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c Institute for Geotechnical Engineering, ETH Zurich, Zurich, Switzerland 
d WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland 
e Climate Change, Extremes, and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Snow avalanche 
Anticrack 
Supershear 
Fracture 
Crack propagation 
Theoretical 
Hamilton’s variational principle 
Slab 
Weak layer 

A B S T R A C T   

Snow slab avalanches release after the failure and collapse of a weak layer buried below a 
cohesive snow slab. The initial failure is induced by local overloading of the slab, such that the 
passage of a skier. This results in the propagation of a subsidence, known as a collapse wave or 
anticrack. The slab may eventually break and detach from the rest of the snowpack and start to 
slide down, provided that the slope is steep enough to enable gravity to overcome the friction at 
the interface between the slab and the failed weak layer. 

The approach to anticracks so far has mostly focused on (i) static configurations for the bending 
slab while the weak layer collapses, thereby leading to analytical conditions for the onset of an 
anticrack because of the metastability of the snowpack, and (ii) the observation of anticrack 
propagation as a result of numerical simulation methods (DEM, FEM, MPM) and field experiments 
(PST). The only theoretical framework to date, based on a simple modelling of the bending of the 
slab during the weak layer collapse, led to the well-known Heierli (2005) model which suggested an 
explicit solution for the propagation speed in steady state. It, however, could not account for the 
weak layer properties, was not mathematically bounded for certain values of the physical constants 
involved, and could not explain the newly uncovered “supershear” transition for steep slopes. 

In this paper, a new model for the stationary propagation of anticracks is set up, so as to ac-
count for the anticrack speed regime on the one hand, and the supershear regime on the other 
hand, the existence of which has been recently revealed and ascertained by numerical simula-
tions. The results presented here seem consistent with most of the available data, and highlight 
the role that the compaction of the weak layer can play in reducing the anticrack speed. On the 
contrary, by storing energy upon failure and suddenly releasing it at the crack tip, the weak layer 
elasticity could help justify the higher speeds sometimes observed in both regimes. Finally, a more 
accurate model is proposed, based on the modelling of both the slab and the weak layer as 
Timoshenko beams; although its complexity prevents us from solving it analytically, it provides 
enlightening insights into the mechanical processes at work at the interface between both layers, 
from a strength-of-materials perspective. 

This analysis is a first step towards a better understanding of the underlying mechanisms of 
propagation of cracks in slab avalanches, and towards more accurate avalanche size and occur-
rence predictions.  
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1. Introduction 

Contrary to loose snow avalanches which typically arise in homogeneous snowpacks with very little cohesion, slab avalanches only 
occur in stratified snow, since they require the collapse of a fragile, sparse sub-layer topped by a dense slab, all of which is supported by 
a compact snow substrate (as depicted in Fig. 1) (Ancey, 2006; Schweizer et al., 2016). If the slope is steep enough, the slab is released 
following the failure and collapse of the weak underlying layer, breaking into smaller pieces which then slide downwards on the 
substrate. Because of the extent of the released zone, slab avalanches carry much larger volumes of snow away; thus, from a theoretical 
standpoint, the in-depth study of their release and flow has received increasing attention in the past decades. 

The triggering mechanism of slab avalanches is now well documented. When a sufficient concentrated load is applied, e.g. by a 
skier or in the wake of a progressive snowfall, the weak layer breaks and locally collapses (Schweizer et al., 2003). It leads to a 
reduction in its volume - a so-called “volumetric collapse” - whose dynamics itself is still a topic of extensive research, due to the 
complexity of the constitutive law of snow (Barraclough et al., 2017; Blatny et al., 2022). This compaction of the weak layer causes the 
overlying slab to bend, which in turn leads to a stress concentration at the edge of the still-intact portion of the weak layer. If this stress 
is high enough, the edges of the latter part of the weak layer also fail and collapse. This entails the widening of the depression and, as a 
chain reaction, leads to the self-sustained propagation of the subsidence on both sides of the initial depression (Fig. 2). 

In terms of fracture mechanics, the propagation of this "collapse wave" manifests an obvious analogy with the widening of a crack at 
the slab-weak layer interface, although, contrarily to an opening mode I, surface lips press against each other, which tends to inter-
penetrate the slab and the weak layer under the effect of the load. For this reason, (Fletcher and Pollard, 1981) define the notion of 
anticrack, i.e., of a crack propagating under compression, in a closing mode (-I). Thus, the concepts of fracture mechanics are applicable 
to the collapse process in slab avalanches, provided that the analogy is carried out thoroughly (Heierli et al., 2008). In the following, 
the "collapse wave" will thus be referred to as an "anticrack". 

The condition for the onset of a self-sustained propagating anticrack is generally characterised by a critical crack length ac, beyond 
which the propagation is energetically favourable. It depends on intrinsic parameters of the snowpack, such as the mechanical 
properties of the layers involved, the friction between them, their dimensions, etc. It can be calculated with the Griffith-Irwin criterion 
(Heierli et al., 2008; Rosendahl and Weißgraeber, 2020b) or with strength-of-materials methods (eq.(9) in Gaume et al. (2017)). In 
practice, knowledge of the critical crack length in a snowpack is conspicuously crucial for predicting the probability of triggering of an 
avalanche and its size. The slope angle, compared to the crack-face friction angle, also plays a decisive role in the triggering of an 
avalanche (van Herwijnen and Heierli, 2009) (Gaume et al., 2013). In both cases, the theoretical determination of these instability 
criteria can be based on static considerations, since the dynamics of the anticrack is only a consequence of the pre-existing instability. 

Fig. 1. Stratification of the snowpack conducive to slab avalanche initiation. (a) Well-known example of a sample stratified in three layers: the slab 
overlies a weak layer of partially collapsed surface hoar to the left of a central crack, and intact to the right. On the left-hand side, the partial collapse 
underlines the metastable aspect of this assembly in the absence of external load (gravity g→ excluded). The dotted lines delineate the layers (low 
compressible but deformable slab; compressible and deformable weak layer; substratum). © B. Jamieson (ASARC) (b) Schematic of the situation. 

Fig. 2. Schematic of the propagation of a collapse wave in between a weak sub-surface layer of snow and a slab, at the onset of a snow slab 
avalanche, rising from birth (A) to a self-sustained propagating state (C). Reading: g→ denotes the acceleration of gravity, and (Oxy) is the frame of 
reference attached to the slope. The collapsed weak layer is identified by the red crosses. The arrows indicate the direction of propagation. Note: the 
diagram is not to scale. Adapted from (Heierli et al., 2008). 
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For this reason, the main theoretical investigations so far in avalanche science have focused on static collapse configurations (Benedetti 
et al., 2019; Gaume, Chambon, et al., 2018; Heierli et al., 2008; Rosendahl and Weißgraeber, 2020). 

