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Summary

� The geographic distribution of plant diversity matches the gradient of habitat heterogeneity

from lowlands to mountain regions. However, little is known about how much this relation-

ship is conserved across scales.
� Using the World Checklist of Vascular Plants and high-resolution biodiversity maps devel-

oped by species distribution models, we investigated the associations between species rich-

ness and habitat heterogeneity at the scales of Eurasia and the Hengduan Mountains (HDM)

in China.
� Habitat heterogeneity explains seed plant species richness across Eurasia, but the plant spe-

cies richness of 41/97 HDM families is even higher than expected from fitted statistical rela-

tionships. A habitat heterogeneity index combining growing degree days, site water balance,

and bedrock type performs better than heterogeneity based on single variables in explaining

species richness. In the HDM, the association between heterogeneity and species richness is

stronger at larger scales.
� Our findings suggest that high environmental heterogeneity provides suitable conditions

for the diversification of lineages in the HDM. Nevertheless, habitat heterogeneity alone can-

not fully explain the distribution of species richness in the HDM, especially in the western

HDM, and complementary mechanisms, such as the complex geological history of the region,

may have contributed to shaping this exceptional biodiversity hotspot.

Introduction

Mountain regions cover only a quarter of the Earth’s land surface
but harbour a considerable proportion of its terrestrial biodiver-
sity across different taxa (Körner, 2000; Rahbek et al., 2019b).
Different biogeographic principles have been proposed to explain
the high biodiversity within mountains (Spehn & Körner, 2005),
with habitat heterogeneity being one of the most prominent dri-
vers. Mountain ranges are typically linked to high habitat hetero-
geneity (Rahbek et al., 2019a), which offer diverse niches for
species to occupy. Habitat heterogeneity can be measured in dif-
ferent dimensions that correspond to the biological requirements
of the species, such as climate (Udy et al., 2021), and soil and

bedrock conditions (Jiménez-Alfaro et al., 2021). Habitat dimen-
sions jointly determine the niche space available for diversifying
lineages (Ricklefs, 2010). Given the multidimensional niche axes
of any given plant (Silvertown, 2004), habitat heterogeneity
based on multiple environmental axes should be better at explain-
ing species richness (SR) patterns than single-dimensional hetero-
geneity, but the generality of these relationships should be
assessed across scales from continents to local mountain regions.

To study the drivers of biodiversity distribution, not only the
inferred relationships but also their residuals can be informative
(Rahbek et al., 2019b). In the context of the relationship between
habitat heterogeneity and species richness (hereafter given as
heterogeneity–richness relationship), statistical residuals can help
highlight regions or families that do not conform to the general
patterns. Several mountain regions of Eurasia have been high-
lighted as showing an exceptionally high level of diversity
(Rahbek et al., 2019a), and among these mountain ranges, the
Hengduan Mountains region (HDM) stands out. The HDM
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represents the main biodiversity hotspot outside of the tropics
(Rahbek et al., 2019b), and hosts over 12 800 plant species (Sun
et al., 2017), compared with 4000 species in the European Alps
(Chauvier et al., 2021). Detailed knowledge of species distribu-
tions within this exceptional biodiversity hotspot, and the drivers
that have shaped it, is limited, although some qualitative assess-
ments exist (Wu, 1988). The complex geological and climate his-
tories of the HDM (Mulch & Chamberlain, 2006; Favre
et al., 2015) have created diverse habitats, barriers, and crossroads
within a relatively small area, with climates ranging from cold
and partly humid in alpine areas to dry and hot in deep valleys
(Yang et al., 2020). Habitat heterogeneity is further increased in
the HDM by widespread, variable tectonic uplift (Gourbet et al.,
2020). Together, the complex climate and geological histories of
the HDM might have led to the emergence of the biodiversity
hotspot by favouring in situ speciation and colonisation in
response to the creation of novel ecological niches (Xing &
Ree, 2017; Ding et al., 2020). Furthermore, the region is charac-
terised by pervasive tectonic deformation, with large displace-
ments on transcurrent faults, leading to widespread habitat
fragmentation and exposure of variable bedrock (Hartmann &
Moosdorf, 2012). The relationships between habitat heterogene-
ity and biodiversity in this region remain largely unquantified,
especially regarding how consistent the relationships are across
plant families.

Understanding the interplay of the drivers of biodiversity dis-
tribution in mountain regions requires a broad comparison
among multiple mountain systems with high-resolution data.
However, there is a general trade-off between the extent and reso-
lution of biodiversity data (König et al., 2019). Species range
maps primarily result from synthesising approaches using global
biodiversity databases (e.g. World Checklist of Vascular Plants
(WCVP), Govaerts et al., 2021, Botanical Information and Ecol-
ogy Network (BIEN, https://bien.nceas.ucsb.edu/bien/), Global

