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19 Abstract

20 Phytophthora plurivora can affect a range of ecologically and silviculturally important tree species, 

21 including European beech (Fagus sylvatica), a common late successional tree species native to Europe. 

22 Here, we report on the high-quality genome of P. plurivora strain TJ71 (CBS 124093). We sequenced it 

23 using Oxford Nanopore MinION and PacBio Sequel II long-read sequencing with 80x coverage, 

24 chromatin conformation capture (Hi-C) sequencing with 400x coverage and DNBSEQ 150bp paired-end 

25 short reads sequencing with 200x coverage. This complex sequencing approach allowed assembly of the 
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26 genome at the chromosome level. Specifically, the Phytophthora plurivora genome resulted in 18 

27 scaffolds of 47 Mbp total size with 95% completeness of the eukaryotic gene set as implemented in 

28 BUSCO. This is a considerable improvement relative to the previous NCBI reference genomes P. 

29 plurivora  (NMPK00000000.1) with ~41 Mbp organized in 1,898 scaffolds with 93.8% eukaryotic 

30 BUSCO completeness. This high quality genome provides a valuable resource for further evolutionary, 

31 epidemiological and population genomic studies.

32

33 Genome Announcement

34 A number of broadleaf tree genera are currently threatened worldwide by pathogens in the oomycete 

35 genus Phytophthora (Goheen et al. 2009;  Jung et al. 2016;  Lamour 2013). European beech (Fagus 

36 sylvatica) is of special concern among common forest forming tree species in Europe (Houston Durrant 

37 et al. 2016). Until the beginning of this century, European beech was considered to be resistant to 

38 pathogens and pests. However, we now are observing a widespread decline of juvenile as well as mature 

39 trees across Europe and North America caused mainly by two Phytophthora species, i.e. P. plurivora 

40 and P. x cambivora (Cleary et al. 2017;  Jung and Burgess 2009;  Jung et al. 2016;  Ruffner et al. 2019). 

41 These two pathogens are, however, also associated with oak (Quercus spp.) decline and damage to others 

42 deciduous trees (Jung et al. 2006;  Jung et al. 2016;  Mrazkova et al. 2013). 

43 Whole genome sequencing enables novel population genomic and epidemiological insights into plant 

44 pathogen evolution (Grünwald 2012;  Thines and Kamoun 2010). In particular, genome-wide association 

45 studies and linkage mapping can identify genomic regions associated with virulence or genes responsible 

46 for pathogenic success of newly emerged genotypes (Dalman et al. 2013;  Talas and McDonald 2015). 

47 Genome scans of regions under diversifying selection in different populations have the potential to 

48 identify candidate genes previously unknown to be involved in virulence, host specialization or local 

49 adaptation (Cooke et al. 2012;  Grünwald et al. 2016). A crucial prerequisite for these studies is a high 

50 quality reference genome of disease causing agents and their structural and functional annotation 
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51 (Grünwald et al. 2017;  Grünwald et al. 2016).  Novel, high-quality genomes of P. plurivora would 

52 provide a keystone for further understanding of the underlying patterns leading to the emergence of 

53 aggressive genotypes; this would also be of critical importance for biosecurity risk assessment and 

54 management of future epidemics of soil-borne Phytophthora species.

55 The P. plurivora strain TJ71 was isolated from a diseased Fagus sylvatica tree in Germany (deposited 

56 as CBS 124093) and was first reported in Corcobado et al. (2022). For DNA extraction, the strain was 

57 grown at room temperature for one week on Standard Agar Medium (Kruse et al. 2017) supplemented 

58 with the antibiotics rifampicin and pimaricin (25 µg ml-1 each). A double-sterilized cellophane foil was 

59 placed on the agar surface of the inoculated plates. High molecular weight DNA was extracted from the 

60 mycelium, which was scratched from the cellophane and immediately frozen in liquid nitrogen. The 

61 modified from Francis and Clair (1993) DNA extraction procedure was used. Prior to Oxford Nanopore 

62 library preparation, the samples were purified with magnetic beads (Mag-Bind TotalPure NGS, Omega 

63 BIO-TEK, USA) using a 0.6x magnetic bead:DNA ratio to remove low molecular DNA fragments and 

64 residual inhibitors. The DNA was used for Nanopore library construction using the SQK-LSK110 kit 

65 following the manufacturer’s instructions (ONT, Oxford, UK) and then sequenced on a MinION Mk1b 

66 with a FLO-MIN106 flowcell (both ONT, Oxford, UK). An aliquot of the frozen DNA was sent to the 

67 commercial sequencing provider BGI (Hong Kong, China) for DNBSEQ 150bp paired-end reads and for 

68 PacBio Sequel II sequencing. In addition, the deep-frozen mycelium was sent to the same the commercial 

69 sequencing company for library preparation and Hi-C sequencing.

