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A B S T R A C T

Individual tree detection using airborne laser scanning (ALS) can provide relevant data to complement forest
inventory data. Local Maxima-based (LM) methods for individual tree detection are suitable for applications
over large extents, but their performance depends on the type of pre-processing of the input data, as well
as forest structure and composition. We developed a model that improves LM through statistical modeling
using prior knowledge about forest structure. The model selects the optimal canopy height model (CHM)
pre-processing filters based on forest structure variables like the dominant canopy height and degree of cover
derived from ALS data, the dominant leaf type derived from Sentinel data, and terrain metrics. The model
performance was evaluated by assessing tree detection errors for the canopy stem count in National Forest
Inventory (NFI) plots in Switzerland (n=5254). For plots with point densities of more than 15 points per square
meter and, at most, 6 years between ALS acquisition and inventory (n=2676), the results showed a mean
absolute error of 61 stems per ha compared to 174 stems per ha when detecting trees using an unprocessed
CHM. The model showed a stable performance for different dominant leaf types (broadleaved-dominated,
mixed, coniferous-dominated) and for different degrees of cover. We consider the developed model to be
suitable for applications that require data on forest structure or individual tree positions and heights over
large areas.
1. Introduction

Forest ecosystems simultaneously provide multiple services vary-
ing from production, socio-cultural services, such as recreation, and
regulation services, such as natural hazard risk reduction, water and
temperature regulation, biodiversity, and carbon sequestration (Har-
rison et al., 2010; Pohjanmies et al., 2017). To manage forests and
to quantify their function performance, data on forest structure (tree
positions, tree heights, layering, and stem diameters) and tree-species
distribution are required. Traditionally, such data have been acquired
by cost- and labor-intensive sample-based forest inventories using ter-
restrial sample plots (Hyyppä et al., 2000; Kangas et al., 2006; Hyyppä
et al., 2008; Zhen et al., 2016). Today, remote sensing has become
standard to obtain spatially explicit data for complementing plot-based
inventories over large areas in a mostly automated and cost-efficient
manner (Breidenbach and Astrup, 2014; Eysn et al., 2015; Zhen et al.,
2016).
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Both data from passive remote sensing sensors (e.g. multispectral
satellite imagery) and active sensors (e.g. light detection and ranging
LiDAR and synthetic aperture radar SAR) are used for forest inventory
purposes (Hyyppä et al., 2008; Zhen et al., 2016). Especially, the im-
provement in sensors and data availability for airborne laser scanning
(ALS) increased research and use of active remote sensing data (Zhen
et al., 2016). Tree detection can be performed in the point cloud, a ras-
terized canopy height model (CHM) interpolated from those points, or
a combination of the two (Hyyppä et al., 2008; Koch et al., 2014; Zhen
et al., 2016; Hui et al., 2022). Recent research on tree detection focuses
on detection in point clouds, the use of unmanned aerial vehicle-based
data, and deep learning-based detection algorithms (e.g. Williams et al.,
2020; Kukkonen et al., 2021; Michałowska and Rapiński, 2021; Osco
et al., 2021; Sparks et al., 2022; Luo et al., 2022). However, despite
advances in computing efficiency, detection methods based on point
clouds remain only feasible for single plots or smaller areas (i.e., on
vailable online 12 September 2023
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average several ha (e.g. Eysn et al., 2015; Wallace et al., 2016; Zhou
et al., 2018), up to several 100 ha (e.g. Kolendo et al., 2021). For
individual tree detection over several 100,000 ha, methods based on
CHM remain the most feasible due to their computational efficiency
compared to cloud-based methods (Zhen et al., 2016; Michałowska and
Rapiński, 2021).

Local Maxima-based (LM) methods for individual tree detection
based on CHM are frequently used and have shown good results in
benchmark studies (Kaartinen et al., 2012; Eysn et al., 2015; Vanden-
daele et al., 2021; Xu et al., 2021; Sparks et al., 2022). For LM methods,
detection parameters – like raster cell size, degree of smoothing or
filtering, horizontal and/or vertical exclusion criteria, and the detection
window – influence their performance. Thus, the adjustment of these
detection parameters based on the forest structure can considerably im-
prove the results (Koch et al., 2014; Eysn et al., 2015; Zhen et al., 2016;
Mielcarek et al., 2018; Kolendo et al., 2021). In addition, LM methods
are often used as sub-step in tree segmentation both in CHM and
point clouds (Hyyppä et al., 2008; Vauhkonen et al., 2012; Williams
et al., 2020). Besides tree height and position segmentation can provide
additional information like crown size and shape or serve to reduce
over-detection (Kaartinen et al., 2012; Koch et al., 2014; Zhen et al.,
2016; Williams et al., 2020; Sparks et al., 2022).

The objective of this study is to improve a CHM-based LM individual
tree detection method for a country-wide application in Switzerland
with heterogeneous forest structures through statistical modeling using
prior knowledge about forest structure and dominant leaf type. To
achieve this, we developed a hybrid model, which combines linear
regression models of tree detection errors based on forest structure vari-
ables with a rule-based model to select different CHM pre-processing
filters. We evaluated the performance of our hybrid model by assessing
tree detection errors using National Forest Inventory (NFI) data.