Biodiversity Information Facility (GBIF, https://www.gbif.org/
)), and they are often available only at coarse resolution (e.g. gen-
eralised polygons (Fig. 1a) or large pixels (i.e. 1°)). Such data do
not accurately represent biodiversity distributions within moun-
tain regions (Antonelli et al., 2018). The WCVP database is cur-
rently the most comprehensive inventory of vascular plants at the
global scale. The plant distributions in this database are polygon
based at the province-to-country level (hereafter botanical coun-
try), the product of a large effort on the part of taxonomists, and
local experts, yet the resolution remains coarse (Govaerts et al.,
2021). By contrast, high-resolution species distribution data are
only available where sampling has been extended using statistical
techniques to extrapolate and interpolate based on environmental
factors (i.e. using species distribution models, Guisan & Zim-
mermann, 2000). Such better-resolved data on species’ distribu-
tions are only available for specific regions (e.g. European Alps,
Chauvier et al., 2021) or globally for specific clades (e.g. Fagales
and Pinales; Lyu et al., 2022). It is computationally demanding
to generate high-resolution diversity patterns over large regions
for multiple species, due to sampling bias and inconsistency in
collection efforts (Hortal et al., 2015). The integration of large-
scale yet locally less precise biogeographic patterns (Tietje
et al., 2022) and high-resolution spatial data from small areas
(Chauvier et al., 2021) could be instrumental to connect our
knowledge across scales. Thus, combining global checklists with
high-resolution data in a focal area could allow us to better
understand the mechanisms that may have shaped biodiversity
distribution at both continental and regional scales.

Here, we took advantage of the comprehensive WCVP data-
base and combined it with high-resolution mapping using species
distribution models to study biodiversity drivers across spatial
scales. Specifically, we aimed to assess the novelty of the diversity
of the HDM nested within the Eurasian region and to determine
to what degree and which families within the HDM display

Fig. 1 Vascular plant species richness at the Eurasian scale (a) and the Hengduan Mountains (HDM) scale (b). At the Eurasian scale, we extracted the plant
species richness (SR) of 97 selected families from the World Checklist of Vascular Plants (WCVP; Govaerts et al., 2021) and the botanical countries shown
with grey borders. We applied species distribution modelling at the HDM scale to map species ranges at a 1-km spatial resolution, based on data derived
from Lyu et al. (2021) and the Plant Science Data Center (2021). The HDM region mainly covers western China-South-Central (CHC) and Tibet (CHT)
botanical countries (polygons), highlighted with a dashed box in (a) and a bolded square box in (b). We specified the HDM as the CHC polygon alone in
the WCVP database to perform analyses at the Eurasian scale (a) but kept the original HDM definition to perform analyses at the HDM scale (b). At the
HDM scale (b), we identified two hotspots, which we refer to as the Three Rivers Region (I), and the Longmenshan region (II). See Supporting Information
Fig. S1 for a detailed comparison of the spatial extents.
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outstanding levels of diversity. We then explained the species
richness patterns of the exceptionally rich families in the HDM
across spatial scales using habitat heterogeneity as a predictor.
More specifically, we addressed the following questions:
(1) Is habitat heterogeneity associated with species richness at
different scales, and does a compound index integrating growing
degree days, site water balance, and bedrock type perform better
than habitat heterogeneity based on single variables in explaining
species richness patterns?
(2) Compared with the other mountain regions in Eurasia, is the
biodiversity of the HDM region exceptionally high, or does it
simply follow the Eurasian relationship between species richness
and habitat heterogeneity (i.e. 95th quantile)? If exceptional,
which families contribute most to this hotspot? Are there any
phylogenetic signals or ecological similarities among outlier
families?
(3) To what extent do different habitat heterogeneity predictors
explain the observed species richness distribution, and are there
specific geographic patterns in the residuals at both Eurasia and
the HDM scale?

We first focused on an analysis of Eurasia-wide data using the
WCVP database, evaluating the heterogeneity–richness relation-
ships for each family. After identifying exceptionally rich families,
we used a 1 km resolution richness map at the scale of the HDM
to investigate the extent to which habitat heterogeneity explains
richness patterns at different local scales for these families within
the HDM.

Materials and Methods

Study areas at the Eurasian and Hengduan Mountains
scales

To study the mechanisms shaping the HDM biodiversity hot-
spot, we used the polygon-based WCVP distribution data at the
Eurasian scale (Fig. 1a), as well as a high-resolution compilation
of distribution maps of seed plant species within the HDM
(Fig. 1b). At the Eurasian scale, we confined our study to regions
of subtropical to polar climates, based on the Köppen–Geiger
classification (Beck et al., 2018). We started with the WCVP
polygon map at the scale of the whole Eurasian continent, in
which each polygon corresponds to a botanical country
(Brummitt et al., 2001). We excluded polygons that include
> 50% tropical rainforest (Af), tropical monsoon (Am), tropical
savanna (Aw), and arid, hot desert (Bwh) based on the 1 km reso-
lution Köppen–Geiger climate map (Beck et al., 2018). The final
study region included 87 polygons within Eurasia. At the Eura-
sian scale, the HDM region is represented as the China-South-
Central (CHC) polygon in the botanical country map (red colour
polygon in Fig. 1a). For the higher-resolution analysis, we
defined the HDM as the counties in southeastern Tibet, western
Sichuan, and northern and central Yunnan provinces of China
(Fig. 1b). This definition follows several studies about HDM bio-
diversity (Ding et al., 2020; Li et al., 2021), but is expanded
slightly to the south to capture sufficient niche space in the spe-
cies distribution modelling procedure. The spatial extent of the

Eurasia and HDM scale comparison is shown in Supporting
Information Fig. S1.

