
1.  Introduction
A snow avalanche consists of fast gravitational flow of a snow mass which poses a threat to snow enthusi-
asts and infrastructure in mountainous regions (Ancey, 2006; D. McClung & Schaerer, 2006). Among different 
avalanche types, dry-snow slab avalanches are responsible for most avalanche accidents and damage (Schweizer 
et al., 2003). Such an avalanche releases due to the failure of a weak layer buried below a cohesive snow slab 
(Schweizer et al., 2016). Although a lot of progress has been done regarding the understanding of slab avalanche 
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Plain Language Summary  Shallow landslides represent a significant threat to people and 
infrastructure. In mountainous regions, snow slab avalanches are a particular type of shallow landslide 
responsible for numerous casualties and important damage. Such an avalanche releases due to the failure of 
a weak layer buried below a cohesive slab. Despite significant progress in the understanding and modeling 
of such phenomena, the evaluation of the avalanche release size still remains a difficult task. This quantity 
is important for avalanche forecasting and is also a crucial input for hazard mapping model chains. To tackle 
this challenge, we develop a numerical method based on shallow water equations that simulates efficiently the 
release of slab avalanches over complex topography based on snow properties and terrain characteristics. The 
model is verified based on theoretical and numerical analysis of a state-of-the-art snow fracture experiment. 
Then, large scale simulations are conducted to evaluate the shape and size of avalanche release zones over 
different topographies. Given its low computational cost, we expect our model to have operational applications 
in hazard assessment, especially for the evaluation of the avalanche release size which is an important quantity 
for avalanche forecasting and management. The model can be easily adapted to simulate the initiation and 
dynamics of other processes such as debris and lava flows, glacier creep and calving.
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release processes, including the onset and dynamics of crack propagation (Bobillier et  al.,  2021; Gaume, 
Chambon, et al., 2013; Trottet et al., 2022), the evaluation of the size of avalanche release zones still remains 
a major issue. This difficulty impedes avalanche forecasting and hazard mapping procedures which rely on the 
avalanche release size as input.

Previous work tackled this obstacle through various modeling approaches. In particular, Fyffe and Zaiser (2004), 
Failletaz et al. (2006), and Fyffe and Zaiser (2007) developed cellular-automata to compute the statistical distribu-
tion of the release zone area. These models succeeded in reproducing power-law distributions reported based on 
avalanche measurements (Fyffe & Zaiser, 2004; D. M. McClung, 2003). Veitinger et al. (2016) proposed a fuzzy 
logic model that allows the identification of avalanche release areas on complex terrain based on topographical 
indicators (such as slope angle and curvature), forest indicators as well as roughness evolution induced by snow 
cover (progressive smoothing effect). Dynamic crack propagation in snow was simulated in 2D (depth-resolved) 
based on the Discrete Element Method (DEM) (Gaume, van Herwijnen, et al., 2015) and the Finite Element 
Method (FEM) (Gaume, Chambon, et al., 2015). Gaume and Reuter (2017) and Reuter and Schweizer (2018) 
later proposed novel methods to describe snow instability by combining limit equilibrium and finite element 
simulations. More recently Zhang and Puzrin  (2022) proposed a depth-averaged finite difference method for 
the initiation and propagation of submarine landslides. Yet, so far, approaches combining a mechanical release 
model, variable material properties and complex topography are still scarce.

In these lines, advanced numerical models were recently developed. Gaume et al. (2018) proposed a Material Point 
Method (MPM) and constitutive snow models based on Critical State Soil Mechanics (Roscoe & Burland, 1968) 
to simulate in a unified manner, failure initiation, crack propagation, slab fracture, avalanche release and flow, at 
the slope scale. MPM is a Eulerian-Lagrangian particle-based method initially developed by Sulsky et al. (1994). 
Due to its ability to handle processes including large deformations, fractures and collisions, this elegant hybrid 
method found great interest over the last two decades, both in geomechanics, for example, for the modeling of 
fluid-structure interaction (York II et al., 2000), porous media micromechanics (Blatny et al., 2021, 2022), gran-
ular flows (Dunatunga & Kamrin, 2015), snow avalanche release (Gaume et al., 2019; Trottet et al., 2022), snow 
avalanche dynamics (Li et al., 2021), glacier calving (Wolper et al., 2021), debris flows (Vicari et al., 2022), 
landslides (Soga et al., 2016) and rockslides (Cicoira et al., 2022), as well as in computer graphics (Daviet & 
Bertails-Descoubes, 2016; Jiang et al., 2016; Schreck & Wojtan, 2020; Stomakhin et al., 2013).

After the first application of MPM to snow slab avalanches, Gaume et al.  (2019) analyzed crack propagation 
and slab fracture patterns and reported crack speeds above 100  m/s on steep terrain. While the latter result 
was initially surprising, this motivated further analysis which later highlighted a transition in crack propagation 
regimes during the release process (Trottet et al., 2022):

•	 �On the one hand, for short propagation distances, typically below 2 m, the failure in the weak layer occurs as 
a so called mixed-mode anticrack (Heierli et al., 2008), in line with field measurements (Bergfeld et al., 2022; 
van Herwijnen, Bair, et  al.,  2016) as well as recent numerical experiments using the DEM (Gaume, van 
Herwijnen, et  al.  (2015) and Bobillier et  al.  (2021)). The anticrack mechanism, originally introduced to 
explain deep earthquakes (Fletcher & Pollard, 1981) refers to a mode of compressive fracture driven by the 
volumetric collapse of the highly porous weak layer, which leads to the closure of crack faces and to the 
onset of frictional contact (Gaume et al., 2018). It was successfully introduced to explain observations of 
fracture propagation on flat terrain and remote avalanche triggering (Gauthier & Jamieson, 2008; Johnson 
et al., 2004; van Herwijnen & Jamieson, 2007) that pure shear theories (Gaume, Chambon, et al., 2013; D. 
McClung, 1979) failed to reproduce. In this case of short propagation distances, simulated propagation speeds 
in Trottet et al. (2022) are similar to those reported in classical snow fracture experiments (Propagation Saw 
Test (PST) (van Herwijnen, Bair, et al., 2016)) and are found to be below the Rayleigh wave speed, that is, 
below around 90% of the shear wave speed cS.

•	 �On the other hand, for propagation distances larger than the so-called supercritical crack length introduced 
by Trottet et al. (2022) and a slope steep enough, a pure shear mode of crack propagation is reported with 
speeds higher than the shear wave speed, a process called supershear fracture which was previously reported 
in earthquake science (Weng & Ampuero, 2020).

This transition, which occurs after a few meters suggests that the anticrack mechanism is only relevant for short 
propagation distances and that a pure shear model should be sufficient to estimate the release sizes of large 
avalanche release zones which are of interest for risk management purposes.
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Motivated by this new understanding and by the high computational cost of three-dimensional simulations, we 
developed a depth-averaged MPM for the simulation of snow slab avalanches release with a pure shear failure 
model for the weak layer. This model, inspired by the one developed in Abe and Konagai (2016) for debris flows, 
extends the Savage-Hutter model (Savage & Huter, 1915) in the case of elastoplasticity. After presenting govern-
ing equation and depth-integration (Section 2), we verify the model based on simulations of the so-called PST 
and compare numerical results to analytical solutions and 3D simulations (Section 3). Furthermore, we perform 
large scale simulations over generic and complex topographies and analyze the shape and size of avalanche 
release zones.

2.  Methods
In this section, we first describe the governing conservation equations and derive their depth-integrated coun-
terparts under the shallow water assumptions. Then, in the context of snow slab avalanches, the constitutive 
elasto-plastic model for the slab as well as the weak layer-slab interaction are outlined. Finally, a discretization of 
the equations are presented and the full depth-averaged Material Point Method (DAMPM) algorithm is summa-
rized. A table containing all relevant symbols and notations is provided in Table D1.

2.1.  Governing Equations

We denote σ the Cauchy stress tensor, v the velocity field and ρ the density field of the material. Moreover, we 
let b denote the external body force per unit mass, for example, that of gravity. The conservation of mass and 
momentum can then be written in conservative form as

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
(𝒙𝒙, 𝑡𝑡) + ∇ ⋅ (𝜌𝜌𝒗𝒗)(𝒙𝒙, 𝑡𝑡) = 0� (1)

𝜕𝜕(𝜌𝜌𝒗𝒗)

𝜕𝜕𝜕𝜕
(𝒙𝒙, 𝑡𝑡) + ∇ ⋅ (𝜌𝜌𝒗𝒗⊗ 𝒗𝒗)(𝒙𝒙, 𝑡𝑡) = ∇ ⋅ 𝝈𝝈(𝒙𝒙, 𝑡𝑡) + 𝜌𝜌(𝒙𝒙, 𝑡𝑡)𝒃𝒃(𝒙𝒙, 𝑡𝑡), ∀𝑡𝑡 𝑡 0, 𝒙𝒙 ∈ Ω.� (2)

where Ω is the domain where the solid is confined.

2.1.1.  Depth Integration on Flat Surface

We denote h the height of the flow at any point, which can be seen as a function of the other coordinates x, y, 
and t. For any field 𝐴𝐴 𝐴𝐴 ∶ ℝ

3 ×ℝ+ → 𝐸𝐸 (where E designates 𝐴𝐴 ℝ or 𝐴𝐴 ℝ
3 ) we introduce the associated depth-averaged 

field 𝐴𝐴 𝜙𝜙 such that

𝜙𝜙 ∶ (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)⟼
1

ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) ∫
ℎ

0

𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)𝑑𝑑𝑑𝑑�

The field 𝐴𝐴 𝐴𝐴′ = 𝜙𝜙 − 𝜙𝜙 is defined as the difference between the field and its depth-averaged field. This implies 
𝐴𝐴 ∫ ℎ

0
𝜙𝜙′𝑑𝑑𝑑𝑑 = 0 and 𝐴𝐴 ∫ ℎ

0
𝜙𝜙′𝜙𝜙𝜙𝜙𝜙𝜙 = 0 . For each field, we also denote

‖𝜙𝜙‖∞, ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) ∶= max
𝑧𝑧∈[0,ℎ]

|𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥)|.� (3)

In order to simplify the notation, we also denote 𝐴𝐴 𝐴𝐴|𝑧𝑧=𝑧𝑧0 for any real z0, the function from 𝐴𝐴 ℝ
2 ×ℝ+ to E such that

𝜙𝜙|𝑧𝑧=𝑧𝑧0 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥0,𝑡𝑡 )�

2.1.1.1.  Assumptions

The classic shallow-water assumptions are

•	 �The flow depth varies gradually and is small compared to the other dimensions of the flow. This is formalized 
by 𝐴𝐴 𝐴𝐴 =

ℎ0

𝐿𝐿
≪ 1 where h0 is the standard height of the flow and L the characteristic length of the release zone.

•	 �The material is incompressible: the density ρ does not depend on position neither time.
•	 �The flow surface is stress-free, that is, the Cauchy stress tensor on the boundary is 𝐴𝐴 𝝈𝝈|𝑧𝑧=ℎ = 0
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•	 �Velocity fluctuations within the depths are small compared to the average velocity, in particular,

‖𝑣𝑣′𝑥𝑥‖∞, ℎ

𝑣𝑣𝑥𝑥
∼

‖𝑣𝑣′𝑦𝑦‖∞, ℎ

𝑣𝑣𝑦𝑦
= (𝜀𝜀).� (4)

•	 �The vertical velocity is small compared to the other velocity components, that is,

‖𝑣𝑣𝑧𝑧‖∞, ℎ

𝑣𝑣𝑥𝑥
∼

‖𝑣𝑣𝑧𝑧‖∞, ℎ

𝑣𝑣𝑦𝑦
= (𝜀𝜀).� (5)

Under the assumption of incompressibility, the equation for mass conservation is therefore simplified as follows

∇ ⋅ 𝒗𝒗 = 0� (6)

and the momentum conservation equation can thus be rewritten as

𝜕𝜕𝒗𝒗

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝒗𝒗⊗ 𝒗𝒗) =

1

𝜌𝜌
∇ ⋅ 𝝈𝝈 + 𝒃𝒃.� (7)

2.1.1.2.  Boundary Conditions

We have the following boundary conditions for the material,

𝑣𝑣𝑧𝑧(𝑧𝑧 = ℎ) =
𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑥𝑥(𝑧𝑧 = ℎ)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑦𝑦(𝑧𝑧 = ℎ)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (8)

𝑣𝑣𝑧𝑧(𝑧𝑧 = 0) = 0.� (9)

where the first one expresses the kinematic condition on z = h and the second expresses the non-porosity of the 
surface z = 0.

