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A B S T R A C T   

Fire indices are used to describe the weather conditions that influence fire ignition and fire behavior. Although 
many studies analyzed their performance on fire occurrence at daily resolution, few focused on their ability to 
capture the burned area, which is usually analyzed at the weekly or monthly scale. Cumulative Logarithmic Area 
Ranking Efficiency (CLARE) is a newly developed metric that takes burned area into account when assessing 
daily fire danger. The use of CLARE in addition to the Area Under the receiver operating characteristic Curve 
(AUC) in the selection process of fire indices or fire occurrence models provides a complementary metric that 
allows for the evaluation of a model’s ability to assess burned area. We evaluated the CLARE performance in 11 
regions ranging from the European Alps to the Mediterranean basin. We also assessed the impact of (i) different 
groups of input variables (meteorological variables vs. fire indices), (ii) model complexity in terms of number of 
variables, and (iii) the modeling approach (Generalized Linear Models vs. Maxent) on the performance of CLARE. 
We found that models that achieve a high AUC for predicting fire occurrence may fail to show a high perfor-
mance when predicting burned area. Using a multi-variable modeling approach is likely to provide higher CLARE 
performance than using single-variable fire index models, especially among models that have high AUC. 
Moreover, using this approach led to better multi-variable meteorological model performance than single- 
variable fire index models for some regions. This may be particularly valuable for regions where the calcula-
tion of fire indices is not possible. Finally, the differences between the modeling approaches were mainly related 
to the region or input variable groups. Overall, our results highlight that including burned area in the fire danger 
assessment process is feasible across a wide range of environmental conditions and provides valuable insights.   

1. Introduction 

Forest fires play a significant role in ecosystem dynamics in many 
parts of the world. Ongoing climate change may alter existing re-
lationships between abiotic variables and fire patterns, and fire regimes 
may deviate from their historical patterns since climate and weather are 
closely linked with forest fires (Müller et al., 2015; Pausas and Keeley, 
2021). Alterations caused by climate change are already visible in some 
parts of the world, such as extensions of the fire season (Jolly et al., 
2015), changes in total burned area (Amatulli et al., 2013) and the more 
frequent occurrence of extreme fire events (Moreira et al., 2020). 

Moreover, even strongly increasing fire suppression expenditures will 
not be able to prevent large fires since current policies in many regions 
cause the ‘firefighting trap’, i.e. that fuel build-up due to strict fire 
suppression policies leads to larger and more severe fires (Collins et al., 
2013; Moreira et al., 2020). Such deviations from historical fire regimes 
are likely to result in significant changes in the ecological impact of fire, 
including vegetation shifts and losses of ecosystem services, despite 
extraordinary fire suppression efforts (Keeley and Pausas, 2019; Pausas 
et al., 2008; Pausas and Keeley, 2019). 

Fire indices were initially developed for assessing the relationship 
between fire behavior, weather elements and other aspects such as fuel 
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moisture, to better understand the likelihood of fire ignition and the ease 
of the fire to spread (Stocks et al., 1989). These indices combine multiple 
variables that characterize fire weather and allow for a better repre-
sentation of the determinants of fire occurrence than single meteoro-
logical variables, since they integrate multiple aspects of fire weather 
(Bedia et al., 2015). Consequently, they were used for multiple purposes 
such as understanding the past and future effects of climate change on 
fire danger (Abatzoglou et al., 2019, Dupire et al., 2017), studying 
changes in fire regimes (Pezzatti et al., 2013) or the impacts of 
fire-suppression policies (Ruffault and Mouillot, 2015). Understanding 
the relationship between the properties of forest fires and weather as a 
fundamental causing factor is important not only for short-term fire 
management activities, but also for assessing the long-term ecological 
consequences. In this context, fire weather-based assessments of forest 
fire indices are pivotal. 

Developing a fire index requires extensive research and testing 
(Hardy and Hardy, 2007). Over the years, a large number of fire indices 
have been developed around the world for a variety of purposes and 
regions. Some of them were re-calibrated or re-scaled to be used in other 
contexts (San-Miguel-Ayanz et al., 2012; de Jong et al., 2016). For 
example, the European Forest Fire Information System uses the Cana-
dian Fire Weather Index System to provide a standardized assessment of 
fire danger in all the countries of Europe. However, many of the indices 
are used in areas for which they had not originally been intended and 
calibrated. Despite the understandable reasons of saving time and 
money, using existing indices outside the area of calibration may cause 
an under- or overestimation of fire danger and eventually questions the 
index’s suitability (Arpaci et al., 2013). This is especially crucial for 
regions where fires are not common, i.e. where overestimation of the fire 
danger can cause false alarms and reduce the credibility of the system 
(Garcia et al., 1995). Such problems may arise from local differences in 
fire incidence, short-term weather variability, fire-vegetation feedbacks 
or anthropogenic factors that are strongly co-shaping the fire regime in 
most areas (Tian et al., 2011; Pausas and Paula, 2012; Šturm et al., 
2012). 