World Checklist of Vascular Plants database

To investigate the species richness pattern of seed plants at the
Eurasian scale, we used the updated WCVP database (Govaerts
et al., 2021) from Royal Botanic Gardens, Kew, which represents
a compilation of the geographical distribution of each plant spe-
cies. After removing hybrid species and merging forms, varieties,
and subspecies to the species level, we selected cosmopolitan seed
plant families based on the following criteria: (1) the family occu-
pies > 15 polygons in the WCVP map (Fig. 1a); (2) the distribu-
tion of these families includes the CHC polygon; (3) the family
is composed of > 50 species. Based on these criteria, we kept 100
families for further analyses (see Table S1 for the family-level
richness summaries at both Eurasia and HDM scales).

Hengduan Mountains biodiversity data

At the scale of the HDM, we developed a species distribution
modelling pipeline to map species diversity from county-level
polygon distribution data and information on the elevational dis-
tribution per species at a 1 km spatial resolution. We compiled
county-level species distribution data from Lyu et al. (2021) and
province-level distribution data from the Plant Science Data
Center (List of plant species in China, 2021 Edition; https://
www.plantplus.cn/doi/10.12282/plantdata.0021). For each spe-
cies, we used the intercept of the two distributions as the final
county-level species distribution input to construct a more con-
servative county-level distribution (Fig. S2). We standardised the
Latin names of species from different data sources following
the Catalogue of Life (https://www.catalogueoflife.org/). We
cleaned synonyms and removed cultivated species, ferns, and
invasive and aquatic species. We then compiled elevation infor-
mation from the Flora of China (http://www.efloras.org/flora_
page.aspx?flora_id=2) and local floras (Wu, 1986; Wu, 1987;
Zhou, 1994; Wang, 1994). We used species elevation range
information to mask areas where individual species are unlikely
to occur within the county-level distribution data (Li
et al., 2021). Next, we used species distribution models (SDMs)
to downscale distribution data from the county scale to a 1 km
resolution to account for detection probability in the county-level
distribution in the HDM. Not all counties were inventoried with
the same intensity, and thus, the counties vary in the complete-
ness of their inventories. We set up the species distribution mod-
elling pipeline as follows: (1) we rasterised the elevation-masked
county-level distribution data at 1 km resolution; (2) we sampled
the presence pixels spatially at random and used the distribution
maps to randomly sample pseudo-absence pixels from the non-
presence background area (see Fig. S3 for the detailed sampling
procedure and Table S2 for the presence/pseudo-absence sum-
mary); (3) we selected six variables representing climate and soil
conditions to build SDMs; (4) we built SDMs for each species
using generalised linear models (GLMs; Nelder & Wedderburn,
1972), generalised additive models (GAMs; Hastie & Tibshirani,
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1986), and gradient boosting machines (GBMs; Friedman,
2001); and (5) we mapped species distributions by model ensem-
bles using the committee averaging method and by clipping the
modelled distribution with a buffer around presence pixels and
an ecoregion polygon (https://geospatial.tnc.org/datasets/TNC::
terrestrial-ecoregions/about) to avoid excessively wide extrapola-
tion (Fig. S2). This is a conservative approach to mapping species
distributions at finer spatial scales without extrapolating far
beyond the counties in which the species was observed.

We derived the climate variables for species distribution mod-
elling from the Climatologies at High resolution for the Earth’s
Land Surface Areas (CHELSA; Karger et al., 2017): mean tem-
perature from 1981 to 2010 (bio1), mean precipitation from
1981 to 2010 (bio12), and precipitation seasonality from 1981
to 2010 (bio15). We extracted the soil conditions from SoilGrids
(Poggio et al., 2021): soil pH at 5 cm, soil coarse fragment con-
tent at 5 cm, and soil silt content at 5 cm (the detailed predictor
selection procedure is described in Notes S1; Figs S4, S5). As our
presence data came from nonstandardised sampling, we built
SDMs with relatively low degrees of complexity to describe the
general relationship between occurrence and environmental data
(Merow et al., 2014; Brun et al., 2020). We used second-order
polynomials for GLMs, fitted GAMs with three degrees of free-
dom, and limited the number of trees for training to 1000 trees
for GBMs. After fitting the models, we evaluated model quality
using the true skill statistic (Fig. S6; TSS; Allouche et al., 2006)
in a fivefold cross-validation procedure (see detailed SDM down-
scaling pipeline in Notes S2). We removed models with a
TSS< 0.35 before assembling species distributions, and ensem-
ble presence–absence species range maps using TSS as a maximi-
sation threshold criterion (Allouche et al., 2006. We layered all
species range maps to generate the species richness distribution of
the HDM at a 1 km resolution (Fig. S7).

