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Abstract— Microwave scattering from forests generates pixel
geolocation shifts in synthetic aperture radar (SAR) data that
require an adequate representation within digital elevation mod-
els (DEMs) for preprocessing. We analyze the impact of DEM
properties on the radiometry and geolocation of radiometric
terrain corrected Copernicus Sentinel-1 imagery of forests to
improve consistency in backscatter intensities for time series
analyses. To account for the penetration depth of the C-band
sensor, we approximate the structure of stands in a temper-
ate deciduous forest using height percentiles from aerial laser
scanning (ALS) point clouds in the Hainich National Park
(HNP), Germany. Comparing the RTC results obtained using
DEMs of SRTM, Copernicus, and ALS DEMs, the latter reduces
topographically induced errors, resulting in visibly smaller effects
from topography and spatially shifted information. Based on
the P50 ALS vegetation elevation, the results show homogeneous
intensities within the same orbit and reduce variance from 2.4 to
1.2 dB2 in the difference in mid-range data from ascending
and descending azimuth directions. Over forest, we observe
lower intensities on sensor-facing and increased intensities on
away-facing slopes and correlations with the illuminated pixel
area (IPA) and local incidence angle (LIA). We reduce this bias
with linear regressions of intensity on IPA. ALS DEMs in RTC
and the proposed regression correction increase the consistency
of images across orbits, measured by the inter-orbit range (IOR),
throughout the selected year at our study site. We suggest the
proposed method applies to other areas, requiring further testing
under different forest types and topography.

Index Terms— Digital elevation model (DEM), forest, radio-
metric terrain normalization, Sentinel-1, time series, viewing
geometry.

I. INTRODUCTION

REMOTE sensing of forests relies on precise and recurrent
measurements to link the observations by satellite-based

Earth observation with the developments on the surface. The
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C-band synthetic aperture radar (SAR) of the Copernicus
Sentinel-1 (S-1) satellites (S-1A, S-1B), which is able to
penetrate clouds, as well as parts of the canopy, is widely used,
for example, in mapping disturbances [1], forest types [2],
response to drought [3], and forest biodiversity [4] among
others.

Since 2015, S-1A, joined by S-1B from mid-2016 until the
end of 2021, has been delivering global SAR coverage at high
temporal and spatial resolution free of charge [5]. Over Central
Europe, up to four measurements are available within a six-day
period due to the overlap of relative orbits. The shutdown of
S-1B halved the temporal sampling rate, rendering consistent
data from relative orbits important for denser time series.

A. SAR Preprocessing Challenges in Forested Areas

Especially under forest land cover, the path of the C-band
SAR signal is influenced by a complex combination of struc-
ture and dielectric properties of the canopy [6], [7]. With most
of the signal reflected in the canopy, the scattering center’s ele-
vation ideally references the measured intensities the best [8],
[9]. Since S-1 is a monostatic sensor, the scattering center
cannot be derived directly from S-1 data in densely forested
areas due to temporal and volume decorrelation [10]; therefore,
a precise external digital elevation model (DEM) is required
for the transformation of S-1 data to map geometry for land
cover analysis, for which previous research efforts in terrain
correction of SAR [11], [12], [13], [14] provide the basis for
the automatic geocoding of SAR imagery, further explained
in [15] and [16]. The available ground range detected (GRD)
product with ∼20 × 22-m spatial resolution already accounts
for the ellipsoid height in the geocoding process [17]. Further
SAR data processing to reduce distortion from the slanted
data acquisition usually includes radiometric and geometric
corrections [18].

It is proposed that vegetation height offsets of the used
DEM used in preprocessing lead to an inaccurate geometric
positioning and radiometric correction of signal intensities
from forests.

1) Geometric correction references the signal by the time
it travels between the sensor and the scattering center. Most
remotely sensed DEMs account indirectly for the vegetation
with their sensors’ penetration depth which depends on the
considered wavelength. During georeferencing, a mismatch
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Fig. 1. (Left) DEM cross sections overlaid on the ALS point cloud. (Right)
seasonal mean backscatter intensity from RTC with (red) SRTM and (green,
blue) ALS P50 DEMs in a small portion of the AOI. Based on data GDI-Th,
Freistaat Thueringen, TLVermGeo, NASA JPL, Copernicus.

of the forest scattering center and an elevation model likely
attributes the intensities to an incorrect surface area, toward
the sensor if underestimated and vice versa. The information is
shifted toward the sensor in the range direction from its actual
geolocation. This shift, along with layover and foreshortening
effects, is most prominent along the forest borders (Fig. 1).
Opposing viewing geometries of ascending and descending
orbits cause shifts in their respective range directions, doubling
the offset that may be encountered in time series. With the
out-of-the-box error of up to 4 m for S-1 interferometric
wide-swath (IW) in the slant range due to atmospheric path
delays [19], the analysis of pixel-level time series becomes
challenging. Hence, we propose using more accurate informa-
tion on the forest height in the form of DEMs that purposefully
include the height structure of vegetation. Throughout this
article we use the abbreviation DEM for terrain and surface
models at several heights in the forest.