70 The base calling and processing was done using Guppy version 6.0.1 (Oxford Nanopore Technologies, 

71 Oxford, UK) to obtain fastq files with a Phred quality score of more than 7 and length more than 500 bp. 

72 The short 150 bp paired-end reads of DNBSEQ were filtered to remove adapters, reads with an average 

73 quality less than 25 and shorter than 70 bp using Trimmomatic v0.39 (Bolger et al. 2014). Long-reads 

74 were self-corrected, trimmed and assembled using PacBio software Canu v2.1.1 (Koren et al. 2017) 

75 separately for Nanopore, PacBio reads and a dataset combining reads from both technologies. Each of 
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76 the three assemblies were improved using three cycles of subsequent 150 bp paired-end reads alignment 

77 using Bwa mem v0.7.17 (Li 2013) and filter for quality level of at least 40. Sorting and indexing was 

78 done using Samtools v1.12 and a final assembly correction was achieved with Pilon v1.24 (Walker et al. 

79 2014). The completeness and continuity of the raw assemblies was assessed using the BUSCO eukaryotic 

80 genes set (Seppey et al. 2019), N50 contigs length, the number and sizes of contigs. The assembly with 

81 optimal statistical characteristics was chosen for further assembly of its contigs into chromosome-level 

82 scaffolds with the Hi-C reads. 

83 HiCUP v0.8.3  (Wingett et al. 2015) was used for  filtering and aligning Hi-C reads. Digestion sites of 

84 the Hi-C enzymes (ATC, DpnII) were located in the raw assembly, and reads were cleaned by termination 

85 at the restriction enzyme recognition sites. Finally, reads were mapped to the raw assembly 

86 independently using Bowtie2 with default parameters (Langmead and Salzberg 2012), retaining only 

87 reads with both partners of each pair uniquely mapped. Other pairs, i.e. those generated from contiguous 

88 sequences, dangling ends, circularization, re-ligation, PCR duplication, and fragments of unexpected size 

89 (≤80 bp and ≥ 700 bp) were filtered out. The Hi-C alignments and raw assemblies were used for further 

90 scaffolding applying the ALLHiC pipeline following Zhang et al. (2019). Apparent problematic regions 

91 in the assembly were improved using the juicebox pipelines (Durand et al. 2016). The final assembly 

92 was further corrected using three cycles of Pilon polishing with the 150 bp paired-end short reads. The 

93 completeness of the assembled genomes were evaluated using benchmarking universal single-copy 

94 orthologs (BUSCO) version 5.2.2  (Seppey et al. 2019) with the eukaryota_odb10 (70 genomes, 255 

95 genes) database.

96 The BRAKER v 3.0.2 pipeline was used to predict genes (Brůna et al. 2021). The assembly was soft-

97 masked for repeats using RepeatMasker v 4.1.2-p1 (Smit et al. 2015). A custom library for masking was 

98 generated by concatenating repeats found ab initio with RepeatModeler v 2.0.3 (Smit et al. 2015) and 

99 repeats from GIRI RepBase (Bao et al. 2015) in the Phytophthora lineage. In addition, proteomes from 

100 Phytophthora spp. clades 1 to 8 were downloaded from NCBI database and protein hints predicted with 
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101 ProtHin (Brůna et al. 2020) were supplied to BRAKER (Brůna et al. 2021). Then, genes were predicted 

102 using the dataset training with GeneMark-EP+ (Brůna et al. 2020;  Lomsadze et al. 2005), AUGUSTUS 

103 protein predictions (Stanke et al. 2006), DIAMOND and Spaln2 alignments (Buchfink et al. 2015;  Gotoh 

104 et al. 2014;  Iwata and Gotoh 2012). The resulting gene predictions were subset with BRAKER to three 

105 structural annotations: (1) with full proteome support in the assembly, (2) partial findings of the proteins 

106 and (3) de novo gene annotations. Final gene predictions were converted to gff3, and basic statistics were 

107 generated with AGAT v1.0.0 (Dainat 2020), translated to protein files using BRAKER (Stanke et al. 

108 2008). Functional annotation of the predicted genes was conducted with Interproscan v5.56-89.0 (Jones 

109 et al., 2014). 

