow, dry spells

1. Introduction

Hydropower producers trade energy on the futures market, in part based on forecasts
about their ability to generate electricity at various timesteps in the future (e.g., days, weeks,
months, years ahead). Expectations of natural water inflows to a reservoir vary based on the
catchment and the climate of a specific location. Assuming that patterns of historical inflows
would generally remain consistent, this information could be used to forecast future inflows.
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However, deviations from the expected values can occur (e.g., in the
form of extreme events) and understanding the expectation of such
events would be valuable for risk mitigation.

One key driver of such deviations is climate change. In addition
to changes in the overall hydrologic regime (e.g., Beniston et al.,
2018; SCCER-SoE, 2019; Zekollari et al., 2019; Carletti et al., 2021;
Michel et al., 2022), there has been an observed increase over the
last century in the overall intensity of extreme weather events in
central Europe (Zeder and Fischer, 2020) and the Alpine region,
particularly extreme rainfall (Ménégoz et al., 2020). In addition,
climate change has led to changes in European river flood events
(Blöschl et al., 2019). Climate and weather extremes are classified
as the “. . . occurrence of a value of a weather or climate variable
above (or below) a threshold value near the upper (or lower) ends
of the range of observed values of the variable” (IPCC, 2012). While
extreme high precipitation or inflow events are of concern due to
their immediate effect, low inflow events and periods with limited
precipitation can have significant negative impacts, particularly
when lasting longer than expected. For instance, prolonged periods
of low precipitation or low inflow in spring or summer may
have negative impacts to reservoirs, especially if there was limited
snow/glacier mass built up during the winter that would have
otherwise buffered the effect. Precipitation deficits (meteorological
droughts) can be propagated into soil moisture and hydrological
droughts and further into socioeconomic droughts, as described
in the review by Van Loon (2015). However, as found by Brunner
et al. (2023), the processes generating droughts can change (with
changes in seasonality) and can impact their severity. Among their
key findings was that droughts in high-elevation regions have been
increasingly driven by snowmelt-deficits as opposed to rainfall-
deficits, while rainfall deficits have remained the dominant process
for low-elevation regions. In general, seasonal differences can have
a large impact on the extreme events observed at a particular time
(e.g., Zeder and Fischer, 2020; Blanchet et al., 2021) and should be
taken into account. Therefore, understanding both extreme high
inflow and prolonged low inflow expectations and how they differ
across seasons is important.

A key challenge when investigating extreme events is that
their occurrence, by definition, is rare and so the resulting dataset
is limited. In addition, individual reservoirs may not have long
inflow records, which can make it difficult to deduce the expected
occurrence (or return period) of events from observed data.
However, if the return period in question does not exceed the
dataset length, this may not be an issue. In response to the data
scarcity, a newer family of approaches to estimating return periods
from small datasets has emerged. These include the Metastatistical
Extreme Value (MEV) approach (Marani and Ignaccolo, 2015;
Zorzetto et al., 2016; Marra et al., 2019) as well as the extended
generalized pareto distribution (eGPD) approach (Naveau et al.,
2016). These methods are based on using the full dataset instead
of a subset, such as the block maxima (BM) or peaks-over-
threshold (POT, also called partial duration series). The BM and
POT typically used with traditional extreme value methods of
general extreme value (GEV) distributions or generalized pareto
distribution (GPD), respectively.

In this paper, we investigate various existing statistical methods
for calculating the return levels for the cases of heavy precipitation,

high inflow events, and dry spells (low precipitation and low inflow)
that influence reservoir volumes. The methodology includes the
use of statistical tools that are specifically adapted for application
to small datasets (eGPD and MEV), in order to calculate returns
of extreme and impactful events. The aim here is not to introduce
yet another method for extreme value analysis, but rather to apply
and suggest the best options for return level estimation in each
case. The study focuses on the Luzzone reservoir, located in the
canton of Ticino, Switzerland, along with precipitation stations
located in the Alpine regions of Ticino and Graubünden. The
outcome of this study is the generation of a 20-year return level
profile for both extreme high precipitation/inflow and impactful
10-year low precipitation/inflow events. The overall findings can be
used by researchers and practitioners alike to determine the most
appropriate univariate methods for evaluating local extreme inflow
and precipitation event risks to individual reservoirs. Univariate
methods are widely used in practice and are thus the focus in this
study. Approaches for understanding spatio-temporal dynamics
and extremes at multiple sites using multivariate tools have been
established (e.g., Davison and Huser, 2015; Serinaldi and Kilsby,
2017; Huser and Wadsworth, 2022) but applying them in the
current study is beyond the scope of this paper.

2. Materials and methods

Four types of cases are examined in this study: (1) extreme
high precipitation, (2) extreme high inflow, (3) extended periods
of absent precipitation, and (4) periods of low inflow. The inflow
cases are evaluated using daily natural reservoir inflow data while
the precipitation cases are based on data from a weather stations
in the region of interest (Figure 1). The high inflow/precipitation
cases are assessed using the daily values on record. The low
inflow/precipitation cases are assessed based on discrete counts
of consecutive days below a certain threshold (less than the
lower 7.5th percentile for inflow and no >0mm day−1 for
precipitation). Each method was applied to the full year timeseries
for the “annual series” case as well as to “seasonal cases”, which
included winter (December, January, February), spring (March,
April, May), summer (June, July, August), and fall (September,
October, November).