2) Radiometric corrections of the measured intensities,
either angular-based [20] or area-based [18], rely on the angle
or area of the DEM relative to the sensor’s viewing angle
and will likewise use an inaccurate surface angle or area
in the calculation if the DEM underestimates the scattering
center. In addition, volume scattering is prevalent in forested
areas. Assuming a solid surface or its angle toward the sensor
neglects the actual process and overcorrects the resulting
backscatter intensity.

B. DEMs Used in SAR Preprocessing for Forest Studies

Many global elevation models generated to measure topo-
graphic height, such as SRTM-1 HGT (SRTM DEM) [21],
are affected by the forest structure and height. Offsets between
these elevation models and the more recent vegetation structure
encountered by the S-1 SAR sensors affect data processing.
However, a survey of recent studies using S-1 shows that
SRTM-based corrections are commonplace for forest-aimed
studies in on-site processing and data provided by Google
Earth Engine (GEE) [1], [2], [22], [23], [24].

Few studies use more detailed national DEM, digital terrain
models (DTMs), or digital surface models (DSMs), but they do
not compare geocoding results from different DEMs over the
same area [25], [26], [27]. Like the SRTM DEM, DTMs and
DSMs may under- or overestimate the canopy height perceived
by the sensor, introducing deviations between the DEM and

the acquired signal (Fig. 1). Recently, the use of top-canopy
elevation models proved essential analyzing drought at pixel
level [28].

Direct comparisons of DEM resolution and error have been
performed with Seasat, detecting the largest displacement of
measured intensities at topographic peaks [29]. More recently,
Truckenbrodt et al. [30] highlighted inconsistencies in RTC
backscatter generated with DEMs of ASTER, SRTM, and
TanDEM-X (TDX) missions with 30- and 90-m spatial res-
olutions processed with different software. Using the DEMs
for radiometric terrain correction, they found the best compen-
sation for the incidence angle when using the SRTM DEM.
Borlaf-Mena et al. [31] compare the similarity of S-1 scenes
from different viewing angles for different land cover using
DEMs of SRTM, Advanced Land Observing Satellite (ALOS)
World 3D, and TDX. They used the inter-orbit range (IOR,
explained in Section III-B3), measuring the range of intensities
from different relative orbits per pixel, using a DTM generated
from aerial laser scanning (ALS) data as a reference and
noticed a considerable dependence of backscatter intensity
on the choice of the DEM. However, the ground elevation
was used without focusing on vegetation, omitting overlying
structures and their impact on backscatter. Also, the recently
published Copernicus GLO-30 DEM (COP DEM) [32], gen-
erated based on TDX data [33], has not yet been used in
comparative studies of S-1.

C. Radiometric Corrections in Forests

Radiometric corrections are performed to reduce topograph-
ically induced SAR artifacts and to harmonize data in various
ways. However, the imagery of S-1 is not handled uniformly.
For example, orbits are kept as separated data variables of
the same area without correction for terrain effects [22].
S-1 σ 0 intensities are normalized to a joint viewing angle [2],
[34], which is used to combine different orbits of similar
incidence angles [23], [35], or within images from one azimuth
direction [36]. Hoekman and Reiche [37] use different angu-
lar normalization functions depending on vegetation type.
In GEE, angular corrections are also available [20], [38].
The radiometric terrain correction (RTC) [18] has gained
much interest in recent times for reducing topographic effects
using the illuminated pixel area (IPA) to calculate γ 0

RTC, with
more notable effect in mountainous areas [39]. For example,
the RTC renders intensity information more comparable to
combining overlapping relative orbits as temporal compos-
ites [40]. Following the improved correction with area-based
methods [41] and the implementation within the planned S-1
analysis-ready data (ARD) processing chain of the normalized
radar backscatter product [42], the RTC is preferred as the
preprocessing method.

D. Research Approach

We propose a method of including the forest structure based
on ALS-derived forest height percentiles to reduce displace-
ment and radiometric artifacts in the S-1 time series for forest
analyses. Starting from the observation that currently used
global DEMs introduce systematic errors in preprocessing due
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Fig. 2. Overview of the AOI in the HNP and its location in Thuringia,
Germany. Coordinates are given in WGS84 UTM32N. Vector data: Bundesamt
für Kartographie und Geodäsie, Frankfurt am Main 2011, OpenStreetMap con-
tributors 2022 (www.openstreetmap.org); optical imagery: GDI-Th, Freistaat
Thueringen, TLBG.

to an inaccurate representation of the forest’s scattering center,
we hypothesize that backscatter differences between relative
orbits depend largely on DEM impact within the correction.
We compare the resulting intensity based on ALS-derived pro-
cessing to datasets (DSs) obtained using DEMs from SRTM
and Copernicus. First, we address DEM-related variations by
analyzing S-1 data processed to γ 0