Recent contributions nevertheless highlight the interest of studying dynamic configurations to determine the stopping conditions of 
anticracks (Bergfeld et al., 2022). Besides, with the advent of numerical modelling and the increase in computational power, numerous 
’numerical experiments’ based on various approaches to avalanche simulation at different scales (DEM: Discrete Element Method; 
FEM: Finite Element Method; MPM: Material Point Method) have been made possible (Bobillier et al., 2020; Gaume, Gast, et al., 2018; 
Trottet et al., 2022). They have revealed several particularities specific to the dynamic behaviour of anticracks, in terms of propagation 
speed especially. 

In particular, if a crack propagates while the slope angle is large enough, a transition takes place from a regime of sub-Rayleigh 
propagation velocities, i.e., speeds lower than that of Rayleigh waves (cR) in the slab, to a supershear or intersonic regime, i.e., speeds 
between cs and cp (shear and dilatational plane wave velocities in the slab, respectively). The mechanism of this transition is known as 
that of Burridge-Andrews (Andrews, 1976; Burridge, 1973). It reflects a jump in the failure mechanism from a mixed mode (compressive 
-I and in-plane shear II) to a pure shear mode II (Trottet et al., 2022). Recently, evidence of the sub-Rayleigh-to-supershear transition in 
snow slab avalanches has been reported through avalanche video analysis. However, due to the recent nature of this evidence, re-
searchers have not yet attempted to characterize this transition using theoretical models. As a result, currently, there is no analytical 
expression available that explicitly describes the velocity of the supershear crack in relation to the slope angle. 

In the last decade, several studies have attempted to fill this gap:  

– On the one hand, Heierli (2005, 2008) has laid the foundations for the dynamics of the slab in free fall, i.e. without taking into account 
the collapse of the weak layer that causes the slab movement. Starting from a simplistic model of a rigid plate in bending, Heierli 
(2005) asymptotically expresses the anticrack as the self-sustained propagation of a quasi-soliton; he proposes an explicit expression 
of its propagation velocity as a function of the slab parameters only, since the weak layer is not modelled. In Bobillier et al., (2021) 
extracted from their numerical experiments an "empirical" correction to this model, by adding terms related to the mechanical 
behaviour of the weak layer. The additive form of this correction, although consistent with experiments, has no physical foundation. 
In 2008, Heierli added complexity to the previous model by assimilating the slab to a Timoshenko beam, for which bending shear 
forces are added to those already taken into account. Based on an energetic approach, he derives an open system of differential 
equations, which couples the propagation velocity to the length of the anticrack. While the approach seems promising, it only pro-
vides an analytical expression for the velocity through costly approximations and, again, the weak layer is not accounted for.  

– On the other hand, Rosendahl and Weißgraeber (2020a) sought to determine the static form of the slab in bending, by modelling 
both the slab (as a Timoshenko beam) and the weak layer (as a Winkler support, i.e. an elastic support in shear and compression). 
Their model led them to detailed criteria for the progression of the anticrack (Rosendahl and Weißgraeber, 2020b). Following 
energetic considerations, Heierli (2008) had also deduced an expression for the potential energy of the anticrack as a function of its 
distance from the origin, without attempting to introduce it into a dynamic model. 

To our knowledge, however, there exists no theoretical model that simultaneously takes into account the dynamics of the slab and 
the contribution of the weak layer to theoretically find the collapse wave speed. 

2. Outline 

This study develops an analytical framework in order to characterize the dynamics of mechanical collapse waves (anticracks) at the 
interface between a weak sub-surface layer of snow and an overlying slab, during the onset of snow slab avalanches. In Section 1, we 
assume that an anticrack has been initiated up to the critical length ac, beyond which propagation is self-sustained. Having passed the 
transient regime, the equations of motion are simplified by assuming the existence of a steady state, in order to find the asymptotic 
velocities and the parameters on which they depend. Section 1 details this methodology and its limits as thoroughly as possible. Section 
2 establishes a general formula for the speed of the anticrack in the sub-Rayleigh configuration, and examines its behaviour for 
different sets of boundary conditions, drawing conclusions on the ones which are physically and mathematically acceptable. It further 
contains a simple model for the crack in the supershear regime. Section 3 discusses the previous expressions in light of newly available 
experimental and numerical data. It also expands on a more accurate modelling of the weak layer, which could account for the fracture 
process at the front of the anticrack, although its complexity is such that it does not seem feasible to further develop it by analytical 
means. 

3. Methods 

This section presents the methods applied to find the asymptotic propagation speed of the collapse wave in its different configu-
rations, i.e., sub-Rayleigh and supershear. Obtaining the speed requires to solve simultaneously the equations of motion of the slab, of 
the weak layer and of the coupling of their dynamics through the boundary conditions. It cannot be achieved easily; thus, we decide to 
simplify the problem by resolving the dynamics of the slab only, and by considering the weak layer as an external resistance applied on 
the slab. As for the the substratum beneath the weak layer, it is assumed to be perfectly rigid in this analysis. Although the stiffness of 
the substratum can influence the initiation of the supershear transition, it has been demonstrated (Trottet et al., 2022) that it does not 
affect the steady-state crack propagation speed, which is the focal interest of the present study. 
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3.1. Finding the equations of motion 

At first, a mechanical model of the slab has to be chosen. Following the work of Heierli (2005 and 2008) and of Rosendahl and 
Weißgraeber (2020a), the slab can be modelled either as a plate or as a beam, depending on the spatial extensions considered relevant. 

For the sake of simplicity, in the following, we consider the slope as an infinite plane inclined by an angle θ with respect to the 
ground (see Fig. 3). Also, at large distances from the origin of the crack, the wave fronts become planes perpendicular to the (Ox) axis of 
propagation; by defining the axis reference frame as the (Oxy) plane for the collapse wave, it seems reasonable to assume invariance of 
the deformations in the (Oz) direction. As the problem becomes two-dimensional, the notions of plates and beams become identical. 
Nevertheless, it remains to choose the orientation of the propagation axis (Ox) with respect to the axis of the slope. In reality, the crack 
propagates in all directions from the origin of the failure, following a mixed mode (-I, II: in-plane shear, and III: out-of-plane shear) 
with a strong dependence on the terrain features crossed at each moment. The propagation of the anticrack is therefore different 
depending on whether it propagates mainly parallel or perpendicular to the slope, because the gravity components projected in the 
plane of the slope are distinct in these cases. In the following, the crack will be assumed to travel parallel to the slope (upwards or 
downwards) without loss of generality, given that any other orientation will be recoverable from our results by modifying gravity 
accordingly. 