2.1. Study site

The study site includes the Luzzone reservoir (46◦34
′
00

′′
N;

08◦58
′
45

′′
E), which is part of the Blenio hydropower network in

the canton of Ticino in Switzerland. The reservoir is roughly 1.27
km2 in surface area and is located at an altitude of ∼1,590m.a.s.l
within a catchment area of about 36.7 km2. The reservoir is
naturally fed by various mountain streams, primarily the Ri di
Luzzone from the east, Ri di Scaradra from the south, and Ri di
Cavallasca form the north. Water from the neighboring Carassina
reservoir (46◦32

′
47

′′
N; 08◦58

′
01

′′
E, located at an elevation of

1,705m.a.s.l.) is also directed into the Luzzone reservoir. This
Luzzone outflow is managed and used by various energy providers
to generate electricity.
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FIGURE 1

Study site with locations of precipitation stations and Luzzone

reservoir.

The meteorological station nearest to the Luzzone reservoir
is called Olivone diga Luzzone (short name TIOLI), and is
located at the north-western corner of the reservoir (46◦33

′
54

′′
N;

08◦57
′
38

′′
E) at about 1,617m.a.s.l. Additional stations located

in Ticino and in Graubünden are also included (Figure 1). The
coordinates of each station are provided in Supplementary Table 1.

2.2. Data

2.2.1. Precipitation
Precipitation data was acquired from theMeteoSwiss automatic

monitoring network through the IDAWEB (2019) portal. Daily
precipitation totals from January 1st, 2000 to present day are
available for the TIOLI site. The gauge at the TIOLI station was
fitted with a heater in 2008, so to maintain consistency in the
measured data used, only data collected after 2008 are used in this
study. The raw dataset had 15missing values. The set included daily
totals measured from 6 UTC to 6 UTC following day. The data
from 2009 through 2020 are displayed in Supplementary Figure 1.
For a more comprehensive analysis, stations with longer useable
precipitation data are included. The full data sets are freely available
through the IDAWEB (2019) online platform of the Federal Office
of Meteorology and Climatology MeteoSwiss.

2.2.2. Inflow
Daily total inflow data for Luzzone were provided by BKW

Energie AG for the full years of 2000 to 2019. The daily values
of inflow were back-calculated from measured reservoir volumes
and changes in input/output. Due to the nature of this data the
inflow is a bulk sum of inputs to the reservoir and cannot be
considered exclusively as streamflow. As the inflow values were
not directly measured, there is some uncertainty in the accuracy

of the exact values. For instance, the level of sediment build-up
in the reservoir over this time (which would have altered the
total volume) was not known and thus could not be accounted
for. Most of the data are consistently under the below 4,000 (103

m3) with the exception of one single-day outlier value in 2008
(Supplementary Figure 1). Additionally, the raw data for inflow
included negative inflow values, which have no physical meaning.
Thus, linear interpolation was applied to the negative values in
the timeseries to bring them into the positive space and allow
for more meaningful interpretation. The monthly distribution of
inflow follows a bell shape, with most occurring in late spring
through the fall season, but peaking in summer.

2.3. Methods for heavy precipitation and
high inflow

In order to calculate expected recurrences of extreme high
precipitation and inflows, the traditional extreme value approaches
are applied. Given the short length of the precipitation and
inflow datasets (10–20 years), alternative approaches adapted for
application to small datasets were also applied. Here a brief
overview of two traditional extreme value analysis methods and
two newer methods is provided. Details about extreme value
approaches are nicely summarized in the review by Nerantzaki and
Papalexiou (2022).

2.3.1. Extreme value analysis: generalized
extreme value distribution and generalized pareto
distribution

The traditional methods for extreme value analyses require the
separation of the “extreme” values from the rest of the data. The
sub-setting of the data can be done either by selecting blockmaxima
or minima (BM) from each defined period or based on points over
(or under for minima) a threshold (peak-over-threshold, POT). As
explained by Coles et al. (2001), the family of generalized extreme
value (GEV) distributions is used for BM data (Fisher and Tippett,
1928), while the generalized pareto distribution (GPD) is often
applied to POT data (Balkema and de Haan, 1974; Pickands, 1975).
The corresponding cumulative distribution function (CDF) of the
GEV and GPD, respectively, are:

P (X ≤ x;µ,σ ,ξ)=















e
−

(

1+ξ

(

x−µ
σ

)− 1
ξ

)

, if ξ 6= 0

e
−

(

e
−

(

x−µ
σ

)

)

, if ξ=0

(1)

P(Y ≤ y|Y > u; σu, ξ ) =







1−
(

1+ ξ

(

y−u
σu

))

, if ξ 6= 0

1− e−
y

σu , if ξ = 0
(2)

where X are the annual maxima and Y are the daily values. The
GEV distribution (Equation 1) can be characterized by µ, σ , and
ξ , denoting location, scale, and shape parameters, respectively.
The GPD (Equation 2) has two parameters, σu and ξ . It has an
additional term, u, representing the threshold beyond which the
peaks are considered.
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Return levels can be determined directly from the inverse of
the CDF (inverse function, not to be confused with multiplicative
inverse). This is shown in the following:

zGEV (N) =

{

µ− σ
ξ

[

1−
{

−log
(

1− 1
N

)}−ξ
]