Many studies measuring the performance of fire indices focused on 
fire occurrence, i.e. the probability of a fire to start in a specific reference 
area (Wotton, 2009). While it is critical to know the probability of fire 
occurrence, it is equally important to know the likelihood of those fires 
to spread and becoming large. The definition of large fires may change 
depending on the region and ecosystem of interest. However, in relative 
terms, fires can be classified as "large" if the area burned is in the upper 
range of fire sizes (e.g., fires with a burned area corresponding to the 
upper 95 or 99 quantile, see Gill and Allan (2008) for a review). These 
fires, although small in number, account for a significant proportion of 
the total area burned by all fires and thus have a disproportionately large 
impact on ecosystems and society (Pezzatti et al., 2020; San-Migue-
l-Ayanz et al., 2013). Understanding the dynamics of large fires is 
however difficult, as they are relatively rare and irregular (Gill and 
Allan, 2008). Among others, a better understanding of the meteorolog-
ical conditions that can lead to large fires would help firefighting or-
ganizations to manage available resources more efficiently. In 
particular, weather conditions at the starting day and during the first 
response by firefighters have a strong influence on the final burned area 
(Wotton, 2009). This calls for a daily resolution of weather data and fire 
danger assessment. However, most of the studies on the relationship 
between burned area and fire indices have investigated this relationship 
on weekly or monthly time scales, especially in the case of climate 
change projections (Amatulli et al., 2013; Carvalho et al., 2008; Flan-
nigan et al., 2005), and only a few have attempted to study it at a daily 
resolution (Arpaci et al., 2013; Freeborn et al., 2015). Moreover, fire 
databases do not always include data on fire spread through time. 
Therefore, different methodological approaches were used in the liter-
ature to understand large fires. For instance, logistic regression models 
were used to estimate the probability of the occurrence of a large fire on 
a given day (Bradstock et al., 2010; Preisler et al., 2004). However, such 

studies require a precise definition of “large”, which obviously is 
region-specific. In some regions, this may be >1000 hectares, whereas in 
others it can be 50 hectares (Linley et al., 2022). This makes it hard to 
apply and compare the same approach to different regions. 

Pezzatti et al. (2020) proposed a novel metric, the Cumulative Area 
Ranking Efficiency (CARE), to evaluate the ability of a fire index to 
correctly rank fire events according to burned area. CARE evaluates the 
total burned area of all fires started on a given day and can be used as a 
complementary metric to performance measures of fire dannger ratings. 
Furthermore, the metric is easily applicable to most fire databases since 
it is based on daily total burned area instead of the burned area of a 
single fire or the sum of the daily newly burned area by ongoing fires. To 
date, however, CARE has been developed and tested only for a small 
number of regions and for single fire indices (Pezzatti et al., 2020), but 
not with models based on multiple variables. De Angelis et al. (2015) 
trained regional multi-variable models of fire occurrence and demon-
strated that models based on raw meteorological variables can in some 
cases outperform complex fire danger indices, such as the Canadian Fire 
Weather Index. Finding a way to include the CARE metric in the process 
for selecting the best multi-variable models (model selection) has the 
potential of indicating which models best predicting the fire occurrence 
are also informative regarding the final burned area (Pezzatti et al., 
2020). 

Various statistical modeling and machine learning approaches, such 
as Generalized Linear Models (GLM; Adámek et al., 2018), zero-inflated 
regression models (Bekar and Tavşanoğlu, 2017), or Maxent (Parisien 
and Moritz, 2009) have been used in the fire ecology literature. 
Although a considerable impact of methodological choices on the 
modeling results has been shown in a variety of fields (Elith et al., 2006; 
Elith and Graham, 2009; Syphard and Franklin, 2009), only few have 
studied the effect of the modeling method in fire ecology (Massada et al., 
2013; De Angelis et al., 2015). For instance, Massada et al. (2013) 
showed that while the performance of machine learning methods was 
only marginally better than that of GLMs, the ignition probability maps 
generated by these models showed notable differences (Massada et al., 
2013). In addition, model performance can be influenced by various 
internal factors, including the complexity of the model and the types of 
variables considered (Fernandez et al., 2017; Brun et al., 2020). 