As the spatial delineation of the HDM mapped in the WCVP
database differs from the regional definition of the HDM, we
quantified spatial and taxonomic overlaps between these two
scales. Although the two scales overlap spatially by only 44.1%
(Fig. S1), the family-level taxonomic overlap is 97%. To avoid
bias when analysing the two scales, we restricted all further ana-
lyses to 97 families that occurred in both datasets. These families
comprise 74 919 species at the Eurasia scale and 12 356 species at
the HDM scale. This represents 91.8% and 92.8% of all species
at the Eurasia and HDM scale, respectively (see Table S1 for the
family-level data summary and Fig. S8 for the unselected plant
richness pattern).

Habitat heterogeneity data

To compute ‘habitat heterogeneity’ at the Eurasian and HDM
scales, we created an index at 1 km resolution based on climate
and lithology maps, as these variables have been identified as
important components of the habitat heterogeneity in mountain
systems (Rahbek et al., 2019a,b). For climate variables, we
selected annual mean growing degree days above a 0°C threshold
(gdd) and site water balance (swb) from 1981 to 2010 from the
CHELSA climate layers (Karger et al., 2017; Brun et al., 2022).

We selected gdd as a proxy for the required thermal energy of
plants (Zimmermann & Kienast, 1999) and swb as a proxy for
the water availability to plants (Woodward & Williams, 1987).
Because most of the flora in the HDM is composed of mountain
species, we set the required gdd threshold to 0°C. We then reclas-
sified gdd and swb into nine classes spread evenly across Eurasia.
As soils originating from different bedrock types can, through
geochemical processes, act as diverse filters for plant specialisation
and diversity Rahbek et al., 2019a, we used bedrock type as
one heterogeneity dimension in our study. We rasterised a
1 : 1000 000 lithology map (Hartmann & Moosdorf, 2012) at
a 1 km spatial resolution and set cells with no information, gla-
ciers, or water bodies to NA, which left 13 types of bedrock.
Based on these three classified maps, we computed habitat het-
erogeneity as the number of unique combinations of the three
layers per WCVP polygon. To do so, we first defined a ‘com-
pound index’ integrating gdd, swb, and bedrock type maps to
obtain a unique combination of each dimension (Guisan
et al., 2017). Thus, each value represented a unique combination
of these environmental predictors. To compute habitat heteroge-
neity at both Eurasian and HDM scales, we calculated the Shan-
non diversity index (Shannon, 2001) for each WCVP polygon
based on the compound index, gdd, swb, and bedrock type habi-
tat maps. For a detailed flowchart describing how we generated
the heterogeneity map, see Fig. S9. At the HDM scale, we com-
puted the Shannon heterogeneity for the compound index
defined above, as well as for gdd, swb, and bedrock types indivi-
dually within different neighbourhood sizes using the ‘focal’
function in the RASTER package (Hijmans & van Etten, 2016) in
R v.4.2.0 (R Core Team, 2022). We chose window sizes with a
range of 5–285 km, with intervals of 20 km as neighbourhoods
(See Video S1 for compound index changes).

Relationship between heterogeneity and species richness
across scales

We investigated the relationship between species richness and
heterogeneity for each family at the Eurasian scale. To eliminate
the confounding effect of the area on heterogeneity, we first built
a model relating heterogeneity to the area and then computed the
model residuals as a measure of heterogeneity with the effect of
area removed. This approach has been shown to give unbiased
coefficients (Freckleton, 2002). As heterogeneity increases with
the increasing area, reaching a plateau (Fig. S10), we used the
‘SSarrhenius’ function in the R package VEGAN (Oksanen
et al., 2013) with the Arrhenius relationship (i.e. S ¼ k � Az ),
where S represents the habitat heterogeneity per WCVP polygon,
A represents the WCVP polygon area, k represents the expected
number of species in the polygon area, and z is the slope of the
heterogeneity-area curve (Arrhenius, 1921). After using the
model residuals as area-corrected habitat heterogeneity at
the Eurasian scale, we built the heterogeneity–richness relation-
ship using quantile GAMs, as there is no uniform and a priori
expected shape of the heterogeneity–richness relationship. Pre-
vious mountain studies (e.g. Rahbek et al., 2019b and a
heterogeneity–richness synthesis (Stein et al., 2014) have
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suggested a positive relationship. We used the ‘qgam’ function
with the 5th, 50th, and 95th quantiles in the R package QGAM

(Fasiolo et al., 2021) to fit the habitat heterogeneity–richness
relationships for each family. The QGAM package is an extension
of the MGCV (Wood & Wood, 2015) package developed to con-
struct GAMs for different quantiles (Fasiolo et al., 2020) and has
been applied in ecological research (He et al., 2022; Nunes
et al., 2022).