, if ξ 6= 0

µ − σ log
{

−log
(

1− 1
N

)}

, if ξ=0
(3)

zGPD(N) =

{

u+ σ
ξ

[

(

Nnζy
)ξ

−1
]

, if ξ 6= 0

u+σlog
(

Nnζy
)

, if ξ=0
(4)

where N represents the return period (e.g., N = 100 for a 100-year
return period) and n represents the number of data points collected
within the time periods (e.g., n = 365 for daily data). ζy represents
the probability that an event exceeded the threshold, u, which can
be written as ζy = Pr(X > u) and estimated as k

n , where k is the
number of excesses and n is the total sample size.

Note that the zGEV term represents the return level (Equation
3), which has the expectation of being exceeded once per the return
period or everyN-years. Similarly, for the GPD, Equation (4) shows
the return level, zGPD, which can be expected to be exceeded on
average once every N-years.

An added consideration for the GPD case is that some data
points might be part of the same event and falsely attribute greater
frequency to that event. In order to only select independent events,
the data above the given threshold are declustered before the GPD
fitting is applied (using the extRemes package in R, Gilleland and
Katz, 2016). Within this function, the method for declustering used
was an intervals estimator (Ferro and Segers, 2003). The results
from the declustered GPD (GPDd) case are included alongside the
non-declustered GPD method.

2.3.2. Extended generalized pareto distribution
Both the GEV and GPD approaches are widely used, but

have the disadvantage of further limiting the available dataset
for analysis by only considering extreme values. Therefore, newer
approaches, which make use of all available datapoints of an event
(zeros excluded), have been proposed and successfully applied (e.g.,
Papastathopoulos and Tawn, 2013; Naveau et al., 2016; Evin et al.,
2018; Tencaliec et al., 2020; Rivoire et al., 2021; Haruna et al.,
2022). Here we apply the extended generalized pareto distribution
(eGPD), through an open-source code in R (R Core Team, 2021).
It was developed by Naveau et al. (2016) initially for application to
both high and low non-zero rainfall extremes, but it can be applied
to any heavy-tailed distribution.

The idea was to overcome the need for threshold selection in
the generalized pareto by defining a unifying gamma-like density
function, which is in compliance with extreme value theory for both
the upper and lower tail of the distribution.

P(Y ≤ y) =

{

1− cst × H̄ξ

( y
σ

)

, for any large y
cst×yk, for any small y

(5)

This led Naveau et al. (2016) to propose the CDF of the
daily values:

P
(

Y ≤ y
)

=F (x)=G
{

Hξ

( y

σ

)}

(6)

where G is a continuous CDF on [0,1] that has to follow different
constraints detailed in Naveau et al. (2016) so that the upper tail is
preserved and the lower values behave like yk.

The N-year return level, can be computed from Equation (6)
for a given G based on the inverse of the CDF (G−1):

zeGPD(N)= F−1
(

1− 1
Nnp

)

=











σ
ξ

[

{

1− G−1
(

1− 1
Nnp

)}−ξ

−1

]

, if ξ>0

− σ
ξ
log

{

1− G−1
(

1− 1
Nnp

)}

, if ξ=0
(7)

where σ is the scale parameter, ξ is the shape parameter while
np represents the mean number of positive data points per year.
The shape parameter determines whether the GPD is exponential
or light-tailed (ξ = 0), or heavy-tailed (ξ > 0). Heavy rainfall is
often exponential or heavy-tailed (Katz, 2002; Naveau et al., 2016).
Naveau et al. (2016) proposed four parametric families that may
represent G. The model used in this study was:

G (v) = vk, three parameter family where κ > 0;

Here κ and ξ are the shape parameters for the behavior of the
lower tail and upper tail of the distribution, respectively.

2.3.3. Metastatistical extreme values distribution
Finally, another approach for assessing extreme values is the

Metastatistical Extreme Value (MEV) distribution, which was
introduced by Marani and Ignaccolo (2015) with the aim of
easing the requirement of the asymptotic assumption in traditional
extreme value analysis.

Similar to the eGPD, theMEVuses all of the available values in a
dataset and specifically focuses on including data points making up
both ordinary and extreme events. The number of ordinary events,
n, are considered by block (e.g., n is the number of rainfall days
per year). As explained by Zorzetto et al. (2016), the extremes of the
dataset emerge from repeated sampling of all ordinary points, so the
statistical parameters themselves have a distribution that describes
the behavior of the data. Thus, the number of events per block,
n, and the parameter values for the distribution of each block, are
realizations of stochastic variables (N and

−→
2 , respectively). From

Marani and Ignaccolo (2015), the cumulative MEV for annual
maxima is expressed as follows:

P (X ≤ x)=H (x)=
∑∞

n=1

∫

�→
2

[

F
(

x:
−→
θ

)]n
g
(

n,
−→
θ

)

d
−→
θ (8)

where �−→
2

is the set of possible parameter values of F (parent

distribution),
−→
θ represents the parameters of F, and g(n,

−→
θ ) is

the joint probability distribution of the number of events and
parameters, which are realizations from N (discrete values) and