2. Materials

2.1. Input data

The canopy height model (CHM) is based on the most recent ALS
data covering the entire country (total area 41285 km2; forest area
equals 32% of the country or 1.31 Mha). These ALS data are available
either from the Federal Office of Topography (swisstopo) (Swisstopo,
2021c) or the cantons. The average point density of the LiDAR data
shows varying values (Table 1), but most of the 26 cantons have at
least 15 points m−2 on average. Data from the cantons Grisons (GR),
Jura (JU), and Valais (VS) have lower point densities since they have
not been updated since 2006.

As an additional input we used the current 2018 version of the 10 m
cell size dominant leaf type (DLT) raster (Waser and Ginzler, 2018)
derived from Sentinel data (c.f. Waser et al., 2021). Finally, the digital
height model DHM25 (Swisstopo, 2021a) with a cell size of 25 m was
used to derive terrain metrics for the reference plots.

2.2. Reference data

Data from inventory plots of the fourth Swiss NFI (Brändli et al.,
2020) were used as reference data for the study. The inventory sur-
veyed forest sample plots in a raster with a mesh size of 1.4 km across
the whole of Switzerland between 2009 and 2017 (Brändli et al., 2020).
As shown in Fig. 1, the plots were divided into an inner circle (1) of
200 m2 (radius = 7.98 m) and an outer circle (2) of 500 m2 (radius
= 12.62 m) (Fischer and Traub, 2019). Every tree with a diameter at
breast height (DBH; measured at a height of 1.3 m above the highest
ground level at the tree bottom) larger than 12 cm was recorded within
the inner circle, and every tree with a DBH >36 cm was recorded
within the perimeter delimited by the outer circle (Fischer and Traub,
2019). The top height of the stands surrounding the NFI plot is derived
from the average height of the 100 trees with the biggest DBH per
2

Table 1
LiDAR data used for creating the CHM.

Canton Year of data acquisition Point density of all returns [m−2]

AG 2020 17.5
AI 2018 20.1
AR 2018 23.9
BE 2011/2012/2013 14.1
BL 2018 50.2
BS 2018 39.5
FR 2019 16.2
GE 2019 10.7
GL 2017 31.4
GR 2003 2.1
JU 2006 3.0
LU 2020 15.8
NE 2018 14.9
NW 2019 24.8
OW 2019 23.1
SG 2017 24.0
SH 2018 19.9
SO 2019 45.1
SZ 2017 26.7
TG 2017 15.8
TI 2019 25.4
UR 2019 23.0
VD 2018/2019 17.5
VS 2001/2005 1.6
ZG 2018 17.8
ZH 2018 17.5

hectare (Fischer and Traub, 2019). Based on the top height, the trees
are categorized as belonging to the upper (>2∕3 top height), middle
(between 1∕3 and 2∕3 top height), or lower (<1∕3 top height) layer of
the canopy (Brändli et al., 2020).

Our reference data included 5254 plots across Switzerland (see
Fig. 2) with the coordinates of each plot center and the number of living
standing trees per plot. With altitudes ranging from 195 m to 2243 m
above sea level the plots span the altitudinal zones from the colline to
the alpine belt and encompass the forest profiles and main tree species
in Swiss forests (c.f. Rigling and Schaffer, 2015). Only the trees within
the upper layer of the canopy were selected as reference data, since
they are potentially detectable by LM methods in a CHM.

3. Methods

The methodology applied in this study is divided into four stages
(Fig. 3). During data processing in stage 1, input data were prepared
including the ALS-derived CHM and the reference data per inventory
plot. In stage 2, forest structure and terrain characteristic variables
were derived from the input data. During stage 3, individual trees
were detected using an LM method in combination with different pre-
processing filters. The dataset resulting from stages 2 and 3 was split
into calibration data (80%) for model training and validation data
(20%) for analyzing the model performance in stage 4. The workflow
code is available in an online repository (Schaller and Dorren, 2023).

3.1. Data pre-processing

For the preparation of the CHM (step S1.1 in Fig. 3), a 1 m cell size
raster covering Switzerland was generated using the ALS data. First,
the raw point data were normalized. In case there were existing ASPRS
(American Society for Photogrammetry and Remote Sensing) classes,
the class ’ground points’ was used to determine the terrain elevation.
Otherwise, the 2021 version of the swissAlti3D digital elevation model
from swisstopo was used (Swisstopo, 2021b). During normalization,
the height above ground was calculated for each point. In absence
of the ASPRS classification for buildings, the footprints of building
data from the swisstopo Topographic Landscape Model (TLM) were

used to classify building points. From the normalized points, raster
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Fig. 1. Schematic representation of an NFI sample plot including circular plot boundaries, plot center, positions of reference, and detected trees.
Fig. 2. Map showing the distribution of the NFI sample plots across Switzerland.
data with a cell size of 1 m were calculated with the grid function of
LAStools. All points except for the point class ‘building’ were used. The
highest LiDAR point was used for each raster cell. Gaps were linearly
interpolated.