The aims of this study are (1) to evaluate the suitability of integrating 
the CARE metric as a model selection criterion for identifying the best 
combinations of fire indices or meteorological variables in predicting 
fire danger. The primary purpose of testing CARE across a wide range of 
environmental conditions was to complement the AUC metric by taking 
burned area into account when selecting the best model for assessing 
daily fire danger (Pezzatti et al., 2020). In this perspective, the CARE 
approach was tested in eleven case study regions along a large envi-
ronmental gradient from European Alpine and pre-Alpine (selected re-
gions in Austria, Switzerland, and France) to Mediterranean conditions 
(Spain and Italy). Further, we aim at evaluating the differences in the 
performance depending on (2) the type of the explanatory variables 
being used, i.e., the elaborated fire indices vs. raw meteorological var-
iables or simple derivations of them; (3) the complexity of the model, i. 
e., single-variable models vs. multi-variable models; and (4) the 
modeling approach, i.e., Generalized Linear Models vs. Maxent. 

2. Materials and methods 

2.1. Study areas and data sources 

We selected eleven regions from five countries across Europe (Fig. 1), 
i.e. two regions each from Austria, France, Spain, and Switzerland, and 
three regions from Italy. They represent a wide range of environmental 
conditions from the more moist and cold weather in the Alps to the 
warmer and drier Mediterranean regions, with distinctly different fire 
regimes (see Table 1). We used the official fire event records (i.e., start 
date and total burned area) from the corresponding national agencies 
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already retrieved and used by Bekar et al. (2020) and Pezzatti et al. 
(2020), and merged them with the additional data hosted in the 
Prométhée database (Forest fires database for Mediterranean area in 
France), which is freely available at https://www.promethee.com/. In 
order to allow for a more straightforward comparison among all 
considered regions, only the fires occurring in the vegetation period 
(defined here as May to November) were retained for the analysis. 
Meteorological data were obtained from a meteorological station in each 
region (Table S1). In Italy, we removed 2002 for Cilento and Chilivani, 
and 2008 for Chilivani from the analyses, due to a lack of meteorological 
data. The final number of years available differed among regions. 
However, even the region with the shortest period (Italian region Chi-
livani providing 12 years only) featured a high fire activity in terms of 
number of fires and burned area, providing sufficient numbers to 
perform our analysis. 

2.2. Meteorological variables and fire indices 

We used nine meteorological variables (three of them related to 
precipitation) and 14 widely used fire indices of different complexity 
(Table 2). The selected indices are primarily used as fire danger in-
dicators rather than a direct measure of fire weather conditions. Con-
cerning the fire indices, the Canadian Forest Fire Weather Index system 
includes six indices (Van Wagner, 1987). Three of these are the Fine Fuel 
Moisture Code (FFMC), the Duff Moisture Code (DMC), and the Drought 
Code (DC). They keep track of moisture content in different types of 
fuels. A combination of these indices with wind speed results in the 
Initial Spread Index (ISI) and the Buildup Index (BUI). Finally, a com-
bination of ISI and BUI results in the overall Fire Weather Index. The 
Angström Index and the Fuel Moisture Index (FMI) are simple indices 
that require only relative air humidity and temperature. Furthermore, 

Fig. 1. Location of the study regions in Spain (Campo Arcis, Lliria), Switzerland (Ticino, Valais), France (West Hautes Alpes, East Hautes Alpes), Italy (Chilivani, 
Campidano, Cilento), Austria (Tyrol, Carinthia). Different fill patterns are only used to indicate borders in adjacent study areas. 

Table 1 
Environmental conditions and fire statistics for the eleven study regions. ‘Seasonal’ refers to the vegetation period (i.e., May to November).    

Environmental conditions All fires Large fires (≥ 50 ha) 
Region Time 

interval 
Seasonal Mean 
Temperature 
[◦C] 

Seasonal Total 
Precipitation 
[mm]a 

Number of fire 
days 

Burned 
Area 
[ha] 

Number of fire 
days 

Burned Area 
[ha] 

Carinthia 2000–2017 19.0 461 211 47 – – 
Tyrol 2000–2018 14.9 657 238 44 – – 
Ticino 2000–2017 17.2 1356 253 288 1 130 
Valais 2000–2018 14.9 628 97 334 1 310 
Lliria 2000–2018 20.0 238 182 1429 6 1151 
Campo Arcis 2000–2018 18.4 205 281 71 – – 
Eastern Hautes- 

Alpes 
2000–2016 20.5 431 30 358 2 342 

Western Hautes- 
Alpes 

2000–2016 17.6 666 35 91 – – 

Campidano 2000–2013 22.9 147 1658 32,300 153 20,671 
Chilivani 2000–2013 20.8 185 815 9366 25 7026 
Cilento 2000–2013 22.7 232 722 8429 28 4730 