Modelling the slab as a so-called "Timoshenko beam" has the advantage of taking into consideration the internal shear forces in the 
slab; it differs from the Euler-Bernoulli beam by the absence of the traditional assumption of perpendicularity of the plane sections of 
the beam (or cross sections) to the beam generatrix (namely, the axis joining the middle of the cross sections). More comprehensive 
models exist (e.g., Levinson beams), yet, with the aim of facilitating the comparison of our results with the literature, we will adopt a 
Timoshenko beam model in the following. As for any beam model, it imposes a decoupling between the vertical and longitudinal 
dependencies of the displacement fields. Its kinematics assumes the following relationships for the displacement fields ux(x, y, t) and 
uy(x,y, t) at any point on the beam: 

ux(x, y, t) = u(x, t) − y ⋅ ψ(x, t)

uy(x, y, t) = v(x, t)

where u(x, t) et v(x, t) are the displacement fields in the middle of the beam sections. In steady state, the collapse wave velocity can be 
determined from the evolution of any point of the beam. For convenience, the generatrix of the beam is chosen, through which the 
velocity can be determined directly from the equations on u(x,t), v(x, t) and ψ(x,t). Fig. 4 summarises these assumptions in a synthetic 
view. 

In order to obtain the equations of motion of the slab, we decide to use Hamilton’s Principle (or variational principle) defined from 
the action S : 

S (u, v,ψ , t) =
∫

t

L (u(x), v(x),ψ(x), t) dt  

where L = E kinetic − E potential denotes the Lagrangian of the system and u, v, ψ are the displacement fields of the Timoshenko beam 
explained in Fig. 4. The principle is stated in Supplementary Material n◦1. 

Once this model is defined, the kinetic and cohesive energies of the beam are to be determined. Due to the scale factor of the 
problem (the height of the slab is very large compared to the height of the weak layer), the deformations during collapse are small, and 
the associated forces can be taken in their linear limit. Thus,  

– Kinetic energy: b ⋅ h ⋅
∫L

0

{
1
2

ρ
(

∂u
∂t

)2
+ 1

2 ρ
( ∂v

∂t
)2

+ 1
2 ρI
( ∂ψ

∂t
)2
}

dx 

Fig. 3. Schematic of the collapse wave (anticrack) in a two-dimensional approach, valid only at large distances from the origin. The wave travels up 
the (Ox) axis on a slope inclined at an angle θ to the ground. The collapse takes place over a distance L such that the origin O of the (Ox) axis can be 
taken at the point of maximum compaction of the weak layer, and the point L corresponds to the first fracture of the still intact zone of the weak 
layer. The crosses mark the degraded zone of the weak layer (fracturing, compaction). 
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– Tensile-compressive potential energy: b ⋅ h ⋅
∫L

0

{
1
2

E
(

∂u
∂x

)2
}

dx  

– Flexural potential energy: b ⋅ h ⋅
∫L

0

{
1
2

EI
(

∂ψ
∂x

)2
}

dx  

– Potential energy for shear strains: b ⋅ h ⋅
∫L

0

{
1
2

κG
(

∂v
∂x

− ψ
)2
}

dx. This secondary effect of flexion is specific to the Timoshenko beam 

theory. 

with the following notations:  

– [0, L] defines the bending section (the part where the weak layer collapses);  
– A = b ⋅ h is the surface of a cross section of the beam, with: h, the height of the beam/slab; b, the width of the beam.  
– I = h2

12, second moment of area of the undeformed beam (rotational moment with respect to the (Oy) axis), normalised by the 
surface A = b ⋅ h;  

– E = E′
1− ν2, plane strain Young’s modulus of the beam (linked to Young’s modulus E′); G, plane strain shear modulus of the beam (G =

E
2(1+ν) =

E′
2(1+ν)(1− ν2)

);  
– κ, called the Timoshenko correction factor, is equal to 5/6 for a rectangular beam. 

Since the beam model allows us to neglect the dependency of the crack on the (Oz) dimension, for convenience we will choose b = 1 
throughout the rest of the paper, without loss of generality. 

Finally, one should add to these energies those of the external forces applied to the beam. This obviously includes gravity, but also 
contributions from the underlying weak layer, in particular the fracture energy required to fracture the weak layer during crack 
propagation. The modelling of this contribution is the subject of the following section. 

3.2. Modelling the weak layer 

The objective of this section is to establish an analytical expression for the asymptotic propagation velocities of the anticrack. To do 
so, the perturbation is followed at a great distance from its origin, and is assumed to have reached a stationary regime of propagation 
along increasing x. In a Galilean reference frame attached to the ground, each point of the perturbation is in uniform translation along 
the (Ox) axis at the speed c. In the mobile reference frame of axis (0x′) linked to the disturbance, the beam appears as static, and the 

Fig. 4. Diagram of slab deformation in a Timoshenko beam model for a crack of length L0 at time t. (Top) Intact stratified snowpack before crack 
initiation. (Bottom) Slab deflection after the collapse of the weak layer over a crack distance L0(t) on either side of the deflection. Reading: any plane 
section AB deformed at A’B’ remains plane, but tilts by an angle ψ, with translation of its centre C by u. x→ and v. y→ to C’. The displacement fields u(x,
t), v(x, t) and ψ(x, t) depend only, in this configuration, on the longitudinal coordinate x and time t. Note: the diagram is not to scale. 
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disturbance occupies a fixed section ]0, L[ in this reference frame, where L = L0 − ct. Fig. 5 shows the situation in this moving frame of 
reference. 

In the end, the problem is a combination of the solutions obtained on the three sections considered separately. 

3.2.1. Complete formulation of the problem 
Without taking into account the work of the fracturing forces applied by the weak layer on the slab, the evolution of the 

displacement fields of the slab takes the following form (Heierli, 2008). On the bending section [0,L0(t)] where the collapse happens:  

– Action functional: 

S(u, v, t) = h
∫t

0

∫L

0

{
1
2

ρ
(

∂u
∂t

)2

+
1
2

ρ
(

∂v
∂t

)2

+
1
2

ρI
(

∂ψ
∂t

)2

−
1
2

E
(

∂u
∂x

)2

−
1
2

E
(

∂v
∂x

)2

−
1
2

κG
(

∂v
∂x

− ψ
)2

+
τ
h

u −
σ
h

v

}

dx dt  

with σ = − ρgh ⋅ cos(θ) the (negative) compressive stress due to the beam’s own weight, and τ = ρgh ⋅ sin(θ) the shear stress due to 
the weight of the beam; one recalls that b has been omitted by being taken equal to 1. Continuity conditions for the connection to the 
other sections: 

At time t (time dependency of the variables is therefore omitted in the following, for easier writing), 
• Continuity of the displacement fields at x = 0 and x = L0 :  

u(0− ) = u(0+)

v(0− ) = v(0+)

ψ(0− ) = ψ(0+)

u(L−
0 ) = u(L+

0 )

v(L−
0 ) = v(L+

0 )

ψ(L−
0 ) = ψ(L+

0 )

Continuity of the constraints at x = 0 and x = L0: 
Using the above-mentioned kinematics, the forces of the Timoshenko beam for low deformations are defined by:  

• The bending moment M = − EAIψ′(x, t)
• • The transverse shear force Q = κGA ⋅ (v′(x, t) − ψ(x, t))
• • The longitudinal elastic force N = EAu′(x, t)