2.1.1.3.  Depth-Averaged Mass Conservation

Integration of Equation 6 for z ∈ [0, h] yields

∫
ℎ

0

∇ ⋅ 𝒗𝒗𝑑𝑑𝑑𝑑 = 0,�

which can be rewritten as

∫
ℎ

0

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + ∫

ℎ

0

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + ∫

ℎ

0

𝜕𝜕𝜕𝜕𝑧𝑧

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 0.�

Applying Leibniz integration rule to each term, we obtain

𝜕𝜕
(
ℎ𝑣𝑣𝑥𝑥

)

𝜕𝜕𝜕𝜕
− 𝑣𝑣𝑥𝑥(𝑧𝑧 = ℎ)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝑣𝑣𝑦𝑦

)

𝜕𝜕𝜕𝜕
− 𝑣𝑣𝑦𝑦(𝑧𝑧 = ℎ)

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑧𝑧(𝑧𝑧 = ℎ) = 0.�

Combined with the boundary condition described in Equation 8, this leads to

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝑣𝑣𝑥𝑥

)

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝑣𝑣𝑦𝑦

)

𝜕𝜕𝜕𝜕
= 0,� (10)

which is the depth-averaged equation of mass conservation.

2.1.1.4.  Depth-Averaged Momentum Conservation

With the same method, we integrate in the z-direction Equation 7 and get

𝜌𝜌𝜌

(
𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑥𝑥

𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑦𝑦

𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕

)

=
𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑥𝑥𝜌𝜌𝜌𝜌

𝜌𝜌𝜌

(
𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑦𝑦

𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑥𝑥

𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕

)

=
𝜕𝜕
(
ℎ𝜎𝜎𝑦𝑦𝑦𝑦

)

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑦𝑦𝑦𝑦 + 𝑏𝑏𝑦𝑦𝜌𝜌𝜌𝜌

�
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where 𝐴𝐴 𝐴𝐴𝑥𝑥𝑥𝑥 ∶= 𝜎𝜎𝑥𝑥𝑥𝑥|𝑧𝑧=0 and 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 ∶= 𝜎𝜎𝑦𝑦𝑦𝑦|𝑧𝑧=0 . We define the depth-averaged material derivative operator for any 
depth-averaged field 𝐴𝐴 𝜙𝜙 as

𝑑𝑑 𝜙𝜙

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜙𝜙

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑥𝑥

𝜕𝜕𝜙𝜙

𝜕𝜕𝜕𝜕
+ 𝑣𝑣𝑦𝑦

𝜕𝜕𝜙𝜙

𝜕𝜕𝜕𝜕
.�

We can now write the non-conservative form of the momentum conservation:

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑
=

𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑥𝑥𝜌𝜌𝜌𝜌� (11)

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑
=

𝜕𝜕
(
ℎ𝜎𝜎𝑦𝑦𝑦𝑦

)

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑦𝑦𝑦𝑦 + 𝑏𝑏𝑦𝑦𝜌𝜌𝜌𝜌� (12)

Note that 𝐴𝐴
𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑
 and 𝐴𝐴

𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑
 are the components of the material acceleration 𝐴𝐴 𝑎𝑎 . We can combine Equations 11 and 12 in 

the vectorial equation

𝜌𝜌𝜌𝒂𝒂 = ∇ ⋅

(
ℎ𝝈𝝈

)
− 𝝉𝝉𝑏𝑏 + 𝒃𝒃𝜌𝜌𝜌𝜌� (13)

where

𝒂𝒂 =

⎛
⎜
⎜
⎝

𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑

𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑

⎞
⎟
⎟
⎠

, ∇ ⋅

(
ℎ𝝈𝝈

)
=

⎛
⎜
⎜
⎝

𝜕𝜕(ℎ𝜎𝜎𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(ℎ𝜎𝜎𝑥𝑥𝑥𝑥)

𝜕𝜕𝜕𝜕

𝜕𝜕(ℎ𝜎𝜎𝑦𝑦𝑦𝑦)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(ℎ𝜎𝜎𝑥𝑥𝑥𝑥)

𝜕𝜕𝜕𝜕

⎞
⎟
⎟
⎠

, and 𝝉𝝉𝑏𝑏 =

⎛
⎜
⎜
⎝

𝜏𝜏𝑥𝑥𝑥𝑥

𝜏𝜏𝑦𝑦𝑦𝑦

⎞
⎟
⎟
⎠

.�

Please note that the momentum conservation equation can also be projected on the z direction, which gives with 
the assumption 5 and the boundary condition

0 = −𝜎𝜎𝑧𝑧𝑧𝑧(𝑧𝑧 = 0) +
𝜕𝜕
(
ℎ𝜎𝜎𝑥𝑥𝑥𝑥

)

𝜕𝜕𝜕𝜕
+

𝜕𝜕
(
ℎ𝜎𝜎𝑧𝑧𝑧𝑧

)

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌𝑧𝑧ℎ� (14)

2.1.2.  Depth Integration on Complex Topography

In the previous integration, we supposed that the terrain was planar. This will be the case in most of our veri-
fication framework and applications of the model. Yet, some simulations on complex terrain will be presented 
which require a change of coordinate from Cartesian to curvilinear, which adds surface gradient terms to the 
depth-averaged momentum conservation equation. For the sake of clarity, the related mathematical framework 
based on the work of Bouchut and Westdickenberg (2004) and Boutounet et al. (2008) is presented in Appen-
dix C. Note that this change of coordinate system, instead of a simple vertical projection, is necessary to recover 
multi-directional wave and crack propagation features.

2.1.3.  Constitutive Model for Snow Slab Avalanche

The system composed of Equations 10–12 presented in the last section is not closed. To close it, we need constitu-
tive equations relating the stress tensor σ to the deformation. In this framework, we choose an elasto-plastic model, 
where the slab behaves elastically until a yield stress is reached, marking the onset of permanent deformations.

2.1.3.1.  Small Strain Tensor

We denote the Lagrangian coordinate X, that is, the coordinate of the undeformed material. The map of defor-
mation φ is then defined as

�(�, �) = �(�, �) −��

where u is the displacement of the material initially in position X between time t and time 0. The deformation gradi-
ent F is defined as the gradient of the deformation map, F = ∇φ(X, t). Note that the deformation gradient is related 
to the displacement by F = ∇u + I, where I is the identity tensor. The Green-Lagrange strain tensor E is defined as

𝑬𝑬 =
1

2

(
𝑭𝑭

𝑇𝑇
𝑭𝑭 − 𝑰𝑰

)
�
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which, using the expression for the deformation gradient, becomes

𝑬𝑬 =
1

2

(
∇𝒖𝒖 + (∇𝒖𝒖)

𝑇𝑇
+ ∇𝒖𝒖 ⋅ (∇𝒖𝒖)

𝑇𝑇
)
.�

We make the hypothesis that the displacement of the slab is small, we supposed then that ‖∇u‖ ≪ 1. In this 
condition, the Green-Lagrange strain tensor can be approximated by the small deformation strain tensor

𝜺𝜺 =
1

2

(
∇𝒖𝒖 + ∇𝒖𝒖𝑇𝑇

)
.� (15)

2.1.3.2.  Elasto-Plastic Model for the Slab

We choose for the slab an additive elasto-plastic model,

𝜺𝜺 = 𝜺𝜺𝑃𝑃 + 𝜺𝜺𝐸𝐸�

with ɛE satisfying a linear elastic law,

𝝈𝝈 =  ∶ 𝜺𝜺𝐸𝐸� (16)

With 𝐴𝐴  is the fourth order elasticity tensor depending of the material elastic properties (Young's modulus and 
Poisson's ratio). From the last equation we have

𝝈𝝈 =  ∶ (𝜺𝜺 − 𝜺𝜺𝑃𝑃 ).� (17)

In order to define the onset of plastic, irreversible, deformations, a yield criterion on the stress can be intro-
duced. Here, we choose the Cohesive Cam Clay (CCC) criterion based on Critical State Soil Mechanics (Roscoe 
& Burland,  1968). This model was previously proposed to model snow mechanical behavior by Meschke 
et al. (1996) and slab avalanche release processes by Gaume et al. (2018) and Trottet et al. (2022). This model 
accounts for the mixed-mode failure of snow (Reiweger et al., 2015) and combined with a hardening/softening 
rule, can reproduce snow brittle fracture (Sigrist, 2006). In the space of the stress invariants p, the mean stress, 
and q, the von Mises equivalent stress, this criterion can be expressed as

𝑞𝑞(𝝈𝝈)
2
(1 + 2𝛽𝛽) +𝑀𝑀2(𝑝𝑝(𝝈𝝈) + 𝛽𝛽𝛽𝛽0))(𝑝𝑝(𝝈𝝈) − 𝑝𝑝0)) ≤ 0� (18)

where p0 corresponds to the consolidation pressure and directly influences the size of the yield surface; M is the 
slope of the cohesionless critical state line that controls the amount of friction inside the material and the shape of 
the yield surface; β is the cohesion parameter that quantifies the ratio between tensile and compressive strengths. 
This yield surface is illustrated in the space of p and q in Figure 1a. In this framework, we consider the slab as 
purely brittle. Therefore, if the yield criterion is not respected, we consider the slab as broken and the stress tensor 
is set to 0.

In the depth-averaged framework, the shear in the x − z and y − z plane can be neglected compared to the other 
stress tensor component. Under this assumption, the averaged vertical stress is

𝜎𝜎𝑧𝑧𝑧𝑧 =
𝜎𝜎𝑧𝑧𝑧𝑧(𝑧𝑧 = ℎ) − 𝜎𝜎𝑧𝑧𝑧𝑧(𝑧𝑧 = 0)

2
=

𝜌𝜌𝜌𝜌𝑧𝑧ℎ

2
.�

Figure 1.  (a) Cohesive Cam Clay yield surface in the p − q space. The dashed curve represents the cohesionless case. (b) 
Basal shear stress as a function of the displacement u of the slab.
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The density ρ is assumed to be constant and h is fully determined in the MPM framework with the mass conser-
vation (see Equation 32 in the description of the algorithm). We further assume elastic and plastic deformations 
only occur in the x and y direction. As h remains mostly constant in our framework, taking into account the verti-
cal stress in the plastic deformation just correspond to a very small change of the yield criterion. Therefore the 
stress tensor used to compute the elastic and plastic deformation is the 2 × 2 matrix

𝝈𝝈 =

⎛
⎜
⎜
⎝

𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥

𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦𝑦𝑦

⎞
⎟
⎟
⎠

.�

The stress invariant are then computed as

𝑝𝑝(𝝈𝝈) = −
1

2
(𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦), 𝒔𝒔(𝝈𝝈) = 𝝈𝝈 + 𝑝𝑝(𝝈𝝈)𝑰𝑰 , 𝑞𝑞(𝝈𝝈) =

√
3

2
𝒔𝒔 ∶ 𝒔𝒔.� (19)

Note that for uniaxial tension and uniaxial compression the value of p and q are different than if computed with 
the full 3 × 3 stress tensor. This implies the need of transforming the CCC parameters (p0, M, β) to have the same 
tensile strength, compressive strength and shear resistance in both the full 3D model and the depth-averaged model.

2.1.4.  Weak Layer Modeling

The weak layer—slab interaction will be modeled by a basal force τb. The weak layer is considered as elastic 
quasi-brittle. It is rate independent and does not account for healing/sintering effects.