In Italy, we removed 2002 for Cilento and Chilivani, and 2008 for Chilivani from the analyses, due to a lack of meteorological data. 
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the Sharples Forest Fire Danger Rating Index combines FMI with wind 
speed (Sharples et al., 2009). The Fosberg Fire Weather Index uses 
temperature, relative air humidity, and wind speed to provide infor-
mation on the impact of small-scale/short-term weather variations on 
fire potential since it is calculated based on hourly data (Goodrick, 
2002). The Nesterov Index requires temperature, dew point tempera-
ture, and precipitation and is suitable for assessing the ignition potential 
(Nesterov, 1949). The Keetch-Byram Drought Index requires daily 
temperature, daily and annual precipitation as input and aims to 
represent the flammability of the organic material in the ground (Keetch 
and Byram, 1968). The McArthur Forest Fire Danger Index was origi-
nally developed for assessing fire danger in Eucalyptus forests and is 
mostly used in Eastern Australia. It is based on temperature, relative air 
humidity, wind speed, and fuel availability (McArthur, 1967; Noble 
et al., 1980). Lastly, the Baumgartner index was developed based on the 
assumption that fire danger is mainly driven by fuel dryness. It requires 
daily precipitation and potential evapotranspiration (Baumgartner 
et al., 1967). 

All fire indices were calculated on a daily basis with the Fire Danger 
Indices Calculator software (https://github.com/Insubric/fire-calc 
ulator) developed by the Swiss Federal Institute for Forest, Snow, and 
Landscape Research (WSL). 

2.3. Modeling approach and performance evaluation 

We used two statistical modeling approaches, i.e., Maxent and 
Generalized Linear Models (GLM) to model the occurrence of fire days (i. 
e., days in which there is at least one ignition). In most fire danger 
studies, Generalized Linear Models (GLMs) have been used 

(Costafreda-Aumedes et al., 2017). However, ecological niche modeling 
that predicts the presence/absence of species in space represents an 
alternative. Niche modeling approaches such as Maxent are becoming 
increasingly popular for forest fires studies (Parisien and Moritz, 2009; 
Arpaci et al., 2014; Bekar et al., 2020). Maxent is particularly getting 
attention due to its presence-only nature which allows Maxent to esti-
mate the relationship between presence and background data instead of 
absences. This fits well with fire occurrence data, where fire statistics 
may be incomplete (missing registration of fires) or anthropogenic ig-
nitions may not occur in days with very high fuel flammability since 
people are aware of the danger (Massada et al., 2013). Moreover, 
Maxent shows high performance even with small sample sizes (Guisan 
et al., 2007). De Angelis et al. (2015) used Maxent to implement the 
principles of ecological niche modeling to the temporal scale of fire 
where fire weather conditions were considered as the environmental 
space. 

Furthermore, we used two groups of variable pools: meteorological 
variables from which we derived what we hereafter call ‘meteorological 
models’, and fire indices (‘index models’). We also considered single- 
variable and multi-variable models separately and compared their per-
formance when based on different variable groups (all models referred 
to in the paper are multi-variable unless they are specifically denoted as 
single-variable models). Using multi-variable models consisting of 
several fire indices instead of a single index allows us to better charac-
terize fire weather conditions (cf. De Angelis et al., 2015). The corre-
lation among the predictor variables was checked and combinations 
containing highly correlated ones (i.e., Pearson’s r ≥ 0.9) were removed 
during the model building procedure. For each region, we used k-fold 
cross-validation to obtain more robust results from the models. For this 
purpose, we selected a combination of two consecutive years for the test 
and the remaining folds as training. We repeated this for all combina-
tions of two years. Finally, we calculated the performances on each test 
fold and averaged them. 

The Area Under the ROC (Receiver Operating Characteristic) Curve, 
also known as AUC, is commonly used to evaluate the performance of 
fire occurrence models (Fielding and Bell, 1997; Parisien and Moritz, 
2009). It refers to a model’s accuracy in discriminating between days 
with and without fire (i.e., fire occurrence). We visually combined AUC 
with the newly developed metric CARE (Cumulative Area Ranking Ef-
ficiency) in order to get an assessment of the model’s ability to provide 
information on both fire occurrence and burned area (Pezzatti et al., 
2020) and to explore the patterns between the two metrics. CARE relies 
on the cumulative curve of the total burned area of the fires started on a 
particular day by ranking the fire days according to decreasing predicted 
fire occurrence probability. Here, the higher the area under the curve is, 
the better the performance since this means that large fire days are 
associated with days with high fire danger levels (for the full details of 
the methodology, see Pezzatti et al. 2020). Therefore, CARE can be used 
as a complementary performance metric to AUC, as it evaluates the 
ability of a specific fire model to assess the risk of large fire days. It 
ranges from 0 to 1, where 0.5 represents a random prediction. We used 
the logarithmically transformed version of CARE, i.e., CLARE (Cumu-
lative Logarithmic Area Ranking Efficiency) to handle the generally 
strongly skewed distribution of burned area (see Pezzatti et al. 2020 for 
details). 