RTC while exchanging the
DEM used for radiometric and geometric correction. After
visual exploration, we show the relationships of backscat-
ter intensities with properties of the viewing geometries
from different DEMs. Our proposed regression normalization
uses partial residuals from ordinary least squares (OLSs) to
remove the bias explained by the viewing geometry impacting
γ 0

RTC backscatter intensities to obtain normalized very dense
γ 0

RTC,norm SAR time series suitable for seasonal analysis. The
consistency of images from different relative orbits over the
year is measured using the IOR on a monthly basis. With
a better representation of the forest structure, we expect to
be able to reduce the shift in the intensity information of
the canopies and improve the overall radiometric detail in
pixel-level dense time series analyses.

II. STUDY AREA AND DATA

A. Study Area

To assess the impact of viewing geometry on backscatter
intensity, we chose an area of interest (AOI) in the Hainich
National Park (HNP), Germany (Fig. 2). The HNP comprises
mostly unmanaged old-growth temperate forests of decidu-
ous broadleaved beech (Fagus sylvatica) and ash (Fraxinus
excelsior) trees [43]. The 2 × 1-km AOI contains mainly
forest and some grassland. Within the AOI, the mean forest
height was 23.6 m (derived from ALS) in 2017, with a distinct
new-growth forest parcel at the center, directly southwest of
the northeastern meadow. The new-growth stand has a lower
mean forest height of 19.2 m, visible in the COP DEM and

TABLE I
ELEVATION DATA FOR THE AOI

the P50 DEM in Fig. 3. The area is chosen for its relatively
flat ground topography to reduce the impact of topography on
the SAR signal and focus on forest height differences instead.
Since the most recent ALS measurements in the AOI were
acquired in early 2017, which coincides with the first full year
of S-1 A and B data, we limit our analysis to that year. The
annual mean temperature and precipitation height are 9.5 ◦C
and 774.2 mm, respectively, measured at the nearest DWD
weather station “Eisenach,” 10-km south of the AOI [44].

B. Elevation Data

As elevation data (Table I), we select SRTM DEM [45] as a
reference for its widespread use in recent studies. In addition,
we include the COP DEM [32] since its global coverage, open
data availability, and more recent acquisition date make it a
suitable alternative to the SRTM DEM. It is worth noting that
the COP DEM is based on TDX data with 12-m pixel spacing,
which has a smaller penetration depth and therefore results
in higher elevation estimates in forested areas than SRTM’s
C-band. To account for the vegetation structure, we use the
point clouds of open-access ALS surveys (GDI-Th, Freistaat
Thueringen, TLVermGeo). The ALS surveys were carried out
during the winter of 2017 in leaf-off conditions for deciduous
trees and preclassified for general land cover types containing
a vegetation class. The measured ALS points attributed to
vegetation, corresponding to the trees’ trunks and branches,
are later used for the elevation percentile calculation.

The three DEMs differ strongly in their ability to represent
the forest (Fig. 3). The SRTM DEM shows a blurry image,
making it difficult to visually separate forest from grassland.
The COP DEM has a much better-defined forest area, but the
ALS-derived P50 DEM provides the most detail. The SRTM
DEM generally estimates a lower forest elevation, falling
between the DTM and P10 from the ALS point cloud. This
places SRTM for most of the AOI below the canopy (Fig. 1),
which the acquisition can explain during the leaf-off period
with steep sensor incidence, a large temporal gap concerning
possible forest change, and a longer wavelength of the sensor.
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Fig. 3. Elevation models of the AOI. (Top to bottom) ALS DTM
(mean ground-point elevation aggregated to 10-m resolution); SRTM DEM
resampled to 10 m; COP DEM resampled to 10 m; and P50, the median
elevation of ALS vegetation points aggregated to 10 m, with gaps from
low or no vegetation cover filled with ground elevation. Forest structure is
better represented by the COP and ALS DEMs than the SRTM DEM. Based
on data from GDI-Th, Freistaat Thueringen, TLBG, NASA JPL, DLR e.V.
2010–2014 and Airbus Defence and Space GmbH 2014–2018 provided under
COPERNICUS by the European Union and ESA; all rights reserved.

The COP DEM generally lies between P30 and P70 of the
ALS vegetation elevation.

C. SAR Data

Copernicus S-1 C-band dual-polarimetric IW SAR data of
all the relative orbits over the HNP for 2017 is downloaded as

TABLE II
SENTINEL-1 DATA FROM THE YEAR 2017 OVER THE AOI

GRD [17] from the Alaska Satellite Facility [46]. Two ascend-
ing (44 and 117) and two descending (66 and 168) orbits
are available, acquired at approximately 18:00 and 6:30 CET,
respectively for the AOI, with an incidence angle difference of
about 8◦ between the acquisition directions (Table II), resulting
in a combined mean temporal sample rate of 1.5 days.