Their continuity at the edges implies that of v′ − ψ, u′, ψ′ and, by making use of the continuity of the displacement fields, that of v′,u′,

ψ′ as well:  

u′(0− ) = u′(0+)

v′(0− ) = v′(0+)

ψ′(0− ) = ψ′(0+)

u′(L−
0 ) = u′(L+

0 )

v′(L−
0 ) = v′(L+

0 )

ψ′(L−
0 ) = ψ′(L+

0 )

Fig. 5. Schematic of the steady state disturbance in the moving reference frame attached to the collapse wave moving from left to right at constant 
speed. The slab (a Timoshenko beam) can be divided into three sections. From right to left: (Section 3) From +∞ to x′ = L, the beam is supported by 
the still intact weak layer. At x′ = L, the weak layer is suddenly fractured due to stress accumulation. (Section 2) From x′ = L to x′ = 0, the fractured 
weak layer is collapsing under the weight of the overlying slab (volumetric collapse). The slab bends accordingly until x′ = 0, defined as the point of 
tangency where it rests on the substrate after having completely compacted the weak layer. (Section 1) From x′ = 0 to − ∞, the disturbance has 
passed and the weak layer has been completely compacted. The beam rests uniformly on the substrate. Note: the diagram is not to scale. 
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• Boundary conditions for stresses: in addition to the guaranteed continuity of constraints at the edges, the value of these constraints can 
be specified using the variational principle. Free edges, for instance, require vanishing moments and internal forces, leading to v′ 

= ψ′ = u′ = 0 in such cases. 

The previous equations and conditions can then be simplified by using the moving frame of reference, which results in the removal 
of the time dependence and in the substitution of L0(t) by L. 

3.2.2. Adding a fracture force 
The modelling of the fracturing process, that must be incorporated into the equations of motion, is the main novelty of this study. As 

the equations are derived from an energy reasoning, we seek a local expression for the energy dissipated during snow fracturing as the 
anticrack propagates. 

The physical processes involved during brittle layer failure have recently been summarised by Bergfeld et al. (2022), whose 
comprehensive explanatory diagram is adapted in Fig. 6. Note that this description is only valid in the sub-Rayleigh propagation 
regime, where the anticrack is essentially reduced to a transverse disturbance. 

As a granular medium, the snow making up the weak layer consists of load (or force) chains, i.e. preferential paths of connected 
grains that channel stress in the layer under load. Bergfeld et al. (2022) highlight that the fracturing of the weak layer at the crack tip (or 
crack front) is microscopically linked to the rupture of these load chains when the disturbance passes. The arrival of the anticrack on an 
intact zone of the weak layer generates the first fracturing of all the pre-existing load chains: this step, which occurs at the front of the 
disturbance, is the first to be energy-consuming. At the end of this initial fracture, in the sub-Rayleigh regime, the debris of the weak 
layer are compacted by the rest of the disturbance. However, snow crystals in these debris reorganise very frequently and create new 
bonds between each other, which must be broken continuously to compact them: this requires an ever-renewed energy during 
compaction, to develop secondary cracks in these new bonds. Thus, the compaction of the weak layer takes place progressively, until it 
stops when the packing of the weak layer is too strong to ensure further compaction. Based on this observation, Bergfeld et al. (2022) 
identify two different fracturing zones, associated with two distinct sources of energy consumption:  

– The dissipation of dynamic fracture: it accounts for the initial energy supplied to the front of the anticrack to break the initial force 
chains, break the bonds at the head of the crack tip, and generate local plastic deformations. 

– The dissipation of compaction: downstream of the anticrack front, the weak layer is progressively compacted, calling for the pro-
vision of adequate energy, microscopically linked to the friction and bond-breaking during this compaction. 

These two energies must now be expressed. Two different visions can be used to achieve it. 

3.2.2.1. Through fracture mechanics. One interest in having expressed the collapse of the weak layer as an anticrack (a ‘compressive 
fracture’, whose lips close rather than open, as opposed to Mode I) is the analogy it offers with the tools of fault mechanics. Indeed, it is 
possible to use failure criteria (e.g., the Griffith criterion) so as to specify the work required to "open" an anticrack over a length dx′ in 
the weak layer of arbitrary thickness b: 

Wdyn
f = wf ⋅ b ⋅ dx′ 

By analogy, this clearly embodies the dissipation of dynamic fracture. In this expression, wf therefore refers to the specific fracture 
energy (per unit of crack area, in J.m− 2) to be provided to remove bonds and create a b ⋅ dx′ surface of anticrack in the weak layer. As 
pertains to the dissipation of compaction, it can be expressed in the same way: 

Wcomp = wcomp ⋅ b ⋅ dx′ 

Formulated in this way, however, these works are not convenient to use in our problem, as they do not explicitly depend on any 
displacement field of the disturbance (u, v, ψ), although it is clear that the energy dissipated by the compaction of the weak layer 

Fig. 6. Schematic representation of a propagating anticrack on flat terrain far from its origin. Reading: “The crack tip propagates from left to right. In 
region I, weak-layer bonds are not yet fractured, while in region IV all weak-layer bonds are broken. Region II is the fracture process zone, extending 
from the first bond fractures to the crack tip. In region III, the slab further subsides causing the weak-layer structure to fracture multiple times before 
closer packing of the weak layer is achieved and the slab comes to rest again.” The orange dotted line refers to the position of the crack tip, while 
black marks denote broken bonds; L is the touch-down distance. © Adapted from (Bergfeld et al., 2022), with its original legend. 
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increases with the collapse height of the latter. In other words, since the compaction occurs in volume and not in surface, a volumetric 
compaction energy is more suitable for the situation. Following the assumption made by Bergfeld et al. (2022), we can then write: 

δWcomp = wvol
comp ⋅ b ⋅ v(x) ⋅ dx′ ∀x′ ≤ L (1) 

Moreover, it has been shown (Rosendahl and Weißgraeber, 2020a) that the fracture process at x′ = L can be split into two con-
tributions, since it occurs in mixed-mode (modes -I and II). Thus, 

δWdyn
f = wf ,I ⋅ b ⋅ dx′ + wf ,II ⋅ b ⋅ dx′ at x′ = L (2) 

As Region II of Fig. 6 is narrow, it results in two quasi-point forces associated with these energies at x′ = L and given by:  

fI
→

= − wf ,I ⋅ b ex′
̅→ fII

→
= − wf,II ⋅ b ey

→

where wf ,I and wf ,II are specific energies of dynamic fracture (J.m− 2) for modes -I and II, respectively. Bergfeld et al. (2022) finally 
underline, based on PST experiments, that the specific work of compaction is typically thirty times higher than the specific dissipation of 
dynamic fracture: compaction thus seems to be the dominant dissipative process. For this reason, it will be considered that ∀x′ ≤ L, 

δWfracture ≈ δWcomp = wvol
comp ⋅ b ⋅ v(x) ⋅ dx′ (3) 

In summary: This model, based on fracture mechanics and relevant for the sub-Rayleigh regime, gives rise to the results presented 
in Section 2-A. 