3.2. Calculation of variables

In the third stage, the variables listed in Table 2, which are used as
input for the hybrid model, were calculated based on the pre-processed
input data. The variables were calculated by aggregating the inputs
to a 25 m cell size raster using different aggregation functions. For
each NFI plot, the values from the raster cell containing the plot center
were added to the reference data. The forest structure variables are
based on the CHM (resampled to 1.5 m with a maximum function to
3

provide basic smoothing) and DLT rasters (Rosset, 2021) (step S2.1 in
Fig. 3). Additional variables relating to the CHM roughness and number
of peaks were derived directly from the 1 m cell size raster. Terrain
characteristic variables were derived from the DHM25 digital terrain
model using GDAL (Geospatial Data Abstraction Library GDAL/OGR
contributors, 2021).

3.3. Local maxima-based tree detection

The actual tree detection was performed using a Python (van
Rossum and Drake, 2009) implementation of a LM algorithm using
a CHM (Schaller and Contributors, 2022). Circular windows were
used to determine whether the center cell of the window is a local
maximum or not (i.e., whether the cell is higher than the surrounding
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Fig. 3. Flow-chart of the methodology applied for this study. The boxes delineate separate stages.
cells). Starting with a window diameter of 3 cells, the diameter was
expanded repeatedly until either a cell of the same or higher value was
encountered or the maximum window diameter of 31 cells was reached.
The final window diameter was an indicator for the dominance of the
detected tree. In the detection algorithm, we included various options
for pre-processing the CHM. These included resizing to variable cell
sizes (using GDAL) and/or applying Gaussian filtering with variable
kernel size and strength (using the scipy.signal.gaussian() function from
the SciPy Python package). If a Gaussian filter was applied, the height
of the detected trees was extracted from the unfiltered CHM.

Twelve filters and three filter combinations for CHM pre-processing
were defined (see Table 3). The described LM algorithm was applied in
combination with each of the filters (numbers 1 to 12). Each detection
was executed over a circle with a 25 m radius from the plot center,
whereby only detected trees within the outer plot circle of the NFI
plot were retained. In addition, three combinations of multiple pre-
processing filters (numbers 13 to 15 in Table 3) were tested. Each
combination matched the result of the 1 m CHM detection with the
results from two or more detections using the pre-processing filters.
Thereby, only the trees detected in the 1 m CHM that matched a tree
detected with at least one of the detections with pre-processing within
a 1.5 m radius were retained, thereby reducing the trend to over-detect
of the 1 m detection.

3.4. Error modeling and validation

3.4.1. Model for selecting pre-processing filters
Each pre-processing filter described in Table 3 was applied to all

reference plots (step S3.1 in Fig. 3). Examples of the LM detection
results of selected pre-processing filters are shown in the supplementary
materials. The absolute number of trees in the plot, the stem count per
ha, as well as the detection rate were calculated per plot and per pre-
processing filter. The results were combined with the reference data
and the forest structure variables (step S4.1 in Fig. 3). This combined
4

dataset was subsequently used to create a model that selects pre-
processing filters, aiming to minimize the global error of the stem count
per ha (detected stem count per ha vs. the inventory-based canopy stem
count per ha - i.e., the number of trees in the upper canopy layer per
ha). The modeling and analysis were performed in R (R Core Team,
2021).

Hybrid models, which combine two or more model types, are used
in machine learning to improve overall model performance (Ardabili
et al., 2019). For our hybrid model, we first fitted a model to predict
the stem count error for each pre-processing filter. The errors were
modeled in function of forest structure and terrain characteristic vari-
ables using multiple linear regression. Second, the rule-based part of
the model selected the pre-processing filter whose predicted error value
was closest to zero. If more than one method had the same minimal
error, the filter with the lowest degree of filtering was selected. The
model variables were selected based on variable importance analysis on
regression models for the canopy stem count per ha, which were trained
using a 10-fold cross-validation (James et al., 2021) with 3 repetitions.
Variables with high importance in more than one pre-processing filter
were selected for the final regression model (see Schaller and Dorren
(2023) for details).

For the final validation, we configured the hybrid model with a
suitable combination of pre-processing filters from Table 3 to reduce
the overall detection errors of the LM algorithm (step S4.2 in Fig. 3).
In an explorative analysis, the hybrid model exhibited the best balance
between low overall detection errors and correct selection of pre-
processing filters, using configurations with a combination of 7 to 12
pre-processing filters. Therefore, we selected a combination of 10 pre-
processing filters (numbers 1, 2, 3, 7, 8, 9, 10, 11, 12, and 15 in Table 3)
from a larger set of combinations with similar detection errors and
accuracy to configure the hybrid model.

3.4.2. Model performance assessment
Since our study focused on improving the overall detection result

based on forest structure, the performance assessment for our model
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Table 2
Forest structure and terrain characteristic variables for model input calculated on the
25 m cell size raster.