110 The assembly of the P. plurivora genome resulted in 18 pseudo-molecules with 95% BUSCO eukaryotic 

111 gene completeness (Table 1) and 22 unscaffolded contigs. Each unscaffolded contig was shorter than 

112 0.12 Mbp and had no additional BUSCO genes. The analysis of 21 bp k-mer frequencies and coverage 

113 distributions in 150 bp paired-end reads performed with Jellyfish (Marçais and Kingsford 2011) and 

114 GenomeScope 2.0 (Ranallo-Benavidez et al. 2020) suggested that P. plurivora has a diploid genome 

115 with an expected low heterozygosity of 0.06%, similar to other homothallic Phytophthora species 

116 (Thines et al. 2020;  Tsykun et al. 2022) with ~20% repetitive sequences. The last is congruent with the 

117 results we obtained with RepeatMasker analysis for the assembled 18 scaffolds (Table 1). The number 

118 of genes (12733 - 14888, Table 1) called for the assembly and annotated (Table 2) is congruent to the 

119 number (11,741 genes) reported in Vetukuri et al. (2018). However, our genome is a substantial 

120 improvement with respect to contiguity and completeness relative to the previously reported genome for 

121 P. plurivora  (NMPK00000000.1) with ~41 Mbp genome size organized into 1,898 with 93.8% 

122 completeness with respect to core eukaryotic genes as implemented in BUSCO (Vetukuri et al. 2018). 

123 Furthermore, we achieved a near-chromosome level assembly with oomycete and plant specific 

124 telomeric motifs (TTTAGGG)n or/and (TTTAGG)n (Fulnečková et al. 2013) present in both ends of 13 

125 scaffolds and in one end of the other 5 scaffolds. 
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126 The high quality genome of the important tree pathogen Phytophthora plurivora, which was de novo 

127 assembled and annotated here, will serve as a valuable resource for future discovery of virulence factors. 

128 This genome provides a novel resource for understanding the recent emergence, evolution, ecology and 

129 adaptation of P. plurivora. The raw sequencing reads and the genome assembly data are deposited in 

130 NCBI BioProject the accession number PRJNA962935. 
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140 Table 1. Genome assembly statistics of Phytophthora plurivora strain TJ71 (CBS 124093 isolate)

Statistical characteristic Value

Genome size in scaffolds (Mbp) 46.88

Scaffolds (counts) 18

Scaffold N50 (Mbp) 3.00

Scaffold count L50 (counts) 6

GC Content, % 51.89

Longest scaffold, Mbp 6.64
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Shortest scaffold, Mbp 1.06

Number (% to total size) of unscaffolded contigs 22 (2.2 %)

Complete BUSCOs, %

(counts)

94.50

(241 / 241)*

Complete and single-copy BUSCOs (S), %

(counts)

92.90

(237 / 237)

Complete and duplicated BUSCOs (D), %

(counts)

1.60

(4 / 4)

Fragmented BUSCOs (F), %

(counts)

2.00

(5 / 5)

Missing BUSCOs (M), %

(counts)

3.50

(9 / 9)

Total BUSCO groups searched (counts) 255

Predicted ploidy 2n

Heterozygosity, % 0.07

Repeats, %

among them identified:

21.15

Retroelements 5.70

DNA transposons 4.81
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Satellites 0.003

Simple repeats 0.57

Low complexity 0.04

Number of genes 

(mRNA)

among them has matches in the proteome dataset used:

16619

(17321)

Partial 14880

(15484)

Full 10994

(11188)

No 1739

(1837)

141
142 * Numbers of BUSCO genes counted in scaffolds excluding and including unscaffolded contigs are 

143 shown in brackets respectively.

144 Table 2. Functional annotation of the P. plurivora genes with the complete proteome dataset support 

Total number of protein families / number of protein sequences 17.84 K / 130 K

Among them related to pathogenicity:

Aspartyl proteases 9 / 26

Serine carboxypeptidases 7 / 116
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Cysteine proteinases 22 / 314

Glycosyl hydrolases 94 / 975

Pectin esterases 7 / 124

Pectate lyases 5 / 110

Lipases 22 / 63

Phospholipases 37 / 180

Protease inhibitors 61 / 583

Cytochrome P450s 10 / 374

ABC transporters 27 / 796

Necrosis inducing proteins 7 / 96

Elicitin-like proteins 5 / 230

Phytotoxin (PcF)  protein 1 / 2**

RXLR cytoplasmic effectors 2 / 23

(2 / 27)*

CRN cytoplasmic effectors 1 / 21

(1 / 26 )*

145

146 *Functional annotation of genes that has no orthologs (no support) in the protein database used in 

147 BRAKER analysis

148
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