All analyses were run using the R statistical software version 3.6.1 (R 
Core Team, 2021). We used the ’dismo’ package with its default 
parameter settings (Hijmans et al., 2021). 

3. Results 

3.1. Performance of AUC vs CLARE 

The proposed approach highlighted different performance patterns 
according to CLARE vs. AUC plots, of which the extreme cases are shown 
in Fig. 2. In Campidano, CARE performances were aligned and in 

Table 2 
Meteorological variables and fire indices used in the study. PET is the potential 
evapotranspiration [mm/day]. Meteorological variable names with the suffix 
“12″ refer to values measured at noon. Otherwise, they refer to the daily mean 
value or daily sum in the case of precipitation.  

Abbreviation Name Variables used in 
calculation 

Meteorological 
variables   

T [ ◦C] Air temperature – 
Tdew [ ◦C] Dewpoint temperature – 
H [%] Relative air humidity – 
VPD [kPa] Vapor pressure deficit – 
U [m/s] Wind speed – 
P [mm/day] Precipitation – 
WeekRain [mm/ 

week] 
Total rainfall over the last seven 
days 

– 

DaysSinceRain 
[day] 

The number of days since the 
last rainfall 

– 

LastRainSum [mm] The sum of the last rainfall 
event 
(consecutive days with rain) 

– 

Fire indices  
FFMC Fine Fuel Moisture Code T12, H12, U12, P12 
DMC Duff Moisture Code T12, H12, P12, day 

length 
DC Drought Code T12, P12, day length 
ISI Initial Spread Index FFMC, U12 
BUI Buildup Index DMC, DC 
FWI Fire Weather Index BUI, ISI 
Angström Index  H, T 
Baumgartner Index  P, PET 
FMI Sharples Fuel Moisture Index T, H 
Sharples Sharples Forest Fire Danger 

Rating Index 
T, H, U 

FFWI Fosberg Fire Weather Index T, H, U 
Nesterov Index  T, Tdew, P 
FFDI McArthur Forest Fire Danger 

Index 
T, H, U, P 

KBDI Keetch-Byram Drought Index T, P, mean annual 
precipitation  
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Fig. 2. CLARE vs. AUC performances of all index and meteorological models for Western Hautes Alpes and Campidano. Numbered boxes highlight the highest 
performance in AUC (box 1), CLARE (box 3), and both metrics (box 2). 

Fig. 3. CLARE vs. AUC performances of the Maxent models for all regions. To enhance the readability, in the plots multi-variable model performances are repre-
sented by lines encompassing the entire range of models (models with 2 or more explanatory variables). The symbols represent all single variable models. 
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accordance with those based on AUC, while in Western Hautes-Alpes, 
the performances were scattered, as highlighted by the much broader 
point clouds (Fig. 2). In both cases, the number of models that achieved 
an AUC above 0.8 was very high; however, in Western Hautes-Alpes, 
models that showed high AUC performance featured a wide range of 
CLARE values, from 0.3 to 0.8, and many of them were characterized by 
CLARE values <0.5 (Fig. 2). Here, models with the highest AUC per-
formance (Fig. 2, box 1) had a very low CLARE performance, whereas 
models with the highest CLARE performance (Fig. 2, box 3) had much 
lower AUC performance than the highest AUC. However, some models 
(Fig. 2 box 2) had a good performance in both metrics. Thus, using the 
additional CLARE metric allows for a fine-tuning in the selection of the 
best models, such as in Campidano, or it may be given a greater 
importance according to a user-defined weighting that considers a trade- 
off between AUC and CLARE. 

Fig. 3 summarizes the patterns found in all regions, differentiating 
between single and multi-variable models and between index and 
meteorological models. The observed patterns can be more similar to the 
monotonic relationship found in Campidano, e.g. in the other Italian 
regions; more scattered like in the Eastern Hautes Alpes, Campo Arcis, 
Carinthia, and the Swiss regions; or an intermediate situation, like in 
Tyrol and Lliria. 