Variable name Description Reference

Forest structure variables

ℎ𝑑𝑜𝑚 Dominant height = 80th
percentile of the cell values

Rosset (2021)
𝑑𝑔 Degree of cover (dg) as

percentage of cells with
ℎ < (2∕3 ∗ ℎ𝑑𝑜𝑚)

𝑑𝑔𝑛𝑜_𝑙𝑎𝑦𝑒𝑟 dg no layer (ℎ < 0.4𝑚)

𝑑𝑔𝑢𝑠 dg lower layer
(0.4𝑚 ≤ ℎ ≤ (1∕3 ∗ ℎ𝑑𝑜𝑚))

𝑑𝑔𝑚𝑠 dg middle layer
((1∕3 ∗ ℎ𝑑𝑜𝑚) < ℎ ≤ (2∕3 ∗ ℎ𝑑𝑜𝑚))

𝑑𝑔𝑜𝑠 dg upper layer
((2∕3 ∗ ℎ𝑑𝑜𝑚) < ℎ ≤ ℎ𝑑𝑜𝑚)

𝑑𝑔𝑢𝑒𝑏 dg protrusions (ℎ𝑑𝑜𝑚 < ℎ)

𝑚𝑔 Dominant leaf calculated as mean
of the touched DLT cells

CHM characteristic variables

TPI Topographic Position Index
(minimum, maximum, mean,
median, standard deviation)

Wilson et al. (2007)

TRI Terrain Roughness Index
(minimum, maximum, mean,
median, standard deviation)

Terrain characteristic variables (nearest neighbor)

z Altitude in m above sea level
Slope Slope in degrees
Aspect Aspect in degrees

Aspect northness Cosine(aspect) ∗ sine(slope) Fassnacht et al. (2003)Aspect eastness Sine(aspect) ∗ sine(slope)

Table 3
Tested filter methods for CHM pre-processing.

Nr. Filter name Description

1 a 1 m 1 by 1 m unresized cell size without filter

2 a 1.5 m Bilinear resizing to 1.5 by 1.5 m cell size
without filter

3 a 2 m Bilinear resizing to 2 by 2 m cell size
without filter

4 1 m, std 1, size 3 1 by 1 m unresized cell size gaussian filter
using a standard deviation of sigma = 1
and window size of 3, 5, and 7 cells

5 1 m, std 1, size 5
6 1 m, std 1, size 7

7 a 1 m, std 2, size 3 1 by 1 m unresized cell size gaussian filter
using a standard deviation of sigma = 2
and window size of 3, 5, and 7 cells

8 a 1 m, std 2, size 5
9 a 1 m, std 2, size 7

10 a 1 m, std 3, size 3 1 by 1 m unresized cell size gaussian filter
using a standard deviation of sigma = 3
and window size of 3, 5, and 7 cells

11 a 1 m, std 3, size 5
12 a 1 m, std 3, size 7

13 Combined 1 m/1.5
m/1 m, std2, d3

Combination of the ‘‘1 m’’ base detection
with the ‘‘1.5 m’’ and ‘‘1 m, std 2, size 3’’
detection results

14 Combined 1 m/2
m/1 m, std2, d5

Combination of the ‘‘1 m’’ base detection
with the ‘‘2 m’’ and ‘‘1 m, std 2, size 5’’
detection results

15 a Combined 1 m/1.5
m/1 m, std1,
d3/1 m, std2,
d3/1 m, std3, d3

Combination of the ‘‘1 m’’ base detection
with the ‘‘1.5 m’’, ‘‘1 m, std 1, size 3’’,
‘‘1 m, std 2, size 3’’, and ‘‘1 m, std 3, size
3’’ detection results

a Part of final hybrid model configuration.

was carried out at the plot level (step S4.4 in Fig. 3). We used the
mean absolute error (MAE) of the detected stem count per ha versus the
5

(

inventory-based canopy stem count per ha as the primary performance
assessment measure, which was calculated as:

𝑀𝐴𝐸𝑁 = 1
𝑛𝑝𝑙𝑜𝑡𝑠

𝛴
𝑛𝑝𝑙𝑜𝑡𝑠
𝑖=1

|

|

|

𝑁𝑚𝑜𝑑𝑒𝑙_𝑖 −𝑁𝑎𝑐𝑡𝑢𝑎𝑙_𝑖
|

|

|

(1)

where:

𝑀𝐴𝐸𝑁 : Mean Absolute Error of the stem count per ha
𝑁𝑎𝑐𝑡𝑢𝑎𝑙_𝑖: Canopy stem count per ha (i.e., trees in the upper canopy
layer per ha) in plot i according to NFI
𝑁𝑚𝑜𝑑𝑒𝑙_𝑖: Stem count per ha for the trees detected in plot i accord-
ing to the model
𝑛𝑝𝑙𝑜𝑡𝑠: Total number of reference plots

Additionally, the median of the detected stem count normalized by
the inventory-based canopy stem count was calculated as a relative
performance measure, following:

𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚 = 𝑀𝑒𝑑𝑖𝑎𝑛
(

|𝑁𝑚𝑜𝑑𝑒𝑙_𝑖 −𝑁𝑎𝑐𝑡𝑢𝑎𝑙_𝑖|

𝑁𝑎𝑐𝑡𝑢𝑎𝑙_𝑖

)

(2)

where:

𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚: Median normalized Absolute Error of the stem
count per ha

As secondary performance criteria the mean and median detection
rates (𝑑𝑟𝑚𝑒𝑎𝑛, resp. 𝑑𝑟𝑚𝑒𝑑𝑖𝑎𝑛) were calculated as measures for under-
/over-detection, following:

𝑑𝑟𝑚𝑒𝑎𝑛 =
1

𝑛𝑝𝑙𝑜𝑡𝑠
𝛴

𝑛𝑝𝑙𝑜𝑡𝑠
𝑖=1

(𝑁𝑚𝑜𝑑𝑒𝑙_𝑖
𝑁𝑎𝑐𝑡𝑢𝑎𝑙_𝑖

)

(3)

𝑑𝑟𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑀𝑒𝑑𝑖𝑎𝑛
(𝑁𝑚𝑜𝑑𝑒𝑙_𝑖
𝑁𝑎𝑐𝑡𝑢𝑎𝑙_𝑖

)

(4)

The input dataset was randomly partitioned into calibration (80%
of the data) and validation (20%) data. A 10-fold cross-validation was
performed to calibrate the model, which was subsequently validated
(step S4.3 in Fig. 3). For model comparison, the performance measures
were also calculated for the Baseline detection using the unfiltered 1 m
cell size CHM (hereafter referred to as Baseline) and a well performing
method based on (Eysn et al., 2015, hereafter referred to as Eysn).
This method combines a closing filter (disk size=1) and Gauss filter
(sigma = 0.5 on a 3 by 3 neighborhood). The calibration and validation
procedure was performed on the complete dataset (i.e. all plots) as well
as on two subsets. Since higher point densities may improve detection
performance (Sparks et al., 2022), subset A only included plots where
the ALS acquisition was performed in 2010 or later to ensure high
point densities (c.f. Table 1). Subset B further reduced subset A by the
additional requirement that the difference between the ALS acquisition
year and the year of the field inventory was max. 6 years. The 6-
year limit was chosen because it covers a time-span similar to one NFI
recording period while retaining sufficient reference plots. While this
limits the potential differences between ALS acquisition and the field
inventory, larger changes (e.g. through harvesting or storm damage)
are still possible.

For county-wide applications, the model from the fold with the
smallest 𝑀𝐴𝐸𝑁 was selected. The performance measures were cal-
culated based on an application of the selected model to the three
validation datasets. The performance measures included the detection
error 𝑀𝐴𝐸𝑁 , the median normalized absolute error 𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚, the
mean detection rate 𝑑𝑟𝑚𝑒𝑎𝑛, and the median detection rate 𝑑𝑟𝑚𝑒𝑑𝑖𝑎𝑛.

hese performance measures were calculated for the entire validation
ata as well as differentiated by mixing degree, the degree of cover, and
he dominant stand height. For the mixing degree, we differentiated
etween coniferous-dominated plots (proportion of coniferous trees
NH) > 70%), for mixed plots (NH between 30% and 70%) as well
s for broadleaved-dominated plots (NH ≤ 30%). For the degree of
over (DG), we differentiated between dense (DG > 80%) and open
DG ≤80%) plots, and for the ℎ we differentiated between high
𝑑𝑜𝑚
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Table 4
Summary of the model performance of the calibrated hybrid models along with
corresponding performance values for the Eysn and Baseline detections. The values
represent mean values of the results from applying the models from all 10 calibration
folds to the validation plots of the respective datasets: (1) all reference plots; (2) subset
A, excluding all plots with ALS acquisition year before 2010; (3) subset B, excluding all
plots with ALS acquisition year before 2010 and a difference between ALS acquisition
and field inventory of max. 6 years.
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑛𝑝𝑙𝑜𝑡𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 𝑀𝐴𝐸𝑁 𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚 𝑑𝑟𝑚𝑒𝑎𝑛 𝑑𝑟𝑚𝑒𝑑𝑖𝑎𝑛

(1) All plots validation 1048
Model 64 0.33 1.31 1.00
Eysn 69 0.33 1.35 0.90
Baseline 167 1.00 3.05 2.00

(2) Subset A validation 757
Model 66 0.33 1.29 1.00
Eysn 75 0.36 1.40 0.90
Baseline 172 0.92 3.10 1.92

(3) Subset B validation 532
Model 61 0.33 1.27 1.00
Eysn 73 0.40 1.51 1.00
Baseline 174 1.00 3.21 2.00

(ℎ𝑑𝑜𝑚 > 22 m) and low (ℎ𝑑𝑜𝑚 ≤ 22 m) dominant height within the plot.
f the 5254 reference plots, 46% are coniferous-, 35% broadleaved-
ominated, and 19% mixed; 36% are dense and 45% show a low
ominant height.