Such a model for the weak layer was initially introduced to simulate the growth of slip surfaces in over-consolidated 
clays Palmer and Rice (1973). It was then adapted to snow by D. McClung (1979) and was later used in numer-
ous applications by for example, Gaume, Eckert, et  al.  (2013), Fyffe and Zaiser  (2004,  2007), Zhang and 
Puzrin (2022), and Puzrin et al. (2019).

In Figure 1b, the basal shear force is plotted as a function of the slab displacement norm u. As long as the 
displacement is lower than the critical displacement, the basal stress τb increases with the displacement until 
it reaching the peak stress τpeak. Then, in order to model the quasi-brittle failure of the weak layer, the stress 
decreases down to the residual stress τres = σn tan ϕ with σn the normal stress at the base of the material and ϕ 
the basal frictional angle between the slab and the weak layer. This represents the Coulomb model for the dry 
friction when the sliding of the slab on the weak layer occurs. The softening phase is associated with a plastic 
displacement δ.

In the domain u < uc the model acts as a spring between the slab and the weak layer whose stiffness kWL is the 
slope of the linear part. kWL can be related to the geometrical and mechanical characteristics of the weak layer as

𝑘𝑘WL =
𝐺𝐺WL

𝐷𝐷WL

,�

where GWL is the shear modulus and DWL is its thickness. We can thus give the expression of τb as a function of u:

𝜏𝜏𝑏𝑏(𝑢𝑢) =

⎧
⎪
⎨
⎪
⎩

𝑘𝑘WL 𝑢𝑢𝑢 if 𝑢𝑢 𝑢 𝑢𝑢𝑐𝑐

𝜏𝜏res, if 𝑢𝑢 𝑢 𝑢𝑢𝑐𝑐 + 𝛿𝛿

� (20)

We can also define the cohesion CWL between the slab layer as

𝐶𝐶WL = 𝜏𝜏peak − 𝜏𝜏res = 𝜏𝜏peak − 𝜎𝜎𝑛𝑛tan𝜙𝜙𝜙�

As uc = τpeak/kWL, the weak layer model requires three parameters; the peak stress τpeak, thickness DWL and shear 
modulus GWL.

2.2.  Numerical Model: DAMPM

2.2.1.  Discretization

In this section we summarize the depth-averaged version of the MPM algorithm used to solve Equations 11 
and 12. A sketch of the scheme is illustrated in Figure 2. A depth-averaged version of MPM has been introduced 
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by Abe and Konagai (2016) to simulate shallow debris flows. The principle of the method is very close to the 
classical MPM. We discretize the material domain with Lagrangian points, which unlike in classical MPM, are 
now “columns” with a certain variable height. In addition to their height, these columns store information of 
velocity, stress and plastic deformation. Furthermore, a background Eulerian grid is used to facilitate uncom-
plicated spatial differentiation. An interpolation scheme is used to transfer quantities between columns and grid 
nodes.

As shown in detail in Appendix A, the weak form discretization of Equation 13 in direction x is given by

𝑚𝑚𝑘𝑘
𝑖𝑖 𝑎𝑎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 =

(
𝑓𝑓

ext, k

𝑥𝑥𝑥𝑥𝑥
+ 𝑓𝑓

int, k

𝑥𝑥𝑥𝑥𝑥

)
∀ 𝑖𝑖 ∈ {1, . . . , 𝑛𝑛𝑔𝑔}.� (21)

where the forces at each node are computed via an interpolation over the particles as follows:

𝑓𝑓
ext,𝑘𝑘

𝑥𝑥𝑥𝑥𝑥
=

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝜌𝜌𝜌𝜌𝑝𝑝𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖� (22)

𝑓𝑓
int,𝑘𝑘

𝑥𝑥𝑥𝑥𝑥
= −

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

[

𝑉𝑉𝑝𝑝𝜎𝜎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝑉𝑉𝑝𝑝𝜎𝜎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝜏𝜏𝑘𝑘𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖

]

.� (23)

In these equations,

•	 �Vp is the constant volume of material element p
•	 �𝐴𝐴 𝐴𝐴𝑘𝑘

𝑖𝑖𝑖𝑖
 is the evaluation of the interpolation function centered at the grid node i and evaluated at the center of the 

material element p at time t k
•	 �𝐴𝐴 𝜎𝜎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is the depth-averaged stress of the material element p in the x − x direction at time t k

•	 �𝐴𝐴 𝐴𝐴𝑘𝑘𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is the basal force in the x direction of the material element p at time t k
•	 �bx,p is the projection of the volumetric forces in the x direction of the material element p
•	 �np and ng are respectively the number of material particles and grid nodes.

The coefficient 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑖𝑖
 are the coefficient of the lumped mass matrix defined on the grid as

𝑚𝑚𝑘𝑘
𝑖𝑖 =

𝑛𝑛𝑔𝑔∑

𝑗𝑗=1

𝑚𝑚𝑘𝑘
𝑖𝑖𝑖𝑖 =

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑚𝑚𝑝𝑝𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖.�

2.2.2.  Algorithm

Here, the algorithm for one time step of the Depth-Averaged Material Point Method is outlined. It relies on the 
elastic predictor—plastic corrector scheme of computational elastoplasticity, where a trial stress state is computed 

Figure 2.  Illustration of some model assumptions and DAMPM discretization.
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and projected back to the yield surface if permanent deformations occurred (de Souza Neto et  al.,  2008). A 
summary of the DAMPM algorithm is provided in Algorithm 1 (Appendix B).

1.	 �An Eulerian background grid with cell size Δx is created to cover the material domain. If t > 0, the grid is 
only extended or reduced to cover the updated material domain.

2.	 �The mass and velocity on the grid nodes at time t k is interpolated from the particles in what is called the 
Particles to Grid (P2G) step,

𝑚𝑚𝑘𝑘
𝒊𝒊
=

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑚𝑚𝑝𝑝𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖�

𝒗𝒗
𝑘𝑘
𝒊𝒊 =

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝒗𝒗
𝑘𝑘
𝑝𝑝𝑚𝑚𝑝𝑝𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖∕𝑚𝑚

𝑘𝑘
𝒊𝒊

� (24)

�Note the interpolation of the momentum divided by the lumped mass matrix component, guaranteeing 
conservation of momentum between material points and grid nodes. The interpolation functions used in this 
study are cubic B-splines,

𝑁𝑁(𝑢𝑢) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1

2
|𝑢𝑢|3 − |𝑢𝑢|2 +

2

3
if |𝑢𝑢| ≤ 1

1

6
(2 − |𝑢𝑢|)

3 if |𝑢𝑢| ∈ [1, 2]

0 if |𝑢𝑢| ≥ 2

� (25)

�such that

𝑁𝑁𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑖𝑖(𝒙𝒙𝑝𝑝) = 𝑁𝑁

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑝𝑝

Δ𝑥𝑥

)

𝑁𝑁

(
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑝𝑝

Δ𝑦𝑦

)

.�

3.	 �Based on the stress tensor 𝐴𝐴 𝝈𝝈
𝑘𝑘
𝑝𝑝 and the external force 𝐴𝐴 𝒃𝒃

𝑘𝑘
𝑝𝑝 on the particles, the forces 𝐴𝐴 𝒇𝒇

int,𝑘𝑘

𝑖𝑖
 and 𝐴𝐴 𝒇𝒇

ext,𝑘𝑘

𝑖𝑖
 on the grid 

nodes are computed as described in Equations 22 and 23.
4.	 �Using Equation 21, the acceleration on the grid nodes is obtained from the previously computed forces

𝒂𝒂
𝑘𝑘
𝑖𝑖 =

(
𝒇𝒇

int,𝑘𝑘

𝑖𝑖
+ 𝒇𝒇

ext,𝑘𝑘

𝑖𝑖

)
∕𝑚𝑚𝑘𝑘

𝑖𝑖� (26)

�from which a grid velocity can be computed

𝒗𝒗
𝐿𝐿
𝒊𝒊 = 𝒗𝒗

𝑘𝑘
𝒊𝒊 + Δ𝑡𝑡𝒂𝒂

𝑘𝑘
𝑖𝑖� (27)

5.	 �Instead of immediately computing the increment of strain and stress we interpolate the velocity and the 
position on the particles, in what is called the Grid to Particles (G2P) step,

𝒗𝒗
𝑘𝑘+1
𝑝𝑝 = 𝒗𝒗

𝑘𝑘
𝑝𝑝 +

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

((

Δ𝑡𝑡𝒂𝒂
𝑘𝑘
𝑖𝑖

)

𝐶𝐶flip + 𝒗𝒗
𝐿𝐿
𝑖𝑖

(
1 − 𝐶𝐶flip

))

𝑁𝑁𝑘𝑘
𝑖𝑖𝑖𝑖� (28)

𝒙𝒙
𝑘𝑘+1
𝑝𝑝 = 𝒙𝒙

𝑘𝑘
𝑝𝑝 + Δ𝑡𝑡

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝒗𝒗
𝐿𝐿
𝑖𝑖 𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖� (29)

�where Cflip is the FLIP (Fluid Implicit Particle in Cell)-PIC (Particle In Cell) ratio (Stomakhin et al., 2013). 
Cflip = 0 corresponds to a pure PIC (Particle In Cell) scheme where we obtain particle velocity as an inter-
polation from grid velocity directly. On the other hand, Cflip = 1 corresponds to a pure FLIP (FLuid Implicit 
Particle in cell) scheme where only the increment of grid velocity is interpolated, thus reducing dissipation 
at the cost of stability. In this work, we use Cflip = 0.9 as a balance between reducing dissipation and main-
taining stability.
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6.	 �Following the so-called MUSL (Modified Update Stress Last) algorithm 
(Sulsky et al., 1995), the grid velocities are interpolated from the updated 
particle momentum before they are used to calculate the strain increment.

𝒗𝒗
𝑘𝑘+1

𝑖𝑖 =
1

𝑚𝑚𝑘𝑘
𝑖𝑖

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑚𝑚𝑝𝑝𝒗𝒗
𝑘𝑘+1
𝑝𝑝 𝑁𝑁𝑘𝑘

𝑖𝑖𝑖𝑖� (30)

�While this step is optional, it improves stability.
7.	 �Relying on the grid velocities, Equation 15 gives a trial strain increment 

on the particles,

Δ𝜀𝜀trial
𝑝𝑝 =

Δ𝑡𝑡

2

(
𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

∇𝑁𝑁𝑘𝑘
𝑖𝑖𝑖𝑖

(

𝑣𝑣
𝑘𝑘+1
𝑖𝑖

)𝑇𝑇

+

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

(
∇𝑁𝑁𝑘𝑘

𝑖𝑖𝑖𝑖

)𝑇𝑇
𝑣𝑣
𝑘𝑘+1
𝑖𝑖

)

� (31)

8.	 �The height of each particle is updated according to the strain increment,

ℎ𝑘𝑘+1
𝑝𝑝 =

ℎ𝑘𝑘
𝑝𝑝

1 + tr
(
Δ𝜀𝜀trial

𝑝𝑝

)� (32)

9.	 �The trial stress tensors can be computed depending on

𝝈𝝈
trial

𝑝𝑝 = 
𝑒𝑒
∶ 𝜺𝜺

trial
𝑝𝑝� (33)

�with 𝐴𝐴 
𝑒𝑒 the fourth order tensor in plane stress model.

10.	 �If the trial stress tensor satisfies the yield criterion, the trial strain and stress tensors are taken as the new 
strain and stress tensors, respectively, that is,

𝜺𝜺
𝑘𝑘+1
𝑝𝑝 = 𝜺𝜺

trial
𝑝𝑝� (34)

𝝈𝝈
𝑘𝑘+1
𝑝𝑝 = 𝝈𝝈

trial

𝑝𝑝� (35)

�Otherwise, the stress vanishes as we assume the material to be purely brittle

𝝈𝝈
𝑘𝑘+1
𝑝𝑝 = 𝟎𝟎�

11.	 �An adaptive time-stepping is used where the time step Δt according to two conditions. The first is the 
Courant-Friedrich-Lewy (CFL) condition, resulting in

Δ𝑡𝑡 ≤ 𝐶𝐶cflΔ𝑥𝑥

max𝑝𝑝=1,. . . ,𝑁𝑁𝑝𝑝
‖𝑣𝑣𝑝𝑝‖𝐿𝐿2

� (36)

�where Ccfl < 1. In addition, the time step Δt must be smaller than the time an elastic wave takes to travel a 
distance Δx, thus we impose

Δ𝑡𝑡 ≤ 𝐶𝐶elastic

Δ𝑥𝑥
√
𝐸𝐸∕𝜌𝜌

� (37)

� where Celastic < 1.