3.2.2.2. Through the strength of materials. The rheology of snow is particularly complex, and can be caught by an elastoplastic (Blatny 
et al., 2022; Gaume, Gast, et al., 2018) or even elastoviscoplastic behaviour (Cresseri et al., 2009). However, uni-axial compression and 
tensile tests of the weak layer can be used to extract a simplified constitutive law (see Fig. 7) (Grégoire Bobillier, 2022). 

In the sub-Rayleigh regime, where the transverse deformations of the beam prevail, the fracturing of the weak layer can be 
considered to take place in compression mainly, and to be modelled as a brittle failure (green dotted curve in Fig. 7): this alternative 
model is derived in Supplementary Material n◦4 and briefly analysed in Section 3-A.3. 

In the supershear regime, where, conversely, longitudinal deformations are preponderant, we consider that the fracturing of the 
weak layer takes place in shear only, and that it can be modelled as a brittle failure too: this last model is developed in Supplementary 
Material n◦3. 

3.2.2.3. Combining both approaches. The two previous views are compatible as long as they are linked through the constitutive laws 
used in strength of materials. An example is given in Fig. 8 for a snowpack loaded in compression, which allows the volumetric energies 
to be expressed as areas under the constitutive law. As a first approximation, neglecting the plastic energy input by strain softening 
(area z2 in Fig. 7) leads to a brittle fracture in compression, thus 

wvol
f , mode − I =

1
2
σpϵp =

σ2
p

2EWL
(4)  

where EWL is the Young’s modulus of the weak layer, σp its peak stress at break (equal to its yield strength), ϵp its peak strain at break 
and DWL its height. From this point of view, the work to be done to fracture a section of length dx′ through a thickness DWL is given by 

Fig. 7. (Left) Behaviour of the weak layer during a compression test under controlled load. The blue curve corresponds to the normal stress during 
the four phases of the collapse (elastic phase in zone z.1, followed by failure with softening in z.2; then brittle compaction in z.3 and densification in 
z.4). The red dotted curve corresponds to the model adopted in the sub-Rayleigh regime. (Right) Behaviour of the weak layer during a load-controlled 
shear test. The purple dotted curve now corresponds to the model adopted in the supershear regime, when the anticrack is in shear. Adapted from the 
DEM simulations of Bobillier (2022). 
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the elastic energy: 

Wf , dyn =
1
2
σpϵp ⋅ b ⋅ DWL ⋅ dx′ (5)  

whence it can be derived the specific energy of dynamic fracture: 

wf ,I =
1
2

σ2
p

EWL
DWL (6) 

Obviously, if the fracture occurs in shear, the expression for the volume fracture energy (which has to be injected into Equation (2)) 
is modified according to: 

wvol
f , mode II =

1
2

τpγp =
1
2

τ2
p

GWL
DWL (7)  

where GWL is the shear modulus of the weak layer, τp its peak stress at break (equal to its shear yield strength), γp its peak shear strain at 
break and DWL its height. 

Finally, for a mixed-mode anticrack, it can again be rewritten: wvol
f = wvol

f , mode − I + wvol
f , mode II. 

4. Results 

In this section, we present the solutions of the problem solved with constant fracture and compaction energies, in a mixed 
perspective between fracture mechanics and strength of materials. The sub-Rayleigh and supershear models are treated in separate 
sections. 

4.1. Sub-Rayleigh regime 

This first model is based on fracture mechanics at speeds for which transverse strains v prevail over longitudinal strains u (c < cs). As 
the compressive mode (-I) is predominant, we assume that the speed of the anticrack is driven by that of a flexural wave propagating in 
the slab, while the latter undergoes only one constant contribution from the weak layer, namely a delocalised work of compaction on the 
entire [0,L] section: 

δWcomp = wvol
comp ⋅ b ⋅ v(x) ⋅ dx′ 

Now that all the forces involved in the disturbed section are known, the equation of the motion of the bending in the central section 
can be determined (see details in Section 2 of Supplementary Material n◦2): 

Fig. 8. Behaviour of the weak layer during a load-controlled compression test (black line), and identification of the volumetric dissipation of 
compaction and dissipation of dynamic fracture. When compaction occurs under realistic conditions (namely, during the collapse of the weak layer 
caused by the passage of an anticrack), the final stress σn (final strain ϵn, respectively) is determined by the amount of gravitational potential energy 
available in the slab in order to compact the weak layer. After the collapse, since the slab applies a constant stress equal to its weight when it 
eventually rests on the compacted weak layer, it can be inferred that σn = ρghcos(θ). 
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(

1 −
c2

c2
s

)(

1 −
c2

c2
p

)

v(4) +
1
λ2

c2

c2
s
v(2) =

1
λ2h

Σeff (8)  

where:  

– cs =
̅̅̅̅
κG
ρ

√
denotes the speed of two-dimensional shear S-waves in our Timoshenko slab;  

– cp =
̅̅
E
ρ

√
denotes the speed of two-dimensional dilatational P-waves in the slab;  

– λ =

̅̅̅̅
EI
κG

√

is a characteristic wavelength of the disturbance;  

– Σeff =
ρghcos(θ)− wvol

comp
κG is the normalised effective gravity stress. 

The problem must be closed by a set of boundary conditions. Six are required to close the dynamic problem, and only five for the 
static problem (see Supplementary Material n◦6 for further details). The choice of their values is crucial, since it completely determines 
the velocities that can be reached. 

4.1.1. Generic boundary conditions 
Six boundary conditions must be brought forth to account for the six unknowns on the central collapsing section (namely, the four 

integration constants A,B,C,D, the speed c and the touch-down distance L). To this end, we recall the conditions used by:  

– Heierli (2005):   

v(x′ = 0) = hc 

v(x′ = L) = 0 
dv
dx′ (x

′ = 0) = 0  

dv
dx′ (x

′ = L) = 0 

d2v
dx′2 (x

′ = 0) = 0 

d2v
dx′2 (x

′ = L) = −
g
c2     

– Rosendahl and Weißgraeber (2020a): Static conditions at the junction of the sections require continuity of the displacement fields 
and their derivatives at x′ = 0 and x′ = L. 