−→
2

(continuous), respectively.
The MEV has since been applied to numerous studies

investigating precipitation extremes (Zorzetto et al., 2016;
Marra et al., 2019; Schellander et al., 2019; Miniussi and
Marani, 2020; Miniussi et al., 2020; Zorzetto and Marani,
2020). The authors of the listed studies that used the
MEV method for precipitation timeseries found their data
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followed a Weibull distribution [which is consistent with
findings by Wilson and Toumi (2005) for heavy precipitation
events] and thus their use of the MEV has been adapted
accordingly. Zorzetto et al. (2016) shows this by first
averaging over the empirical frequency distribution of the
parameters,

−→
2 :

H (x)=
1

T

∑T

j=1

[

F
(

x:
−→
2 j

)]nj
(9)

where T is the number of years and nj is the
number of daily precipitation events in year j.
Thus, each year of data becomes one realization of
−→
2 , N.

Where the daily data can be assumed to follow a Weibull
distribution then from Marani and Ignaccolo (2015) and Zorzetto
et al. (2016) the MEV can be approximated as:

H (x)=
1

T

∑T

j=1



1− exp
−

(

x
Cj

)wj




nj

(10)

For the Weibull distribution, the scale and shape parameters
are represented by Cj and wj, respectively, as the parameters
are estimated for each year, j ε{1,. . . ,T}, of data. Similarly, nj
is the number of ordinary events in each year. Note, for the
data of daily precipitation and inflow, the Weibull distribution is
initially assumed.

As described by Schellander et al. (2019) if the data can be
assumed to be time-invariant, then the parameters can be estimated
from the collective dataset directly (i.e., Cj = C, wj = w) and nj can
be averaged across the years to become n̄ (the average number of
ordinary events per year). This gives a simpler version of the MEV:

H (x)=
[

1− exp−( x
C )

w
]n

(11)

Schellander et al. (2019) note that this formulation of the MEV
has been proposed byMarra et al. (2019) and is called the simplified
MEV (SMEV).

As with the GEV and GPD approaches, quantiles (or inverting
the CDF) can be used to generate the return levels for given return
periods as:

zMEV(N)= H−1

(

1−
1

N

)

(12)

2.4. Method for low precipitation and
inflow events

For determining the return periods of low inflow and dry
periods, an alternative approach was used. The low rainfall and low
inflow cases were examined empirically, without any parametric
model fitting. We use the term “low inflow” for the total reservoir
inflow to distinguish it from “low flow” which commonly denotes
low river discharge (Van Loon, 2015).

Since low inflows/low precipitation events are particularly
impactful based on event duration rather than just single day
magnitudes, the first step was to identify the low events and

their duration. To this end, the data were transformed into
discrete counts of consecutive low input days. For the precipitation
case, these were days with total precipitation of 0mm day−1.
For the inflow case, a low inflow threshold value (u) based on
the 7.5th percentile was selected, where days with flows below
u were considered to be low inflow days. Both of these are
constant-type thresholds. The fixed threshold was used for inflow
because it was specific to a storage hydropower reservoir, with
the implication that below a certain threshold the turbines of
the power station cannot operate. Notably, this hard limit is not
known to the authors and thus a low percentile value of the dataset
was used.

The reservoir receives natural inflow from streams but
also engineering inflow directly from another managed storage
reservoir. The high level of water management, means that there
is generally less variability than in rivers as operators manage the
water based on anticipated demand and projected inflows over
the seasons. To try to gain a better understanding of the natural
seasonal changes, we included different thresholds per season as
well as the annual one. As inflow is not directly measured, but
rather back calculated from the daily water level in the reservoir,
we could not confidently estimate the contribution of separate
inflow sources, but could only use the calculated estimate of
inflow. Provided the streamflow contributions to the reservoir
are known, a variable threshold method (Heudorfer and Stahl,
2017) could be applied as this may give a more characteristic
representation of dry periods in the contributing variable inflow
sources. The corresponding return levels for the various thresholds
are summarized in Supplementary Table 2. Following the threshold
selection, consecutive days of low inflow were aggregated, counted
and the new discrete dataset was used to characterize the low
inflows by event lengths or “dry spells”.

The length of a low inflow event is sensitive to u in the sense
that if u were increased, then more days would appear below this u
value and the longest consecutive low inflow event will increase in
duration compared to a case with a lower u.

To determine the return levels for a dry spell, the assumption
was made that the sequences of consecutive low events are
independent. Then the return period of a sequence of consecutive
low inflow days of length, L, greater than or equal to a value of
interest, a, could be expressed as:

T(L ≥a) =
1

m× P(L ≥ a)
(13)

Where m (the average number of dry spells of any length per
year) is multiplied by the probability of an event lasting as long as
or longer than a number of days. The probability is found based
on the Weibull plotting position formula (Makkonen, 2006). It is
calculated by first ranking the historical dry spells (of each length)
by frequency and then dividing each rank by the sum of one plus
the total number of all dry spells.

In order to determine the return level at a given return period,
the probability of an event lasting more than a days was determined
by the rearrangement of Equation (13):

P(L ≥a) =
1

m× T(L ≥ a)
(14)
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FIGURE 2

Return level plots for TIOLI precipitation using, GEV, GPD, GPDd (declustered), eGPD, and MEV (Weibull distribution applied), based on 10-years of

daily precipitation data; upper (97.5 percentile) and lower (2.5 percentile) confidence bands obtained from bootstrapping 1,000 runs.