3.  Results
In order to validate our model we perform simulations of the so-called PST. The PST is a classical snow fracture 
experiment used by avalanche researchers and practitioners to evaluate crack propagation propensity. It consists 
of isolating a column of snow and cutting through a previously identified weak layer, using a snow saw. This 
cutting procedure amounts to create a crack of increasing length until a so-called critical crack length is reached 
leading to self-sustained crack propagation. The PST setup is sketched in Figure 3.

First, simulations with an elastic slab are made, where we can compare to analytical solutions for the critical 
crack length, the onset of crack propagation and the slab tensile failure distance. Second, simulations with a 

Figure 3.  Schematic of the Propagation Saw Test.
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elastic-brittle slab are performed in which we evaluate the distance to the first slab fracture and compare to 
analytical relations. Third, we perform multi-directional fracture simulations to study crack propagation speeds 
in down/up slope and cross slope directions in a three dimensional slope configuration. Finally, we analyze slab 
fracture characteristics in mixed-mode crack propagation simulations.

Table 1 shows parameters used throughout all simulations. Note that the mechanical properties of the slab and 
the weak layer are taken based on literature data. A typically measured slab density of 250 kg m −3 was taken (van 
Herwijnen, Gaume, et al., 2016). The Poisson's ratio, elastic modulus of the slab and weak layer (ν, νWL, E, EWL) 
are taken based on data collected by Mellor (1975). Similarly, the slab plasticity parameters p0, β, and M are eval-
uated based on compressive, shear and tensile strengths values from Mellor (1975). The friction angle of the weak 
layer is taken from experimental data from Van Herwijnen and Heierli (2009). The weak layer shear strength was 
chosen within the range reported by Jamieson and Johnston (2001) based on shear frame measurements.

3.1.  PST Crack Propagation With an Elastic Slab

Figure 4 show the cohesion (a), the tensile stress (b) and the shear stress in the 
weak layer (c) in a PST simulation during dynamic crack propagation at time 
(t* = t − tc = 0.25 s, tc ≔ time corresponding the onset of crack propagation). 
The parameters for this simulation correspond to case 1 of Table 1. The crack 
tip is identified based on cohesion which shows a transition between the initial 
value of ≈1 kPa, and zero (Figure 4a). This transition is very sharp because the 
plastic softening displacement δ was set to zero. This transition in cohesion is 
directly linked to the shear stress in the weak layer τxz which reaches the weak 
layer strength τp = 1.45 kPa (Figure 4b). The shear stress is characterized by 
three zones: far from the crack tip in the undisturbed region, the shear stress is 
equal to the stress induced by the projected slab weight τg = ρgh sin θ. Behind 
the crack tip, cohesion is zero and thus the shear stress is equal to the residual 

Case 1 Case 2 Case 3 Case 4

Geometry Length L1 (m) 40 40 50 40

Width L2 (m) 0.3 0.3 50 120

Slope angle θ (°) 45

Slab Density ρ (kg·m −3) 250

Height h (m) 0.5

Young's modulus E (MPa) 10

Poisson's ratio ν 0.3

Friction angle ϕ (°) 27

Pre-consolidation pressure p0 (kPa) – 30 – 15

Slope of critical state line M – 1.7 – 1.7

Cohesion parameter β – 0.1 – 0.1

Weak layer Thickness DWL (m) 0.125

Young's modulus EWL (MPa) 1

Poisson's ratio νWL 0.3

Shear strength τpeak (Pa) 1,450

Numerical Cell size Δx (cm) 2 2 10 10

CFL constraint Ccfl 0.5

Elastic wave constraint Celastic 0.5

FLIP/PIC ratio Cflip 0.9

Note. The values in the middle of the table are valid for all the cases.

Table 1 
Table of Parameters for the Different Simulations Presented in This Work

Figure 4.  Top view of a Propagation Saw Test simulation. From top to 
bottom, we represented the cohesion, the longitudinal stress and the basal 
stress (see Movie S1).
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frictional stress. In between these two regions, the shear stress decreases exponentially from its maximum value τp 
to τg with a characteristic length Λ (see below). In addition, the tensile stress in the slab increases linearly from the 
origin to the crack tip, where it is maximum. It then decreases exponentially to zero ahead of the crack. We note some 
small oscillation behind the crack tip which are very likely due to the limited amount of damping in our simulations.

In a spirit of verification, we performed several simulations with different values of the slope angle and 
computed the (super) critical crack length corresponding to the onset of crack propagation. We recall that due the 
depth-averaged nature of the model, we do not simulate the anticrack propagation regime but only the supershear 
mode of crack propagation as described in Trottet et al. (2022). We thus refer to critical lengths as super critical 
in the later. In our particular case (PST) and with the assumption presented above, an analytical solution can be 
found (Gaume, Chambon, et al., 2013) and is given below:

𝑎𝑎𝑠𝑠𝑠𝑠 = Λ

(

1 −
𝜏𝜏𝑝𝑝

𝜏𝜏𝑔𝑔

)
tan(𝜃𝜃)

tan(𝜃𝜃) − tan(𝜙𝜙)
� (38)

Figure  5a shows the supercritical crack length asc as a function of slope angle for 3D simulations (Trottet 
et al., 2022), depth-averaged simulations (this study) and the analytical solution in Equation 38. We report an 
excellent agreement between our model and the expected solution. In fact the agreement is better than for 3D 
simulations, which was expected. Indeed, in 3D simulation, the collapse amplitude leads to a reduction in the 
effective friction coefficient of the weak layer and thus a reduction of asc close to the frictional limit.

Another verification can be made by analyzing the crack propagation speed 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠𝑠𝑠 limit (Figure 5b). We observe a 
strong increase in propagation speed between asc and a distance of around 10 m where the speed levels off at an 
asymptotic value close to 1.6 𝐴𝐴 𝐴𝐴𝑠𝑠 =

√
𝐸𝐸∕𝜌𝜌 . This is in line with the results of Trottet et al. (2022) and with expecta-

tions regarding the form of the 1-D equations which suggest that we should converge to the longitudinal wave speed.

3.2.  PST Crack Propagation With an Elastic-Brittle Slab

In this section, we relax the assumption of a purely elastic slab and perform the simulation with a slab failure crite-
rion (see Section 2.1.3). Figure 6 shows the cohesion (a), the basal stress (b) the height (c), the longitudinal stress (d) 
and finally the velocity (e) as a function of the position x of such a simulation at time t* = 0.3 s. The parameters used 
for the simulation are the same as the elastic simulation (see case 2 of Table 1) and with a tensile strength σt = 7 kPa.

Tensile failures are characterized by a decreasing peak in the height profile (Figure 6c). In this simulation, we 
observe 3 different failures at position x ∼ 10 m, x ∼ 20 m, and x ∼ 30 m. As the fracture gap is growing with 
time, the height decrease is more pronounced in the first fracture. At each fracture interface, the slab stress is set 
to zero. As there is almost no damping in our simulations, we have small spatial oscillations in the tensile stress 
profile. In addition and for the same reason, the tensile stress is oscillating in time between compression and 
tension between two fractures, oscillations which do not attenuate in time (this can only be seen by watching the 
temporal evolution of these profiles in Movie S2). At each failure, we observe a discontinuity of the down-slope 
velocity. The value of the velocity between two fractures is oscillating in time around a plateau in relation to 

Figure 5.  a) comparison between the simulated super critical length using DAMPM, a 3D model (Trottet et al., 2022) and the 
analytical solution in quasi-static regime for different angle. b) Crack velocity profile as a function of the position.
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the longitudinal stress  oscillation described above. As the residual friction is computed as τr = ρgh tan(ϕ), the 
decreasing peak in the height profile at each fracture will also be observed in the basal forces (Figure 6b). The 
tensile fractures in the slab do not stop the propagation of the crack in the weak layer. The fractures have also 
very little impact on the profile of the stress and the basal force after the crack tip, which are the same as in the 
simulations with a purely elastic slab. Again, the discontinuity of the basal force profile at the crack tip is due to 
δ, the softening length of the weak layer which is equal to zero in the presented simulations.

In the 1D quasi-static pure shear model, we have an explicit expression of the longitudinal stress in the slab (Gaume, 
Chambon, et al., 2013) and therefore have an analytical expression of what must be the tensile fracture length lt. We 
can now verify the model by comparing the simulated lt and the analytical one in Figure 7a. There are 2 cases in the 
simulations: either the first tensile fracture occurs during the sawing phase (quasi static regime with lt ≤ asc), or it 
occurs after the sawing phase (dynamic case with lt ≥ asc). The simulated tensile fracture  length in the quasi-static 
case is very close to the theoretical one, which give us a strong verification for the stress computation within the 
slab. However, we remark that the simulated tensile fracture length in the dynamic case is lower than the theoreti-
cal one. This phenomena occurs on the one hand because we neglected the dynamic term in the expression of the 
theoretical lt and on the other hand this can be related to the oscillations in the longitudinal stress (see Figure 4).

In addition, if we analyze the velocity profile of the crack tip as a function of the position, we observe mainly 
two cases depending of the value of σt. Either we have a crack arrest: the propagation of the crack in the WL is 
stopped when the tensile fracture occurs (magenta curve in Figure 7b). If the tensile strength is large enough, the 
crack continues after the slab fracture. The later slows down the crack velocity, which increases again toward the 
longitudinal wave speed.

3.3.  2D Crack Propagation With an Elastic Slab

Previous simulations were performed with one main crack propagation direction (1D). In this section, we perform 
two dimensional simulations of crack propagation in the weak layer for a purely elastic slab. The output of such 
simulation at time t* = 0.2 s are given in Figure 8. The represented quantities are the cohesion (a), the shear stress 
within the slab (b), the longitudinal stress (down/up slope) (c), the velocity in the slope direction (d), the basal 
forces (e) and the transversal stress (cross-slope) (f). The parameters used for the simulation are given in case 3 of 
Table 1. After the initial loading phase, we manually and progressively remove a cohesion circle at the center of 

Figure 6.  Top view of a Propagation Saw Test simulation in which tensile fracture of the slab is enabled. From top to bottom, 
we represented the cohesion, the basal stress, the height, the longitudinal stress and the tangential velocity (see Movie S2).
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the slab until observing self propagation of the crack in both direction. The crack in the weak layer grows with a 
shape resembling that of an ellipse. The shape of the crack area appears to converge toward a self similar shape as 
both cross slope and down-slope and cross-slope crack velocity converges (see also Movie S3). From Figure 8e, 
we observe that, as in the PST simulation, the basal force is equal to the frictional stress τr where the cohesion is 
set to zero. It reaches then τp at the edge of the crack area before converging toward τg. We also observe that the 
crack propagation is mostly driven by the shear within the slab σxy in the cross slope direction and by the longitu-
dinal stress in σxx in the up-slope/down-slope direction. The transversal stress σyy is indeed far less in norm than 
the other component of the plane stress tensor.

Figure 8.  Top view of a different outputs of 2D crack propagation with a purely elastic slab (see Movie S3).

Figure 7.  a) comparison between the simulated tensile length in quasi static and dynamic regimes and the analytical tensile 
length (quasi static). b) crack velocity profile as a function of the position for two different tensile failure criteria.
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If we focus on the crack velocity profile in the x and y direction (Figure 9), we 
see that the up-slope crack velocity converges to the longitudinal wave speed 
cp but the cross-slope crack velocity converges toward cs. This comfort the 
fact that the up slope crack propagation is driven by the longitudinal wave and 
the cross-slope propagation is driven by the shear wave.