In order to provide the most general results possible, we take for granted the first three conditions of Heierli (2005), and leave the 
last three generic so as to match Rosendahl and Weißgraeber (2020a)’s perspective:  

v(x’ = 0) = hc 

v(x′ = L) = 0 
dv
dx′ (x

′ = 0) = 0  

1
h

dv
dx′ (x

′ = L) = V′
L 

dψ
dx′ (x

′ = 0) = ψ′
0 

dψ
dx′ (x

′ = L) = ψ′
L   

Obtaining the velocity explicitly is lengthy and the derivations are given in Section 5 of Supplementary Material n◦2. At the end of 
the calculations, speed appears as a function of both the system parameters and the boundary conditions, and takes the following form: 

c4
s

c4λ2

(

1 −
c2

c2
p

)
Σeff

h2

⎡

⎢
⎢
⎣γtan

(γ
2

)

⎛

⎜
⎜
⎝1 −

ψ′
0

c2
s

c2
Σeff

h

⎞

⎟
⎟
⎠+

[
γ

sin(γ)
− 1
]

ψ′
0 − ψ′

L

c2
s

c2
Σeff

h

−
1
2
γ2
(

1 −
c2

c2
s

)

⎤

⎥
⎥
⎦ = −

hc

h (9)  

c2
s

c2
Σeff

h2

[

γ
(

1 −
c2

c2
s

)

− 2tan
(γ

2

)]

= − tan
(γ

2

)(ψ′
0 + ψ′

L

h

)
+ γ

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
c2

c2
s

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
c2

c2
p

√
c
cs

1
λ
V′

L (10) 
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L = γλ ⋅
cs

c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1 −
c2

c2
s

)(

1 −
c2

c2
p

)√
√
√
√ (11) 

Eqs. (9) and (10) consist of coupled equations on the variables γ and c, where γ was defined for convenience and is linked to the 
touch-down distance L and the anticrack speed c. Their decoupling cannot be achieved through analytical means, due to the generic 
boundary conditions and the equations’ non-linearity; yet; their numerical resolution is straightforward and allows to find both the 
speed c and the touch-down distance L through the determination of γ. 

The next section examines a particular case in which the analytical decoupling is made possible, leading to a generalisation of the 
well-known solution of Heierli (2005). 

4.1.2. Generalised “Heierli Solution” 
To begin with, we consider the boundary conditions (6b) and (6c) of Heierli (2005):  

v(0) = hc 

dv
dx′ (0) = 0 

d2v
dx′2

(0) = 0  

v(L) = 0 
dv
dx′ (L) = 0 

d2v
dx′2

(L) =
g
c2   

Injecting them into Eqs. (9) and (10) results in Eqs. (12) to (14) below. 

c = cs

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

E
12(κG)

2
h
hc

(
ρghcos(θ) − wvol

comp

)
(

1 −
c2

c2
p

)(

1 −
c2

c2
s

)
4

√
√
√
√ (12)  

L = γ ⋅ λ ⋅
c
cs

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1 −
c2

c2
s

)(

1 −
c2

c2
p

)√
√
√
√ (13)  

γ = tan
(γ

2

)
≈ 2.3311 (14) 

Let us recall the formulas for bending length L and velocity c found by Heierli (2005) (Eq. 7a) and updated in our notation system: 

c4 =
g

2hc

Eh2

12ρ
(15)  

L4 = 2.33142hc

g
Eh2

12ρ
(16) 

This set of equations will be referred to as the Heierli solution in the rest of the paper, while our equations (12) to (14) will be called 
the Generalised Heierli solution. 

Several remarks can be made:  

– Eq. (12) is a bi-squared fourth-order polynomial in the anticrack speed c, which means that it is theoretically possible to express its 
roots, although it is cumbersome, thus not detailed here for clarity. Only one positive root is expected in between 0 and cs (as 
numerically ascertained).  

– We recover the Heierli solution by considering the low-speed limit (c ≪ cs), no compaction process (wvol
comp = 0) and a flat terrain (θ =

0) in the above set of equations. It should be understood here that the equation provided by Heierli (2005) is only valid for low 
speeds, although no data on its range of validity was provided by the author. Please note, however, that the touch-down distance L 
is still different, since our Timoshenko model considers additional internal shear forces that modify the expression of λ, compared to 
Heierli’s.  

– It can be highlighted from Eq. (12) that the dissipation of compaction directly competes against gravity, so that it affects speed as 
though the slab was subjected to an effective gravity (smaller than g) during its fall; or equivalently, as though it underwent a slope 
angle lower than expected. The dissipation of compaction therefore appears as an additive term in the formula. As outlined in 
Section 1-B.2.c, linking the work of compaction (a relevant quantity for fracture mechanics) and the mechanical properties of the 
weak layer could contribute to give a physical basis to the additive form of the corrective terms to the Heierli solution, which was 
introduced by Bobillier (2022) for numerical simulations. Note that the dependency on the compaction process is still relatively low 
for classical values of ∼ 100 J.m− 3 for the dissipation of compaction (Bergfeld et al., 2022), but significant for higher values, as 
displayed in Fig. 9. 
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4.2. Supershear regime 

This section focuses on the supershear propagation regime of the crack. It is characterised by crack velocities greater than the slab 
shear S-waves speed cs, and bounded by the slab compressional P-waves speed cp. 

Section 6 of Supplementary Material n◦2 contains a proof that supershear speeds are inaccessible for transverse bending pertur-
bations. Thus, when observed, the transition from a sub-Rayleigh to a supershear speed range is necessarily accompanied by a change 
in the mode of propagation, from a transverse to a purely longitudinal perturbation. The Burridge-Andrews mechanism justifies the 
transition to supershear velocities by the spontaneous nucleation, under the effect of strong tensile gravitational stress in the slab, of 
another crack upstream from the initial anticrack (Burridge, 1973) (Andrews, 1976). This daughter crack then necessarily propagates in 
pure shear, much faster than the initial anticrack. We thus set up a “strength-of-materials” model for this longitudinal supershear 
disturbance, which will convey most of the information and energy. The new situation and its parameters are presented in Fig. 10. 

After the first developments in Supplementary Material n◦3, postulating again the acceleration at the crack tip seems unavoidable, 
leading us to the following strategy: we generalise the boundary condition applied by Heierli (2005) for flexural waves, although it 
now involves a point force. When it exists, the latter is associated with the energy previously stored in the restoring force of the weak 
layer and suddenly released when the weak layer fails at the tip: provided that it is instantaneously recovered by the slab, it results in 
an “acceleration boost” which is expected to help increase the speed of the tip. 

Starting from here, the following form for the anticrack speed is found: 

c =
cp
̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1 +
τb

τg − τr

)

(
1 +

1
2

τb

τg − τr

)

√
√
√
√
√
√
√

(17)  

where τb denotes the “boost stress” which can be taken equal to τp = GWL
up

DWL 
in case of a brittle fracture (see Supplementary Material 

n◦3 which, in addition, discusses the above assumptions). 
As expected, the “boost” stress τb, which accounts for the restoring energy transferred from the weak layer to the slab at the tip 

when the fracture happens, does have the effect of increasing the velocity in the proportions defined by the previous ratio. When τb 
goes to nil, we recover a similar case to the one adopted by Heierli (2005) in the sub-Rayleigh regime, for which gravity (here reduced 
by friction) is the only force acting at the crack tip, leading to c =

cp̅̅
2

√ which is the lower bound of this formula. Conversely, in the limit 
where τb grows such that τb

τg − τr 
becomes predominant over 1, c→cp, so that we recover an upper bound where the speed does not depend 

on any property of the two layers. Fig. 11 plots Eq. (17) as a function of the “boost stress” τb. 
Note that, in this model, only geometrical properties of the weak layer (namely, its height) affect the velocity: the solution is in-

dependent on the geometry of the slab. The slope angle is hidden in the slope-parallel component of the gravity stress τp, such that it is 
expected to play a minor role in the formula. Nonetheless, in the absence of “boost” restoring energies, the speed is:  

– To converge towards cp/
̅̅̅
2

√
;  

– Independent on all parameters of the weak layer, especially on its height, and on those of the slab. 