. Results

Table 4 shows the summarized results from the validation of the
ybrid model calibrated on different subsets of the NFI reference plots
long with the corresponding values for the Baseline 1 m and Eysn
etections. For the validation of the dataset with all reference plots, the
𝐴𝐸𝑁 value of 64 stems per ha of the model is less than half the value

ompared to the 𝑀𝐴𝐸𝑁 of 167 stems per ha of the Baseline and 69
trees for the Eysn detection (with an average inventory-based canopy
stem count of 170 stems per ha). The mean detection rate 𝑑𝑟𝑚𝑒𝑎𝑛 is
similarly reduced from 3.05 to 1.31, which shows that there still is over-
detection. For the subsets A and B, the performance measure values and
their changes are comparable to the dataset with all reference plots. The
values and changes of the performance measures from the calibration
of the model are also comparable to the corresponding validation
values. All results are presented in the notebook accompanying this
publication (Schaller and Dorren, 2023).

The model of subset B resulted in the smallest 𝑀𝐴𝐸𝑁 and was
therefore selected for the country-wide application. For this subset, the
performance measure values of the model showed only small variations
when differentiating between the plots by mixing degrees (Table 5).
However, the Baseline detection values showed clear differences. The
Eysn detection also showed clear differences, albeit on a lower scale.
The values of the mixed plots were generally comparable to the values
of all plots. Broadleaved-dominated plots show higher 𝑀𝐴𝐸𝑁 , and
oniferous-dominated plots show significantly lower 𝑀𝐴𝐸𝑁 values.

The model also showed similar performance for both classes when
ifferentiating the plots by dominant height (ℎ𝑑𝑜𝑚). The 𝑀𝐴𝐸𝑁 for the

model is similar for both classes while the Baseline and Eysn 𝑀𝐴𝐸𝑁
are slightly better for plots with the higher ℎ𝑑𝑜𝑚. The 𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚
nd the 𝑑𝑟𝑚𝑒𝑎𝑛 of the model are, however, noticeably higher for the
roup with a lower ℎ𝑑𝑜𝑚 when compared to the other group. Similarly,
he Baseline and Eysn 𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚 and 𝑑𝑟𝑚𝑒𝑎𝑛 are higher in the group
ith the lower ℎ𝑑𝑜𝑚.

When differentiating between plots with high and low degrees of
over, the performance differs noticeably. The 𝑀𝐴𝐸𝑁 of 50 stems per
a for plots with low degrees of cover is clearly lower and the 𝑀𝐴𝐸𝑁
f 76 stems per ha for high degrees of cover is clearly higher than
he 61 stems per ha for all plots. In comparison, the 𝑀𝐴𝐸𝑁 for the
aseline and Eysn detections show similar trends, but the values are
learly higher than the model.

Fig. 4 shows the distributions of the stem count per ha for the
nventory data, the combination of different pre-processing filters based
6

n the model, the 1 m Baseline detection, and the Eysn detection
ith the corresponding detection errors. The actual values show the

nventory-based canopy stem count per ha. The distribution of the stem
ount based on the predictions of our model and the Eysn detection
re clearly closer to the actual distribution than the Baseline detection,
hose mean value is about 1.5 times as high. The distribution of the
etection errors of our model is centered around the median of 0
tems per ha, while the Baseline detection shows higher values with
median of 155 stems per ha, reflecting the stronger trend towards

ver-detection. The error of the Eysn detection is close to our model
ut shows a slightly lower mean value.

Fig. 5 shows scatter diagrams of the actual inventory-based canopy
tem counts per ha compared to the different detection methods. The
rend to over-detect when using the unfiltered CHM is clearly visible
n diagram (c), as many points are above the diagonal (Fig. 5, upper
ight). The scatter diagram of the model in diagram (a) is closer to the
iagonal (Fig. 5, lower right), but still exhibits a large variance. The
alues of the Eysn method in (b) are also closer to the diagonal (Fig. 5,
pper left), but show a stronger trend to under-detection.

. Discussion

.1. Detection performance

In this study, we aimed to improve a CHM-based LM tree detection
ethod for a country-wide application using statistical modeling and
rior knowledge about forest structure. The results showed that CHM-
ased LM methods for individual tree detection can be improved by
onsidering prior knowledge about forest structure. While others have
sed prior knowledge (e.g. Heinzel et al., 2011; Ene et al., 2012; Zhen
t al., 2015; Stereńczak et al., 2020) to adjust CHM filtering, the hybrid
odel combines statistical error models based on an array of forest

tructure variables and a rule-based model. Our model resulted in clear
mprovement of the detection errors and mostly constant performance
ver forest structures with different dominant height (ℎ𝑑𝑜𝑚), degree of
over, and dominant leaf type (DLT). Using the hybrid model for CHM
re-processing in a LM algorithm reduced the MAE of the detection by
t least 50% compared to the detection MAE of a Baseline LM detection
ithout CHM pre-processing. Compared to the Eysn method, our model