3.4.  2D Crack Propagation With an Elastic-Brittle Slab

In this section, we no longer assume the slab to be purely elastic and 
perform simulations in which the slab can break according to the CCC 
model presented in the Methods. This will allow us to evaluate the shape 
of the avalanche release area. Figure 10 shows four physical outputs of such 
a simulation during the formation of the release area. The parameters used 
for this simulation can be found in case 4 of Table 1. We have from left to 
right the velocity in the slab vx (a), the weak layer shear stress τ0 (b), the 
height (c) and the cohesion (d). The CCC parameters used in this simulation 
(β = 0.1, p0 = 15 kPa, M = 1.7) allowed us to model realistic tensile, shear 

and compressive strengths (see Section 2). In the height output (Figure 10a), the red color corresponds to tensile 
failures with a decrease of the height. On the other hand, blue and dark blue colors correspond to compressive 
failures with an increase in height. We observe that the area below the crown (tensile failure) corresponds to 
the  failed part of the weak layer in which cohesion is zero. In this area, the shear stress in the weak layer is equal 
to the residual frictional stress and we remark small stress variations induced by local height variations induced 
by the slab fracture. Above the crown, the stress in the weak layer is almost equal to the shear stress induced by the 
slab weight τg with small oscillations related to elastic wave propagation (simulation with almost no damping). 
Similar to the observations made above in the elastic slab case, we have strong shear stress concentrations reach-
ing τp at the weak layer crack tip. Ultimately, the broken slab pieces start to slide with different velocities and a 
negative velocity gradient from the center of the simulation to its edge. It was checked that the system dimensions 
and wave reflections at the boundaries (observed in Movie S4) did not affect the general shape of the release zone.

4.  Discussion
In this paper, we proposed a depth-averaged Material Point Method (DAMPM) to simulate crack propagation 
and slab fracture during the release process of dry-snow slab avalanches. This study was motivated by recent 

Figure 9.  Cross-slope and up-slope crack velocities.

Figure 10.  Top view of 3D DAMPM simulation with a plastic model for the slab (see Movie S4).
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findings by Trottet et al. (2022) evidencing a transition from anticrack to supershear fracture after a few meters of 
propagation in the weak layer. In this supershear regime, slab tension drives the fracture whereas slab bending can 
be neglected leading to pure shear (mode II) crack propagation in the weak layer. These supershear avalanches 
propagate with intersonic crack velocities and are believed to generate large avalanche release zones. Hence, for 
the sake of risk management, in which 100 or 300 years return period avalanches are usually considered, the 
assumption of weak layer shear failure appears appropriate. Yet, it is important to recall that by construction, the 
present model is unable to simulate crack propagation on low angle terrain and remote avalanche triggering. The 
DAMPM model presented in this article is more efficient in terms of computational time compared to the 3D 
MPM of Trottet et al. (2022). For instance, the DAMPM PST simulation in case 1 and 2 have around 150,000 
particles each and would require more than 1 million particles in 3D. Similarly, the DAMPM simulation shown 
in case 3 has around 1 million particles and would require 10 times more in 3D. Our approach is thus naturally 
faster than 3D DEM or FEM models. Compared to limit equilibrium analysis, our approach has the main advan-
tage to be able to capture the dynamic interplay between weak layer failure and slab fracture, thus enabling the 
evaluation of release zones.

After verification of the method based on analytic solutions, it was applied to three dimensional terrain with 
or without enabling slab fractures. It was found that the DAMPM model was able to reproduce the quasi-static 
prediction of the super critical crack length with a classical shear band propagation approach. In addition, the 
onset of slab fracture was well reproduced in quasi-static conditions. Finally, it was verified that the crack propa-
gation speed in the up/down slope direction was reaching the longitudinal wave speed cP. On the other hand, the 
cross slope crack speed converges to cS. This leads to an elliptical propagation shape. With their depth-averaged 
finite difference model, (Zhang & Puzrin, 2022) reported different types of shapes. By restricting the motion in 
the lateral direction, they also report an elliptical shape. However, without this restriction, they report a “peanut” 
propagation shape. This particular shape is due to the non-symmetry of the lateral slab velocity. Surprisingly, 
while this non-symmetry is also present in our simulations, a “peanut” shape was initially not observed. It is only 
when the scale of the simulation was increased or if the characteristic length Λ was decreased (e.g., through a 
decrease of the slab elastic modulus) that this peculiar shape was recovered. As a consequence, the shape of the 
ellipse is not self-similar in time. This is induced by the mismatch of the longitudinal and lateral crack propaga-
tion speeds.

It is important to note that, in principle, based on theoretical considerations (Broberg, 1989b), the Rayleigh wave 
speed cR should not be exceeded in Mode II. In our study, slab bending and shear within the depth are not taken 
into account due to the plane stress assumption made for depth-averaging. Hence, in our model, there is no reason 
why the propagation speed should be limited by cR. This is why in our case, we have a smooth increase of the 
speed toward the longitudinal wave speed cP. In 3D simulations, a daughter supershear crack nucleates ahead 
of the main fracture with a speed which continuously increases toward cP, while crossing the forbidden region 
between cR and cS (Bergfeld et al., 2022; Bizzarri & Das, 2012; Gaume et al., 2019). We obviously cannot repro-
duce the discontinuity reported in 3D simulations, but the temporal evolution of the supershear crack speed is in 
line with the latter 3D simulation. Furthermore, in mode III (cross-slope), we obtain a convergence to cS in line 
with previous theoretical work (Broberg, 1989a).

Allowing for slab mixed-mode fracture in DAMPM allowed us to obtain interesting “hand fan” shape for 
the release area. In details, the half angle at the top of the fan is around 50° for the simulation in Figure 10. 
While we cannot claim validation, this shape is clearly in line with field observations of artificially triggered 
avalanches as seen in Figure 11 in which the half fan angle appears to be between 40 and 50°. In our model, 
the detailed shape is influenced by the choice of plastic parameters, but the overall shape remains similar. 
We also performed a larger simulation on a wider slope including a convex top ridge and concave transition 
to flat terrain (Figure 12). Interestingly, this simulation shows a race between crack propagation in the weak 
layer and slab fractures, leading to lateral en-echelon failures, a process often reported in the field (Bergfeld 
et al., 2022). The overall shape differs from the pictures in Figure 11, but is in line with observation of larger 
avalanches in which the crown fracture is very often irregular and impacted by topography. In this simulation, it 
is interesting to report that the tensile crown failure occurs for a slope angle around 35° and that the stauchwall 
failure is occurring for an angle very close to the friction angle of the weak layer. To obtain mixed-mode slab 
fractures, the model assumed a complete loss of strength once the yield criterion is met. While this assumption 
can be well justified for tension, it can raise questions for compression. The reason behind this simplification 
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is related to the nature of our model. In real life, the stauchwall is under compression but after yielding, a 
shear band forms and the slab moves above the  resting snowpack without any compressive resistance. As 
this process cannot obviously not be simulated in such a depth-averaged framework, we decided to make the 
simplest assumption. In addition, as we are interested only in the release phase, the simulation is stopped once 
the compressive stauchwall is formed.

The DAMPM model presented here was inspired by the work of Abe and Konagai (2016) proposed to model 
the dynamics of debris flows. Our model, however, was developed to simulate a different process, namely the 
release of shallow landslides. It contains numerous improvements compared to the latter study. In particu-
lar, the linear shape functions used in Abe and Konagai  (2016) are known to produce cell-crossing errors 
and spurious stress oscillations. This is addressed in our approach by using a higher order MPM with cubic 
B-splines. Another important improvement is the consideration of curvilinear coordinates that prevents 

Figure 11.  Avalanche release photographs. Credit from left to right: Rémi Petit, Dominique Daher and Isabelle Sabater.

Figure 12.  Simulation outputs with variation of the topography. a) Tangential velocity distribution in the slab. b) Height 
distribution in the slab. c) Altitude profile (blue) and slope angle profile (red) at the middle of the width with the first tensile/
compressive failure marked (see Movie S5).
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projection errors on simulations with complex topography. In addition, our model has strong similarities with 
the cellular automata model developed by Fyffe and Zaiser (2004, 2007). In their study, they were able to 
simulate both weak layer shear failure and slab fracture, based on finite differences. The weak layer model 
is almost identical but their slab constitutive law does not consider mixed-mode failure. The more rigorous 
numerical scheme together with a more complete description of the slab mechanical behavior in our model 
very likely contributed to the different release shapes in our respective studies. In particular, they report a 
release zone which is larger in the downslope direction than in the cross slope direction. This contrasts with 
our results and with field observation of avalanche release zones made by D. M. McClung (2009). The latter 
author reports a ratio between cross-slope and down/up slope dimensions of the release area to be around 2.1 
for unconfined conditions. The shape of our release area also differs from that of Zhang and Puzrin (2022) 
with a mismatch very likely due to a different slab constitutive model (von Mises vs. CCC). Regarding the 
weak layer mechanical behavior, we assumed a rate-independent model without sintering/healing effects. 
Interestingly, Fyffe and Zaiser (2004) showed that sintering/healing of damaged regions almost did not affect 
the overall stability of their simulated slopes. For our application (artificial avalanche release) involving 
large strain rates, neglecting healing seems to be a reasonable assumption (Reiweger,  2011). However, a 
rate-dependent model should be implemented in the future to study the release of natural slab and glide snow 
avalanches.

Concerning numerical limitations, our DAMPM implementation is based on a FLIP/PIC transfer scheme where 
particles quantities are transferred to grid nodes using cubic splines with a support of 2Δx. With this particu-
lar scheme, a balance must be found between accuracy (pure FLIP) and stability (pure PIC). Here we chose to 
promote accuracy with a FLIP/PIC ratio of 0.9 and thus limited damping. The numerical oscillations increase 
with the FLIP/PIC ratio and by increasing the ratio Δt/Δx. Such oscillations in space can be seen in the longitu-
dinal stress profile in Figure 6. More advanced interpolation schemes, such as APIC (Jiang et al., 2016), could 
improve accuracy while preserving stability.

Finally, most of the presented simulation outputs have been found independent of the mesh resolution (critical 
crack length, distance for slab fracture, crack propagation speed, avalanche shape) provided the grid size Δx is 
small than the characteristic elastic length Λ. In addition, as expected and reported from 3D simulations, the 
arrest of crack propagation in the weak layer during slab fracture (Figure 7b) is mesh-dependent. This is related 
to the plastic strain-softening behavior of the slab. In the future, a regularized model could lead to some improve-
ments in this direction (Mahajan et al., 2010; Sulsky & Peterson, 2011).

5.  Conclusion and Outlook
In this article, we developed a rigorous mathematical framework based on the depth-averaged Material Point 
Method (DAMPM) to investigate large-scale crack propagation mechanisms involved in the release of shallow 
landslides. The model is applied to snow slab avalanches that release due to the failure of a weak layer buried 
below a cohesive snow slab. Motivated by recent findings revealing an early transition from anticrack (mode 
I) to supershear (mode II) crack propagation, we chose to simulate the weak layer with a pure shear failure 
model. We checked the validity of DAMPM by simulating simple test cases for which analytic solutions exist. 
The model was applied to slope-scale simulations to study the interplay between down/up slope propagation, 
cross slope propagation in the weak layer and slab fracture. We obtained avalanche release shapes qualitatively 
in good agreement with field observations. In the future, more complex topographies and the influence of the 
spatial variability of snowpack properties, for instance based on remote sensing data, should be considered 
to bring the proposed model at an operational state for automatic evaluation of avalanche release zones in 
alpine regions. This achievement could contribute to define avalanche size indices for avalanche forecasting 
and also serve as input of avalanche flow models used for risk assessment. Finally, it would be straightfor-
ward to modify the constitutive model and interface friction law assumed here to be able to simulate different 
processes, for instance the dynamics of avalanches or other types of gravitational mass movements, snow 
creep and its impact on structures, glacier flow and calving. In particular, the present approach would naturally 
account for active/passive lateral earth pressures through the plastic law without the need of empirical earth 
pressure coefficients.
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Appendix A:  Space Discretization of the DAMPM
In the same spirit of the FEM, we seek a weak form of the depth-averaged equations. To this end, we multiply 
Equations 11 and 12 by two test function wx and wy and then integrate over the domain Ω. Note that the rigorous 
formalism of which functional space the functions belong will not be outlined in this work. We use the same 
notation as in Abe and Konagai (2016) with dΩ being the infinitesimal element of integration.