Absolute values of model performance varied strongly for both 
CLARE and AUC depending on the region. AUC values were generally 
above the random guess value of 0.5, which is understandable given that 
the models were built on fire occurrence. Instead, five regions had a 
considerable number of models with CLARE values below 0.5. Maximum 
AUC values among the models were found in Campidano, Tyrol and 
Western Hautes-Alpes, while the highest values in CLARE were in the 
Western Hautes Alpes, Tyrol, Valais and Lliria. 

3.2. Performance of index vs. meteorological models 

The role of the different explanatory variables on model performance 
varied strongly for both CLARE and AUC, depending on the region 
(Fig. 3). The index models showed a slightly better AUC performance in 
most regions than the meteorological models (Fig. 3). In some regions, 
such as Campo Arcis, the best performing meteorological models (rep-
resented by the 100 models with the highest performance) achieved a 
mean AUC of 0.66, showing a performance close to that of the best 
performing index models, which had a mean AUC of 0.68. However, the 
same index models showed a higher mean CLARE performance (0.70) 
than the meteorological models (0.61) even though their AUC perfor-
mance was similar to that of the meteorological models. The CLARE 
performance of the index models was also slightly higher than that of the 
meteorological models in most regions. The strongest exception was 
found in Valais, where the meteorological models outperformed the 
index models in terms of CLARE performance, achieving as high as 0.75, 
compared to the index models’ maximum performance of 0.69. How-
ever, it should be noted that the meteorological models that had the 
highest CLARE values in Valais did not feature an acceptable AUC per-
formance. The magnitude of the difference between the index and 
meteorological models varied strongly depending on the region. For 
instance, while the differences in Western Hautes Alpes were very clear, 
they were hardly noticeable in Carinthia. 

3.3. Performance of single-variable vs. multi-variable models 

The multi-variable index models typically showed an AUC perfor-
mance that was at least similar to or higher than that of all single- 
variable models (cf. dots in Fig. 3). A similar pattern was found for 
CLARE, with a few exceptions. In Ticino and Eastern Hautes Alpes, the 
single-variable index models showed a slightly higher CLARE perfor-
mance than the multi-variable models. However, these single-variable 
index models were not among those with the highest AUC perfor-
mance in the respective region. In the Western Hautes Alpes, a single- 

variable meteorological model with a CLARE of 0.65 outperformed all 
multi-variable meteorological models, which were all below 0.58. 
However, these single-variable models were not among those with the 
highest AUC performance in the respective region. It is also important to 
highlight that multi-variable meteorological models showed a perfor-
mance at least similar to or higher than single-variable index models for 
both AUC and CLARE in most instances. For example, in Valais, the best 
multi-variable meteorological models achieved a CLARE as high as 0.75, 
outperforming all single-variable index models(Fig. 3). Also, the per-
formance of the best meteorological models was nearly identical or even 
higher to that of the index models in some regions, such as Carinthia, 
Ticino, Valais and Campo Arcis. 

3.4. Performance of the GLMs vs. Maxent modeling approach 

No single modeling approach consistently outperformed the others 
across regions or variable group (Figs. 4 and 5). For instance, CLARE and 
AUC for both modeling approaches was nearly identical in Carinthia and 
Chilivani (Figs. 4 and 5). However, for fire indices, GLMs had higher 
CLARE and AUC than the respective Maxent models in Valais (Fig. 5), 
while the index Maxent models had clearly higher performance than the 
index GLMs in Campidano (Fig. 4). The impact of the modeling method 
also changed depending on the input variable groups. Maxent performed 
at least similar to or had a higher performance than the GLMs for the 
index models (Fig. 4). However, contrasting patterns were observed 
where the GLMs had at least similar to or higher performance than 
Maxent models for the meteorological models (Fig. 5). In most cases, the 
variation in CLARE performance between the modeling methods was 
higher than in AUC performance (Figs. 4 and 5). Lastly, the GLM per-
formances were generally distributed over a wider range of values 
compared to the Maxent model performance. 

5. Discussion 

5.1. Suitability of CLARE in a model selection framework 

In this study, we successfully implemented CLARE in the model se-
lection process for widely different environmental conditions and fire 
regimes. Using CLARE makes it possible to select models with a better 
prediction capability for burned area among the ones displaying the best 
AUC performance. However, it should also be highlighted that the pri-
mary selection criterion must remain the AUC performance. Therefore, 
one should not overlook the AUC performance of the models and choose 
models that perform best in CLARE only, but rather identify and select 
models that have a sound trade-off between predicting fire occurrence 
(AUC) and burned area (CLARE). Our results further highlight that not 
all models with high AUC performance also perform well in terms of 
predicted burned area (Pezzatti et al., 2020). This discrepancy may be 
understandable as the short- and long-term drivers of fire ignition and 
burned area may differ within a region (Bedia et al., 2014). In such 
cases, models that can accurately predict fire ignition may fail to identify 
the risk of fires to get large (Tanskanen and Venäläinen, 2008). As a 
result, identifying models with good AUC performance that perform well 
also in terms of burned area should be done carefully for each region. 
Overall, including CLARE as a complementary metric in addition to AUC 
for evaluating model performance allows for a more thorough investi-
gation of the role of meteorological factors, and ultimately results in a 
more robust model selection process. 

