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Abstract. In-situ measurements of debris-flow properties are crucial for understanding their movement 

mechanisms and quantifying their impact.  Here we present the first results of a field monitoring campaign, 

at Illgraben, Switzerland, to measure debris-flow parameters using high temporal (10 Hz) and spatial 

resolution LiDAR sensors at several locations along the channel. The point cloud data is projected onto 

video images to enhance visualization and aid in the interpretation of the measurements. We process the 

data using machine vision and deep learning based algorithms, and show that this system can accurately 

measure front and flow surface velocity, flow depth and bed elevation change, as well as the size, style of 

motion (e.g. rotating or floating without rotation) and trajectories of individual particles.  This system thus 

provides a promising new method for inferring the internal dynamics of debris flows. 

1 Introduction 

Improved measurements of in-situ debris-flow 

properties are critical for better process understanding 

and risk quantification [1,2].  In particular, high 

temporal and spatial resolution measurements of critical 

parameters, including front and surface velocity, flow 

depth, channel bed elevation change, and individual 

particle motion are crucial for understanding 

fundamental debris-flow mechanisms, which include 

excess pore pressure generation and dissipation, basal 

and bank erosion, and longitudinal sorting [1-6].  Here 

we use time-lapse LiDAR scanners, originally 

developed for autonomous vehicles, combined with 

image and deep-learning based processing algorithms, 

to make in-situ measurements of these critical 

parameters. 

Debris-flow properties have been measured in-situ at 

many locations [1].  These studies have revealed a 

wealth of information regarding basal forces and pore 

pressures [3,6], velocity profiles [3], accumulation and 

depletion volumes between events [7], front and surface 

velocities [1], as well as flow hydrographs and volumes 

[1].   

LiDAR scanners provide a means to directly 

measure many in-situ parameters of debris flows [8].  

However, this data is difficult to process, and there is a 

need for algorithms that can be used to derive critical 

parameters from LiDAR data.  Further, high-framerate 

cameras are capable of collecting a wealth of 

information about the surface of moving debris flows, 

but suffer from camera distortion.  LiDAR-Camera 

fusion presents an opportunity to derive 3D information 
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from these videos, although this has yet to be tested in 

full scale debris flows. 

In the current work we present and analyse a unique 

dataset of timelapse point clouds of moving debris 

flows, collected at the Illgraben in Valais, Switzerland.  

We fuse the point clouds to video data collected at the 

same site in order to derive high spatial and temporal 

resolution measurements of critical debris-flow 

parameters.  The results have significant implications 

for understanding debris-flow motion. 

2 Study site and event description 

Timelapse point clouds of a moving debris flow 

were recorded at the Illgraben catchment, located in the 

Swiss Canton of Valais.  The Illgraben has a long history 

of in-situ monitoring of debris flows [1,6], and a long-

term monitoring system was established in the year 

2000.  Presently, this system includes depth sensors at 5 

locations, a force plate that measures basal normal and 

shear stresses, as well as the LiDAR scanner and video 

cameras used in the present work.   

The Illgraben spans approximately five kilometers 

from the upper catchment, where debris flows initiate, 

until the Rhone river, where they deposit.  The data used 

here was collected at a monitoring station approximately 

2.5 km from the upper catchment, on a platform 

suspended over the channel using two cables.  The 

station is located above a concrete check dam, and 

monitors 60 m upstream and 70 m downstream.  

A debris-flow event occurred on September 19, 

2021, and was captured by the monitoring system (Fig. 

1).  This event lasted for approximately 30 minutes, and 

 

https://doi.org/10.1051/e3sconf/202341501001, 01001 (2023)E3S Web of Conferences 415
DFHM8

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http ://creativecommons.org/licenses/by/4.0/). s

https://www.wsl.ch/en/index.html
mailto:jordan.aaron@erdw.ethz.ch


 

 

featured a bouldery front followed by a finer grained 

slurry.  We analysed this event in the present work. 

3 Methods 

The debris flow was captured using an Ouster OS1-64 

(Gen-1) LiDAR scanner that has a 33.2 degree field of 

view, and 64 scan rings that each collect 2048 points at 

a frequency of 10 Hz.  The scanner is positioned on a 

platform attached to two cables in the center of the 

channel.  Alongside the LiDAR scanner, two cameras 

captured the debris flow at a resolution of 1920x1080 

pixels, and 25 frames per second.  The monitoring 

station is triggered by an upstream geophone, which 

sends a signal to a custom logger program which records 

the LiDAR data. 

To take full advantage of the complementary 

sensors, we adapted the method provided in [9] to 

estimate the rigid body transformation (translation and 

rotation) between the two cameras and the LiDAR 

sensor.  The results of this, shown on Fig. 2, allow us to 

obtain 3D coordinates of pixels in the image, and to 

colour the point cloud in locations where the field of 

view overlaps.  As described below, this transformation 

is used to estimate debris-flow front and surface 

velocities, as well as to track individual particles within 

the debris flow.  Further, we estimated the 

transformation between the LiDAR data and pre- and 

post- event DTM’s derived from UAV data [7].   

We use four methods to estimate debris-flow 

velocities:  

1. Manual mapping of boulders and woody debris in 

the point cloud data, as described in [13]. 