∫
Ω

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑
𝑤𝑤𝑥𝑥𝑑𝑑Ω = ∫

Ω

[
𝜕𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕

]

𝑤𝑤𝑥𝑥𝑑𝑑Ω − ∫
Ω

𝜏𝜏𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑑𝑑Ω + ∫
Ω

𝑏𝑏𝑥𝑥𝜌𝜌𝜌𝜌𝜌𝑥𝑥𝑑𝑑Ω

∫
Ω

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑
𝑤𝑤𝑦𝑦𝑑𝑑Ω = ∫

Ω

[
𝜕𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦

𝜕𝜕𝜕𝜕

]

𝑤𝑤𝑦𝑦𝑑𝑑Ω − ∫
Ω

𝜏𝜏𝑦𝑦𝑦𝑦𝑤𝑤𝑦𝑦𝑑𝑑Ω + ∫
Ω

𝑏𝑏𝑦𝑦𝜌𝜌𝜌𝜌𝜌𝑦𝑦𝑑𝑑Ω

�

Using Green's theorem we have

∫
Ω

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑
𝑤𝑤𝑥𝑥𝑑𝑑Ω = −∫

Ω

ℎ𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

ℎ𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

𝜏𝜏𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑑𝑑Ω + ∫
Ω

𝑏𝑏𝑥𝑥𝜌𝜌𝜌𝜌𝜌𝑥𝑥𝑑𝑑Ω

∫
Ω

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑
𝑤𝑤𝑦𝑦𝑑𝑑Ω = −∫

Ω

ℎ𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

ℎ𝜎𝜎𝑦𝑦𝑦𝑦

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

𝜏𝜏𝑦𝑦𝑦𝑦𝑤𝑤𝑦𝑦𝑑𝑑Ω + ∫
Ω

𝑏𝑏𝑦𝑦𝜌𝜌𝜌𝜌𝜌𝑦𝑦𝑑𝑑Ω

�

We define then 𝐴𝐴 𝝉𝝉
𝑆𝑆

𝑏𝑏
=

1

ℎ
𝝉𝝉𝑏𝑏 such that

∫
Ω

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑
𝑤𝑤𝑥𝑥𝑑𝑑Ω = −∫

Ω

ℎ𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

ℎ𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

ℎ𝜏𝜏𝑆𝑆𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑑𝑑Ω + ∫
Ω

𝑏𝑏𝑥𝑥𝜌𝜌𝜌𝜌𝜌𝑥𝑥𝑑𝑑Ω� (A1)

∫
Ω

𝜌𝜌𝜌
𝑑𝑑𝑣𝑣𝑦𝑦

𝑑𝑑𝑑𝑑
𝑤𝑤𝑦𝑦𝑑𝑑Ω = −∫

Ω

ℎ𝜎𝜎𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

ℎ𝜎𝜎𝑦𝑦𝑦𝑦

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑Ω − ∫

Ω

ℎ𝜏𝜏𝑆𝑆𝑦𝑦𝑦𝑦𝑤𝑤𝑦𝑦𝑑𝑑Ω + ∫
Ω

𝑏𝑏𝑦𝑦𝜌𝜌𝜌𝜌𝜌𝑦𝑦𝑑𝑑Ω� (A2)

We decompose our material in np columns. These columns will move with the material during the simulation. As 
in standard MPM, we assume that the mass is concentrated at each column. We have then

∀𝒙𝒙 ∈ Ω, 𝑡𝑡 ∈ ℝ+, 𝜌𝜌(𝒙𝒙, 𝑡𝑡)ℎ(𝒙𝒙, 𝑡𝑡) =

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑚𝑚𝑝𝑝 𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑝𝑝)� (A3)

where δ is the Dirac distribution with dimension of inverse of a surface and xp is the position of the column p. 
Note that xp is a function of time. Here, because we assume that the material is incompressible, this simplifies  to

∀𝒙𝒙 ∈ Ω, 𝑡𝑡 ∈ ℝ+, ℎ(𝒙𝒙, 𝑡𝑡) =

𝑁𝑁𝑝𝑝∑

𝑝𝑝=1

𝑉𝑉𝑝𝑝 𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑝𝑝),� (A4)

with Vp is the constant volume of the column.

Until the end of this subsection, we present the discretization only for Equation A1, however, the discretization 
for Equation A2 is analogous. Inserting Equation A4 into Equation A1, we have

∑

𝑝𝑝

𝜌𝜌𝜌𝜌𝑝𝑝 𝑎𝑎𝑥𝑥𝑥𝑥𝑥 𝑤𝑤𝑥𝑥𝑥𝑥𝑥 = −
∑

𝑝𝑝

𝑉𝑉𝑝𝑝𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
−
∑

𝑝𝑝

𝑉𝑉𝑝𝑝𝜎𝜎𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕

−
∑

𝑝𝑝

𝑉𝑉𝑝𝑝𝜏𝜏
𝑆𝑆
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥𝑥 +

∑

𝑝𝑝

𝑉𝑉𝑝𝑝𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝜌𝜌𝜌𝜌𝑥𝑥𝑥𝑥𝑥

�

where again the subscript p of a quantity correspond to its evaluation in xp. We can apply this discretization at any 
time t k, denoting for any function ϕ, ϕ k = ϕ(t k), the previous equation gives

∑

�

��� ���,� ��,� = −
∑

�

����
��,�

���,�

��
−
∑

�

����
��,�

���,�

��

−
∑

�

������,���,� +
∑

�

������,� ��,�

� (A5)
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where Ap = Vp/h is the area of the column p. We want to perform the computation on the grid node. To this end, 
we introduce interpolation functions Ni(x) centered on node i ∈ {1, …, ng}. We can then approximate

𝑎𝑎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 =

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑎𝑎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖, 𝑤𝑤𝑥𝑥𝑥𝑥𝑥 =

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑤𝑤𝑥𝑥𝑥𝑥𝑥 𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖,� (A6)

where 𝐴𝐴 𝑎𝑎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑥𝑥

(
𝒙𝒙𝑖𝑖, 𝑡𝑡

𝑘𝑘
)
 , 𝐴𝐴 𝐴𝐴𝑘𝑘

𝑖𝑖𝑖𝑖
= 𝑁𝑁𝑖𝑖

(
𝒙𝒙𝑝𝑝

(
𝑡𝑡𝑘𝑘
))

 and wx,i = wx(xi). The gradients can be interpolated as well with the 
equality

∇𝑤𝑤𝑥𝑥𝑥𝑥𝑥 =

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑤𝑤𝑥𝑥𝑥𝑥𝑥 ∇𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖, ∇𝑁𝑁𝑘𝑘

𝑖𝑖𝑖𝑖 = ∇𝑁𝑁𝑖𝑖

(
𝒙𝒙𝑝𝑝

(
𝑡𝑡𝑘𝑘
))

�

Note that the function N must satisfy the following conditions (Gao et al., 2017):

•	 �Partition of unity: 𝐴𝐴
∑

𝑖𝑖
𝑁𝑁𝑘𝑘

𝑖𝑖𝑖𝑖
= 1 , ∀p ∈ {1, …, np}

•	 �Non-negativity: 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑖𝑖𝑖𝑖
≥ 0 , ∀p ∈ {1, …, np} and ∀i ∈ {1, …, ng}

•	 �Differentiability: 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ 1 , ∀i ∈ {1, …, ng}
•	 �Interpolation: 𝐴𝐴 𝒙𝒙𝑝𝑝 =

∑
𝑖𝑖
𝑁𝑁𝑘𝑘

𝑖𝑖𝑖𝑖
𝒙𝒙𝑖𝑖

•	 �Local support: Nip > 0 only if xi and xp are close enough

We can now express Equation A5 with quantities over the grid

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑛𝑛𝑔𝑔∑

𝑗𝑗=1

𝜌𝜌𝜌𝜌𝑝𝑝𝑎𝑎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑗𝑗𝑗𝑗𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖 = −

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑉𝑉𝑝𝑝𝜎𝜎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
−

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑉𝑉𝑝𝑝𝜎𝜎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
𝑤𝑤𝑥𝑥𝑥𝑥𝑥

−

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝐴𝐴𝑝𝑝𝜏𝜏
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖 +

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝜌𝜌𝜌𝜌𝑝𝑝𝑏𝑏
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 𝑤𝑤𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖

�

Defining the mass matrix at time k as

𝑚𝑚𝑘𝑘
𝑖𝑖𝑖𝑖 =

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝑚𝑚𝑝𝑝𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖𝑁𝑁

𝑘𝑘
𝑗𝑗𝑗𝑗�

where 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑝𝑝 = 𝜌𝜌𝜌𝜌 𝑘𝑘

𝑝𝑝  is the mass of the column p, the system becomes
𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑛𝑛𝑔𝑔∑

𝑗𝑗=1

𝑚𝑚𝑘𝑘
𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥𝑥 = −

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

[
𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

[

𝑉𝑉𝑝𝑝𝜎𝜎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝑉𝑉𝑝𝑝𝜎𝜎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕

]]

𝑤𝑤𝑥𝑥𝑥𝑥𝑥

−

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

[
𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝐴𝐴𝑝𝑝𝜏𝜏
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖

]

𝑤𝑤𝑥𝑥𝑥𝑥𝑥 +

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

[
𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝜌𝜌𝜌𝜌𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖

]

𝑤𝑤𝑥𝑥𝑥𝑥𝑥.

�

As the interpolation functions satisfy 𝐴𝐴
∑𝑛𝑛𝑔𝑔

𝑖𝑖=1
𝑁𝑁𝑘𝑘

𝑖𝑖𝑖𝑖
= 1 , the mass matrix can be approximated by a symmetric positive 

diagonal matrix (the so-called lumped mass approach) (Jiang et al., 2016), such that
𝑛𝑛𝑔𝑔∑

𝑗𝑗=1

𝑚𝑚𝑘𝑘
𝑖𝑖𝑖𝑖𝑎𝑎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 ≈ 𝑚𝑚𝑘𝑘

𝑖𝑖 𝑎𝑎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥�

where

𝑚𝑚𝑘𝑘
𝑖𝑖 =

𝑛𝑛𝑔𝑔∑

𝑗𝑗=1

𝑚𝑚𝑘𝑘
𝑖𝑖𝑖𝑖�

gives the mass at node i.

Defining the internal forces 𝐴𝐴 𝐴𝐴
int,𝑘𝑘

𝑥𝑥𝑥𝑥𝑥
 and the external forces 𝐴𝐴 𝐴𝐴

ext,𝑘𝑘

𝑥𝑥𝑥𝑥𝑥
 for every i ∈ {1, …, ng} as

𝑓𝑓
ext,𝑘𝑘

𝑥𝑥𝑥𝑥𝑥
=

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

𝜌𝜌𝜌𝜌𝑝𝑝𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑁𝑁
𝑘𝑘
𝑖𝑖𝑖𝑖� (A7)
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𝑓𝑓
int,𝑘𝑘

𝑥𝑥𝑥𝑥𝑥
= −

𝑛𝑛𝑝𝑝∑

𝑝𝑝=1

[

𝑉𝑉𝑝𝑝𝜎𝜎
𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝑉𝑉𝑝𝑝𝜎𝜎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕𝑘𝑘
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝜏𝜏𝑘𝑘𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑁𝑁

𝑘𝑘
𝑖𝑖𝑖𝑖

]

� (A8)

the discretized equation becomes
𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

𝑚𝑚𝑘𝑘
𝑖𝑖 𝑎𝑎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥𝑥 =

𝑛𝑛𝑔𝑔∑

𝑖𝑖=1

(
𝑓𝑓

ext, k

𝑥𝑥𝑥𝑥𝑥
+ 𝑓𝑓

int, k

𝑥𝑥𝑥𝑥𝑥

)
𝑤𝑤𝑥𝑥𝑥𝑥𝑥.�

This relation being true for every sequences 𝐴𝐴 (𝑤𝑤𝑥𝑥𝑥𝑥𝑥)𝑖𝑖∈{1,. . . ,𝑛𝑛𝑔𝑔} , we have the equality for each term.