To evaluate the performance of the models, we calculated the
adjusted variance (R2) at the 50th quantile, as this metric corrects
the number of predictors which can be compared across different
models. We further performed a one-way Analysis of Variance
(ANOVA) to assess whether the adjusted R2 of the
heterogeneity–richness models differed significantly among com-
pound, gdd, swb, bedrock, and multivariate indices and to assess
which model offered better species richness explanations. To
further investigate the heterogeneity–richness relationship at the
HDM scale, we aggregated the 1 km species richness maps per
outlier family at 20 km intervals for 5–285 km window sizes
within the HDM. To minimise pseudo-replication generated in
the focal analyses and to conserve the same number of analysis
windows, we randomly allocated a regularly spaced lattice with a
point distance of 125 km across the study area. We then extracted
the habitat heterogeneity predictors and species richness data ran-
domly for all window sizes at the lattice point locations. Next, we
performed the same quantile regression and evaluated the 50th

quantile for heterogeneity–richness models for the compound,
individual (gdd, swb, and bedrock types), and multivariate
(SR ∼ gdd + swb + bedrock) heterogeneity indices. We
extracted the adjusted R2 for each model and computed the mean
and standard error. With this procedure, only window sizes larger
than 125 km overlapped, which allowed us to analyse at least 50
points per random replicate in the heterogeneity–richness regres-
sion analyses. We additionally performed a robustness test with a
minimum sampling distance of 185 km and a window size gradi-
ent from 5 to 185 km to fully avoid pseudo-replication (25 lattice
points per replicate, Fig. S11). We analysed windows ranging
from 5 to 185 km and again assessed the adjusted R2 of
heterogeneity–richness models across the window sizes. The
results were similar between the 125 km lattice with 50 sampling
points and the 185 km lattice with 25 sampling points, yet the
latter showed slightly more variation in adjusted R2 values among
replicates, due to the small sample size. We, therefore, accepted
the slight overlap with the 125 km lattice (Fig. S12). We also per-
formed sensitivity analyses for nonoutlier families and the species
richness map solely based on elevation to evaluate the robustness
of our findings (Figs S13, S14).

Spatial residual analyses

At both the Eurasian and the HDM scales, we investigated the spa-
tial distribution of residuals. At the Eurasian scale, we identified
not only the regions with the highest residuals but also the families
that contributed to the residuals. To do so, we highlighted the
regions with the highest residuals of the 95th quantile in the
heterogeneity–richness relationship. We did so to assess whether

the HDM belongs to the regions with the highest species richness
compared with the general expectation of species richness predicted
by habitat heterogeneity. We then identified the families which
exceeded the 95th species richness prediction in the CHC region
and denoted them as HDM-outlier families (Fig. 2c). At the
HDM scale, we generated predicted richness maps from all habitat
heterogeneity models for the entire HDM at a resolution of
205 km. We then obtained residual richness maps by subtracting
the predicted SR maps from actual SR maps.

We highlighted the outlier families in the plant tree of life
developed by Smith & Brown (2018) to test the strength of the
phylogenetic signal of the outlier families identified at the Eura-
sian scale (Fig. 2c). To this end, we calculated the Fritz and Pur-
vis D statistic on outlier/nonoutlier families (Fritz &
Purvis, 2010). In addition, we collected information about the
main biomes of the families at the Eurasian scale, as well as
the elevation ranges of those families at the HDM scale. We
further investigated the environmental preferences of those
families, mainly characterised by elevation distribution.

Results

Mapping plant species richness in the HDM

At the HDM scale, all GLMs, GAMs, and GBMs for all 13 221
species perform well, yielding a mean TSS of 0.85� 0.11 in
GLMs, 0.86� 0.10 in GAMs, and 0.89� 0.08 in GBMs
(Fig. S6). The comparison of the TSS between outlier and nonout-
lier families reveals that both categories yield excellent performance.
The proposed SDM approach increases the detection probability
and thus increases the species range continuity and the number of
species per polygon, as indicated by species accumulation curves
(Fig. S15; Notes S3). For instance, in the Sichuan and Tibet
regions, the modelled species richness increases from 9740 to
10 791 and from 7634 to 8879, respectively, when SDM maps are
used instead of the original county-level maps.

Relationship between habitat heterogeneity and species
richness across scales

At the Eurasian scale, compound heterogeneity and habitat het-
erogeneity computed solely from gdd have significantly higher
explanatory power than other habitat heterogeneity models (com-
pound adjusted R2: 12.67%� 14.20%; gdd adjusted R2:
12.53%� 12.83%; swb adjusted R2: 7.37%� 12.48%; bedrock
adjusted R2: 1.27%� 3.71%; multivariate model adjusted R2:
7.33%� 12.52%; Fig. 2b; Table S3, see Tables S4–S8 for
family-level model results). At the HDM scale, all heterogeneity
indices, except swb, perform better at larger window sizes. The
compound Shannon habitat heterogeneity index has higher
explanatory power than any of the individual indices at large
scales (Fig. 3). The explanatory power of the compound index
starts to exceed other habitat heterogeneity indices at 145 km,
with an adjusted R2 of 38.2%� 0.23%, and reaches an asymp-
tote at a window size of c. 205 km (45.8%� 0.34% explained,
see Table S9 for detailed scale comparisons). This result holds
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when even larger sampling distances, with no overlap in the ana-
lysed windows, are used (Fig. S12). By contrast, the gdd
and multivariate heterogeneity models, although having a high
explanatory power at a small window size, reach the plateau at
45 km, with adjusted R2 values of 28.7%� 0.25% and
29.3%� 0.26%, respectively. The bedrock and swb models have
low explanatory power across scales. Spatially, the highest values
of the compound heterogeneity index are found in the Three Riv-
ers and Longmenshan regions (Figs 1bI–II, 4). By contrast, the
highest values of individual heterogeneity of bedrock type are
situated along the Mekong and Yangtze rivers (Fig. S16a). The
individual swb index shows the highest values in the northern
Three Rivers Region and a cold spot at the Yarlung Tsangpo
River (Fig. S16b). By contrast, the individual gdd heterogeneity
distribution has the highest values at the Yarlung Tsangpo River,
followed by the western Three Rivers and Longmenshan regions

(Fig. S16c). When smaller window sizes are used, the spatial
distribution of all habitat heterogeneity indices peaks along river
valley bottoms (Fig. S17). By contrast, with increasing window
size, areas of high heterogeneity values emerge from high relief
and highly complex topography and bedrock variation, which is
mainly concentrated in the Three Rivers Region (i.e. western
HDM; Fig. 4aI,bI).