Results for low inflow for different return periods were
estimated using 10 years of data and again using 20 years of data
and can be seen in Figures 5, 6, respectively. The same was done for
low precipitation at the TIOLI and TIOLV precipitation stations
and return level values are summarized for 10- and 20-year return
periods in Supplementary Table 2.

A limitation of this approach is that the results are bounded by
the lowest and highest return periods. Intermediate return periods
for which there was no exact record in the data could be estimated
by linear interpolation between existing data points. In order to
get a more comprehensive event-length estimate, the data set was
bootstrapped (see below) and the mean count level of all runs was
used as the expected count level to be matched or exceeded in the
return period of interest.

2.5. Confidence intervals

Confidence intervals for the return levels obtained
with each method were determined by bootstrapping the
data 1,000 times with replacement. A block bootstrapping
approach was applied to the GPD, declustered GPD,
eGPD, MEV and low inflow/low precipitation results.
This was done by shuffling the months of data instead
of shuffling the days in the dataset. This way, the
uncertainty estimate would react more strongly if
there was significant temporal dependence in the data.
Since the GEV uses only the maxima of each period,
a simple bootstrap of maxima shuffled across all days
was acceptable.
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2.6. Software packages used

Fitting for all high inflow and precipitation extremes was done
in the R program (R Core Team, 2021). Maximum likelihood
estimation (mle) was used to fit the GEV, GPD, eGPD, and MEV.
For the GEV, the extreme value distribution, evd (Stephenson,
2002), package was used with the “fgev” function by maximum-
likelihood fitting of the GEV. For the GPD the “fpot” function
from the same evd package was used. For the declustered GPD
case, the modification to “decluster” the data was applied using
the extRemes package (Gilleland and Katz, 2016) to make excesses
more independent. For the eGPDmodel, the “extgp” function from
the mev package was used (Belzile et al., 2020). For the MEV, the
mevd package was used (Schellander, 2020). For the precipitation
cases, the “simple” type (SMEV, Equation 11) was used, while for
the inflow case the “annual” type (Equation 10) was found to yield
a better fit. For consistency with the other methods, the eGPD and
the MEV parameters were estimated using maximum likelihood
estimation (mle), although the authors acknowledge that the
probability weighted moments (pwm) approach is recommended
for thesemethods by bothNaveau et al. (2016) and Schellander et al.
(2019), respectively.

3. Results

The results are presented below according to the cases
investigated - first with respect to heavy precipitation and high
inflow and then for dry spells of low precipitation and low inflow.

3.1. Heavy precipitation

Return level plots for heavy precipitation at the TIOLI station
near the Luzzone reservoir (as determined using the GEV, GPD,
GPD with declustering, eGPD, and MEV) are shown in Figure 2.
All of the methods (GEV, GPD, eGPD, MEV) give similar
representation of the upper tail, though the GEV has the steepest
increase at high return periods. The smallest difference is between
the declustered and non-declustered GPD.

Twenty-year return levels for all of the stations in the study
region calculated for the annual case using 10-, 20-, and 40- years
are shown in Figure 7. Though the TIOLI and COM stations only
had a maximum of 10 and 20 years (respectively) available, it is
evident that all methods tend toward similar return level results
as more data becomes available. The largest variations between
the method-specific return levels appear in the 10-year datasets,
with the GEV resulting in visibly lower return levels than all
other methods.

3.2. High inflow

Figure 3 shows the results of various statistical approaches for
determining the return levels of high inflow events. Visually, the
GEV, GPD, GPD with data declustering, and eGPD provide results
that represent the observations fairly closely, particularly for the
higher returns. As with the precipitation case, the declustering of

the data does not appear to significantly improve the fit compared
to the non-declustered GPD. In contrast, results from the MEV,
deviated much more from the observed returns.

Twenty-year return levels for the reservoir inflow calculated for
the annual and seasonal cases, based on timeseries of 10 and 20
years are shown in Figure 8. The longer timeseries does shows a
small improvement in the agreement of return level values between
the methods. Unlike the precipitation data, the MEV rather than
the GEV provides the lowest return level. This is particularly
clear in the summer and fall seasons, as well as in the annual
data series.

3.3. Low precipitation

The results for low precipitation are presented in Figure 4. The
return levels are given for annual and seasonal cases and represent
the original data only (not the bootstrapped runs). For precipitation
at the TIOLI station, the longest recorded events lasted, 24, 21, 17,
14, and 21 days long for the annual, winter, spring, summer and fall
series, respectively. Across all return periods, the maximum event
lengths are seen in the annual series. This was expected because low
precipitation sequences can extend between the different seasons.
For the seasonal series’, the longest dry events are seen in the winter
season while the shortest low precipitation events all occur in the
summer season.

3.4. Low inflow

Low inflow events were defined using the 7.5th percentile
of each series (annual vs. season-specific) as a cut-off threshold.
Figure 5 results were computed using only the latest 10 years of
inflow data while Figure 6 results are based on 20 years of data. In
both Figures 5, 6, the top left plots use threshold percentiles that
are specific to each season, whereas the bottom and the rightmost
plots use the same threshold (summer percentile) for all seasons.
All threshold values can be viewed in Supplementary Table 2.