𝑚𝑚𝑘𝑘
𝑖𝑖 𝑎𝑎

𝑘𝑘
𝑥𝑥𝑥𝑥𝑥 =

(
𝑓𝑓

ext, k

𝑥𝑥𝑥𝑥𝑥
+ 𝑓𝑓

int, k

𝑥𝑥𝑥𝑥𝑥

)
∀ 𝑖𝑖 ∈ {1, . . . , 𝑛𝑛𝑔𝑔}.� (A9)

Appendix B:  DAMPM Algorithm
This Appendix consists of a summary of Section 2.2.2.

Appendix C:  Depth Integration on Complex Topography
In the previous integration, we supposed that the terrain was flat. In order to simulate the material on a complex 
terrain we have to change the previous equation by adding in the depth-averaged momentum conservation some 
terms depending on the surface gradients. However, for an arbitrary topography, it is more relevant to pass 
from cartesian coordinates to curvilinear coordinates, adapted to the topography. This will allow us to inte-
grate the equations according to the surface normal. For the change of coordinates and the integration which 
follows, we shall use the same notation as the one introduced in Boutounet et  al.  (2008) and Bouchut and 

Algorithm 1.  Depth-Averaged Material Point Method (DAMPM)

while t < T do
  1. Create/expand/reduce the Eulerian grid around the particle domain
  2. P2G: interpolate particle velocity and mass to the grid with Equation 24
  3. �Compute grid forces 𝐴𝐴 𝒇𝒇

int

𝑖𝑖  and 𝐴𝐴 𝒇𝒇
ext

𝑖𝑖  with Equations 22 and 23 depending on 𝐴𝐴 𝝈𝝈𝑝𝑝 , 
τxz,p, τyz,p, and bp

  4. �Compute grid acceleration ai with Equation 26 and grid velocity 𝐴𝐴 𝒗𝒗
𝐿𝐿
𝑖𝑖
 with 

Equation 27
  5. �G2P: update the particle velocity vp and position xp with Equations 28 

and 29
  6. Update the grid velocity vi from particle velocity with Equation 30
  7. Compute the strain tensor 𝐴𝐴 Δ𝜀𝜀trial

𝑝𝑝  with Equation 31
  8. Update the height hp with Equation 32
  9. Compute the stress 𝐴𝐴 𝝈𝝈

trial

𝑝𝑝  with Equation 33

  10. Compute the yield criterion 𝐴𝐴 𝐴𝐴

(

𝑝𝑝

(

𝝈𝝈
trial

𝑝𝑝

)

, 𝑞𝑞

(

𝝈𝝈
trial

𝑝𝑝

))

 with Equation 18

  if 𝐴𝐴 𝐴𝐴

(

𝑝𝑝

(

𝝈𝝈
trial

𝑝𝑝

)

, 𝑞𝑞

(

𝝈𝝈
trial

𝑝𝑝

)) ≤ 0 then
      update the stress 𝐴𝐴 𝝈𝝈𝑝𝑝 with Equation 35
  else
      set the stress 𝐴𝐴 𝝈𝝈𝑝𝑝 to 0
  end if
  11. Adapt Δt according to with Equations  36 and  37 and update time 
t = t + Δt
end while
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Westdickenberg (2004). Thus  the notation ϕn denote the vertical component of a vector 𝐴𝐴 𝜙𝜙 =

⎛
⎜
⎜
⎝

𝝓𝝓

𝜙𝜙𝑛𝑛

⎞
⎟
⎟
⎠

 , where ϕ is 

the tangential vector (Figure C1).

We denote 𝐴𝐴 𝒙𝒙 ∈ ℝ
𝑁𝑁 the horizontal cartesian coordinates (N = 1 or N = 2 according of the modeling) and 𝐴𝐴 𝝃𝝃 ∈ ℝ

𝑁𝑁 
the tangential curvilinear coordinates which can be seen as of function of the variable x. The N × N matrix ∂ξx 
represent the jacobian matrix of the function x.

If the bottom surface 𝐴𝐴  is the graph of a function 𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑁𝑁
⟼ℝ , that is, 𝐴𝐴  =

{
(𝒙𝒙, 𝑧𝑧(𝒙𝒙)),𝒙𝒙 ∈ ℝ

𝑁𝑁
}
 , we can easily 

define the normal n to 𝐴𝐴  as

𝒏𝒏 =

⎛
⎜
⎜
⎝

−𝒔𝒔

𝑐𝑐

⎞
⎟
⎟
⎠

, 𝒔𝒔 =
(
1 + ‖∇𝑥𝑥𝑧𝑧‖

2
)−1

2 ∇𝑥𝑥𝑧𝑧𝑧𝑧𝑧  =
(
1 + ‖∇𝑥𝑥𝑧𝑧‖

2
)−1

2�

In the previous equation, ∇x represents the gradient with respect to the variable x. Note that since n is unitary, we 
have the following relation ‖n‖ 2 = ‖s‖ 2 + c 2 = 1. This leads to the following equation

𝜕𝜕𝑥𝑥𝑐𝑐 = −
1

𝑐𝑐
𝒔𝒔
𝑡𝑡𝜕𝜕𝑥𝑥𝒔𝒔, 𝜕𝜕𝑥𝑥𝒔𝒔 = 𝑐𝑐

(
1 − 𝒔𝒔

𝑡𝑡
𝒔𝒔

)
𝜕𝜕2𝑥𝑥𝑥𝑥𝑧𝑧𝑧𝑧𝑧 2𝑥𝑥𝑥𝑥𝑧𝑧 =

𝑐𝑐2𝑰𝑰 + 𝒔𝒔𝒔𝒔
𝑡𝑡

𝑐𝑐3
𝜕𝜕𝑥𝑥𝒔𝒔� (C1)

We then define a new system of coordinate 𝐴𝐴 𝜉𝜉 = (𝝃𝝃, 𝜉𝜉𝑛𝑛) where ξn is the coordinate along the normal to the bed 𝐴𝐴  . 
If Ωt is the fluid domain at time t, we have

𝑋⃗𝑋

(

𝜉𝜉

)

∈ Ω𝑡𝑡 ⇔ 𝑋⃗𝑋

(

𝜉𝜉

)

=

⎛
⎜
⎜
⎝

𝒙𝒙(𝝃𝝃)

𝑧𝑧(𝒙𝒙(𝝃𝝃))

⎞
⎟
⎟
⎠

+ 𝜉𝜉𝑛𝑛 𝒏𝒏(𝒙𝒙(𝝃𝝃)), 0 ≤ 𝜉𝜉𝑛𝑛 ≤ ℎ(𝝃𝝃, 𝑡𝑡)�

We can now define new velocity components 𝐴𝐴 𝑉𝑉  with respect of the new coordinates, if we denote by 𝐴𝐴 𝑈⃗𝑈 the veloc-
ity field in the Cartesian base, we have

𝑈⃗𝑈 =

(

𝜕𝜕
𝜉𝜉
𝑋⃗𝑋

)

𝑉𝑉� (C2)

with

𝜕𝜕
𝜉𝜉
𝑋⃗𝑋 =

⎛
⎜
⎜
⎝

𝜕𝜕𝜉𝜉𝑋𝑋 −𝒔𝒔

1

𝑐𝑐
𝒔𝒔
𝑡𝑡(𝜕𝜕𝜉𝜉𝑋𝑋) 𝑐𝑐

⎞
⎟
⎟
⎠

∈ 𝑛𝑛+1(ℝ)� (C3)

and

Figure C1.  Illustration of the new set of variable (ξ, ξn) following the slope topography.
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𝜕𝜕𝜉𝜉𝑋𝑋 = (𝑰𝑰 − 𝜉𝜉𝑛𝑛𝜕𝜕𝑥𝑥𝒔𝒔)𝜕𝜕𝜉𝜉𝒙𝒙 ∈ 𝑛𝑛(ℝ)� (C4)

We denote 𝐴𝐴 𝐴𝐴 =

(

𝜕𝜕
𝜉𝜉
𝑋⃗𝑋

)−1

∈ 𝑛𝑛+1(ℝ) . Inserting Equations C3 and C1, we have

𝐴𝐴 =

⎛
⎜
⎜
⎝

(𝜕𝜕𝜉𝜉𝑋𝑋)
−1

0

0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑰𝑰 − 𝒔𝒔𝒔𝒔
𝑡𝑡 𝑐𝑐𝒔𝒔

−𝒔𝒔𝑡𝑡(𝜕𝜕𝜉𝜉𝑋𝑋) 𝑐𝑐

⎞
⎟
⎟
⎠

� (C5)

We can then compute the matrix 𝐴𝐴 𝑀̃𝑀 = 𝐴𝐴𝐴𝐴𝑡𝑡 ∈ 𝑛𝑛+1(ℝ) , which can be rewritten as

𝑀̃𝑀 =

⎛
⎜
⎜
⎝

𝑀𝑀 0

0 1

⎞
⎟
⎟
⎠

, 𝑀𝑀 = (𝜕𝜕𝜉𝜉𝑋𝑋)
−1
(
𝑰𝑰 − 𝒔𝒔𝒔𝒔

𝑡𝑡
)
(𝜕𝜕𝜉𝜉𝑋𝑋)

−𝑡𝑡� (C6)

and we now compute the jacobian J of the coordinates transformation:

𝐽𝐽 = det

(

𝜕𝜕
𝜉𝜉
𝑋⃗𝑋

)

=
1

𝑐𝑐
det(𝜕𝜕𝜉𝜉𝑋𝑋) = det (𝑀𝑀)

−
1

2 .� (C7)

The change of variable will induce a change of the differentiable operator used in the governing equations. This 
result is the Lemma 1 of Boutounet et al. (2008) and the proof can be found in Bouchut and Westdickenberg (2004). 
For any field 𝐴𝐴 𝑍⃗𝑍 , the differential operator transform to

𝐽𝐽∇
𝑋⃗𝑋
⋅ 𝑍⃗𝑍 = ∇

𝜉𝜉
⋅

(

𝐽𝐽𝐽𝐽𝑍⃗𝑍

)

, 𝑈⃗𝑈 ⋅ ∇
𝑋⃗𝑋
= 𝑉𝑉 ⋅ ∇

𝜉𝜉
, ∇

𝑋⃗𝑋
= 𝐴𝐴𝑡𝑡∇

𝜉𝜉� (C8)

and for any symmetric tensor σ,

𝐽𝐽𝐽𝐽−𝑡𝑡∇
𝑋⃗𝑋
⋅ 𝜎𝜎 = ∇

𝜉𝜉

(
𝐽𝐽𝐴𝐴𝐴𝐴𝑡𝑡

)
+

𝐽𝐽

2
 ∶ ∇

𝜉𝜉
𝑀̃𝑀𝑀 with  = 𝐴𝐴−𝑡𝑡𝜎𝜎𝜎𝜎−1� (C9)

We notice that the tensor 𝐴𝐴  is the stress tensor oriented in the curvilinear coordinates.

C1.  Boundary Conditions

We have the same kinematic condition as with the cartesian coordinates, that is,

𝜕𝜕𝑡𝑡ℎ + 𝑉𝑉ℎ ⋅ ∇𝜉𝜉ℎ = 𝑉𝑉 ℎ� (C10)

with the following notation for a field ϕ, ϕh(ξ) = ϕ(ξ, h(ξ, t)).

