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Abstract. Snow-layer segmentation and classification are es-
sential diagnostic tasks for various cryospheric applications.
The SnowMicroPen (SMP) measures the snowpack’s pene-
tration force at submillimeter intervals in snow depth. The re-
sulting depth–force profile can be parameterized for density
and specific surface area. However, no information on tra-
ditional snow types is currently extracted automatically. The
labeling of snow types is a time-intensive task that requires
practice and becomes infeasible for large datasets. Previous
work showed that automated segmentation and classification
is, in theory, possible but cannot be applied to data straight
from the field or needs additional time-costly information,
such as from classified snow pits. We evaluate how well ma-
chine learning models can automatically segment and clas-
sify SMP profiles to address this gap. We trained 14 mod-
els, among them semi-supervised models and artificial neural
networks (ANNs), on the MOSAiC SMP dataset, an exten-
sive collection of snow profiles on Arctic sea ice. SMP pro-
files can be successfully segmented and classified into snow
classes based solely on the SMP’s signal. The model com-
parison provided in this study enables SMP users to choose a
suitable model for their task and dataset. The findings pre-
sented will facilitate and accelerate snow type identifica-
tion through SMP profiles. Anyone can access the tools and
models needed to automate snow type identification via the
software repository “snowdragon”. Overall, snowdragon cre-
ates a link between traditional snow classification and high-
resolution force–depth profiles. Traditional snow profile ob-
servations can be compared to SMP profiles with such a tool.

1 Introduction

The cryosphere covers around 10 % of our Earth and plays
a significant role in stabilizing the Earth’s climate (IPCC,
2022). Snow cover plays a role in optics, heat, and mass
balance and is one of the most significant uncertainties in
global climate models (Sturm and Massom, 2017; Steger
et al., 2013; Douville et al., 1995). Snow layer segmenta-
tion and classification put forth knowledge about the atmo-
spheric conditions a snowpack has experienced (Colbeck,
1987; Fierz et al., 2009). This knowledge helps to discern
fundamental snow and climate mechanisms in the Arctic
and to analyze polar tipping points. Classification of snow
types (also referred to as “snow grain type” or “grain type”
in the community) is essential to assess the state of our
cryosphere. It is thus of interest for polar, cryospheric, and
climate change research (Domine et al., 2019; King et al.,
2015; Sturm and Liston, 2021). Snow type is often better
reproduced in detailed snow cover models (Vionnet et al.,
2012) than their effective physical properties, especially in-
directly structural anisotropy (King et al., 2015). This is es-
pecially relevant for active and passive microwave sensing,
essential to map the Arctic snowpack during polar night
(Sandells et al., 2023).
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Traditionally, snow stratigraphy measurements are made
in snow pits. These pits are dug manually into snowpacks,
requiring trained operators and a substantial time commit-
ment. To accelerate these measurements, the SnowMicroPen
(SMP), a portable high-resolution snow penetrometer, can be
used (Johnson and Schneebeli, 1998). It has been demon-
strated that the SMP is a capable tool for rapid snow type
classification and layer segmentation. The measurement re-
sults are stored in an SMP profile that consists of the penetra-
tion force signal of the measurement tip in newtons and the
depth signal indicating how far the tip moved. Afterwards,
the SMP profiles must be manually labeled by an expert,
which requires time and practice.

To address these shortcomings, machine learning (ML) al-
gorithms could be used to automate the labeling process. In-
stead of manually labeling each SMP profile, an ML model
can be trained on a few labeled profiles and subsequently re-
produce the labeling patterns on other profiles. As a conse-
quence, this would (1) immensely accelerate the SMP analy-
sis, (2) enable the analysis of large datasets, and (3) support
interdisciplinary scientists that are unfamiliar with snow type
categorization.

Such an automatic classification of SMP profiles helps to
find layers with shared properties within a large SMP dataset.
By reproducing a trained labeling pattern on new profiles
with ML, SMP classification is upscaled. While it is impos-
sible to manually label and analyze a dataset of thousands
of SMP profiles, an ML-assisted classification enables us to
conduct completely new analyses. Questions like “How does
a typical snow layer in the Arctic look?” suddenly move
within reach. Statistical analyses of signal and layer types
rely on consistent, large, and fully labeled SMP datasets.

Several previous works have addressed automatically clas-
sifying snow types with machine learning algorithms. The
nearest-neighbor method of Satyawali et al. (2009) was the
first model that automated the segmentation and classifica-
tion of SMP profiles without needing additional snow pit in-
formation. To assign a snow type to an unlabeled data point,
the method chooses the most frequent class occurring in the
neighborhood of this data point. The neighborhood contains
the most similar points to the unlabeled data point. Their
algorithm predicts five different snow types (“new snow”,
“faceted snow”, “depth hoar”, “rounded grains”, “melt–
freeze”), with an accuracy ranging from 0.68 to 0.94. How-
ever, this high performance is only achieved by integrating
specific and inflexible expert rules. For example, one rule
ensures that no faceted snow, depth hoar, or rounded grains
occur between layers of new snow, but precisely this hap-
pens under certain circumstances, as they point out. Hard-
coded rules might improve the performance of one dataset,
but they cannot capture all phenomena and will not general-
ize well to other datasets. The performance results are also
limited by the fact that their testing set consists of only three
SMP profiles; i.e., it is not clear how representative their re-
sults are. In addition, their results can hardly transfer to the

real-world setting because they explicitly exclude any mixed
snow type layers. Suppose an automatic segmentation and
classification algorithm will work with profiles straight from
the field. In that case, this algorithm should be able to han-
dle mixed classes and diverse snow phenomena and be thor-
oughly tested.

Havens et al. (2013) worked with random forests and sup-
port vector machines (SVMs) to classify SMP profiles. They
used previously segmented SMP profiles and classified the
snow type of each layer with the help of a random forest
model. They build upon their previous work with single de-
cision trees (Havens et al., 2010). They trained the model
on three different snow types (new snow, rounded grains,
faceted grains), achieving error rates between 16.4 % and
44.4 % (depending on the dataset). Notably, Havens et al.
(2013) requires profiles that have been manually segmented
beforehand. Since this is done manually, this takes a consid-
erable amount of time, raising the question as to what ex-
tent the task has been “automated”. Only layers larger than
100 mm (sometimes 20 mm) could be considered due to man-
ual segmentation. In the field, particularly for avalanche risk
assessment (Lutz et al., 2007), it is important to detect lay-
ers only a few millimeters thick. Improving on the work of
Havens et al. (2010) would thus include more snow types,
thinner layers, and no need for manual segmentation.

More recently, King et al. (2020a) trained SVMs on SMP
force signals and manual density cutter measurement. Both
segmentation and classification are conducted automatically.
They distinguish three types of snow grains (“rounded”,
“faceted”, and “hoar”) and achieve classification accuracies
between 0.76 and 0.83. The profiles were collected on Arc-
tic ice in the same region, which means that the profiles
might be more homogeneous than in other datasets. In the-
ory, the model’s generalizability could be enhanced by train-
ing it on additional, broader datasets. Most importantly, the
SVM method by King et al. (2020a) relies on additional man-
ual density cutter measurements and time-intensive snow pit
measurements that are not always available. Thus, similarly
to Havens et al. (2013), more snow types would make the
work more applicable in the field and eliminate the necessity
of additional manual density cutter measurements. In sum-
mary, previous work showed that supervised machine learn-
ing algorithms are a promising pathway to automatic snow
grain categorization.

While all these works put forward the task of automated
SMP analysis, SMP users still lack a method that can be
used in practice. Users need a model that fully automates
their SMP analysis (1) without the need of digging a snow
pit, (2) picking layers manually, or (3) constructing specific
knowledge rules. Furthermore, SMP users need models to
deal with SMP profiles from the field. This implies that (4)
the profiles have multiple snow types (more than three) and
that (5) no layers are excluded. This study aims to provide
models that fully automate SMP analysis and can directly be
used, addressing all five mentioned needs.
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To this end, we implemented 14 different machine learning
(ML) models and compared their performance on the MO-
SAiC SMP dataset, consisting of 164 labeled profiles (see
Fig. 1) (Kaltenborn et al., 2021). We provide the first com-
parable performance overview of different models classify-
ing and segmenting SMP profiles. Moreover, we used semi-
supervised methods and artificial neural networks (ANNs)
for SMP classification.

Results show that especially artificial neural networks
(ANNs), such as the long short-term memory (LSTM) and
encoder–decoder, can produce predictions similar to profiles
labeled by experts and achieve the best results among all
models. However, the choice of the model depends mostly
on the individual needs of an SMP user because factors such
as explainability, desired sensitivity to rare classes, available
time, and computational resources must be considered.