D. Ancillary Data

Ancillary vector data from the digital base land cover map
(DLM, derived from the German land cover catalog, ATKIS)
are used. Specifically, nonforest areas are excluded using veg-
etation layer 2, containing deciduous, coniferous, and mixed
forest types with a geometric precision of 15 m (GeoBasis-
DE/BKG 2022) [47]. According to DLM classification, the
study area comprises only deciduous forests.

III. METHODS

A. Data Preparation

The overall workflow of the study is given in Fig. 4. First,
all the DEMs are resampled to a common 10 × 10-m grid.
This spacing was chosen as a suitable denominator between
the ∼20-m S-1 GRD product and the 30-m global elevation
products, as well as being on line with our interest in analyzing
highly resolved time series, where knowledge of information
shift may be crucial [28]. Then, the S-1 GRD scenes are
geocoded to γ 0

RTC with the GAMMA software [48] using the
different DEMs. Forest areas are then clipped. A regression of
intensity on IPA is fit per scene, and its coefficient is applied to
the intensity in the proposed regression normalization. IORs
are finally calculated from monthly averages for both γ 0

RTC
and γ 0

RTC,norm.
1) DEM Creation: To consider and analyze the impact

of vegetation height in RTC and geocoding, we use vari-
ous DEMs. The SRTM and COP DEMs are processed with
the pyroSAR (v. 0.10.1) function dem_autocreate in
Python [49], which mosaics, corrects from geoid to ellipsoidal
height, crops, and resamples the elevation data to a chosen
area, resolution, and coordinate reference system. The eleva-
tion data are resampled bilinearly and projected to WGS84
UTM32N at a 10 × 10-m pixel spacing, also used for ALS
data aggregation for consistency.

The elevation models derived from the preclassified ALS
point cloud are created for ground elevation and vegetation
elevation percentiles from 0 to 100 in steps of 10% using the
point data abstraction library (PDAL) [50]. The aggregation
process includes limiting the point cloud to one flight path
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Fig. 4. Schematic workflow of the study. Parallelograms: data; rectangles:
processing steps; pill shapes: analysis steps. Data are one year of S-1, covering
the AOI. Except for the spatial filter, processes are performed per scene.
Analyses are performed on seasonal (B1, 2) and monthly (B3) data aggregates.

with the lowest deviation from the nadir per cell of the
aforementioned 10 × 10-m grid to reduce the impact from
the ALS’s sensor incidence angle of ±22◦ and higher point
densities from overlapping swaths. Then we calculate the
elevation percentiles weighted by the intensity of the discrete
returns per cell. With a small AOI selected for low topography
covered in one ALS survey flight, the intensities were com-
parable, which may not hold for larger areas. The weighting
favors more strongly reflecting elements in the forest structure,
resulting in slightly increased elevations. To avoid data gaps
in areas with low or no vegetation, grid cells with fewer than
50 points attributed to vegetation are filled with the mean
ground elevation from the point cloud. Finally, the elevation
data are corrected to the ellipsoidal height, and a 3 × 3 mean
filter is applied, as the variability in the ALS DEMs leads to
missing values in the RTC otherwise. Then, the ALS-derived

elevations are converted to rasters matching the SRTM and
COP DEMs. In the following, the ALS DEMs are referred to
by their respective percentile, e.g., P50 DEM.

2) SAR Processing: The S-1 IW GRD SAR DSs are pro-
cessed with each of the DEMs used for both the area-based
radiometric and geometric corrections in the RTC in GAMMA
(GAMMA RS, v. 20210701) [48] to γ 0

RTC with 10 × 10-m
pixel spacing [18] using the Python module pyroSAR [49].
The detailed workflow is provided in the pyroSAR documenta-
tion [51]. The resulting intensity of VV and VH polarizations
in decibels and the associated viewing geometry properties,
local incidence angle (LIA), and IPA are converted into a map
geometry matching the DEM grid. LIA describes the angle
(in degree) between the pixel’s surface normal and the sensor
look direction in range. IPA additionally considers the angle
in the azimuth direction and provides the illuminated area of
the pixel in square meters.

In the following, the SAR DSs are named after the DEM
used for preprocessing, i.e., SRTM DS, COP DS, Ground
DS, and P0–P100 DS for preprocessing with the various ALS
DEMs.

3) Filtering to Homogeneous Forest: Focusing on the
forested areas, we mask out nonforest areas using the DLM
land cover vectors. As the masked areas still include nonforest
pixels at the border and small clearings within the forest,
density-based spatial clustering of applications with noise
(DBSCAN) [52] is used for further classification. This is
performed in the 4-D feature space spanned by polarizations
VV and VH, IPA, and LIA. Using this method with a tem-
poral one-year mean, the largest resulting cluster provides the
prevalent land cover pattern, which is, in our case, closed forest
cover. Other smaller clusters and noise are excluded from the
subsequent analysis, as they are assumed to belong to other
land cover classes.