2. Particle image velocimetry (PIV) applied to the 

video frames, with subsequent projection of pixel 

displacements into the LiDAR point clouds [14]. 

3. PIV applied to hillshade projections of the LiDAR 

data [14]. 

4. Automatic detection and localization of boulders 

and woody debris using a convolutional neural 

network [14]. 

For methods 2 and 3, the Matlab toolbox PIVLab 

[10] was used. 

For method 4, we trained an off-the-shelf 

implementation of YoloV5 [11] to automatically detect 

large boulders and woody debris in the video images 

[14].  Subsequently, we use the ‘Sort’ algorithm [12] to 

associate detections in subsequent video frames into 

tracks of individual particles.  Finally, we projected the 

track detections into the LiDAR point clouds to obtain 

their 3D position.   

We obtained instantaneous flow depths by 

differencing each frame obtained during the debris-flow 

event with the pre-event scan, assuming that the 

channel-bed elevation remains constant.  A similar 

procedure was used to obtain the height difference 

between pre- and post- event scans, in order to highlight 

areas of erosion and deposition.  There are some 

substantial uncertainties in this flow-depth estimation 

procedure, because the true base of the flow is unknown 

due to erosion and deposition through time during the 

event.   

4 Results and discussion 

We captured a continuous time series of point clouds 

throughout the event, as shown on Fig. 1.  This data 

clearly show the front arrival, the trajectories of 

boulders and woody debris within the flow, as well as 

the change in the height of the surface of the debris flow.  

Manual mapping and the two PIV based velocity 

estimate methods show that the front velocity varies 

between 0.8 and 1.75 m/s, and surface velocities during 

the event reach up to about 3 m/s [13]. 

 
Fig. 1: Overview of sensor setup, arrival of the front and 

overtopping of the check dam (lower panel).  LiDAR data is 

overlain on a UAV derived DTM of the site (data provided 

courtesy of T. de Haas using methods described in [7]).  Axis 

ticks are in m, and referenced to a local coordinate system. 

Our object detector achieved a test-set precision of 

~0.8, and a recall of ~0.6 [14].  The sort algorithm 

identified about 15,800 tracks, 5,513 of which were 

present for more than 1 s.  The difference between these 

two values indicates that the same track is likely 

detected multiple times by the algorithm.  A more robust 

association of detections into tracks is a subject for 

future work.  Example detections from the network are 

shown Fig. 2, as are the corresponding point clouds for 

select features. Velocities of certain features are shown 
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on Fig. 3.  As can be seen on the right of Fig. 2, the two 

detections near the camera are precise, however image 

distortion further from the camera results in the 

extraction of points behind the target feature.  Further 

processing of the extracted features should overcome 

this limitation. 

 
Fig. 2: Object detector output for a frame corresponding to the front arrival.  The blue rectangle show the neural network detections, 

the black dots show the LiDAR point cloud projected onto the image, and the red boxes show three features whose corresponding point 

cloud was extracted, and are shown on the right side of the Figure.  The features were extracted following interpolation of the point 

cloud, and the tree is colored based on the camera image.  The units of the ticks on the inset are in meters, and are referenced to a local 

coordinate system. 

 

 
Fig. 3:  Surface velocity through time, estimated using the methods described in [14] and in the text.

We find that surface velocities of the event vary 

strongly (Fig. 3), likely due to changing composition of 

the flow through time.  We note a distinct increase in 

velocity at approximately 7 minutes (Fig. 3).  

Interestingly, our two PIV-based automatic velocity 

estimation techniques provide different velocity 

estimates following this jump (see also [14]).  Manual 

feature mapping indicates that different objects have 

different velocities (Fig 3).  The two automatic methods 

appear to be sensitive to different features of the flow 

[14]. 

Finally, the vertical difference between the pre- and 

post- event scans (Fig. 4) show net deposition above the 

check dam (y-coordinate > 0), and some erosion 

downstream of the check dam where the channel goes 

around a bend.  We note that the LiDAR scan does not 

span the width of the channel at all locations, so this 
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accumulation/depletion estimate is only valid for a 

subset of this particular location. 

 
Fig. 4: Erosion and deposition areas obtained from 

differencing the pre- and post- event scans.  The coordinate 

system is an unreferenced local coordinate system, with tick 

values in meters.  

5 Conclusion and outlook 

Timelapse LiDAR scanners, fused with high framerate 

camera data, provides a means for collecting a wealth of 

data from moving debris flows.  Here we have shown 

that this information can be used to automatically derive 

dense surface velocity, flow depth, bed elevation change 

and feature trajectory information.  These parameters 

are crucial for understanding debris-flow mechanisms, 

and ultimately managing their hazard. 

The results presented herein were taken from the 

first event captured with the system at Illgraben.  Over 

the next years, further events that occur in the catchment 

will enable an analysis of a variety of relevant debris-

flow phenomena, such as the temporal and spatial 

variation in the size of large features, superelevation, 

and surge velocity, which will help to elucidate some of 

the processes described here.  Further, the influence of 

debris-flow velocity and feature size will be explored in 

future events.  It is expected that careful analysis of this 

data will reveal surprising features of debris-flow 

motion, and will provide a foundation for a new 

understanding of these destructive flows.  
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