The work presented here is a methodological contribution.
We provide insights into which ML algorithms can be used to
automatically and consistently classify large SMP datasets.
Our findings can be applied to different SMP datasets or sim-
ilar data. The more fine-grained contributions of this study
are as follows:

– demonstration that SMP profiles straight from the field
can be automatically segmented and classified without
manual preparation of the profiles or additional snow-
pit data after training on a smaller set of SMP profiles,

– evaluation of semi-supervised models and ANNs for
SMP classification,

– detailed comparison of different ML models for SMP
classification,

– use of the snowdragon repository that provides the tools
to automate SMP labeling.

In the following section (Sect. 2) the data, the classifi-
cation task, and the 14 different models used in this study
are described. In Sect. 3, the models’ performances are pre-
sented. Subsequently, the results, their limitations, and future
work are discussed in Sect. 4. The impact of this work is ad-
dressed in Sect. 5. The code and data availability is outlined
directly after the conclusion, and a detailed guide on how to
use snowdragon with your SMP dataset can be found in Ap-
pendix A.

2 Methods

2.1 Data

All experiments throughout this study use snow data col-
lected during the MOSAiC expedition (October 2019–
September 2020) (Nicolaus et al., 2022). The snow pit mea-
surements conducted include SMP profiles, micro-computer
tomography (Micro-CT) (Coléou et al., 2001), and near-
infrared (NIR) photographs (Matzl and Schneebeli, 2006).

Collecting snow profiles on Arctic sea ice is especially chal-
lenging because (i) only a few hours were available to per-
form all measurements within one snow pit and (B) the mea-
surements must be conducted with wind velocities up to
25 m s−1 and temperatures of −30 ◦C. Changing personnel,
i.e., different operators, were conducting the snow pit mea-
surements. As a result, traditional stratigraphy analysis and
in situ snow grain classification from snow pits carry opera-
tor biases. Merkouriadi et al. (2017) could measure only 27
snow pits with stratigraphy under similar conditions.

In contrast, during the MOSAiC expedition, several thou-
sand (3680) SMP profiles were collected. Out of the 269
snow pit events that included SMP measurements, 102 had
NIR measurements and 103 had micro-CT profiles collected
simultaneously. A total of 71 snow pit events had all three
measurements (SMP, NIR, and micro-CT). We encountered
8 different snow types. Refer to Fierz et al. (2009) for de-
scriptions of the different snow types referenced here and a
classification guideline for snow particles that were visually
observed.1

The main measurements collected were signal profiles
from the snow micropenetrometer since it provides profiles
quickly with little physical labor and independent of the per-
son that measures them. Of the 3680, 164 profiles from the
cold season (January–May 2020) were labeled and evaluated
here (see Fig. 1). The labels expressed by color in Fig. 1 in-
dicate which snow type is found at the respective position of
the profile. In this study, we focus only on profiles of cold
snow that is not experiencing melt, as no standardized in-
terpretation of SMP force profiles exists for wet snow. All
profiles collected in the cold season are referred to as “MO-
SAiC winter data” in the following. Micro-CT and NIR data
were recorded whenever possible to validate the subsequent
labeling of the SMP profiles. More details on the collection
methods can be found in Macfarlane et al. (2023). A com-
parison of these instruments can be seen in Appendix B in
Fig. B2.

The labeling of the SMP profiles was conducted by two
snow experts and is based on the properties of the force sig-
nal (magnitude, frequency, and gradient) and the signature of
the SMP signal. The labeling procedure is described in detail
in Appendix B, building upon the notion and observations of
(Schneebeli et al., 1999). The first labeling phase was con-
ducted by one expert, and in the second phase, two experts
revisited the profiles to ensure consistent labeling. The label-
ing process involves using Micro-CT samples and NIR pho-
tography to validate the snow types identified from the force
signal where possible. When assigning the labels to the SMP
profiles, we lean to the abovementioned international classi-
fication guideline of seasonal snow on the ground Fierz et al.
(2009). However, we regard the labels assigned to the SMP
signals as mere approximators. During the labeling process,

1Fierz et al. (2009) refer only to visually observed snow grains
and not to SMP signals.
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Figure 1. All 164 labeled SnowMicroPen (SMP) profiles used for training, validation (80 %), and testing (20 %). Each bar represents one
SMP profile. The colors encode the different snow types. The top of each bar is the air–snow interface, while the bottom is the profile’s snow–
ground interface. The inset image illustrates the force signal (grey) and the mean force signal (blue) of a single SMP profile (S31H0368).
The snow–air interface is on the left, and the bottom of the profile is on the right. The background shading in the inset panel and the colors
in the main panel represent the labeling of the profiles.

signal types are grouped together, and we infer from Micro-
CTs which snow type matches each group best. Since we
seek a language that is common to the snow community, we
are using the labels provided by Fierz et al. (2009) where
possible. Since Fierz et al. (2009) focuses on Alpine snow
and does not cover all snow types on Arctic sea ice, such
as different forms of depth hoar (further details are given
in Appendix B), we extend those labels where necessary.
The resulting labeled profiles were used during training, test-
ing, and validation, while some unlabeled profiles were used
for semi-supervised models and out-of-distribution tests. Up-
scaling consistent labeling of SMP profiles is exactly the type
of task that ML algorithms can tackle.

We preprocessed each SMP profile and the complete la-
beled dataset. The surface and the ground of the profiles
were detected automatically by the snowmicropyn package
(https://snowmicropyn.readthedocs.io/en/latest/, last access:
3 August 2023). For each SMP profile, we replaced negative
force values with 0; summarized the signal into bins (1 mm);
and added mean, variance, maximum, and minimum force
values for those bins. Those values were also determined for
a 4 mm and 12 mm moving window. Moreover, the Poisson
shot noise model of Löwe and Van Herwijnen (2012) was
used to extract δ, f , L, and the median force value for a 4
and 12 mm window. We added further depth-dependent in-
formation, including the distance from the ground and posi-
tion within the snowpack for each data point. Refer to Table
C1 in Appendix C for an overview of all features used for
each SMP profile and to Fig. C1 to see the feature impor-
tance for each snow type.

We preprocessed the complete labeled dataset by nor-
malizing it, removing profiles from the melting season, and
merging snow classes. For example, “decomposed and frag-
mented precipitation particles” are merged with the class
“precipitation particles” since they represent a similar type
of snow. The few occurring ice formations and surface hoar
instances in the MOSAiC dataset are summarized in the class

“rare”. While a high classification performance cannot be ex-
pected for the rare classes, we still include them to show how
the models perform on a “real-world dataset” that in most
cases will also include classes with few occurrences. The
data preprocessing ensures that the dataset is clean and that
all necessary information, such as depth-dependent informa-
tion, is available during classification.

The resulting dataset has the following properties. (1)
There are multiple noisy and overlapping classes. (2) There is
a between-class imbalance; i.e., some snow types occur much
more frequently than others. (3) There is a within-class im-
balance; i.e., some grain classes contain different sub-grain-
classes, but some of them are more frequent than others. (4)
The labeling of classes is afflicted with uncertainty; i.e., snow
experts themselves are not sure to which class exactly some
data points belong. The complexity of the dataset compli-
cates classification and lowers the maximum achievable ac-
curacy.

2.2 Task description

We compare the capabilities of different models to classify
and segment the profiles of the MOSAiC winter SMP dataset.
To this end, the models first classify each data point of the
signal and then summarize the classified points into distinct
snow layers (“first-classify-then-segment”). This task can be
solved with different learning and classification techniques.

The task can be addressed via independent classification
or sequence labeling. In independent classification, each in-
dividual point is classified independently, without looking at
other data points. The underlying assumption is that each in-
dividual data point carries enough information to be classi-
fied solely on that basis. In contrast, sequence labeling as-
sumes that the data are an intra-dependent sequence, where
the label of each data point also depends on the preceding
labels (Nguyen and Guo, 2007).

Geosci. Model Dev., 16, 4521–4550, 2023 https://doi.org/10.5194/gmd-16-4521-2023
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The models can follow either the supervised, unsuper-
vised, or semi-supervised learning regime. In supervised
learning, labels are provided to learn an input–output map-
ping function (Russell and Norvig, 2021). In unsupervised
learning, patterns and structure are found in unlabeled data
(Ghahramani, 2004); however, no classification is possible,
which is why no unsupervised models are employed here.
Instead, semi-supervised models are used, which are able to
find structures in sparsely labeled data and leverage this in-
formation during classification. In the following, all models
employed in this work are shortly presented and put in the
context of their learning and task type.

2.3 Models

The majority vote classifier is used as the baseline for the
performance comparison and simply predicts always the ma-
jority class (“rounded grains wind packed”). It satisfies the
criteria that a baseline should not require much expertise, be
easy to build, and be quick to evaluate (Li et al., 2020).