Spatial residual analyses

At the scale of Eurasia, five regions display systemically high resi-
duals among the family-level heterogeneity–richness models.
These regions are CHC (i.e. HDM), east China (CHS), Myan-
mar (MYA), Kazakhstan (KAZ), and Turkey (TUR; Fig. S18).
These regions have significantly different residuals among the
family-level heterogeneity–richness models, except the gdd model

Fig. 2 Habitat heterogeneity model residuals across different geographic regions (a, see Supporting Information Table S10 for Tukey comparisons of
residuals in different regions); explanatory power of different habitat heterogeneity models at the Eurasian scale (b, see Table S3 for Tukey comparisons of
different habitat heterogeneity models); families included in this study and their position in a plant phylogeny (c); and adjusted R2 of the heterogeneity–
richness relationship (d). The top 10 residual-ranked polygons selected in at least four habitat heterogeneity models are plotted in (a). For the geographic
regions, CHC represents China-South-Central, CHS represents China-Southeast, KAZ represents Kazakhstan,TUR represents Turkey, and MYA represents
Myanmar. We evaluated the performance of a model considering a compound heterogeneity index; models considering growing degree day (gdd), bed-
rock type, and site water balance (swb) heterogeneity separately; and finally, a multivariate model considering gdd, swb, and bedrock type together (b).
Bolded black horizontal lines within boxplots in (a) and (b) represent median values for residuals and adjusted R2 respectively. The upper and lower bound-
aries of the box show the 25th and 75th percentile of data and the whiskers show the minimum (25th quantile minus 1.5 times interquartile range) and max-
imum (75th quantile add 1.5 times interquartile range) respectively. Finally, the dots above the whiskers represent outliers. In (c) and (d), we defined
species richness above the 95th percentile prediction interval for all habitat heterogeneity models for the Hengduan Mountains (HDM) in the
heterogeneity–richness relationship as HDM-outlier families (highlighted in red). Nonoutlier families are defined as those with family-level species richness
below the 95th percentile prediction interval (highlighted in blue and See Tables S5–S9 for model details).
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(one-way ANOVA: compound P= 0.00, bedrock P= 0.00, swb
P= 0.00, multivariate P = 0.00), and the CHC region has signif-
icant high residuals in these models (Fig. 2a; see Table S10 for
the Tukey HSD comparisons). Similarly, the residuals of the
heterogeneity–richness models show geographic coherence pat-
terns in the HDM. In particular, the Three Rivers Region dis-
plays positive residuals across all habitat heterogeneity models
(Figs 1bI, 4cI, S18). The Longmenshan region (Fig. 4cII) has
zero to negative residuals in the compound heterogeneity model,
whereas the western Longmenshan shows large positive residuals
(Fig. 4cII). The southeastern HDM has positive residuals in the
models including the compound (Fig. 4c), bedrock (Fig. S19b),
or gdd (Fig. S19d) heterogeneity, and in the multivariate model
(Fig. S19a).

Characterisation of outlier families

We identified outlier families in the CHC region by family-level
species richness over the 95th prediction interval in the
heterogeneity–richness models (Fig. 2c). The mean adjusted R2

of outlier families does not differ significantly from nonoutlier
families in any habitat heterogeneity model (P> 0.05) except the
bedrock model (outlier 0.03� 0.04; nonoutlier 0.00� 0.03).
The phylogenetic signal tests, with a Fritz and Purvis D-value of
0.79, indicate that the distribution of outlier families is not clus-
tered, but rather falls between clumped allocation and random in
the phylogeny. At the HDM scale, we show that the outlier
families occur mainly at the middle elevation of 2466.7 m, but
with a large elevational variation of 1111.7 m, while the nonout-
lier families occur slightly lower than the outlier families
(2136.7 m� 1127.2 m). Families not identified as outliers of the
HDM (falling within or below the blue shading in Fig. S20) may
be outliers in different hotspots (e.g. Iran; Fig. S18) or may sim-
ply not be species rich in any of the regions.