till performs slightly better. Furthermore, the Eysn method shows
tendency towards more under-detection and higher performance

ifferences between different ℎ𝑑𝑜𝑚, degree of cover, and DLT.
Other studies using LM-based detection (e.g. Popescu et al., 2003;

aartinen et al., 2012; Eysn et al., 2015) typically showed an im-
rovement of the detection accuracy by 20%–30% for single-layered
oniferous-dominated plots when compared to mixed or broadleaved-
ominated plots. In our study, the Baseline detection on the unfiltered
HM and the Eysn method showed similar trends and performed
etter for coniferous-dominated plots than for mixed or broadleaved-
ominated plots when differentiating the plots according to the DLT.
he performance of our hybrid model, however, showed only small
ifferences between the DLT classes and only slightly better detection
or coniferous-dominated plots compared to mixed and broadleaved-
ominated plots. A detailed analysis of the detection errors in compar-
son to the DLT did show a decrease of the median error of the model
ith increasing coniferous proportion from 38% for pure broadleaved
lots to 25% for pure coniferous plots. The results have shown that
he hybrid model could improve LM-based individual tree detection
n coniferous and broadleaved plots with a significant improvement in
roadleaved-dominated plots.

Despite clear improvements in detection performance using our
odel, there was still a trend towards over-detection. The values of the

tem count 𝑀𝐴𝐸𝑁 between 61 and 66 stems per ha of the model seem
o be relatively high. However, the detection rate indicates an average
ver-detection of only 27% to 31%. This is partially supported by the
edian of the normalized absolute error 𝑀𝑒𝑑𝐴𝐸 values of around
𝑁_𝑛𝑜𝑟𝑚
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Table 5
Detailed performance results for the application of the model to plots of subset B along with corresponding performance values for the Eysn and Baseline detections. Groups:
(a) All plots; (b) DLT broadleaved-dominated plots (proportion of coniferous trees ≤30%); (c) DLT mixed plots (proportion of coniferous trees between 30% and 70%); (d) DLT
coniferous-dominated plots (proportion of coniferous trees according to the DLT raster >70%); (e) DG ≤ 80%, (f) DG > 80%; (g) ℎ𝑑𝑜𝑚 ≤ 22 m; (h) ℎ𝑑𝑜𝑚 > 22 m.
𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝐺𝑟𝑜𝑢𝑝 𝑛𝑝𝑙𝑜𝑡𝑠 𝑀𝑒𝑡ℎ𝑜𝑑 𝑀𝐴𝐸𝑁 𝑀𝑒𝑑𝐴𝐸𝑁_𝑛𝑜𝑟𝑚 𝑑𝑟𝑚𝑒𝑎𝑛 𝑑𝑟𝑚𝑒𝑑𝑖𝑎𝑛

All plots validation (a) All plots 532
Model 61 0.33 1.28 1.00
Eysn 73 0.40 1.51 1.00
Baseline 174 1.00 3.21 2.00

Dominant leaf type validation

(b) Broadleaved 220
Model 64 0.35 1.36 1.00
Eysn 76 0.39 1.72 1.00
Baseline 233 1.50 3.98 2.50

(c) Mixed 108
Model 65 0.33 1.24 0.96
Eysn 81 0.40 1.62 0.91
Baseline 175 0.92 3.43 1.92

(d) Coniferous 204
Model 55 0.29 1.23 1.00
Eysn 67 0.40 1.24 0.89
Baseline 109 0.58 2.26 1.57

Degree of cover validation

(e) DC ≤ 80% 309
Model 50 0.37 1.40 1.00
Eysn 62 0.44 1.67 1.20
Baseline 155 1.30 3.52 2.30

(f) DC > 80% 223
Model 76 0.30 1.12 0.88
Eysn 89 0.31 1.29 0.83
Baseline 199 0.82 2.77 1.82

Dominant height validation

(f) ℎ𝑑𝑜𝑚 ≤ 22 m 206
Model 63 0.39 1.55 1.00
Eysn 83 0.50 2.19 1.27
Baseline 193 1.50 4.40 2.50

(h) ℎ𝑑𝑜𝑚 > 22 m 326
Model 60 0.29 1.11 1.00
Eysn 68 0.33 1.09 0.86
Baseline 161 0.85 2.46 1.85
Fig. 4. Violin plots of the canopy stem count distributions per ha. Actual: calculated from the reference inventory plots; Detected model: count of the detected stems using the
calibrated model (R2: 0.35, median bias: 19.99); Detected Eysn: count of the detected stems using the Eysn method (R2: 0.25, median bias: 19.99); Detected Baseline: count of the
detected stems using the Baseline method (R2: 0.13, median bias: −139.90); Detection error model: distribution of errors between the detection using the calibrated model and
the reference data; Detection error Eysn: distribution of errors for the Eysn method; Detection error Baseline: distribution of errors for the Baseline detection method. The mean
values of all distributions are shown as open white dots within the box plots. Outliers are shown as small black dots. A few outliers lie outside the plotted stem count range.
0.33. This over-detection is put into perspective by the relatively large
value range with clear outliers and the median detection rate of around
1 from the detailed application of the model over all plots. These results
and the trends in model performance can be mostly explained by the
reference data used in the study and the aims of the model.