5.2. Importance of the nature of the predictor variables 

Fire indices have been specifically developed to better represent 
environmental and fire weather conditions than meteorological vari-
ables. Therefore, we expected that index models perform better than 
meteorological models. Indeed, the index models showed a higher 
CLARE or AUC performance than the meteorological models in most 
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regions (De Angelis et al. 2015; Fig. 3). However, it should be noted that 
the meteorological models showed nearly identical performance as the 
index models in regions such as Carinthia and Ticino, which are 
low-to-medium fire activity regions in comparison to the high fire ac-
tivity regions such as Spain and Italy, where index models performed 
better although to varying degrees. Moreover, meteorological models 
clearly outperformed many of the single-variable index models in most 
regions. Similar findings that show a high performance of the raw 
meteorological variables compared to fire indices have been previously 
reported by several studies including one from Austria (Padilla and 
Vega-García, 2011; Arpaci et al., 2013). Such high performance by the 
meteorological models could be promising for regions where the 
calculation of fire indices is not possible. However, it has to be consid-
ered, that the findings also reflect the fact that the tested fire indices 
have not been adjusted to the Alpine / European conditions. So, fuel 
moisture might be biased by the different vegetation types and fuel beds 
(Arpaci et al., 2013). 

5.3. Niche modeling approach: multi-variable vs. single variable models 

Model complexity is an important factor that strongly affects per-
formance (Brun et al., 2020). The number of variables considered is an 
important part of the model complexity where too few variables may 
cause a model to fail to capture the relationship between response and 
environmental factors. At the same time, too many variables can create 
unnecessary noise in models and may lead to overfitting (Moreno-Amat 
et al., 2015; Brun et al., 2020; Low et al., 2021). In our study, the largest 
difference in overall performance between multi-variable and 
single-variable models was found in the Western Hautes Alpes and 

Tyrol, which had the lowest number of fire days and the lowest amount 
of burned area, respectively. In contrast, the differences were small in 
regions such as Campidano and Chilivani, where the number of fire days 
was high, which shows that number of variables in the model has a 
smaller effect on model performance when the sample size is high. It is 
known that sample size has a strong effect on model performance from 
multiple aspects (Wisz et al., 2008). Models may not be able to describe 
the ecological niche of the modeled organism to its full extent and can 
only describe relatively large patterns when the sample size is low 
(Foody, 2011). In our case, multi-variable models increased the model 
performance in regions with small sample sizes, whereas the effect was 
low in high fire activity regions. This is understandable since model 
performance shows more variability at small sample sizes and strong 
response to number of variables (Wisz et al., 2008; Brun et al., 2020). 
The high performance of some of the single-variable index models can be 
explained by the relationship between the fire indices and fire weather 
since those indices take multiple meteorological variables into account 
simultaneously with the specific aim of representing fire weather con-
ditions. Moreover, it is important to emphasize that the use of 
multi-variable models that take into account multiple fire indices allows 
for leveraging their best features by weighting them in a model that 
performs an indirect regional calibration by taking local fire history into 
account (De Angelis et al., 2015). Overall, our findings provide further 
evidence to De Angelis et al.’s (2015) conclusion that the multi-variable 
modeling approach allows for a better characterization of fire danger 
conditions than single-variable models. This approach is not only 
beneficial in most of the studied regions, but it is particularly effective in 
areas with low to moderate fire activity and/or with a strong anthro-
pogenic component in the fire regime, which make the selection and the 

Fig. 4. Comparison of the fire weather GLM and Maxent models for all regions. To enhance the readability, in the plots multi-variable model performances are 
represented by lines encompassing the entire range of models including single and multi-variable models. Larger bubbles indicate that the performance of the multi- 
variable models is distributed over a larger area, while smaller bubbles indicate a narrower distribution. 
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calibration of a suite of fire indices is usually quite problematic (De 
Angelis et al., 2015). A multi-variable approach based on weather data 
alone may be particularly valuable in regions where the calculation of 
fire indices is not feasible or where the application of fire indices poses 
challenges (e.g., calibration issues). 