The cluster-then-predict models employed in this study
can be separated into three different semi-supervised and in-
dependent classification models. Unsupervised methods are
used to find clusters in the dataset, and a supervised model
is subsequently used to assign labels to the cluster (Soni
and Mathai, 2015; Trivedi et al., 2015). As an unsupervised
model, k-means clustering (Forgy, 1965; Lloyd, 1982), mix-
ture model clustering (GMM) (Bishop, 2006), and Bayesian
Gaussian mixture models (BGMM) (Bishop, 2006) were
used. The supervised part of the model is a simple major-
ity vote within the clusters in order to see if the unsuper-
vised model adds enough information to beat the majority
vote baseline.

Label propagation is a graph-based, semi-supervised, and
independent classification algorithm. It propagates the labels
of labeled data points to unlabeled ones (Zhu and Ghahra-
mani, 2002). Here, a modified version of this algorithm by
Zhou et al. (2003) is used (also known as “label spreading”)
(Yoshua et al., 2006; Pedregosa et al., 2011).

Self-trained classifiers turn a given supervised classifier
into a semi-supervised independent classifier. It follows an
iterative approach of training a supervised model on labeled
data, predicting more data with the model, and retraining the
model with the most confident predictions (Yarowsky, 1995).

Random forests (RFs) are ensembles of diversified deci-
sion trees (supervised and independent classification). The
diversification happens via tree and feature bagging, where
only subsets of data or features are used during training (Ho,
1995; Breiman, 2001). Decision trees are simple-to-build,
explainable, white-box classifiers, and for these reasons they
are among the most popular machine learning algorithms
(Wu et al., 2008). Additionally, a balanced random forest was
used with random undersampling to balance the data (Chao
et al., 2004).

Support vector machines (SVMs) construct a hyperplane
in a high-dimensional space to solve binary classification
tasks (Cortes and Vapnik, 1995; Han et al., 2012) (supervised
and independently). When a problem is nonlinearly separa-
ble, the input data can be projected into a higher-dimensional
space until the problem becomes linearly separable. The ker-
nel trick can be used to circumvent the computationally ex-
pensive data transformation involved here. It directly ex-
tracts a nonlinear optimal hyperplane (Schölkopf and Smola,
2002).
K-nearest neighbors (KNN) is a local, non-parametric

classification method that compares samples and classifies
new samples based on their k-nearest training data points
(supervised and independently). The class of the prediction
sample is determined via a majority vote (Fix and Hodges,
1952; Cover and Hart, 1967).

Easy ensemble classifiers are ensembles of balanced adap-
tive boosting classifiers (supervised and independent). The
method is especially helpful for imbalanced datasets since
the learners are trained on different bootstrap samples, which
are balanced via random undersampling (Liu et al., 2008).

Long short-term memories (LSTMs) are a form of artifi-
cial neural networks (ANNs) and can perform supervised se-
quence labeling tasks. ANNs incrementally update their de-
cision function that describes the decision boundary between
classes. ANNs have different nodes, which can be seen as
representing different parts of the functions that are weighted
differently. During training, the weights of the ANN are opti-
mized by minimizing a loss function via gradient descent. A
long short-term memory can handle time series data. It con-
sists of different memory cells so the LSTM can forget infor-
mation that is no longer needed, remember information that
is required for future decisions, and retrieve information that
is required for current decisions (Hochreiter and Schmidhu-
ber, 1997; Jurafsky and Martin, 2021).

Bidirectional LSTMs (BLSTMs) connect two independent
LSTMs, where the first LSTM processes the inputs forward,
and the second one processes the inputs backwards. The out-
puts of both LSTMs are connected to one output. This archi-
tecture is helpful when the dependencies of a time series go
in both time directions, which is the case for snow profiles
(Schuster and Paliwal, 1997; Jurafsky and Martin, 2021).

Encoder–decoder networks consist of an ANN encoder
that compresses the time-dependent information into a vector
and a decoder that uses this information to solve a supervised
sequence labeling task. Additionally, the attention mecha-
nism can be used to strengthen the ability to learn long-term
dependencies by focusing only on the parts of the input se-
quence that are relevant for the current time step (Bahdanau
et al., 2014; Jurafsky and Martin, 2021).

2.4 Evaluation

In this work, (1) the performance of different models is com-
pared, (2) differences in the classification of different snow
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types are analyzed, and (3) the generalization capability of
the best-performing model is examined. (1) The performance
comparison is done by looking at the metrics of each model
and the specific predictions on the test dataset. The metrics
used here are accuracy, balanced accuracy, weighted preci-
sion, F1 score, area-under-the-receiver operating character-
istic (AUROC), log loss, fitting, and scoring time (see Ap-
pendix D for further explanations). (2) The label-wise perfor-
mance is analyzed with the help of label-wise accuracy plots
and receiver operating characteristic (ROC) curves. ROC
curves plot the true-positive rate versus the false-positive
rate. The higher the area under the ROC curve, the clearer
the model can separate between positive and negative sam-
ples. (3) The generalization capability is tested by running
the best-performing model on 100 random profiles from dif-
ferent parts of MOSAiC winter data. These profiles are out-
side of the distribution of the training, validation, and testing
data, and we refer to them as “out-of-distribution profiles”.
Here, the out-of-distribution profiles contain the same classes
as the training data, so the model still has a chance to pre-
dict the correct labels. Evaluating these three aspects ensures
that users can choose a model and know (1) how it performs
compared to other models, (2) what to expect from the snow-
type-specific predictions, and (3) how robust a chosen model
will be.

2.5 Experimental setup

The experimental setup includes a training, validation, and
testing framework: roughly 80 % of the labeled dataset is
used for training and validation, while the other 20 % is set
aside for testing. Validation is realized as 5-fold cross val-
idation (Stone, 1974). The hyperparameters were tuned on
the validation data and the best hyperparameters found were
used during testing.

Hyperparameter tuning is the process of searching the op-
timal internal learning settings of an ML model. Hyperpa-
rameters control the learning process of the models, whereas
parameters are learned by the model. The tuning is performed
on the validation data and the hyperparameters that achieve
the highest performance for their model chosen for subse-
quent model evaluation. Here, tuning was applied moder-
ately and with a simple grid search. All tuning results can
be found in the GitHub repository. Specifications of the ma-
chine on which the experiments were run can be found in Ap-
pendix E and descriptions of the model setup can be found in
Appendix F.

3 Results

3.1 Classification performance of models

Overall, the results show that an automatic classification and
segmentation of SMP profiles with ML algorithms is possi-
ble, even if no further information such as snow pit data or

manual segmentation is provided. Category wise, all semi-
supervised models were not performing particularly well (see
Table 1). Only the self-trainer could compete with models
from other categories, but this might be the case because the
self-trainer is based on a balanced random forest. The su-
pervised models achieved mixed performances. Some mod-
els such as the random forests and the SVM are clearly per-
forming well, whereas other models such as the KNN and
the easy ensemble are underperforming. Overall, the random
forest was the best model in the supervised category since it
achieves the highest absolute accuracy (0.73) and F1 score
(0.73). However, considering rare classes, the balanced ran-
dom forest outperformed the plain random forest. All three
ANNs did exceptionally well, and their category was clearly
the most successful among all three categories. The encoder–
decoder showed the best scores among all models in terms of
absolute accuracy, precision, and F1 score, closely followed
by the LSTM. We consider the LSTM to be the best model
within that category since the encoder–decoder only reached
its high performance after extensive hyperparameter tuning
and underperformed significantly when not tuned well. In
contrast, the LSTM achieved its performance more consis-
tently, even under moderate hyperparameter tuning, and it is
thus more suitable for users. The subsequent analyses com-
pare the three models that performed best within their cate-
gory: the LSTM performed best among the ANNs, the ran-
dom forest among the supervised models, and the self-trainer
among the semi-supervised models.

Different ML models exhibited different prediction styles
in terms of smoothness and ability to predict rare classes. In
Fig. 2 it becomes visible that the models’ predictions are not
far off from the labels. In general, the predictions are some-
what similar to the labeled profiles, but the models often had
difficulties in determining the precise start and end of a seg-
ment. Looking at three random exemplary profiles of the test
data in Fig. 3, one can see that the three main models seem
to not only generate similar predictions but also make simi-
lar mistakes. In the medium-depth profile (middle column),
all three models predicted a longer segment of depth hoar
that was not present in the labeled profile. In the shallow
profile, all three models predicted some intermediate “depth
hoar wind packed” layers in the first third that did not ex-
ist. In the deep profile, all three models miss the narrow in-
termediate depth hoar layer. In summary, it becomes appar-
ent that the different models are producing consistent predic-
tions to a certain degree. There are of course also significant
differences among the models. First, the LSTM is closest
to the labeled profiles (see Fig. 3). Second, the LSTM pro-
vided much smoother and less fragmented predictions than
the other two models. Third, the self-trainer clearly overesti-
mates rare classes, which hurts the overall performance. To
summarize, the LSTM, random forest, and self-trainer show
certain prediction similarities among each other; however,
the LSTM imitates expert labeling best.
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Table 1. Results of different models from the categories baseline, semi-supervised, supervised, and ANN. The best values among all models
are given in bold. The second-best values among all models are given in italics. The best values among one category are underlined. The area
under the curve (AUC) of the receiver operating characteristic (ROC) and logistic loss (log loss) could not be determined for the baseline and
some of the semi-supervised models due to the design of these models.