Discussion

The distribution of species is determined by ecological prefer-
ences along multiple environmental dimensions (Grinnell, 1917;
Hutchinson, 1957). Given that most species show specialised
ecological niches (Ricklefs et al., 2014), areas of high habitat
heterogeneity generally support a greater species richness
compared with more homogeneous habitats (MacArthur &
MacArthur, 1961). We found that habitat heterogeneity can
explain much of the variability in plant diversity among the
WCVP polygons after accounting for the area effect. However,
the species richness of 41 out of 97 seed plant families analysed
in the HDM exceeds that predicted by the Eurasian
heterogeneity–richness relationship. High-resolution mapping
within the HDM shows that the multidimensional (compound)
habitat heterogeneity index explains species richness variation,
especially at a larger scale, pointing to the role of regional pro-
cesses in creating and/or maintaining diversity. The residuals of
the heterogeneity–richness relationship retain spatial coherence
(Figs 4c, S19), however, suggesting that additional ecological or
biogeographical drivers may help shape the exceptional species
richness of the HDM.

Habitat heterogeneity generally determines species richness
from the regional (Dufour et al., 2006; Báldi, 2008) to the global
scale (Udy et al., 2021) and across multiple taxonomic groups
(MacArthur & MacArthur, 1961; Johnson & Simberloff, 1974;
Suissa et al., 2021). Habitat heterogeneity increases available

Fig. 3 Cross-scale determinants of Hengduan Mountains (HDM) outlier-
family species richness are assessed using the adjusted R2 value by habitat
heterogeneity indices across different window sizes. The figure illustrates
how the explained deviance of compound vs individual (growing degree
day (gdd), bedrock type, site water balance (swb)) indices alone and all
three individual indices (gdd, bedrock, and swb) in a multivariate model
explain outlier species richness across different moving window sizes. The
shaded areas represent the standard errors of the adjusted R2 values across
200 resampling lattices.

Fig. 4 Spatial pattern of species richness (SR), compound heterogeneity index, and residual richness of Hengduan Mountain (HDM)-outlier families at
205 km resolution. Species richness of outlier families (a); spatial distribution of Shannon heterogeneity for the compound habitat heterogeneity index (b);
and residual richness of outlier families in the compound heterogeneity index model (c). Note that I represents the Three Rivers Region and II represents
the Longmenshan region.
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environmental niches in a region, allowing more species to diver-
sify and coexist (Stein & Kreft, 2015). In mountain regions, dif-
ferent microhabitats occur within short geographical distances,
providing numerous niches for species to colonise (Körner, 2004).
Niche diversity combined with reduced dispersal and gene flow
between ecologically similar habitats can drive the diversification
of species in mountain regions (Pyron et al., 2015). Polygons
across Eurasia display a range of topographic complexities, with
mountainous regions such as Anatolia and the HDM. The obser-
vation that these heterogeneous mountain ranges harbour higher
species richness than expected is consistent with previous docu-
mentation of the unique diversity of these regions (Noroozi
et al., 2018). Our results regarding the HDM imply that there
are distinct ecological or evolutionary processes active in this
region that contribute to the high species richness. By contrast,
other mountain ranges, such as the European Alps, exhibit rela-
tively low residuals in the Eurasian scale analyses, indicating that
habitat heterogeneity is sufficient to explain the species richness
(Wohlgemuth, 1998; Gentili et al., 2010; Tordoni et al., 2020).

Habitat heterogeneity reflects the number of niches available
to plant species (Hutchinson, 1957), which should be quantified
considering multiple ecological dimensions. Previous ecological
studies associating habitat heterogeneity with species richness
focused on single dimensions of habitat heterogeneity, such as
topography (Muellner-Riehl et al., 2019; Li et al., 2021), vegeta-
tion structure (Qian & Kissling, 2010), and climate heterogene-
ity (Durães & Loiselle, 2004), or they used separate multivariate
analyses that captured different dimensions of habitat heteroge-
neity (Nichols et al., 2008). Our study demonstrates that inte-
grating climate conditions and bedrock type into a compound
heterogeneity index can explain species richness in mountain
areas better than a single predictor-based heterogeneity index.
Bedrock type offers an important habitat heterogeneity axis by
capturing different edaphic microhabitats. A wide range of geolo-
gical substrates allows species to diversify under variable soil
structural and chemical conditions (Hulshof & Spasojevic, 2020).
While a Shannon heterogeneity index for each predictor repre-
sents the heterogeneity of these predictors individually, the spe-
cies niche is determined by the intersection across all dimensions.
Hence, our results are consistent with Hutchinson’s niche con-
cept, which defines a species’ niche as an n-dimensional hypervo-
lume along multiple axes representing the biological
requirements of that species (Hutchinson, 1957). The variance of
habitat heterogeneity is predicted best at larger spatial scales (i.e.
205 km, Fig. 3), where the compound habitat heterogeneity
index provides a good representation of the regional geographic,
geological, and climatic variability (Qi et al., 1994; Cheng et al.,
2018), enabling better predictions of species richness.