As with the low precipitation events, the longest low inflow
events consistently occurred in the annual series for each return
period, which is expected because there are no truncations of the
events in the annual series. Similarly, in the seasonal cases, when
the threshold was consistent, the longest low inflow events occurred
in winter while the shortest occurred in summer.

3.5. 20-year event profiles

From the results presented above, a profile of event return
levels with a 20-year return period (chosen to correspond to
the length of the inflow data-set) was generated. The results for
high precipitation (Figure 7) and high inflow (Figure 8) events are
shown with unique markers indicating the bootstrapped mean 20-
year return level obtained through the different methods. Figure 7
depicts only the annual cases (not seasonal) for six different stations
using various lengths of the datasets. Figure 8 also includes the
seasonal cases as well as return levels for low inflow, calculated with
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FIGURE 3

Return level plots for LUZ reservoir inflow using, GEV, GPD, GPDd (declustered), eGPD, and MEV (Weibull distribution applied), based on 20-years of

daily inflow data; upper (97.5 percentile) and lower (2.5 percentile) confidence bands obtained from bootstrapping 1,000 runs.

the non-parametric method. Since this method does not allow for
the maximum return level to exceed the data length, the 10-year
return levels are presented rather than 20-year levels. In all panels of
the profiles, upper and lower confidence intervals are the 97.5th and
2.5th quantiles of the bootstrapped mean return levels. Depicting
the results as a profile with separate panels for each case provides a
snapshot of the return levels for a recurrence period of interest for
each process (precipitation or inflow). This presentation allows for
clearer view of specific return periods of interest for each case.

3.5.1. High precipitation and inflow extremes
The top panels of Figure 8 show that the 20-year return levels

calculated using the various methods of GEV, GPD, declustered

GPD, eGPD, and MEV are generally comparable when considered
within the same time series (e.g., annual vs. season-specific), with
some clear exceptions. The MEV return level differs the most from
the other methods, but particularly in the fall season for the inflow
case, regardless of data length. Following the MEV, the GEV result
differs from the GPD-based results, also most noticeably in the fall
case. Generally, larger discrepancies are seen between return levels
determined by different methods when short datasets are used.
This is evident for both the processes of precipitation and reservoir
inflow. For the precipitation cases, the GEV is most clearly affected
by the data set length. For inflow, the seasonal cases depicted
show that all methods give the largest variability during the fall
season. As with precipitation the annual values are similar between
the GDP and eGPD methods, while the GEV and MEV diverge,
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FIGURE 4

Low precipitation return levels (event length) for annual and seasonal cases based on 10 years of data at TIOLI station.

FIGURE 5

Low inflow return levels (event length) for annual and seasonal cases based on 10 years of data; lower 7.5th percentile of each case used for

thresholds (top left); using 7.5th percentile of summer season as threshold for all cases (bottom and right).

particularly with the shorter dataset. In addition, the eGPD value
is most different from the rest of the methods in the spring and
summer when the 10-year data set is used.

3.5.2. Low precipitation and inflow events
In the remaining panels of Figure 8, the 10-year return levels

for low inflow are reported for cases where thresholds are based
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FIGURE 6

Low inflow return levels (event length) for annual and seasonal cases based on 20 years of data; lower 7.5th percentile of each case used for

thresholds (top left); using 7.5th percentile of summer season as threshold for all cases (bottom and right).

on the lower 7.5th percentiles of each season (middle panels) and
for cases where the summer season threshold (u) was used for all
cases. Regardless of whether 10 or 20 years of data where used, the
return levels based on the consistent thresholds gave similar results.
Expectedly, where the threshold was unique to each season, the
results in summer and fall varied with the length of the dataset used.
Low precipitation events for the TIOLI and TIOLV stations were
also calculated across seasons and for different dataset lengths (10–
40 years) for 10- and 20-year return levels. These results also used a
fixed threshold (0mm day−1) and yielded a similar relationship in
seasonal return levels as the fixed inflow cases for all dataset lengths.
These low inflow and low precipitation results are summarized in
Supplementary Table 2.

4. Discussion

4.1. High precipitation and inflow

The initial motivation for this study came from the aim to use
the most appropriate method to calculate return levels of impactful
precipitation and inflow events of small (10 or 20-year) datasets,
using the particular case of data relevant to changes in hydropower
reservoir fill-levels. The key differences between themethods comes
from the treatment of the dataset, rather than just the method

applied. For instance, the GEV and GPD only focus on the extreme
values of the data. The eGPD and MEV use extreme values but also
include ordinary values and thereby the additional information that
comes along with them. Therefore, for high precipitation and high
inflow, it was expected that the eGPD and MEV methods would
yield different results than the traditional approaches of the GEV
and GPD methods. This would be in line with previous studies,
such as Zorzetto et al. (2016), who found the MEV to outperform
the GEV, particularly for cases where the return period of interest
was longer than the length of the dataset.