The filtering is performed per relative orbit to arrive at one
common set of pixels for each DS, retaining only those pixels
that belong to the largest cluster in all the orbits. The filter
is again combined for comparisons between DSs, representing
∼29% of the AOI.

4) Proposed Regression Normalization: We observe linear
correlations in both the viewing geometry variables LIA and
IPA. IPA is more fitting as a predictor variable in linear
regression models of γ 0

RTC as the area is a physically more
meaningful variable, and better results are reported with
area-based correction measures [18], [41]. Then the intensity
values are corrected by eliminating the effect of IPA using

γ 0
RTC,norm := γ 0

RTC − s · (IPA − IPA) (1)

where s is the estimated slope coefficient for a given S-1 scene
calculated by the regression between IPA and the backscatter.
γ 0

RTC refers to the RTC backscatter intensity in either VV
or VH polarization. The linear regressions were fit with
an intercept term using the implementation in scikit-learn
(1.0.2) [53].

In (1), we normalize the intensities to each DS’s mean IPA
using IPA − IPA for the adjustment. This allows us to keep
the mean intensity response of the AOI and only eliminate the
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effect of deviating from that mean. Note that IPA is specific
to the AOI within a scene.

B. Analysis

A seasonal average of the DSs from July to September is
created for visual analysis (more in detail in Section III-B1).
Then, the observed intensity bias and its reduction are given
by comparing the seasonal average’s γ 0

RTC and γ 0
RTC,norm rela-

tionships to LIA and IPA, as well as the aspect and slope
of the respective DEM (more in detail in Section III-B2).
We calculate the IOR each month across the four orbits for
all the DSs. Finally, the lowest IOR per month is calculated
by interchanging the DEM in preprocessing for each relative
orbit (more in detail in Section III-B3).

1) Visual Assessment of DEM Sensitivity: We first analyze
the spatial patterns of the sensitivity of the preprocessed
intensity to DEM choice. We compare γ 0

RTC backscatter inten-
sities in VH polarization, seasonally averaged from July to
September (leaf-on) for the SRTM, COP, and P50 DS of orbit
117 (asc) and their difference with orbit 66 (desc). Orbits
117 and 66 were chosen because of their similar mid-range
incidence angle for both the directions, enabling a comparison
with minimized influence of the LIA.

2) Relationships of Intensity and Viewing Geometry Prop-
erties: Second, we investigate dependencies in the DS on
the viewing geometry properties of the SAR data and the
DEMs. γ 0

RTC and γ 0
RTC,norm are analyzed to determine whether

the proposed regression normalization reduces the existing
dependencies. Density scatterplots of the relationships between
intensities and IPA, LIA, aspect (relative to north, 0◦–360◦

clockwise), and slope are compared, focusing on the forest
area. Aspect and slope are calculated from the DS’s respective
DEM using gdal.DEMProcessing with its default “Horn”
algorithm. To summarize general trends, median intensities are
calculated within bins along the x-axes.

3) Across-Orbit Consistency Analysis: Finally, we investi-
gate which DEM improves the consistency of the SAR data
across different orbits by calculating the monthly averaged
IOR with, on average, five scenes per orbit [31]. We exam-
ine the usually applied approach of using a single DEM
to preprocess all the relative orbits. Hypothesizing that the
scattering center depends on viewing geometry, acquisition
time, and vegetation density, the best representation to refer-
ence S-1 intensity might change over the year. To investigate
whether the consistency is further increased when using forest
height from different DEMs over the year and for different
orbits, we calculate the lowest IOR per month by ALS DS
combinations. Therefore, we 1) calculate monthly backscatter
intensity averages of each orbit and ALS DS; 2) iterate over
all the combinations of monthly averages; and 3) calculate the
average IOR over the AOI for each combination.

The IOR gives the intensity range per pixel by subtracting
the minimum from the maximum across the considered orbits.
It is formally defined as

IORx,y = max(γx,y,o1 , . . . , γx,y,on ) − min(γx,y,o1 , . . . , γx,y,on )

(2)

where γ (x, y, o) is the backscatter intensity at the location
x, y in the image from orbits o.

A lower IOR is, here, associated with a better-fitting DEM,
producing similar backscatter values regardless of the orbit.
We calculated the IOR per pixel on monthly backscatter
intensity averages for each DS with all the four available
relative orbits as input. The monthly IORs are finally spa-
tially averaged within the masked forest area. The number of
orbits compared and the period for averaging the backscatter
intensities impact the IOR and must be consistent for direct
comparisons. With differing pixel spacing, the number of
compared orbits, AOI size, and averaging period, our IORs
are not directly comparable to the results presented by [31].