Fig. 9. Anticrack speed c (left) and touch-down distance L (right) as a function of the volumetric dissipation of compaction. Reading: cHeierli refers to 
the speed out from Equation (15), cs denotes the shear plane wave speed. Note: high values of compaction energy are unlikely, yet plotted to 
highlight the behaviour of the velocity across the entire range of effective acceleration of gravity. Parameters: ρ = 250 kg.m− 3, E = 10 MPa, ν = 0.3, 
b = h = 1 m, g = 9.81 m.s− 2, θ = 0. 
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5. Discussion 

5.1. Sub-Rayleigh regime 

5.1.1. Speed adequation 
The model presented here, which defines itself as an extension of the Heierli (2005) model, has the interest of alleviating the 

mathematical anomaly that weighed on the original formula, namely the possible divergence of the velocity according to the values 
given to the physical parameters. Compared to the original Heierli solution, the speeds that stem from our generalised model remain 
bounded between 0 and the limiting S-waves speed cs, regardless of the range of physical constants involved, as shown in Fig. 12 for the 
collapse height of the weak layer. 

The generalised solution therefore proves to be a significant improvement of the Heierli solution. 

5.1.2. Flexural length mismatch 
It can be inferred from Fig. 12 that the qualitative behaviour of the Generalised Heierli solution is correct as pertains to the touch- 

down distance: namely, the flexural length increases with the collapse height, since the free fall duration of the slab is maintained 
constant over the central section, whereas the height until touch-down is increasing. 

However, the Heierli solution, and our contribution to this approach, still have a fundamental flaw related to the value given to the 
boundary condition on the curvature at x′ = L. Indeed, when the speed becomes really low (c→0) or high (c→cs), the flexural length is 
expected to decrease (respectively, to grow) up to a static length L0 (respectively, a shear length Ls) which stems from Equation (8) with a 
parameterization c = 0 (c = cs, respectively). These conditions of junction between boundary speed values, which are stated on the 

Fig. 10. Division of the slab into two sections in the moving reference frame in the supershear regime. (Section 2) From − ∞ to x′ = 0, the beam is 
supported by the weak layer stretched elastically in shear under the effect of the slab tension due to gravity. The shear resistance is denoted τxy. At x′ 

= 0, the maximum shear strain up is reached and the weak layer abruptly breaks. (Section 1) From x′ = 0 to + ∞, the slab is subject, along x′, only to 
gravity τg and to a constant residual friction τr with the debris of the damaged weak layer, lower than gravity. Note: the transverse displacement v 
and the angle ψ are neglected. Besides, the diagram is not to scale. 

Fig. 11. Anticrack velocity as a function of the boost stress τb (blue curve), compared to the value cp̅̅
2

√ found without considering the fracture process 

of the weak layer at the crack tip (red curve). Parameters: ρ = 250 kg.m− 3, E = 3 MPa, ν = 0.3, g = 9.81 m.s− 2, h = b = 1m, θ = 0. 
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touch-down distance L, translate into a condition on the curvature v(2)(L):  

v(2)(L) →
c→0

h
L0

6
A′

0  
v(2)(L) →

c→cs
hλ2A′

0  

with A′
0 =

Σeff

(hλ)2
, L0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
72⋅hc⋅h⋅λ2

Σeff

4
√

. The complete derivation of these terms can be found as Supplementary Material n◦5. 

The acceleration at the crack tip cannot be taken as a constant with respect to the speed, and in peculiar, it cannot be the constant 
acceleration of gravity g that Heierli (2005) had considered. This justifies the clear mismatch in Fig. 12 (right) where the touch-down 
distance cannot recover its static and shear values for low and high speeds, respectively. Note that, although it is quantitatively wrong, 
the Generalised Heierli solution still shows a correct qualitative behaviour as pertains to its limiting cases, with a dependence growing as 
̅̅̅̅̅
hc

4
√

for low speeds and as 
̅̅̅̅̅
hc

2
√

for high ones; it is another enhancement to the Heierli solution. 
Nevertheless, we found no natural form of interpolation between the two boundary values. From this point on, in the absence of 

knowledge on this constraint, the latter should be avoided, meaning that all velocities would remain accessible by the system. At best, a 
dispersion curve between a velocity and the corresponding bending length L could be given (Supplementary Material n◦7): 

L2 =
2hhc

Σeff

c2

c2
s
+ r2(1 − cos(γ))

(

1 −
γsin(γ)

1 − cos(γ)
+

γcos(γ) − sin(γ)
γ − sin(γ)

)

(18)  

with γ = L
r and r = λ c

cs

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 − c2

c2
s

)(
1 − c2

c2
p

)√

. This relation still satisfies the limits:  

– For c ≈ cs, L ∼
̅̅̅̅̅̅̅
2hhc
Σeff

√
≡ Ls  

– For c ≈ 0, L ∼

̅̅̅̅̅̅̅̅̅̅̅̅
72hhcλ2

Σeff

4
√

≡ L0 

5.1.3. Beyond compaction energy 
Our model, which combines fracture mechanics and strength of materials, fails to provide a complete description of the phenomena 

involved: it requires to choose a specific value of curvature at the fracture tip ex nihilo - which, besides, proves to be in our case not 
admissible at high and low speeds. The curvature should probably not be forced, but rather obtained via a dynamical weak layer model, 
that makes use of the strength of materials to uncover a constitutive law for the still intact weak layer (Section n◦3 of Fig. 5). Such a 
model has been put forward by Rosendahl and Weißgraeber (2020a) in a static framework, and we generalised it to a dynamic 
configuration in Supplementary Material n◦4. In short, this model postulates that the weak layer is deformable and undergoes a brittle 
fracture at the anticrack tip. Although the complexity of the equations would require to solve them numerically, which is not the 
purpose here, it is still interesting to look at them for two reasons:  

– On the one hand, the inclusion of elasticity in this model could explain the oscillations which are sometimes detected in the signals 
of acceleration in experiments and numerical simulations of Propagation Saw Tests (see, for instance, Figures B.5 and 3.7c in 
(Bobillier, 2022)). 