Category Model Absolute
accuracy

Balanced
accu-
racy

Precision F1
Score

ROC
AUC

Log
loss

Fitting
time

Scoring
time

Baseline Majority vote 0.39 0.14 0.15 0.22 not a
num-
ber
(nan)

nan < 1 <

10−3

Semi-
supervised

K-means 0.62 0.44 0.60 0.61 nan nan 385 0.01
GMM 0.65 0.36 0.57 0.61 nan nan 151 0.008
BGMM 0.65 0.38 0.63 0.63 nan nan 225 0.009
Self-trainer 0.69 0.67 0.74 0.71 0.92 0.84 19 0.29
Label propagation 0.71 0.54 0.72 0.71 0.92 1.5 10 3.35

Supervised

Random forest 0.73 0.60 0.73 0.73 0.93 0.70 72 0.97
Balanced RF 0.70 0.67 0.74 0.71 0.92 0.84 9.9 0.58
SVM 0.71 0.66 0.73 0.71 0.93 0.67 19 7.45
KNN 0.71 0.54 0.71 0.71 0.89 3.58 <1 1.84
Easy ensemble 0.62 0.59 0.70 0.64 0.88 1.66 46 42.5

ANNs
LSTM 0.75 0.58 0.75 0.75 0.94 0.63 349 2.3
BLSTM 0.74 0.58 0.74 0.73 0.93 0.79 975 3.4
Encoder–decoder 0.78 0.54 0.78 0.77 0.94 0.64 2911 5.8

3.2 Classification difficulty of snow types

Figure 4 shows that some snow types are easier and others
are harder to classify. The label-wise accuracy seems to be
influenced by the following factors: (1) choice of model, (2)
the frequency of snow type in the dataset, and (3) the snow
type itself. Within one snow type category, the models per-
form differently; however, some snow types seem to be eas-
ier, while others are more difficult to classify for all models.
For example, rounded grains wind packed achieved a high
accuracy among all models, whereas depth hoar wind packed
achieved a low accuracy among all models. This could be
partially attributed to the fact that there are fewer samples
available for depth hoar wind packed. However, the snow
types themselves seem to influence the classification diffi-
culty as well: the precipitation particles class achieves high
accuracy values among some models, despite the fact that it
is the rarest class in the dataset. For some snow types, some
models are able to access certain information, enabling a high
performance for that particular snow type that is indepen-
dent of its frequency. This means that the classification diffi-
culty does not solely depend on the number of available sam-
ples. Instead, several other underlying characteristics deter-
mine the classification of difficulty of each snow type as well,
most notably (1) the initial classification, which is not always
consistent; (2) the underlying micro-mechanical properties,
i.e., some snow types have characteristic force signals that

separate them more clearly from others; and (3) the training
dataset, since it does not cover all types of force signals.

Depending on the model, a higher accuracy score could
lead to a lower precision score for a label (accuracy–
precision trade-off). The ROC curve in Fig. 5 illustrates this
relationship between the true-positive and false-positive rates
for the different snow types and their averaged performances.
It becomes apparent that both the snow type and the choice
of model influence the accuracy–precision trade-off. For ex-
ample, the rare class seems to be difficult to classify both
accurately and precisely for all models, whereas precipita-
tion particles show an almost perfect ROC curve. If one is
interested in choosing a model that performs well for a par-
ticular snow type, these ROC curves can reveal which model
is most suitable. To get even more detailed label- and model-
wise insights, refer to the confusion matrices in Appendix H.
Both the LSTM and the random forest achieve an area un-
der the ROC curve of 0.96. However, on average (see Fig. 5,
dotted pink line), the LSTM outperforms the self-trainer and
random forest and is thus most suitable for general classifi-
cation tasks.

3.3 Generalizability

The prediction of the LSTM for 100 random profiles outside
of the training and testing distribution is shown in Fig. 6.
Since the labeled profiles are not yet available for these pre-
dictions, the generalization capabilities can only be evalu-
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Figure 2. Predictions on the test dataset of the LSTM, random forest, and self-trainer. The upper-left panel shows the labeled data. In the
other panels, the correct predictions are shown with more intense colors and the wrong predictions with less intense colors. The LSTM has
the highest rate of correct predictions and imitates the smoothness of the labeled data very well. The random forest does well but provides
more segmented predictions. The self-trainer immensely overestimates rare classes.

ated on the basis of what seems “reasonable”. Melted form
depth hoar appears only at the ground of the profiles, precip-
itation particles appears only at the top, and rounded grains
wind packed appears mostly at the top and rather deep – these
are all reasonable predictions. However, there are also some
predictions that are not reasonable or at least unexpected:
the left profile consists almost entirely of depth hoar wind
packed, sometimes depth hoar wind packed appears right be-
fore melted form depth hoar, and rounded grains wind packed
sometimes appears briefly in the “middle” of a profile (and
not at the top). Overall, the LSTM seems to make mostly rea-
sonable predictions; however, an in-depth expert analysis of
the predictions is necessary to validate that further.

4 Discussion

The results showed that the automatic classification of SMP
profiles is possible with up to 78 % accuracy. In the follow-
ing, the nature, impact, and limits of these results are dis-
cussed.

The metrical results presented are in line with previous
findings. King et al. (2020a) reported an overall accuracy
score of 0.76 when using SVMs and additional snow pit
information to classify three snow types. Satyawali et al.
(2009) achieved an average accuracy of 0.81 when using
the nearest-neighbor approach and knowledge rules to clas-
sify five snow types. However, these results stem from only
three profiles and are not representative. Havens et al. (2013)
achieved an accuracy of maximal 0.76 (global dataset) when
using random forests and time-intensive manual layer seg-
mentation to classify three snow types. The major differ-
ence from these previous results is that the accuracy results
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Figure 3. Model predictions for three randomly chosen SMP profiles. The first row represents the labeled profiles (with force signal).
The subsequent rows represent the LSTM, random forest, and self-trainer predictions, with the red bar indicating wrong predictions. Each
column shows a different profile randomly chosen from the test data (shallow profile: S31H0276; medium profile: S31H0206; deep profile:
S49M1918). All three models seem to make similar mistakes, e.g., they predict a larger portion of depth hoar at the end of the medium SMP
profile. The predictions of the LSTM are closest to the labeled profiles.

Figure 4. Label-wise accuracy of all models. Each model is encoded with a different color. The most frequent label is on the left of the
x axis (rounded grains wind packed), and the least frequent is on the right (precipitation particles). The rare class was dropped. Each bar
represents the accuracy for a single snow type. The dotted lines show the overall accuracy performance of each model. The encoder–decoder,
the BLSTM, and the LSTM achieved the highest accuracy values. For all models, some classes are more difficult to classify than others, e.g.,
depth hoar indurated and depth hoar wind packed. Some classes are easier to classify than others, such as rounded grains wind packed. Some
classes can only be classified well by a subset of the models, such as precipitation particles and melted form depth hoar.

of this study were achieved for seven snow types, without
time-intensive layer picking, snow pit digging, or additional
knowledge rules. This means that in contrast to previous
work, the models here can be directly employed by users
for their own SMP datasets in the field: simply retrain and
predict. For this, they only need to provide a set of training
samples for their specific dataset and classification style. The
work presented here enables scientists for the first time to

rely on fully automated ML SMP profile classification and
segmentation.

The results were also satisfying to domain experts since
the predictions were consistent within themselves and fol-
lowed the patterns of the training data. In general, the snow-
pack on sea ice is extremely variable, and the traditional
snow types are often a mixture of different features. This
becomes visible when comparing the SMP profiles to the
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Figure 5. ROC curves of the LSTM, random forest, and self-trainer for each class. The dotted lines are the micro- and macro-averaged ROC
curves. The macro-average calculates the ROC for each class and averages the performances afterwards. The micro-average weights the
performance according to class contribution (balanced performance results). The LSTM achieves the highest ROC performance overall. The
order of the best-performing snow types is similar among all models. The rare and depth hoar indurated classes have the lowest ROC areas,
whereas the precipitation particles class has the highest ROC area for all models.

micro-CT samples. In the view of the authors, a temporally
consistent classification is more relevant to the interpretation
of the development of the snowpack, even if there is a cer-
tain, but unknown, bias to an expert interpretation. Hence, the
models were in practice also helpful when analyzing Arctic
snowpack development.