IV. RESULTS

A. Visual Assessment of DEM Sensitivity

Fig. 5 shows clearly that seasonal mean intensity images
were most consistent within one and between different
mid-range orbits [117 (asc) and 66 (desc)] in VH polarization
when preprocessed with the P50 DEM and least consistent
when using the less detailed SRTM DEM. This tendency
is visible both within forest stands and along their edges:
Intensity differences between ascending and descending orbits
are reduced in magnitude and affected area [Fig. 5(b)]. The
bright sensor-facing forest edge, most visible in the SRTM
DS, can be attributed to the smoothed height change in the
SRTM DEM from meadow to forest. With a shallow slope at
the forest edge in the DEM used for radiometric correction,
the intensity is not corrected for layover and foreshortening
effects and therefore shows greater intensity values. Similar
results were obtained in VV polarization (not shown).

Within the forest area [Fig. 5(a)], evident features are
marked with white arrows. Central in the north of the AOI,
marked by the upper arrow, a V-shaped feature is visible
in the SRTM DS. The two diagonal low- and high-intensity
ridges translate to areas of ≥5 dB difference between the
ascending and descending azimuth directions. Directly below
(south), marked by the second arrow, another ridge is visible
in the SRTM and COP DSs at a new-to-old-growth forest
boundary. In the COP DS, this appears as a broad blue and
slim red ridge in the intensity difference image [Fig. 5(b)].
Both the features are visible as small mounds in the respective
elevation data (Fig. 3) and are greatly reduced in the P50
DS in Fig. 5(a) and (b). Prominent in SRTM and COP DEM
are small clearings in the right (east) of the AOI, which are
much more present in the intensity differences in Fig. 5(b) than
the P50 DS. The lowest row in Fig. 5 shows the distribution
of intensity values and across-orbit differences in the above
images. For one orbit, the minimum and maximum of SRTM
(short dashed) and COP DSs (dashed) extend over the P50 DS
(full line), which is, in turn, slightly more centered at −14 dB.
The intensity differences in the ascending and descending
orbits are more closely centered at 0 for P50 DS compared
with SRTM and COP DSs as well. The variance in the differ-
ence image decreases, with 2.4, 2.0, and 1.2 dB2 for SRTM,
COP, and P50 DS, respectively, which confirms the visual
impression that preprocessing with the P50 DEM improves
the consistency between different orbits.
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Fig. 5. (a) Sentinel-1 seasonal mean γ 0
RTC intensity image from orbit 117 (asc) in VH polarization, July–September. The red arrow shows the range direction;

white arrows point to features discussed in Section IV-A. (b) Difference in Sentinel-1 seasonal mean γ 0
RTC intensities between orbit 117 (asc) and orbit 66

(desc) in VH polarization, July–September (positive: intensities of orbit 117 greater than intensities of orbit 66). The fourth row shows the empirical distribution
of values in the images above. ASF DAAC 2023 contains modified Copernicus Sentinel data 2017, processed by ESA.

B. Relationships of Intensity and Viewing Geometry
Properties

Before applying the proposed regression normalization, the
average July–September VH-polarized backscatter intensities
show strong linear trends with the properties describing the
viewing geometry (Fig. 6). LIA shows a positive linear trend
and a mean increase of 1 dB for the three depicted DSs,
processed with the SRTM DEM, the COP DEM, and the
ALS-derived P50 DEM. IPA shows a negative linear trend
with a mean intensity decrease of 1 dB over the value range.
The relationship for the aspect variables resembles a sine
curve, peaking at 90◦ and reaching its minimum at 250◦–270◦.
With the sensor’s viewing direction toward 75◦ in relative
orbit 117, we observe a higher backscatter intensity over
slopes facing in the look direction than toward the sensor. The
backscatter intensities do not show a consistent and substantial
slope dependency. Note that aspect and slope angles refer to

elevations within the vegetation structure, not generally to the
ground level. The results obtained for the VV polarization and
other relative orbits are similar and are therefore not shown.

After applying the proposed regression normalization, cal-
culated per scene from the correlation of intensity with IPA,
γ 0

RTC,norm backscatter intensities no longer display IPA-related
trends (Fig. 7). The trend in LIA is also successfully removed
in the P50 DS, but a weak positive linear trend is still present
for LIA in the SRTM and COP DSs. The sine-shaped pattern
concerning the aspect has also vanished, perhaps except for
the SRTM DS.

C. Across-Orbit Consistency Analysis

The monthly IOR of the DSs shows that most ALS DSs have
higher consistency during the summer period, further expand-
ing over the year after the proposed regression normalization
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Fig. 6. Relationships between VH γ 0
RTC orbit 117 July–September (leaf-on) mean intensity data and viewing geometry properties related to SAR processing

(LIA, IPA) and DEM (aspect, slope) for SRTM, COP, and P50 DS. Markers (horizontal lines) show mean intensity values within intervals of the variable
shown on the x-axis. Note that ranges of slope angles vary.