Firstly, the time difference between the acquisition of the Airborne
Laser Scanning (ALS) data and the field measurements for the NFI of
Switzerland influenced the result. A longer time difference between
ALS acquisition and field measurements increases the probability of
forest cover changes in the plots, for example, due to logging or storm
damage, which leads to differences between detection and reference
7

data. While a detailed analysis of the influence of the point density
on detection results is outside the scope of this study, the exclusion
of plots with lower point densities seems to have little effect on the
performance. Whereas the 𝑑𝑟𝑚𝑒𝑎𝑛 slightly improves, the 𝑀𝐴𝐸𝑁 slightly
increases. Although some studies reported a positive effect of higher
point densities on CHM based tree detection (Wallace et al., 2014;
Sparks et al., 2022) our results are more in line with studies stating
that point density has no significant effect (Kaartinen et al., 2012;
Ruiz et al., 2014). On the other hand, there is a slight increase in
model performance when additionally excluding plots with a difference
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Fig. 5. Scatter diagrams of (a) the actual canopy stem counts per ha vs. predicted stem count per ha for the predictions from applying the individual models from the cross-validation
(b) the actual vs. detected stem count from the Eysn detection, and (c) the actual vs. detected stem counts per ha from the Baseline detection. The diagrams have a 2D kernel
density plot including contours in the background as well as the identity line in red. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
of more than 6 years between ALS acquisition and NFI measure-
ments. Other studies similarly emphasized the importance of input data
characteristics (Wallace et al., 2014; Eysn et al., 2015; Price et al.,
2020).

Secondly, part of the over-detection also results from the fact that
only the trees in the emergent and canopy layer, which are potentially
detectable by LM, were used as references. Using all inventory trees
would have resulted in higher absolute stem count errors and a gen-
eral trend towards under-detection. Furthermore, in the outer circle
of the inventory plots, only trees with a diameter of at least 36 cm
were measured, thus potentially excluding detectable trees from the
inventory.

Lastly, our model emphasizes an average improvement of the de-
tection error over a wide range of forest structures. Other studies
reported clearer improvements from CHM filtering. However, even in
larger comparative studies, such as Vauhkonen et al. (2012) with 77
plots over five locations or Eysn et al. (2015) with 18 plots over eight
locations, the reference data and the variety in the forest structure
were limited. In this study, on the other hand, the wide geographic
distribution of the NFI reference plots across Switzerland resulted in a
comparatively large number of reference plots and higher variability
8

in forest structures. Therefore, our model needs to generalize a wide
variety of forest structures and consequently the applied pre-processing
filters may not be optimal for all plots. Investigating plots with high
detection errors showed that they can be found in almost all forest
types, but outliers seem to occur more frequently in plots with low
dominant stand heights.

5.2. Hybrid model robustness

Our hybrid model for selecting pre-processing filters showed a stable
performance and similar performance values for both the calibration
and validation data. This suggests a robust model with a low degree
of over-fitting. Based on the underlying linear regression models, the
classical forest structure variables like the dominant height, DLT, and
different degrees of cover have shown to be of high importance for most
of the pre-processing filters. Additionally, the northness and the altitude
above sea level derived from the digital height model were important
in most cases. Several of the model variables are similar to variables
used by (e.g. Koch et al., 2006; Heinzel et al., 2011; Ene et al., 2012;
Zhen et al., 2015).
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Fig. A.6. An example of the LM detection results using different pre-processing filters. The displayed NFI reference plot (shown by the two circles) is situated in a forest with
approx. 60% coniferous trees.
Our model exhibited very similar performance for a wide range of
method combinations during the exploration of different pre-processing
filter combinations. Given the large number of different reference plots
and the variability in the input data, we consider the observed model
performance and the obtained detection results to be valuable comple-
mentary datasets. The country-wide application of the hybrid model
took 16 days on a Dell PowerEdge R640 server with two Intel Xeon
Gold 6152 CPU (total 44 cores) and 448 GB memory. The resulting data
can now be used in a range of modeling applications that require data
on stem counts and forest structure over large areas, such as natural
hazard process models that simulate interactions with single trees or
forest growth models.
9

6. Conclusion

We conclude that the hybrid model improved the detection per-
formance by consistently reducing the detection errors by at least
50%, with a slight trend towards over-detection. Thereby, the model
performed equally well for different dominant leaf types (broadleaved-
dominated, mixed, coniferous-dominated) and for different degrees of
cover. We attribute the stable performance to the good quality of the
calibration data, that comprised a large number of reference plots
with a wide variety of forest structures. We consider the hybrid model
to be suitable for applications that require data on forest structure
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or individual tree positions and heights over large areas. Especially
for areas with diverse forest structures, the application of our model
provides an overall improvement of detection results compared to a
simple detection without CHM pre-processing.
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