4.1 Classification performance of models

Each model category performs differently because each
model takes different aspects of the data into account. Semi-
supervised models try to take unlabeled data into account to
improve their predictions; however, this did not work well
in our context. The most likely reason for the overall under-
performance of this category is that the unlabeled data con-
tained out-of-distribution data, i.e., the unlabeled data had
different underlying mechanisms than the labeled data (dif-
ferent parts of the winter season). Another reason might be
that only a small subset of unlabeled data were included in
order to limit running times. Moreover, the poor performance
of the cluster-then-predict models is most likely also a result

of the classifier used after clustering: a more sophisticated
method than a majority vote classifier is needed here.

The simple supervised models take one data point after the
other into account and do not consider time series structures
within the data. The algorithms used in all previous SMP au-
tomation studies fall into this category. In contrast, ANNs are
supervised models that take the underlying time sequence of
the data into account. While the supervised model in general
performed well, they were still clearly outperformed by the
ANNs. A likely reason why the ANNs outperformed all the
other models is precisely the ANNs’ ability to process time-
dependent – or in the case of snow profiles depth-dependent
– information. ANNs are tackling the classification task as
a sequence labeling task, which enables them to include in-
formation from the order and position of snow layers. The
supervised models still have access to time-relevant infor-
mation (time window features; see Appendix C1); however,
they do not have any ability to learn time-based informa-
tion (what should be remembered and forgotten). Besides,
the ANNs learn to imitate the training set, leading to smooth
and expert-like predictions. In comparison, taking the time
component of SMP signals into account has not been done
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Figure 6. LSTM SMP profile predictions on out-of-distribution data. The SMP profiles used here come from different legs of the MOSAiC
expedition than the training, validation, and test data. The profiles used here still stem from the winter season to ensure that the same set of
snow types can be used as in the training dataset. The distribution of the predicted profiles looks convincing, with only a few profiles standing
out as certainly wrong predictions (e.g., the rightmost profile with ∼ 90 % depth hoar wind packed).

in previous methods, and we argue that it adds a major infor-
mation piece and boosts the overall prediction performance
significantly.

Each model exhibits a different prediction style due to the
models’ intrinsic differences and thus might be suitable for
specific tasks. The following aspects are listed for consider-
ation (user’s guide).

A. Time and resources for hyperparameter tuning. The
LSTM and the encoder–decoder network are recom-
mended when plenty of tuning time is available. The
encoder–decoder network performs especially badly if
not tuned well. The SVM and the balanced random for-
est need little tuning time, whereas the random forest is
the go-to model in cases where (almost) no tuning time
can be provided.

B. Need for a simple to handle, off-the-shelf algorithm.
Among the high-performing models, the random forest
and the SVM are the easiest to handle off-the-shelf al-
gorithms with. The self-supervised algorithms and espe-
cially the ANNs require a somewhat deeper understand-
ing of the models and the ability to implement them.

C. Desired level of explainability. The random forests are
most explainable since the decision trees can be directly
visualized (Appendix G). The ANNs are the least ex-
plainable models (without further modifications).

D. Importance of minority classes. When deciding on a
model, the underlying task must be examined as well. In
the case of avalanche prediction, it might be essential to

predict a buried layer of surface hoar, a very uncommon
class, which needs to be detected no matter the costs. In
such a case of “minority class prediction,” the balanced
RF or the SVM should be employed. The ANNs and the
random forest, in contrast, are more suitable to achieve
an overall good classification.

E. Availability of unlabeled data that are from the same
distribution as the labeled data. In cases where a lot
of unlabeled data from the same distribution and time
are available, the self-trained classifier can be consid-
ered. The weak learner of the self-trained classifier can
be chosen according to the criteria listed above. Since
in this work we only had a small subset of unlabeled
data stemming from the same distribution as the labeled
data, further evaluations of the self-trained classifier and
label propagation remain open.

This highlights that there is not a single best model and that
users can instead deliberately choose a model that suits their
needs, such as overall accuracy, ability to predict rare classes,
explainability, training, and deployment time.

4.2 Classification difficulty of snow types

Snow types are difficult to classify since their categories
are continuous rather than discrete. This was also observed
in previous work, and in all previous work performances
were reported label-wise to account for those differences
(Satyawali et al., 2009; Havens et al., 2013; King et al.,
2020a). We performed t-distributed stochastic neighbor em-
bedding (t-SNE) on the SMP dataset to visualize how sepa-
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Figure 7. Two-dimensional t-distributed stochastic neighbor embedding (t-SNE) of SnowMicroPen (SMP) dataset. The colors encode the
snow types. The figure shows that (1) depth hoar and depth hoar indurated are hardly separable; (2) depth hoar wind packed is similar to
several other snow types; and (3) precipitation particles, melted form of depth hoar, and rounded grains wind packed can each be separated
more clearly from the other snow types.

rable the different classes are (see Fig. 7). The precipitation
particles class, for example, appears as a singled-out green
grouping, which is in line with our (and previous) findings
(Satyawali et al., 2009) that it is easier to classify than other
snow types. We conclude that some classes have features
distinguishing them more strongly from other snow types.
The rounded grain wind packed class behaves in a similar
way (Satyawali et al., 2009). However, some classes, such as
depth hoar and depth hoar indurated are completely overlap-
ping in Fig. 7, and indeed our models had problems with dif-
ferentiating between those two classes. Similarly, depth hoar
wind packed seems to overlap largely with rounded grains
wind packed and melted form of depth hoar. We theorize
that the reason for their non-separability is that those snow
types transform into each other during snow metamorpho-
sis. This means many data points can not be discretized into
one single category since they are on a continuous spectrum.
Satyawali et al. (2009) also pointed out that they often found
data points that were in transition between snow classes and
attributed this to the fact that the snow is changing continu-
ously. In conclusion, it is currently impossible to reach 100 %
classification accuracy on every snow type since some snow
types will always lie between categories.

Despite these difficulties, the underlying SMP signals are
still characteristic enough for specific snow types to be clas-
sified successfully. The different micro-mechanical proper-
ties of the snow types are reflected in the SMP signal and
are thus the driver for the classification. Some classes, such
as precipitation particles, can be clearly separated from oth-
ers since the bonding between the grains is so weak that the
force signal is very low. As long as precipitation particles do
not share this characteristic with other snow types, they can
be easily classified. Refer to Appendix B to learn more about
the relation between snow types and SMP signal, and refer to

Appendix G to see which classes have unique signal charac-
teristics and which classes have shared signal characteristics.

The classification difficulties also extend to the expert la-
beling process itself. The continuous nature of the snow types
makes it particularly difficult for domain experts to agree on
labeling, i.e., two different snow experts will produce two
different labeled and segmented profiles for the same SMP
measurement (Herla et al., 2021). This is another reason why
a classification accuracy of 100 % cannot be reached. One
might suggest supplementing the classification process with
additional observational data to make the process more “ob-
jective” (as we also do here). However, each classification
and segmentation of a snowpack is “subjective” in nature
right now, no matter which observational data are used as the
basis for the classification. When requesting a segmentation
and classification of a snowpack, one is always requesting
the classification of a specific expert. While the operator bias
can be mitigated by using NIR, Micro-CTs, or the SMP, the
classification of those measurements remains subjective. It is
neither this study’s goal nor its task to provide an objective
classification; instead, we aim for a consistent classification.

However, difficulties in reaching 100 % accuracy do not
preclude overall good performance. While experts may end
up with different segmentations and classifications, they can
still agree that two different analyses are both valid analy-
ses of the same profile. Similarly, the algorithms provided
here output predictions that may not always align with the
expert labeling but are sensible and directly usable. Hence,
we cannot evaluate the models solely based on numerical
metrics, such as accuracy, but must also evaluate the per-
formance from a qualitative perspective. This is the reason
why we evaluated if an SMP user, who also labeled the train-
ing data, would (1) accept the predictions of the ML algo-
rithms on an out-of-distribution dataset, (2) find them con-
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sistent with their own labeling, (3) and subsequently work
with those predictions. In the case of the MOSAiC dataset,
all those aspects were fulfilled. We find such a qualitative as-
sessment important since these questions decide whether or
not the tools provided will be used in practice.

We also want to point out that the algorithms themselves
are entirely agnostic to the question of “subjectivity”. The al-
gorithms are merely reproducing what they have been trained
on. If we can provide the algorithms with a dataset that can
be considered “fully objective”, and the community agrees
on that as ground truth data, the algorithms could repro-
duce those hypothetical objective labels. Alternatively, sig-
nals could also be grouped first, and some abstract classes
could be assigned to them. Nevertheless, even this would rely
on human expertise since the parameters to separate those
groups would be subject to discussion (see Fig. 7; the groups
are not simply separable from each other, and the clustering
would depend on parameter choices). In general, we provide
a methodological framework here to classify and segment
SMP profiles. Which classification patterns are reproduced
depends on the user’s choice.