(Fig. 8). Overall, P50 DS provides the best results before
the proposed regression normalization, whereas Ground, COP,
and SRTM DSs only surpass it in IOR for some winter
months. The proposed regression normalization improves the
IOR overall, most visibly in the winter months of P30–P90.
Within all the DSs, a similar temporal pattern is visible: high
consistency with three minima in January, May, and October,
and maxima in February, July, and November with lower
consistency between the orbits.

Comparing the IOR of P50 DS to the better IOR using data
processed with varying ALS-derived DEMs shows that there
is only marginal further improvement (Fig. 9). The lowest
IOR values are often found with DEMs P20–P60 over the
observation period. VH polarization shows higher consistency
than VV polarization, except in February and July.

V. DISCUSSION

A. Impact of Forest Representation in Preprocessing of SAR
Data

We show that the S-1 backscatter is impacted by the DEM
choice, introducing visible features with differences of more
than 5 dB [Fig. 5(b)] between viewing geometries, and corre-
lates with the viewing geometry by ±11 dB (Fig. 6). Using
more detailed and recent DEMs increases the consistency

in SAR imagery from one orbit and reduces the differences
between ascending and descending orbits. Lessened over- and
underestimations of the forest height of the P50 instead of
the SRTM DEM reduce the observed patterns [Fig. 5(b)]
which comply with [34] of different azimuth angles [34] and
enhance them on a finer scale. We interpret the visually flatter
intensities over the forest area of the P50 DS to a better
result in the radiometric correction and geocoding of the SAR
data through more fitting elevation estimates of the SARs’
scattering center within the forest area, refining the area-based
radiometric normalization [18], [41].

The patterns observed between the viewing geometry prop-
erties, the aspect of the DEM, and γ 0

RTC hint at an overcorrec-
tion of radiometry within vegetation volume. Frey et al. [41]
show a negative trend between European Remote Sensing
Satellite (ERS) intensity σ 0 and LIA, no trend of γ 0 with LIA,
and Truckenbrodt et al. [30] show negative trends between
S-1 γ 0 and LIA. The sine-shaped pattern over the aspect with
a minimum for sensor-facing slopes within the continuous
forest is contrary to the results of [20], [37]. Typically, higher
intensity values are observed at sensor-facing slopes [18], [41].
Focusing on a small subset of a homogeneous forest area in the
leaf-on period with flat ground elevation, the trend is inverse:
larger intensities with increasing LIA and lower intensities
with increasing IPA, and the intensities are generally lower
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Fig. 7. Relationships between VH γ 0
RTC,norm orbit 117 July–September (leaf-on) mean intensity data, corrected with the proposed regression normalization,

and viewing geometry properties related to SAR processing (LIA, IPA) and DEM (aspect, slope) for SRTM, COP, and P50 DS. Markers (horizontal lines)
show mean intensity values within intervals of the variable shown on the x-axis. Note that ranges of slope angles vary.

for sensor-facing slopes. The RTC process uses IPA without
accounting for the land cover in its calculation. However, the
change rate concerning IPA might differ in surface or volume
scattering. The mismatch of these interactions might explain
the inverted trends, with IPA in vegetation volume with less
impact on the measurements than anticipated in the RTC.

The increased consistency between viewing geometries of
ascending and descending orbits from ALS DEMs supports
the hypothesis that deviations in intensity can be reduced if
the scattering center is well-approximated. The best results
in the IOR are provided using the P50 DEM (Fig. 8), which
fits centrally within the canopy. With similar median height,
the difference in across-orbit consistency between COP and
P50 DS can be explained by the representation of the forest
height variability. With a mean elevation difference of ∼9 m
(Table I), elevation estimates from SRTM fall between DTM
and P10 DEM and are for most of the AOI below the canopy
and produce the highest IOR overall. Similarly, an increase
in IOR can be seen in using the P90 DEM (Fig. 8), which
deviates toward the upper boundary of the canopy.

The lowest IOR from different ALS DEMs per orbit (Fig. 9)
shows that while the P50 DS performs almost identically,
the choice in the DEM combinations empirically shows the
hypothesized shift of the scattering center during the year.
Vegetation density is increased during summer by the presence

of leaves and diurnally changing vegetation water content,
which increases signal attenuation. This is reflected in the
DEM combinations, with an arc during the leaf-on period
and the tendency for similar DEM choice for the azimuth
directions and acquisition time of day. The descending orbits
match better with higher ALS percentiles compared with
the ascending orbits. This tendency could be verified against
in situ information on water allocation in trees along the
diurnal cycle. Although at high variance, the remaining months
tend to lower percentiles, implying a good scattering center
approximation in the lower canopy under leaf-off conditions.

Compared with the findings in [31], we do not see an
improvement in IOR when using the DTM over SRTM in
preprocessing for the deciduous forest. The temporal pattern
for all the considered DEMs may limit the comparison of IOR
to the same season. Lower IOR values achieved with the ALS
percentiles and the proposed regression normalization show
the improvement by our approach.