Fig. 12. (a) Left: Anticrack velocity as a function of the collapse height for our solution (blue curve), compared to the Heierli solution (red curve), in 
the absence of fracture energy. (b) Right: Associated touch-down distance (or flexural length). Parameters: ρ = 250 kg.m− 3, E = 3 MPa, ν = 0.3, g =
9.81 m.s− 2, h = b = 1m, θ = 0, wvol

comp = 0. 
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– On the other hand, the boundary condition v′(L) = 0 retained until now appears to be compromised. This hypothesis meant that the 
slab had to horizontally tangent the weak layer at the anticrack tip. However, the model suggests that the value of the tangent is 
strictly positive and determined by both weak layer and slab properties. Fig. 13 plots the speed obtained by solving equations (9)
and (10) for increasing values of the tangent at the crack tip. It shows that higher speeds can be recovered from this reasoning, 
growing from that of the Heierli solution up to the limit shear speed cs. This seems more in line with the simulations when 
considering no fracture nor compaction (Trottet et al., 2022a). 

5.2. Supershear regime 

Once again, let c denote the speed of the crack in its steady state. It is not obvious at first sight whether Eq. (17) is valid or not, since 
there are few quantitative experimental data available as for now on the supershear transition in slab avalanches. The main numerical 
data set on which we rely is that of Trottet et al. (2022), derived from MPM simulations. 

We recall that our theoretical model is two-dimensional, leading to characteristic velocities cs =
̅̅̅̅̅̅̅̅̅̅̅
κG/ρ

√
and cp =

̅̅̅̅̅̅̅̅
E/ρ

√
which are 

built upon the plain-strain Young’s modulus E =

̅̅̅̅̅̅̅̅
E′

1− ν2

√

instead of Young’s modulus E′. Thus, to ensure comparability with the data from 

Trottet et al. (2022), our theoretical speed formulae must be renormalized by the three-dimensional shear wave speed c3D
s =

̅̅̅
G′
ρ

√

=
̅̅̅̅̅̅̅̅
1− ν2

κ

√

⋅ cs, thereby introducing a multiplying factor 
̅̅̅̅̅̅̅̅κ
1− ν2

√
≈ 0.96 (with ν ≈ 0.3) in eq. (12) and (17). 

Fig. 14 illustrates the steady-state crack propagation speed observed in MPM simulations (results from Trottet et al., 2022) as it 
varies with the slope angle. In this plot, two colored regions are included that represent admissible asymptotic speed values in both the 
anticrack and supershear regimes, based on the current theoretical analysis (Eqs. (12) and (17), respectively). The speed limits of our 
predictions are consistent with the outcomes of the numerical simulations. 

As a further step, assuming a brittle fracture and thereby identifying the boost stress τb with the shear strength τp, it can be inferred 
from the simulations of supershear avalanches that τp/(τg − τr) typically varies between 1 and 12. Therefore, the range of speed values 
predicted in the supershear regime in these simulations can be refined: 

c
c3D

s
∈ [1.38; 1.68]

which shows a good agreement with the numerical results. Please note however that, for the sub-Rayleigh cases, by using the specific 
parameters of the simulations of Trottet et al. (2022), the theoretical admissible asymptotic speed values c/c3D

s predicted by our 
generalized Heierli solution Eq. (17) are comprised within [0.1 − 0.3], whereas the numerical results are rather in the range [0.3 − 0.6]. 
As raised earlier, those latter values are only recoverable by considering non-nil values of the tangent at the crack tip in the complete 
coupled problem of Eqs. (9) – (10). In particular, c/c3D

s can grow up to 0.6 when V′
L ∼ − 0.01 m− 1, which is consistent with the values 

arising from the temporal analysis of anticrack propagation (Bergfeld et al., 2022). 

6. Conclusion & outlook 

This paper developed a new model for dynamic anticrack propagation in slab avalanches based on the Timoshenko beam kine-
matics. Our speed formulas for the steady-state crack, available for both the sub-Rayleigh and the (newly discovered) supershear regime, 
bypass the main problems of the previously available one provided by Heierli (2005). In particular, the predicted speeds remain 
bounded for all values of the physical parameters involved, and consider the compaction of the weak layer derived from the 

Fig. 13. (a) Left: Anticrack velocity as a function of the tangent at the crack tip (blue curve), compared to the Heierli solution (yellow) and cs (red), in 
the absence of fracture energy. (b) Right: Associated touch-down distance. Parameters: ρ = 250 kg.m− 3, E = 3 MPa, ν = 0.3, g = 9.81 m.s− 2, h = b 
= 1m, θ = 0, wvol

comp = 0, hc = 1 cm. 
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perspective of fracture mechanics. For typical values of snow parameters in the slab and the weak layer, the resulting speeds show 
qualitatively good agreement with the available data. Quantitatively, however, they demonstrate fundamental flaws linked to the 
chosen boundary conditions, especially with respect to the touch-down distance for anticracks. Besides, the fracture processes at the 
anticrack tip were not accounted for. A more accurate model for the failure upstream from the anticrack could help explain the 
limitations of the present study and push the knowledge of the process a step further. Although incomplete due to the inherent 
mathematical difficulties encountered while deriving slightly more complex models - especially when attempting to regard fractures at 
the anticrack tip -, this paper underlines the robustness of our computation strategy, which could lead to an improved understanding of 
anticracks if more experimental data could be accessed. 

The implications of this study are at least twofold: greater knowledge of the speed of an anticrack could lead not only to greater 
accuracy in estimating the size of avalanches when released, but also to a better estimate of the risk of their triggering. This last aspect 
is emphasised by Bergfeld et al. (2022) when proposing a new stability index, the SSP (Index for Self-Sustained Propagation), based on 
both static (the critical crack length) and dynamic indicators (such as the anticrack speed). 

Our results do not reflect the transient dynamics of the anticrack; they especially give no information with respect to the 
convergence towards the steady state as a function of the weak layer parameters, on which the supershear regime seems to drastically 
depend (Trottet et al., 2022). Based on this observation, the transient dynamics of the collapse could be sought from a generalization of 
the expressions established by Heierli (2008) from a static perspective of the problem, whether this is achieved by (i) the differen-
tiation of the action functional resulting from the addition of a kinetic term to the static potential of the anticrack found by Heierli 
(2008) in equation (4.10), or (ii) by directly searching for a dynamic potential for the anticrack following the approach that led, in the 
static case, to equation (4.10). 

Please finally note that we have chosen to derive mixed models (involving both fracture mechanics and the strength of materials) or 
strength-of-materials models only. Adopting a framework utterly based on fracture mechanics could also prove to be a valuable 
alternative, by adapting to snow the extensive literature on transient dynamic fracture mechanics. To this end, one could draw 
inspiration from the works of Marder (1991) Freund (1998) and Svetlizky et al. (2017) for anticracks, and of Kammer et al. (2018), 
Bayart et al. (2018) and Shlomai et al. (2020) for the supershear cracks. 
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