The benefits of using an automatic classification are that
the SMP user can (1) save valuable time, (2) receive con-
sistent labeling, and (3) perform statistical analysis on their
SMP dataset. In the case of the MOSAiC dataset, manual la-
beling would have meant labeling over 3000 profiles, which
can easily take up to a year to classify (next to other obliga-
tions of domain experts). In terms of consistency, we already
experienced how some of the models’ predictions helped us
– to our surprise – to detect human mistakes and inconsisten-
cies during the first labeling round. Furthermore, such an up-
scaled classification enables, for the first time, the statistical
analysis of an SMP dataset. One of the initial research ques-
tions for MOSAiC was “Is depth hoar in Arctic snowpacks
mostly present at the bottom and rounded grains wind packed
at the top?”. With the help of snowdragon, the MOSAiC
dataset could be consistent and accurately labeled enough to
answer such a question with “Yes, this is indeed the case.”.

4.3 Generalizability

The LSTM can generalize to other winter profiles with the
same snow types since the underlying classification and seg-
mentation rules stay the same. However, the LSTM’s gener-
alization capability does not extend to other seasons or re-
gions when and where other snow types are found, such as
melted forms or regional snow types. As mentioned before,
the models do not generalize regarding the different classi-
fication styles of experts. The models used in this work are
still generalizable in that they can be used on any desired
dataset as long as they are retrained on the chosen dataset.
This would not have been possible in previous works, such as
Satyawali et al. (2009), since knowledge rules for one snow
region and season do not transfer to other regions or sea-
sons. For greater generalization capability, the LSTM – or

any other model – must be either trained with a more general
dataset or specifically retrained for an individual dataset.

4.4 Limitations and future work

As previously discussed, the uncertainty in expert labeling is
a general limitation of this particular study. While this uncer-
tainty might be partially mitigated further by using a dataset
for which many additional in situ observations exist, it would
still remain an issue. One approach for future work would be
to quantify the uncertainty that is inflicted upon the labeled
profiles. Subsequently, a machine learning model could be
trained to not only classify snow types but also provide a
probabilistic classification.

This work does not address the task setting of a first-
segment-then-classify algorithm because this would require a
completely different set of methods. In a first-segment-then-
classify setting, the SMP signal could first be segmented with
techniques used in audio segmentation (Theodorou et al.,
2014). The resulting time series pieces could subsequently
be classified as a whole (Ismail Fawaz et al., 2019). Future
work could experiment with this problem formulation and
analyze if performance further increases in this setting.

The ANNs used here are off-the-shelf networks and are
not adapted to the specific underlying task in order to en-
sure a fair comparison between the different models. How-
ever, one could look into adapting the loss functions to in-
clude similarity measurements between snow samples. Re-
sults from clustering, performed on t-SNE data, could then be
leveraged during classification to increase classification per-
formance. Adapting the loss function of the ANNs could in-
crease prediction performance greatly; however, such a loss
function must be carefully constructed and evaluated on dif-
ferent datasets.

As mentioned in Sect. 4.3, the models cannot generalize
to completely different settings in terms of seasons and re-
gions. To ensure generalization capability one could train a
large model on a dataset that includes snow types from dif-
ferent regions and seasons. Such a dataset would need to be
newly compiled because common SMP datasets are usually
limited to one region (Ménard et al., 2019; Calonne et al.,
2020). In theory, a large enough model trained on a large
enough dataset could be able to produce direct predictions
for any SMP users. Thus, it would be interesting to train an
ML model on a generalized dataset and validate its perfor-
mance on the specialized MOSAiC SMP dataset. This would
shed new light on the spatiotemporal transferability of the
ML models presented here.

Alternatively, SMP users can simply retrain a chosen
model for their particular dataset. They need to provide a set
of SMP profiles for their region, season, and classification
style, but the overall time savings are still immense. To sum-
marize, the generalization capabilities may be enhanced by
using a more general dataset, or one can bypass this problem

https://doi.org/10.5194/gmd-16-4521-2023 Geosci. Model Dev., 16, 4521–4550, 2023



4534 J. Kaltenborn et al.: Automatic snow type classification of snow micropenetrometer profiles

by retraining to specific datasets. The snowdragon repository
addresses the needs of the latter.

An immediate consequence of this study is the further
analysis of the unlabeled part of the MOSAiC dataset. Do-
main experts can use the LSTM or other models to create
predictions for the remaining 3516 profiles. A previously al-
most impossible task to classify and segment those thousands
of profiles became feasible by providing just a set of 164 la-
beled profiles. The results of these predictions and their im-
pacts on the cryospheric analysis of snow coverage in the
Arctic will become apparent in future publications.

5 Conclusions

Snowdragon provides SMP users with a way to upscale man-
ual SMP labeling and provide large statistically consistent
datasets. We showed for the first time that SMP profiles
straight from the field can be automatically segmented and
classified (up to 0.78 accuracy). A total of 14 different mod-
els were trained here to classify seven snow types without
providing any additional manual information. It also showed
for the first time how ANNs and semi-supervised models can
be used for the task of SMP classification and segmentation.
Among all models, the LSTM and the encoder–decoder mod-
els perform the best. The resulting predicted profiles show
smooth segmentations and expert-like classification patterns
that were satisfying to domain experts.

These findings will enable SMP users to automatically an-
alyze their SMP measurements. To that end, an SMP user
must simply decide on 1 of the 14 models provided by the
snowdragon repository given the considerations listed in this
paper and retrain the model for their particular dataset. After-
wards, the SMP user can simply predict SMP classifications
for the remaining unlabeled profiles.

The models presented here, in particular the LSTM model,
could be trained on a broad dataset from different regions and
seasons so that automatic SMP classification becomes even
more accessible. Such a model could even be integrated into
the snowmicropyn package. The resulting tool would make
knowledge about snowpacks easier and faster to access for
all scientists. This is of particular interest (1) for interdisci-
plinary scientists that rely on snow type information but do
not have the tools to classify them themselves (remote sens-
ing); (2) for scientists that require fast analysis of SMP pro-
files, such as in avalanche prediction; and (3) for SMP users
facing large datasets.

Snowdragon enables the analysis of the SMP MOSAiC
dataset, a dataset containing detailed information about snow
on Arctic sea ice. In times of climate change, this informa-
tion is crucial. We need to understand the state of the sea ice
in order to understand which state the Arctic system is in. For
the first time, MOSAiC enables the scientific community to
have access to such a detailed and large dataset. Snowdragon

is one example of how ML can help us to actually access the
knowledge behind all the data.

Appendix A: User’s guide

Here, we provide a walk-through of how to use snowdragon
with SMP profiles collected in the field.

1. Data collection.

– Collect the desired SMP profiles.

– If you are familiar with snow stratigraphy measure-
ments, you should consider collecting additional
in situ observations such as Micro-CTs, NIR pho-
tography, or similar to inform your labeling proce-
dure (see also points listed under “labeling”).

– If you are not familiar with snow stratigraphy mea-
surements, you should ask experts if a labeled
dataset for your snow conditions exists (Macfarlane
et al., 2021; Wever et al., 2022; King et al., 2020b)
or if you need to onboard an expert to conduct a few
in situ observations and label some of your profiles.

2. Labeling.

– Evaluate the following questions before you start
the data collection.

– If you conduct your own labeling proceed through
the following steps:

– use additional in situ observations to fine-tune
your labeling where possible;

– ask a fellow researcher for their opinion on a
few profiles (before you label all of them);

– note down your labeling criteria – this way you
can ensure consistency in your labeling;

– revisit your labeled profiles (all of them!) at
least a second time because you can catch mis-
takes and ensure once more that there is consis-
tency in your labeling.

– If a labeled dataset exists for a specific location,
proceed through the following questions and ana-
lyze carefully if the labeled data do transfer to your
snow conditions. Can you expect the same snow
types? Was the data collected in the same location
or a similar location? Is it the same season? Might
changing climatic conditions have also changed the
nature of the snowpacks? Has the environment of
the location gone through other types of changes?

– If labeled datasets exist capturing SMP profiles in
general, proceed through the following questions
and analyze carefully if you can work with a gen-
eral dataset or need a specialized labeled dataset.
Does the general dataset reflect the profiles you
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have collected well? Do you have snow types dom-
inating your dataset that are a minority in the gen-
eral dataset? Do you have a particular season dom-
inating your dataset that is underrepresented in the
general dataset? Does the general dataset contain
all snow types that you have encountered in your
dataset?

3. Setup.

– Raw preprocess your SMP profiles and labels if
necessary; data must be provided in .pnt format.

– Establish a consistent naming convention for your
profiles. The labeling files (in .ini format) should
have the same file name as the SMP profile that
belongs to that labeling file. For example, you can
have a S31H0370.ini containing the label mark-
ers for the force file S31H0370.pnt.

– Clone or fork the snowdragon repository (https://
github.com/liellnima/snowdragon).

– Follow the setup guide in the GitHub repository.

– Tell the repository where your raw
data lives. Change the SMP_LOC in
data_handling/data_parameters.py to
the right path as described online.

– Preprocess all the SMP profiles (follow online
guidelines).