Indeed, examining the annual cases of precipitation the GEV
return level is consistently lower than all other methods for every
station, but approaches the other return level values as the dataset
length increases. In these cases, theMEVwas similar or very slightly
larger than the other method results. However, it did not appear to
be distinctly different. In contrast, the MEV for inflow was clearly
lower than the other methods for the annual case and particularly
for the fall season regardless of the data length. This particular
discrepancy (as discussed further below) can be attributed to the
Weibull distribution being an ill-fit for the inflow data, while it
fit very well for the precipitation data. The GEV however, is most
sensitive to the dataset length compared to the other methods for
both inflow and precipitation.

The results of the inflow cases showed that, while there
were similarities in the values from each method for the winter

Frontiers inWater 10 frontiersin.org

https://doi.org/10.3389/frwa.2023.1141786
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Milojevic et al. 10.3389/frwa.2023.1141786

FIGURE 7

Twenty-year return levels of daily heavy precipitation for study site stations using parameter estimates from 10-, 20-, and 40- years of data for each

method (GEV, GPD, GPDd, eGPD, and MEV); confidence intervals based on 97.5th and 2.5th percentiles from 1,000 bootstrapped samples.

series (where flows historically have been less variable), there
were discrepancies in the other seasons and in the annual
series. Notably, the annual precipitation results showed that
the eGPD, GPD/GDPd, and MEV results were more similar in
value, even in shorter datasets. Given the similarity in return
level results, this would indicate that the peak-over-threshold
parsing of extremes (to which the GPD is applied) provides as
sufficient an amount of information as the more data-inclusive
approach (for the eGPD) for these cases. One more point of
comparison is the similarity in the results of the GPD applied to
the declustered and non-declustered data. In the high precipitation
and high inflow cases, the resulting return levels were not very
different, however, it may still be relevant for other datasets
and should be assessed on a case-by-case basis. Overall, the
similar return levels indicate that the inclusion of ordinary
events does indeed make a difference against the alternative of
the block maxim/GEV method but not necessarily against the
POT/GPD approach.

The largest difference when method results are compared in
the inflow cases was from the MEV. This method uses all ordinary
positive values, as the eGPD, but a Weibull distribution is applied
in this formulation. This distribution is often valid for precipitation
data and has been successfully applied in other studies of extreme
precipitation. Similarly, it did provide as good of a fit as the GPD in
this precipitation case (Figure 2). This also resulted in an acceptable
annual return level in Figure 7. For inflow, the poorer fit from
the MEV is seen in Figure 3 as the model underestimates the data
behavior. The resulting, lower return levels are evident in Figure 8.
The poor fit for the inflow also occurs in the corresponding seasonal
series. This was not as surprising for the inflow case because other
distributions could better represent the data and this is clearly an
important element in the MEV process. This indicates, that when
the season-specific cases are examined, the model may be more
sensitive to the smaller amount of data and that these data should
be also be represented by a different distribution that better reflects
the data patterns in each season.
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FIGURE 8

(Upper) 20-year return levels of daily high inflow for Luzzone reservoir using parameter estimates from 10- and 20-years of data for each method

(GEV, GPD, GPDd, eGPD, and MEV); (Middle): 10-year return levels of events defined by 7.5th percentile threshold specific to each season; (Lower)

10-year return levels of events defined by 7.5th percentile of summer season; confidence intervals based on 97.5th and 2.5th percentiles from 1,000

bootstrapped samples.

It is important to note that the resulting shape parameters
for the same data, calculated by different methods, were different
(please see Supplementary Tables 3, 4). Shape parameters indicate
if a distribution has a heavier or lighter tail. Heavier tails indicating
greater frequency and intensity of extreme events (e.g., Papalexiou
and Koutsoyiannis, 2013; Papalexiou et al., 2013). Most methods
yielded positive shape parameter values for all seasonal and annual
cases. Only the GEV method gave negative values for most cases of
precipitation and for the 10-year summer inflow case and tended
to underestimate the return levels compared to the other methods.
This is similar to results found by Moccia et al. (2021a,b), who
found the Weibull distribution to underestimate the returns.

In general, for high precipitation and high inflow cases, it
can be recommended that—for a small dataset—the eGPD can
be selected although the classic GPD (declustering by case) also
can yield acceptable results if not too many data points are lost

by the threshold selection process. The GEV, however, is not
recommended for use in estimating return levels for small datasets.
The MEV is recommended to be selected over the GEV, and
possibly over the GPD, but only with the correct distribution for
the specific data.

4.2. Low precipitation and inflow

As with the high precipitation and high inflow cases, the results
from the low precipitation (Figure 4) and low inflow (Figures 5, 6)
cases also show that the temporal series under consideration makes
a difference in the resulting return level, as expected. For both cases,
the annual return levels were consistently higher than the seasonal
levels. This is because of the way that the events were selected. It
is standard practice to view seasonal differences by splitting the
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annual data set into corresponding calendar months. The benefit is
a consistent split, but it comes at the cost of possibly breaking up an
event. Due to this effect, it is recommended that the annual series be
viewed in addition to the seasonal series when the calendar months
are used to subset the data. The annual series will provide the full
length of historical maxima, while the seasonal split will give an
indication in which season themajority of an event can be expected.

For the low precipitation, the summer season provided the
shortest low precipitation event length. This may be attributed to
the seasonally warmer temperatures allowing for more moisture in
the air, which enables more precipitation in general. The winter
and fall season have the longest low precipitation spells, which is
to be expected with the colder temperatures prohibiting the same
amount of moisture to be held as in the warmer seasons (although
this may differ in the future with climate change).