The stress free condition yields that for 𝐴𝐴 𝜉𝜉 = ℎ(𝜉𝜉𝜉 𝜉𝜉) , no forces are apply on the slab, this means

𝜎𝜎ℎ = 0� (C11)

C2.  Governing Equation in New Coordinates

In the incompressible case, the mass conservation is reduced to 𝐴𝐴 ∇
𝑋⃗𝑋
⋅ 𝑈⃗𝑈 = 0 . Multiplying this equation by J and 

use Equation C8, we get

∇
𝜉𝜉
⋅

(

𝐽𝐽𝑉𝑉

)

= ∇𝜉𝜉 ⋅ (𝐽𝐽𝐽𝐽 ) + 𝜕𝜕
𝜉𝜉
𝐽𝐽𝑉𝑉 = 0� (C12)

The equation translating the momentum conservation is, in cartesian coordinates

𝜕𝜕𝑡𝑡𝑈⃗𝑈 + 𝑈⃗𝑈 ⋅ ∇
𝑋⃗𝑋
𝑈⃗𝑈 = −𝑔𝑔 +

1

𝜌𝜌
∇

𝑋⃗𝑋
⋅ 𝜎𝜎𝜎� (C13)
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If we multiply Equation C13 by matrix A and use the curvilinear operators, one finds

𝜕𝜕𝑡𝑡𝑉𝑉 + 𝑉𝑉 ⋅ ∇
𝜉𝜉
𝑉𝑉 = −𝐴𝐴𝐴𝐴𝐴 + Γ⃗

(

𝑉𝑉

)

+
1

𝜌𝜌𝜌𝜌
𝑀̃𝑀

(

∇
𝜉𝜉
⋅

(
𝐽𝐽𝑀̃𝑀

)
+

𝐽𝐽

2
 ∶ ∇

𝜉𝜉
𝑀̃𝑀

)

� (C14)

The term 𝐴𝐴 Γ⃗

(

𝑉𝑉

)

 is a correction induced by the change of coordinate in the convective term, we have

Γ⃗

(

𝑉𝑉

)

= 𝐴𝐴𝑉𝑉 ⋅ ∇
𝜉𝜉

(

𝐴𝐴−1𝑉𝑉

)

− 𝑉𝑉 ⋅ ∇
𝜉𝜉
𝑉𝑉� (C15)

This term will be neglected in the next section. In order to simplify the notation and highlight the different 
component of the tensor stress 𝐴𝐴  , we decompose

 =

⎛
⎜
⎜
⎝

𝑃𝑃 𝑃𝑃

𝑍𝑍𝑡𝑡 𝜎𝜎
𝜉𝜉

⎞
⎟
⎟
⎠

� (C16)

Pij corresponds to ξiξj direction of the stress tensor and Z corresponds to the shear in the 𝐴𝐴 𝐴𝐴𝑖𝑖𝜉𝜉 direction.

If we projected Equation C15 in the (ξ1, …, ξn) direction we have

𝜕𝜕𝑡𝑡𝑉𝑉 + 𝑉𝑉 ⋅ ∇𝜉𝜉𝑉𝑉 = −𝑔𝑔𝑔𝑔(𝜕𝜕𝜉𝜉𝑋𝑋)
−1
𝒔𝒔 + Γ

(

𝑉𝑉

)

+
1

𝜌𝜌𝜌𝜌
𝑀𝑀

(

∇𝜉𝜉 ⋅ (𝐽𝐽𝐽𝐽𝐽𝐽) + 𝜕𝜕
𝜉𝜉
𝐽𝐽𝐽𝐽 +

𝐽𝐽

2
𝑃𝑃 ∶ ∇𝜉𝜉𝑀𝑀

)

� (C17)

The latter equation is almost the same equation as the momentum conservation equation in curvilinear coor-
dinates found in Boutounet et al. (2008). However, in order to model an elasto-plastic behavior of the slab, no 
further hypothesis will be assumed on the stress tensor 𝐴𝐴  , which will be namely the one use in the elastic consti-
tutive law.

C3.  Shallow Water and Small Velocity Hypothesis

We can express the shallow water hypothesis with the new set of coordinates (Bouchut & Westdickenberg, 2004), 
which are namely

•	 �The height of the material is small comparing to ɛ, 𝐴𝐴 𝐴 = (𝜀𝜀)
•	 �The curvature is small comparing to ɛ, 𝐴𝐴

(
𝜕𝜕2𝑥𝑥𝑥𝑥𝑧𝑧

)
= (𝜀𝜀)

•	 �The velocity field does not depend on the depth of the material, 𝐴𝐴 𝑉𝑉

(

𝑡𝑡𝑡 𝜉𝜉

)

= 𝑉𝑉 (𝑡𝑡𝑡 𝝃𝝃) + (𝜀𝜀)
With this hypothesis, we have

𝜕𝜕𝝃𝝃𝑿𝑿 = 𝜕𝜕𝝃𝝃𝒙𝒙 + (𝜀𝜀2)�

which implies that

𝐽𝐽 = 𝐽𝐽 + (𝜀𝜀2), 𝑀𝑀 = 𝑀𝑀 + (𝜀𝜀2)� (C18)

with

𝑀𝑀 = (𝜕𝜕𝜉𝜉𝒙𝒙)
−1
(
𝑰𝑰 − 𝒔𝒔𝒔𝒔

𝑡𝑡
)
(𝜕𝜕𝜉𝜉𝒙𝒙)

−𝑡𝑡
, 𝐽𝐽 = det

(

𝑀𝑀

)−
1

2
.� (C19)

Equation C17 can thus be rewritten as

𝜕𝜕𝑡𝑡𝑉𝑉 + 𝑉𝑉 ⋅ ∇𝜉𝜉𝑉𝑉 = −𝑔𝑔𝑔𝑔(𝜕𝜕𝜉𝜉𝒙𝒙)
−1
𝒔𝒔 + Γ

(

𝑉𝑉

)

+
1

𝜌𝜌𝐽𝐽
𝑀𝑀

(

∇𝜉𝜉 ⋅

(

𝐽𝐽𝐽𝐽𝑀𝑀

)

+ 𝜕𝜕
𝜉𝜉
𝐽𝐽𝐽𝐽 +

𝐽𝐽

2
𝑃𝑃 ∶ ∇𝜉𝜉𝑀𝑀

)

.� (C20)
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C4.  Small Velocity

In this work, we want to simulate initiation of snow slab avalanches. In this process, we have a fast propagation 
of stress within the slab but the particles in slab have a very small velocity. The term 𝐴𝐴 Γ

(

𝑉𝑉

)

 varies as the square 
of the velocity norm and thus will be neglected in this framework.

C5.  Depth-Averaged Equation for the Quasi-1D Case

The integration of Equation C15 is strongly inspired from Bouchut and Westdickenberg (2004) and Boutounet 
et al. (2008). In this section, we will suppose the terrain varies only in one dimension (we suppose x). The func-
tion z representing the height of the bed does not depend of the variable y, that is,

∀𝑥𝑥𝑥 𝑥𝑥 ∈ ℝ,
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑥𝑥𝑥 𝑥𝑥) = 0.�

We denote then 𝐴𝐴 𝐴𝐴 = arctan

(
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

 such that ∂ξx can be rewritten as

𝜕𝜕𝜉𝜉𝒙𝒙 =

⎛
⎜
⎜
⎝

cos 𝜃𝜃 0

0 1

⎞
⎟
⎟
⎠

, and 𝒔𝒔 =

⎛
⎜
⎜
⎝

sin 𝜃𝜃

0

⎞
⎟
⎟
⎠

� (C21)

Inserting this in Equation C19, we have

𝑀𝑀 = 𝑰𝑰 𝐽𝐽 = det

(

𝑀𝑀

)

= 1� (C22)

Equation C20 becomes then

𝜕𝜕𝑡𝑡𝑉𝑉 + 𝑉𝑉 ⋅ ∇𝜉𝜉𝑉𝑉 = −𝑔𝑔𝑔𝑔(𝜕𝜕𝜉𝜉𝒙𝒙)
−1
𝒔𝒔 + Γ

(

𝑉𝑉

)

+
1

𝜌𝜌

(
∇𝜉𝜉 ⋅ 𝑃𝑃 + 𝜕𝜕

𝜉𝜉
𝑍𝑍
)
.�

Finally, by neglecting the term 𝐴𝐴 Γ

(

𝑉𝑉

)

 , the system becomes

𝜕𝜕𝑡𝑡𝑉𝑉 + 𝑉𝑉 ⋅ ∇𝜉𝜉𝑉𝑉 = −𝑔𝑔𝑔𝑔(𝜕𝜕𝜉𝜉𝒙𝒙)
−1
𝒔𝒔 +

1

𝜌𝜌

(
∇𝜉𝜉 ⋅ 𝑃𝑃 + 𝜕𝜕

𝜉𝜉
𝑍𝑍
)
.� (C23)

Equation C23 has the exact same form as Equations 11 and 12. Therefore, the integrated equation will have the 
exact same form, namely

𝜕𝜕𝑡𝑡ℎ + ∇𝜉𝜉

(
ℎ𝑣𝑣

)
= 0� (C24)

𝜕𝜕𝑡𝑡ℎ𝑣𝑣 + ∇𝜉𝜉

(
ℎ𝑣𝑣 × 𝑣𝑣

)
= −ℎ𝑔𝑔𝑔𝑔(𝜕𝜕𝜉𝜉𝒙𝒙)

−1
𝒔𝒔 +

1

𝜌𝜌
∇𝜉𝜉 ⋅

(
ℎ𝜎𝜎

)
+

1

𝜌𝜌
𝑍𝑍0.� (C25)

with

𝑣𝑣 = ∫
ℎ(𝜉𝜉𝜉𝜉𝜉)

0

𝑉𝑉 𝑉𝑉𝜉𝜉𝜉 𝜎𝜎 = ∫
ℎ(𝜉𝜉𝜉𝜉𝜉)

0

𝑃𝑃𝑃𝑃𝜉𝜉𝜉 𝜉𝜉0 = 𝑍𝑍

(

𝜉𝜉 = 0

)

.�

Note that we have an explicit form for the product 𝐴𝐴 𝐴𝐴(𝜕𝜕𝜉𝜉𝒙𝒙)
−1
𝒔𝒔

𝑐𝑐(𝜕𝜕𝜉𝜉𝒙𝒙)
−1
𝒔𝒔 = 𝒔𝒔 =

⎛
⎜
⎜
⎝

sin 𝜃𝜃

0

⎞
⎟
⎟
⎠

�
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Appendix D:  Symbols and Notations
See Table D1.

Symbol Meaning Unit

Slab σ Cauchy stress kPa

u Displacement m

v Velocity ms −1

ε Strain –

x Position m

b Volumetric forces Nm −3

𝐴𝐴   Elaatic 4th order stiffness tensor kPa

E Young's modulus MPa

ν Poisson's ratio –

(p0, β, M) Plastic parameters (Cohesive Cam Clay) (kPa, -, -)

θ Slope angle °

h Height m

ρ Density kgm −3

m Mass kg

p Hydrostatic pressure kPa

q Von Mises equivalent stress kPa

ϕ Basal frictional angle °

Weak layer DWL Thickness m

CWL Cohesion kPa

kWL Stiffness Nm −1

Λ Characteristic length m

τpeak Shear strength kPa

uc Critical displacement m

Numerical Δx Mesh size m

Δt Time step s

Ccfl CFL constraint –

Celastic Elastic constraint –

Cflip FLIP/PIC constraint –

General 𝐴𝐴
𝜕𝜕∙

𝜕𝜕𝜕𝜕
  Partial derivative w.r.t. ξ

∇(•) Gradient

∇ ⋅ (•) Divergence

𝐴𝐴 ∙   Depth-averaged

𝐴𝐴
𝐷𝐷∙

𝐷𝐷𝐷𝐷
  Material derivative

•p Related to the material element p

•i Related to the grid node i

•j Related to the grid node j

•P Related to plastic deformation

•E Related to elastic deformation

Ni Shape function centered at xi

Table D1 
Table of Main Notation Used Within This Framework
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Data Availability Statement
The codes developed in this study (C++) as well as some post-processing tools (python and houdini files) are 
available on Zenodo at the following link: https://doi.org/10.5281/zenodo.7561750.
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