4. Model selection.

– Select the right model for your use case. Refer to
Sect. 4.1 for further information.

5. Training and evaluation.

– Refer to the online guide of the repository.

6. Tuning.

– Refer to the online guide of the repository.

7. Inference.

– Use the predict_profile() or
predict_all() functions from the
predict.py file (provide path to data again).
The functions can either be directly used or further
adapted to your particular needs. The model you
choose for inference must be stored somewhere,
meaning you either need to train it beforehand or
download the pre-trained models we provide.

8. Analysis.

– Conduct your specific analysis on the labeled pro-
files. Run visualizations if desired, as explained in
the online guide.

Appendix B: Labeling

A snow micro penetrometer (SMP) is a device used to deter-
mine bond strength between internal snow grains in a snow-
pack. The micro-structural and micro-mechanical properties
of the snow, for example, density and specific surface area
(SSA), are directly influencing the bond strength. When a
snow micropenetrometer penetrates the snowpack and breaks
these bonds between the snow grains, we are able to directly
infer these micro-structural properties, as shown in the ex-
isting method by Proksch et al. (2015). For example, snow
with high density has a higher bond strength and therefore
a higher penetration resistance force (measurable with the
SMP) in comparison to low-density snow.

Different types of snow (Fierz et al., 2009) are known to
have different densities and SSAs, so the extraction of this
data from the SMP force signal already allows us to draw piv-
otal conclusions about the snow type. However, the charac-
teristics (using magnitude, frequency, and gradient) and the
signature of the penetration force signal can provide more in-
formation about the internal snow type. This document out-
lines the process of classification of a snow type found on sea
ice in the High Arctic using the SMP penetration resistance
force signal.

Typical grains observed as part of the MOSAiC expedition
on sea ice in the High Arctic are listed below:

– precipitation particles (PP) or decomposing and frag-
mented precipitation particles (DF);

– ice formations (IF);

– surface hoar (SH);

– rounded grains wind packed (RGwp);

– depth hoar (DH);

– depth hoar indurated (DHid);

– depth hoar wind packed (DHwp);

– melt form depth hoar (MFdh).

It is important to mention that the melt season is not in-
cluded in this study due to liquid water influencing the inter-
pretation of the SMP signal. For more information on the en-
vironmental and meteorological conditions under which the
dataset has been collected refer to Rinke et al. (2021).

For the majority of snow types, we follow the classifica-
tion of Fierz et al. (2009). However, Fierz et al. (2009) was
adapted for Alpine snow, meaning some of the snow types
listed above are either not included in the classification or
differ from the ones encountered in Alpine snow.

Melt form, depth hoar. When working on sea ice we iden-
tified one alternative snow grain class (melt form, depth hoar,
MFdh) that does not exist in the Fierz et al. (2009) classifi-
cation. This snow type is known in the sea ice community as
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a surface scattering layer (Light et al., 2015). It is typically
found in the summer season when sea ice melts; however,
we identified this as a persistent layer when transitioning into
winter. In the field, this was an extremely dense layer at the
snow–sea ice interface, and the penetration resistance force
of this layer varied throughout the season. The melt form
depth hoar label was chosen as this is a feature of melting
sea ice that has persisted into the winter and has undergone
metamorphism when buried under snow.

Depth hoar, wind packed. Grains initially classified as
rounded grains wind packed (RGwp) metamorphose into a
very hard, dense depth hoar under the large temperature gra-
dients, which we call depth hoar wind packed (DHwp) (Pf-
effer and Mrugala, 2002).

All other classifications are listed in Fierz et al. (2009).

B1 Classification details

Table B1. Features used to identify snow types visually from the SMP signal.

Snow
type

Location in snow profile Typical thickness Signal description Force range

DF Predominantly at the sur-
face of the profile

< 2 cm Very low force signal < 1 N

IF Anywhere 0.1–5 mm Sharp singular peak, no intermediate peaks > 1 N

SH Surface of profile < 10 mm Tooth-like structure similar to depth hoar 0–0.2 N

RGwp Anywhere (not necessarily
on the surface and can
sometimes be buried)

10 mm−> 50 cm Wavy force signal, when density is around
500 kg m−3 can also have a tooth-like structure
similar to depth hoar (density of > 400 kg m−3

is typical of Arctic wind crust)

Varying but in the
2–20 N range

DH Often found in the middle
to the bottom of the profile

Complete range Classic teeth signal, increasing in force, then a
sudden drop in force due to hitting an air pocket

0–2 N

DHid Often at the middle to the
bottom of the profile

Complete range Classic teeth signal, does not drop to 0 N like
DH would

2–6 N (±2 N)

DHwp Very hard layer at the
surface

4 mm–10 cm High force signal caused by wind-packed snow
grains that have metamorphosed into an icy
layer

5–30 N

MFdh Very hard layer at the
snow–sea ice interface

1–10 mm High force signal caused by a metamorphosed
surface scattering layer buried under the snow-
pack

5–30 N
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B2 Examples of snow types’ SMP signals

Figure B1. SMP profiles with typical SMP signals for the following snow types: (a) a typical signal for decomposing and fragmented
precipitation particles (DF) with a force remaining under 0.1 N between approximately 111 and 121 mm, (b) a typical signal for ice formations
(IF) with a sharp singular peak at a maximum of 4 N between approximately 98.6 and 99.3 mm, and (c) a typical increase in force at the
snow–sea ice interface. This signal is typical of a remnant surface scattering layer, named melt form, depth hoar (MFdh) in this study. This
signal typically has a force range of 5–30 N showing (d) a typical signal for surface hoar (SH) at the surface of the profile with a tooth-like
structure with a low force signal; (e) a typical tooth-like signal for indurated depth hoar (DHid) with a force between 2–6 N, (f) a typical
wavy force signal for rounded grains, wind packed snow (RGwp); (g) a typical tooth-like signal for depth hoar (DH), and (h) a typical wavy
and tooth-like signal for depth hoar, wind packed (DHwp) with a force between 5–30 N at snow depths 208 to 215 mm.
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B3 Complementary parallel measurements

When measuring the snow properties, we had access to nu-
merous instruments, with each proving beneficial when inter-
preting the snow grain type. For example, the near-infrared
camera provided overview images of the cross section of the
snow pit wall (see examples in Fig. B2a and c), and micro-
computer tomography measured the snow’s micro-structure
in high resolution (Fig. B2d). The metadata section in the
dataset by Macfarlane et al. (2021) gives additional informa-
tion about how many micro-CTs and NIR images are used in
parallel.

Figure B2. A holistic figure showing the use of a library of datasets to assist in labeling the SMP signal. (a) An NIR image from the event
PS122-2_23-105 giving a horizontal cross section of the snowpack where the five SMP measurements in (b) were taken. The rounded grain,
wind packed (rgwp); indurated depth hoar (dhid); and depth hoar (dh) regions are identified. (b) Five SMP profiles measured approximately
20 cm apart in the same snow pit during event PS122-2_23-105. (c) An NIR image from event PS122-2_21-53 giving a horizontal cross
section of the snowpack where the five SMP measurements in (e) were taken. (d) A 3-D reconstruction of the snow microstructure measured
using micro-computer tomography. (e) Five SMP profiles measured approximately 20 cm apart in the same snow pit during event PS122-
2_21-53.
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Appendix C: Features

C1 Features included in data

Table C1 lists all features that were included in the training,
validation, and testing data of this study. The importance of
those features depends on the specific snow type that should
be classified (see Fig. C1). For example, rounded grains wind
packed shows a high correlation with micro-mechanical fea-
tures such as L (4 mm window), whereas melted form depth
hoar is mainly correlated with the force values of the SMP
profile. Further feature importance analysis (ANOVA and
decision tree importance) can be found online in the snow-
dragon GitHub repository.

Table C1. Names and description of the features included in the training, validation, and testing data.

Feature name Abbreviation Explanation

distance dist Distance from the snowpack’s surface
dist_ground dist_gro Distance from the ground
pos_rel pos_rel Relative position in the snowpack
gradient gradient Gradient (slope) of the force signal
mean_force mean Mean force signal (1 mm window)
mean_force_4 mean_4 Mean force signal (4 mm window)
mean_force_12 mean_12 Mean force signal (12 mm window)
var_force var Variance of the force signal (1 mm window)
var_force_4 var_4 Variance of the force signal (4 mm window)
var_force_12 var_12 Variance of the force signal (12 mm window)
max_force max Maximum of the force signal (1 mm window)
max_force_4 max_4 Maximum of the force signal (4 mm window)
max_force_12 max_12 Maximum of the force signal (12 mm window)
min_force min Minimum of the force signal (1 mm window)
min_force_4 min_4 Minimum of the force signal (4 mm window)
min_force_12 min_12 Minimum of the force signal (12 mm window)
median_force_4 med_4 Median of the force signal (4 mm window)
median_force_12 med_12 Median of the force signal (12 mm window)
delta_4 delta_4 Width of peaks in the force signal (4 mm window)
delta_12 delta_12 Width of peaks in the force signal (12 mm window)
L_4 L_4 Distance between neighboring peaks in the force signal (4 mm window)
L_12 L_12 Distance between neighboring peaks in the force signal (12 mm window)
lambda_4 lambda_4 Parameter regulating the Poisson shot noise (4 mm window)
lambda_12 lambda_12 Parameter regulating the Poisson shot noise (12 mm window)
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C2 Label-wise feature correlation

Figure C1 shows why classification for this dataset is so hard.
Some labels have lower correlations among all features, mak-
ing it unclear how the right predictions can be achieved on
this basis. Other more predictive features are missing; i.e., if
a feature is discovered that shows a high correlation within
this plot, it might boost the overall classification capabili-
ties of the models. The figure also shows that there might be
interaction effects arising since some snow types show very
similar correlations (for example melted form depth hoar and
depth hoar wind packed). In summary, the label-wise feature
correlation reveals the classification difficulty of the dataset
and can be used to discover new predictive features.