The residual pattern from the heterogeneity–richness models
can not only infer the hotspots that have large positive residuals
but also identify the families that contribute to these hotspots. In
the Eurasian scale habitat heterogeneity–richness models, outlier
families (41/97) in the CHC are generally temperate families.
These families show a prevalence of species with habitat tending
towards higher elevations (Figs 1b, S21, S22). Our findings con-
firm that the HDM region is a temperate–climate hotspot (Ding

et al., 2020). Moreover, the phylogenetic signal shows that these
outlier families are distributed with a pattern between clumped
allocation and random in the phylogeny (Fig. 2c). Therefore, the
diversification of these families may be partly associated with eco-
logical radiations (Weigelt et al., 2015; Whittaker et al., 2017).
For example, one distinct cluster in the phylogeny comprises the
Saxifragales and Ranunculales, characterised as mid- to high-
elevation herbaceous species, which originated in situ and diversi-
fied during the uplift of the HDM (Ebersbach et al., 2017; Sun
et al., 2017). However, the generally random pattern of anoma-
lous families in the phylogeny may indicate an extrinsic effect of
landscape dynamics on their diversification over the last 15 Ma
(Ding et al., 2020).

The HDM is associated with distinct tectonic–geomorphic
domains, consistent with the idea that tectonic–geomorphic pro-
cesses create complex and fragmented habitats (Favre et al., 2015).
The spatial pattern of residuals in the heterogeneity–richness
model shows a distinct region of high richness and residuals
extending from the narrow neck of the Three Rivers Region
(Figs 1bI, 4c) across the mid-elevation domain of the HDM, sug-
gesting that additional mechanisms may be important in explain-
ing the unique diversity of this region. The Three Rivers Region
near the largest diversity hotspot is unique on Earth for the proxi-
mity of large, parallel rivers with deeply incised valleys and sur-
rounding high mountains, creating a variety of isolated habitats.
The north–south orientation of the major river valleys provides
multiple effective barriers and environmental gradients, inhibiting
east–west species dispersion but enhancing north–south genetic
exchange and providing dispersal corridors along the river valleys
during periods of climate oscillation (Rana et al., 2021). We expect
that the tectonic activity leading to high rates of river incision and
to major river reorganisation is also important for the geomorphic
processes shaping the Three Rivers Region (Yang et al., 2015) and
may have altered habitat gradients and connectivity (Albert
et al., 2021). Moreover, the proximity of the HDM to other high
mountains in Tibet, as well as the Himalayas, may have enhanced
species colonisation (Ding et al., 2020) according to island biogeo-
graphy theory (MacArthur & Wilson, 1967).

Our study is limited by the accuracy of the species range maps
at both the Eurasian and the HDM scales. WCVP distribution
data are the most complete geographical dataset for seed plants
currently available, but the relatively low spatial resolution at the
province-to-country level limits our understanding of the finer-
scale distribution of species. In addition, there are important
domain differences for the analyses at different scales analyses.
The CHC polygon in the WCVP definition includes the Yun-
nan, Sichuan, Chongqing, Guizhou, and Hubei provinces, while
the local-scale analysis of the HDM includes the Yunnan,
Sichuan, and Tibet provinces. The partial overlap of the defined
regions reduces species-level taxonomic overlap at both scales (i.e.
the CHC polygon has 16 705 species, the HDM have 12 356
species, and the overlap is 9162 species). Nevertheless, the
species-level overlap is relatively high, that is taking account of
74.2% of species at the HDM polygon and 54.8% of species at
the CHC polygon, which ensures a sufficient comparison in these
scales. Moreover, at the HDM scale, inaccuracy in the original
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county-level original distribution data may have led to overpre-
diction of the SDM-based and downscaled species richness pat-
tern and may have additionally lowered the explained deviance of
habitat heterogeneity at a smaller scale extent. Although our maps
have been designed to increase possible detection probability,
some regions – such as the Yarlung Tsangpo River in the western
HDM (i.e. Tibet) – may still suffer from an underestimation of
species richness due to the undersampling in this ecologically dis-
tinct region (Fig. S15). Nevertheless, our downscaling approach
to mapping all plant species in the HDM produces a smoother
pattern than downscaling solely based on elevation (Li et al.,
2021) and therefore offers an improved database for ecological
and evolutionary analyses of the plant biodiversity in the HDM.

The integration of the plant distribution data at the Eurasian
scale with high-resolution mapping at the HDM scale reveals an
important role of habitat heterogeneity in explaining species rich-
ness. However, the large residuals in the HDM region point to
its anomalous richness and thus other mechanisms of diversifica-
tion. The complex topography and tectonic settings of the HDM
have produced a highly perturbed, transient landscape with an
enhanced opportunity for habitat creation and fragmentation,
which would impact richness in ways not captured by habitat het-
erogeneity. However, the transient components are difficult
to quantify at the multiple scales needed to establish a linkage to
biodiversity. For instance, the erosion rate has been proposed
to be an important process in generating topographical relief and
is associated with biodiversity at the global scale (Antonelli
et al., 2018). Erosion may also shape the dissected landscape and
biodiversity of the HDM (Ding et al., 2020), but quantification
of erosion across the region is still needed (Yang et al., 2016). To
better understand the geological processes driving biodiversity
patterns in the HDM, we recognise a need for additional colla-
borations between geologists, biologists, and climatologists. Such
collaborations could help us to develop biologically meaningful
characterisations of landscape processes, such as uplift, erosion
histories, and landscape/climate stability, to enhance our ability
to explain HDM biodiversity at smaller spatial scales.
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Jiménez-Alfaro B, Abdulhak S, Attorre F, Bergamini A, Carranza ML, Chiarucci
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