5.4. The importance of the modeling approach (GLM vs. Maxent) 

The role of the modeling approach in forest fire studies is becoming 
an increasingly important question since an increasing number of ap-
proaches have been used over the past decade (Oliveira et al., 2012; 
Bekar and Tavşanoğlu, 2017; Massada et al., 2013). Our multi-regional 
set-up with a wide range of environmental conditions and fire regime 
characteristics provides evidence that the role of the modeling approach 
depends on factors such as the region that is being modeled or the 
predictor variables that are used. For instance, while Maxent performed 
slightly better for index models (Fig. 4) in high fire activity regions 
(Spain and Italy), GLMs performed better for meteorological models 
(Fig. 5) in low to intermediate fire activity regions (France and 
Switzerland). The underlying mechanisms behind the modeling ap-
proaches may explain this, since the more complex the model is in terms 
of response shapes and interactions, the more data are needed for a 
reliable model (Barry and Elith, 2006). Maxent has the ability to model 
more complex relationships between the response and environmental 
variables than the relatively simple GLMs (Low et al., 2021). Massada 
et al. (2013) showed that Maxent featured a slightly higher prediction 
accuracy than GLMs when modeling the distribution of fire ignition. 
However, their study was based on a single area and did not investigate 
the effects of variable groups on model performance. Based on the 

results from our study and the literature, we prefer to avoid making 
generalizations since evidence strongly suggests that the model perfor-
mance varies with several factors such as environmental variables, the 
traits of the modeled ‘organism’ (i.e., specific fire characteristics in our 
case), or the environmental conditions of the region that is being 
modeled (Elith et al., 2006; Guisan et al., 2007). 

Detailed analyses of the performance and predictive capability of 
species distribution models (SDM) suggest that it is crucial to go beyond 
a single performance measure such as AUC, since such a metric does not 
reveal a comprehensive picture (Syphard and Franklin, 2009). For 
instance, different modeling approaches with similar predictive perfor-
mance may produce different prediction maps (Massada et al., 2013). 
Using multi-modeling approaches on the same dataset – like in this study 
- might therefore be a promising way to overcome such shortcomings 
(Arpaci et al., 2014). Our finding that models with similar AUC per-
formance may not show a similar performance when predicting burned 
area was valid for both modeling approaches. However, even when the 
maximum predictive performance of Maxent and GLM was similar, the 
general performance of the models had a larger spread in the GLMs than 
when using Maxent. This is in agreement with the findings from the 
literature that suggest that Maxent has a robust performance across a 
wide range of sample sizes (Wisz et al., 2008; Moudrý and Šímová, 
2012). Overall, the use of CLARE as a complementary performance 
metric offered a more comprehensive assessment of models with similar 
AUCs, both within and between modeling approaches. This highlights 
that particular attention should be paid to selecting the modeling 
approach and the evaluation criteria. Moreover, we suggest that this 
topic needs further research since various models have been used and 
compared to each other in the fire literature, albeit not always in a 

Fig. 5. Comparison of the meteorological GLM and Maxent models for all regions. To enhance the readability, in the plots multi-variable model performances are 
represented by lines encompassing the entire range of models (models with 2 or more explanatory variables). Larger bubbles indicate that the performance of the 
multi-variable models is distributed over a larger area, while smaller bubbles indicate a narrower distribution. 
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systematic fashion. 

6. Conclusion 

Understanding the probability of the occurrence of large fires has 
critical importance since they are responsible for large-scale impacts on 
ecosystems as well as human livelihoods (Liang et al., 2008). Therefore, 
it is critically important to be able to estimate both the probability of fire 
occurrence along with its likelihood to develop into a large event. Our 
results provide evidence that implementing CLARE in the model selec-
tion process does provide better assessments when evaluating models by 
showing that not every model that is successful in predicting fire danger 
is able to identify days when large fires occur (De Angelis et al., 2015). 
We furthermore showed that multi-variable models yield better results 
than single-variable models, especially in regions with low fire activity. 
Moreover, multi-variable meteorological models had a similar perfor-
mance as single-variable index models, which may allow for fire danger 
assessments in regions where the calculation of specific fire indices is not 
possible. Finally, the differences between the modeling approaches 
(GLMs vs. Maxent) were mainly related to the region being modeled or 
the input variable groups used for model building. Overall, we recom-
mend using CLARE in model assessments as a complementary metric to 
AUC since the use of models that perform well in predicting both fire 
occurrence (AUC) and burned area (CLARE) has substantial theoretical 
and practical benefits. Our results also highlight the importance of 
testing different approaches in fire modeling studies since the selected 
algorithms may influence the predictive performance as well as the 
model outcomes. 
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