B. Proposed Regression Normalization for Forested Areas

The proposed regression normalization improves the IOR
with a larger impact on the DSs preprocessed with ALS
DEMs. The pattern of IPA and backscatter intensities (Fig. 6)
indicate a radiometric overcorrection of the RTC instead of
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Fig. 8. Monthly IORs for S-1 VH polarization of deciduous forest in the AOI. (a) γ 0
RTC and (b) γ 0

RTC,norm processed with the SRTM DEM, COP DEM, and
the ALS-derived DEMs for different elevation percentiles and the ground level.

Fig. 9. Lowest IOR for monthly VH and VV γ 0
RTC,norm intensity averages of deciduous forest in the AOI. Each month, the lowest IOR is determined

across all the orbits processed using ALS DEMs. (a) IOR values of backscatter intensities in VH and VV polarizations to the monthly IOR of P50 DS.
(b) and (c) Indicate which DEM achieves the best IOR in each polarization and month across all the obits. For example, in January the smallest IOR in VH
polarization is achieved using P40 DS for orbits 44 and 168, P50 DS for orbit 117, and P60 DS for orbit 66.

the normalization over viewing geometries shown in other
studies [20], [30], [37], [41]. For robust measurements over
large areas or time steps from various viewing geometries,
we show that the removal of systematic variations in the

backscatter (Fig. 7) increases across-orbit consistency (Fig. 8)
[18]. By considering the target land cover and normalizing
intensities to the predominant IPA, we consider different
scattering responses instead of normalizing a scene to a
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predefined incidence angle. While the yearly temporal average
generates the land cover filter per orbit here, coefficients are
processed individually for each scene. The proposed regression
normalization is applicable for single scenes to reduce DEM
artifacts in vegetation and multiple scenes in time series.

With the preservation of the mean overall intensity in
(1) by normalizing around the backscatter response of IPA,
the impact of large area factors such as rainfall and forest
characteristics remain in the data. This also includes offsets
between sensors noted in [54], which can be tackled by
coupling the mean backscatter of several scenes of the same
relative orbit over time at the cost of temporal detail. Dif-
ferences induced by vegetation water content due to different
acquisition times of ascending and descending orbits have been
shown to impact backscatter intensities systematically [55],
[56], if present should also remain within the backscatter
information. Effects of precipitation or temperature were not
investigated but reduced by taking temporal averages. Finally,
we cannot account for the path taken through the vegetation
canopy by the C-band signal, which is different for each
viewing angle and acquisition due to the randomness of
volume scattering [7]. As such, measurements will display
some degree of difference for each relative orbit per pixel that
geocoding cannot resolve.

Application on larger areas using ALS-percentile DEMs
with the proposed regression normalization must be extended
for other forest types. Similar to [37], the best fitting percentile
is dependent on forest structure, and the proposed regression
normalization needs to be adjusted for areas with different
trends of intensity to IPA. An alternative to the ALS percentiles
could be modeling the scattering volume with the available
ALS point cloud, but it was outside this analysis’s scope.
Because of the observed linear trend of IPA to backscatter
intensity in Fig. 6 within the Hainich AOI, a linear regression
was deemed fit for the proposed regression normalization.
Adjustments for larger areas and varying topography could
be a local average instead of IPA in (1), masking of pixels
displaying layover, most easily detected by unrealistically
large IPA, or nonlinear regression.

VI. CONCLUSION AND OUTLOOK

In this work, we have done the below.
1) Halve the across-orbit variance in S-1 γ 0

RTC intensities
using DEMs derived from ALS point clouds instead of
SRTM-1HGT in deciduous forest area.

2) Show improved preprocessing results with Copernicus
GLO-30 compared with SRTM-1HGT.

3) Observe linear correlations between backscatter intensity
and IPA, LIA, and a sine-shaped pattern with aspect with
all the DEMs for preprocessing.

4) Improve consistency among intensity images with dif-
ferent viewing geometries by the proposed regression
normalization.

We conclude the following.
1) A viewing geometry normalization is beneficial for time

series involving different orbits to reduce systematic
radiometric overcorrection in areas with strong volume
scattering.

2) The more detailed ALS DEM at the 50th elevation per-
centile improves spatial fit, reduces topography-induced
artifacts, and improves internal radiometric consistency
of forest within a single orbit.

3) The best across-orbit consistency is achieved using RTC
with ALS DEMs and the proposed regression normal-
ization.

In forestry applications, the proposed approach enables
better interpretation with reduced SAR artifacts, increased
data consistency, and, consequently, a higher temporal sample
rate in time series using combinations of relative orbits. This
outcome is of critical importance due to the recent loss of
Sentinel-1B. However, the proposed bias corrections should
be extended and tested on a more extensive range of forest
types with different volume scattering behaviors for a wider
application.
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