The low inflow case, where thresholds were uniformly based
on the 7.5th summer percentile tended to follow a similar seasonal
relationship as precipitation, with the longest events appearing
in winter and the shortest occurring in summer. This was less
clear when inflow events were based on threshold values that are
unique to the seasonal and annual series. This second approach can
offer a helpful view for reservoir management when interested in
return-levels based on historical expectations of inflow during a
specific time/season, but the former approach is generally easier
to interpret. As with the low precipitation case, the longest low
inflow event occurs in the annual series. This is to be expected
because the moderate annual threshold value allows many more
days from which to draw than just the seasonal series. With
generally higher precipitation occurring in summer as compared
to the winter (e.g., Rysman et al., 2016), it was expected that inflow
levels in the same location would be higher and so the low inflow
events would be shorter. The understanding of the inflow patterns
could be furthered with additional information about the individual
sources contributing to the reservoir inflow volume. Contributions
to the natural inflow do include precipitation, stream flows, and
snowmelt, but without additional types of data (e.g., measured
stream flow), the actual contributions of these sources of these
inflow values remain speculative.

4.3. Limitations

Each method applied in this study has its strengths and
weaknesses. The block maxima/minima definition of extremes,
for which the GEV is commonly used, is well-established and
straightforward to apply. However, the basic assumptions (e.g.,
asymptotic assumption) can make the method questionable for
application to smaller datasets as the block maxima selection
further reduces the available data size. The GPD, where peak
data over a threshold are used, allows for less data to be
discarded. Declustering the data beforehand is done to ensure
statistical independence between events, a requisite of EVT. The
key limitation is in the selection of an appropriate threshold (to
find an optimum between variance and bias), although methods to
aid in the selection procedure do exist (Scarrott and Macdonald,
2012). Even so, the threshold-based approach also reduces the
existing dataset.

The eGPD and the MEV are within the family of methods that
aim to make use of all positive data and thereby address the main
limitations of the previous approaches of dataset size limitations.
Yet they also have a few limitations. A drawback of the eGPD is
that without appropriate censoring of the likelihood the fits are
poor. Further, the fit of the eGPD is quite sensitive to the selected
value for the censored likelihood process. Similar to the threshold
selection for the GPD, an appropriate value can be selected based
on visual inspection of the model fit against the empirical data in
a quantile-quantile plot. Alternatively, the value giving the smallest
root mean squared error (RMSE) between the fit and the empirical
data can be used. Themain limitation of theMEV is that the correct
distribution of the data should be first determined and then applied
within theMEV framework. This can certainly be done, but is not as
straightforward as the other approaches for practitioners desiring a
rapid calculation of return levels. However, as the method becomes
more know over time, it may likely be applied more often because
of the flexibility of the approach.

A general limitation that is relevant for all of the approaches
is that they are purely based on one set of historical data and
thereby restrict the calculation of return levels or return periods
to those expected based on previous events. Thus, the results
should be interpreted with care, particularly in a changing climate
because the climate change influence is not explicitly identified.
As a consequence, these methods cannot be used for forecasting,
although they might be useful in informing expectations within a
short timeframe in the future (e.g., couple years ahead).

Stemming from this, the perspective of the return levels taken
from the annual view of the data differs significantly from the
view taken based on seasons. Insight into how the return levels
differ in winter as opposed to summer, for instance, can be
useful for practitioners curious about the variations of return level
expectations throughout the year. It is common for only the annual
view to be taken, but this does not indicate when in the year the
return level is anticipated to occur. In fact, as shown, the differences
in the seasonal vs. annual return levels in the cases examined were
quite large for both the high and low inflow cases. This indicates the
importance of the timeseries selection along with the appropriate
method choice.

5. Conclusions

Based on the results of this study, we can conclude with the
following messages. Heavy precipitation, high inflow, and dry
spells are all events that can impact reservoirs and thereby related
hydropower production. Estimating the expected return of each
event requires that the most appropriate view of the data is taken
and that the most relevant method is applied. It can be concluded,
that for the cases of high precipitation and high inflow, the method
selected can make a difference in return levels and that particular
care should be taken when applying the methods to the seasonal
vs. annual timeseries. The GEV and GPD have long been in use,
but they come with the drawback of reducing the data in the
analysis, which is problematic when the data is limited. This is a
particular weakness for the GEV, which is not recommended for
use with small datasets. In such cases, the eGPD or MEV may
be more beneficial than traditional models. However, it is critical
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to ensure that the correct distribution is applied in the case of
the MEV and that an appropriate censored likelihood selection is
made in the case of the eGPD. These selections must be tailored
to the timeseries (seasonal or annual). When correctly applied they
can be used for smaller datasets (e.g., 10-years) as well as longer
ones. For low precipitation and low inflow events, the series under
consideration makes a large impact on what return levels can be
expected for a given return period. In addition, the application of a
specific threshold value is important to consider as it can change
the meaning of the resulting low event return levels. Overall, it
is recommended that the treatment of the data be considered on
a case-by-case, with particular attention to the dataset length and
type (inflow vs. precipitation) to ensure that the most appropriate
method is applied.
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