Figure C1. Label–feature correlation between snow types and aggregated features of the SMP profiles. The numbers in the feature names
stand for the window size used during aggregation. Depth hoar (dh), depth hoar indurated (dhid), and rounded grains wind packed (rgwp)
show some negative correlations with a subset of the features. Melted form depth hoar (mfdh), depth hoar wind packed (dhwp), and rounded
grains wind packed (rgwp) show a strong positive correlation with at least one feature. Precipitation particles (pp) does not show strong
correlations with any feature; however, a correlation with distance (dist), variance, and force features was expected by experts. The low
correlations could be caused by the data-preprocessing step when decomposed and fragmented precipitation particles were categorized as
precipitation particles as well. The rare class shows no correlations with the features since it consists of very different sub-classes (ice
formation and surface hoar).
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Appendix D: Metrics

The metrics used for validation and testing are listed and ex-
plained in Table D1. It might be helpful to familiarize oneself
with a binary confusion matrix beforehand.

Table D1. List of metrics employed during validation and testing. The given formulas are only simplified versions for a binary classification
case where no weighting takes place. The formula for the AUROC is not given here, since it is not a one-line formula and actually involves
calculating an area under the ROC curve. Implementation and explanations of the metrics are from Pedregosa et al. (2011).

Metric name Formula for binary case Description

Balanced accuracy 1
2

(
TP

TP+FN +
TN

TN+FP

)
Macro-average of recall scores per class. For balanced datasets,
the score is equal to accuracy.

Weighted recall TP
(TP+FN) Calculates the recall for each class and computes the mean,

weighted by the class’s presence in the target data.

Weighted precision TP
(TP+FP) Calculates the precision for each class and computes the

weighted mean, weighted by the class’s presence in the target
data.

F1 score 2 · precision·recall
precision+recall Harmonic mean of precision and recall. In the multiclass case,

F1 computes the class mean, weighted by the class’s presence
in the target data.

AUROC – Computes the area under the receiver operating characteristic
curve from the prediction scores. The ROC curve plots the true-
positive rate versus the false-positive rate. The scores are cal-
culated for each class against all other classes (one versus rest)
and weighted.

Log loss −(y · log(p)+ (1− y) · log(1−p)) Negative log-likelihood value of a logistic model that returns
prediction probabilities p for the true data y.

Intuitively speaking, accuracy expresses how many sam-
ples were predicted correctly relative to all predictions; re-
call expresses how many positive samples were predicted
correctly relative to all positive samples; precision expresses
how many positive samples were predicted correctly relative
to all positive predictions; F1 score can be used to measure
both recall and precision in one score; ROC is the receiver
operating characteristics and plots the true-positive rate ver-
sus the false-positive rate; AUROC expresses that the higher
the area under the ROC curve, the clearer can the model sep-
arate between positive and negative samples; and log loss ex-
presses how good or bad the prediction probabilities of each
sample are compared to the target predictions. All these val-
ues are better the larger they are (except for log loss, which is
kept as low as possible). Some of the metrics from Table D1
cannot be computed for all models. This is the case because
the AUROC and the log loss metric operate on prediction
probabilities for the different classes, which not every model
can provide. In these cases, the missing metric is marked with
“–” in the result tables.
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Appendix E: Machine specifications

The evaluation and hyperparameter tuning experiments were
run on two different machines. The complete evaluation was
conducted on a 64 bit system with an Ubuntu 18.04.5 (Bionic
Beaver) operating system. The machine has 16 GB RAM and
an Intel® Core™ i7-6700HQ CPU @ 2.60GHz×8 (and the
GPU was not used). The machine on which the first hyper-
parameter tuning, training, and validation experiments have
been run has the following specifications: 64 bit system with
an Ubuntu 20.04.1 (Focal Fossal) operating system, an In-
tel® Core™ i7-4510U CPU @ 2.00GHz×4 CPU, and 12 GB
RAM (and the GPU was not used). Final hyperparameter
tuning, training, and validation (results presented here) were
run on an Azure virtual machine of the Dsv3-series, namely
on a Standard_D4s_v3 (https://docs.microsoft.com/en-us/
azure/virtual-machines/dv3-dsv3-series, last access: 3 Au-
gust 2023) machine with Ubuntu 18.04 (Bionic Beaver) as
an operating system, 16 GB RAM, and four vCPUs.

Appendix F: Model setup

The project was executed in Python 3.6, and all used pack-
ages can be found on GitHub in the “requirements.txt” file.
Principal component analysis, t-SNE, k-means clustering,
Gaussian mixture models, Bayesian Gaussian mixture mod-
els, random forests, SVMs, and the k-nearest-neighbor al-
gorithm were used as made available through scikit-learn
by Pedregosa et al. (2011). (https://scikit-learn.org/stable/,
last access: 3 August 2023) The easy ensemble for im-
balanced datasets and a balanced variant of the random
forest are imported from imbalanced-learn by Lemaître
et al. (2017) (https://imbalanced-learn.org/stable/, last ac-
cess: 3 August 2023). All ANN architecture was created with
the help of TensorFlow (Abadi et al., 2016) (https://www.
tensorflow.org/, last access: 3 August 2023) and Keras (Chol-
let et al., 2015) (https://keras.io/, last access: 3 August 2023).
The attention model within the encoder–decoder network
was used as provided in the keras-attention-mechanism pack-
age by CyberZHG (2020).

Geosci. Model Dev., 16, 4521–4550, 2023 https://doi.org/10.5194/gmd-16-4521-2023

https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
https://scikit-learn.org/stable/
https://imbalanced-learn.org/stable/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/


J. Kaltenborn et al.: Automatic snow type classification of snow micropenetrometer profiles 4543

Appendix G: Pruned decision tree

Figure G1. Pruned decision tree extracted from the random forest. See Appendix C1 for an explanation of the features that the nodes
represent. Decision trees encode the decision rules for predicting snow type labels. This approach helps explain the model’s decisions, a
property often asked for by domain experts. At each leaf node, a labeling decision is made. All the other nodes encode the labeling rules
used to classify each point. Take the root node as an example. If the variance of the force is smaller or equal to zero, the point is labeled as
precipitation particles. In all other cases, it has to be one of the other labels. The Gini index encodes how separable the subsets of data points
are (the bigger the number the better), and the sample’s number shows what percent of the complete data can be found in this subset.
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Appendix H: Confusion matrices

Figure H1.
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Figure H1.
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Figure H1. Confusion matrices of all models displaying the predicted and the observed snow types. The number in each cell is the relative
prediction frequency of a label within the observed class. The numbers of the diagonal (upper left to lower right) represent the prediction
accuracy of each label. The more pronounced the diagonal and less pronounced the upper and the lower triangles are, the better the predictions
become. The confusion matrices help for an in-depth analysis of the label-specific performances. This is useful when users want to choose
a model that is suitable for a specific snow classification task. (a) Confusion matrices of majority vote, Gaussian mixture model, k-mean,
easy ensemble, and k-nearest neighbor approaches. (b) Confusion matrices of random forest, support vector machine, LSTM, BLSTM, and
encoder approaches. (c) Confusion matrices of self-trainer and label propagation approaches.
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Code and data availability. The current version of snowdragon is
available on GitHub under the MIT License: https://github.com/
liellnima/snowdragon (last access: 3 August 2023). To run the code
version used in this paper, please refer to v1.0.0 on GitHub or
Zenodo: https://doi.org/10.5281/zenodo.7335813 (Kaltenborn and
vclay, 2022). The exact versions of the models used to pro-
duce the results used in this paper are also archived on Zenodo:
https://doi.org/10.5281/zenodo.7063520 (Kaltenborn et al., 2022).
The MOSAiC SMP data used as input and training data are avail-
able on PANGAEA: https://doi.org/10.1594/PANGAEA.935554
(Macfarlane et al., 2021).
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