Supplementary Material

Changing relative intrinsic growth rates of species alter the stability of species communities

Thomas J. Löffler Author* ${ }^{*}$ Heike Lischke

* Correspondence: Thomas J. Löffler: lothomas @ethz.ch, thomas.loeffler@wsl.ch

1 Supplementary Figures and Tables

Supplementary Table T1: Best fitting functions in dependence on the number of species n on the upper and lower intercepts $s_{\text {max }, u, n}$ and $s_{\text {max }, l, n}$ of the triangle T_{n} with the $s_{\text {min }}=0$ axis. The best fitting functions (second-order Akaike Information Criterion, i.e., smallest value and $\Delta \mathrm{AICc}<2$) are $a_{0}+$ $a_{1} n^{-c}$ for $s_{\text {max }, l n}$ and $a_{0}+a_{1} e^{-c n^{d}}+a_{2} e^{-f n}$ for $s_{\max , u, n}$.

Parameter	Function	$\mathbf{a}_{\mathbf{0}}$	\mathbf{a}_{1}	\mathbf{a}_{2}	\mathbf{c}	\mathbf{d}	\mathbf{f}	$\mathbf{A I C c}$	$\mathbf{\Delta A I C c}$
$s_{\text {max },, n, n}$	$a_{0}+a_{1} e^{-c}$	$\mathbf{0}$	$\mathbf{1 . 4 2}$		$\mathbf{0 . 3 5}$			$\mathbf{- 8 4 . 2 1}$	$\mathbf{0}$
$s_{\text {max }, l, n}$	$a_{0}+a_{1}(\pi / 2-\arctan (c n))$	0.29	0.43		0.09			-84.08	0.13
$s_{\text {max }, l, n}$	$a_{0}+a_{1} e^{-c n}$	0.39	0.58		0.08	69.68	0.2	-83.88	0.33
$s_{\text {max }, u, n}$	$a_{0}+a_{1} e^{-c n^{d}}+a_{2} e^{-f n}$	$\mathbf{0 . 5 8}$	$\mathbf{6 . 0 2}$	$\mathbf{1 9 3 2 4}$	$\mathbf{0 . 2 1}$	$\mathbf{6 . 6}$	$\mathbf{0 . 8 2}$	$\mathbf{- 0 . 3 9}$	$\mathbf{0}$

1.1 Supplementary Figures

Supplementary Figure S1. Probability $p_{f, s}$ to find a feasible matrices S of a point $s=\left(s_{\text {min }}, s_{\max }\right)$ for $\mathrm{n} \leq 17$ by a Bernoulli experiment (Methods). The chosen simulation region is the interesting part of the $\left(s_{\min }, s_{\max }\right)$-space for stability considerations of the LVC model. Each experiment was conducted
with 30,000 points. The Bernoulli experiment shows that with 10^{6} trials of random S matrices per point $s=\left(s_{\min }, s_{\max }\right)$, a matrix was found with the probability $10^{6} \leq p_{f, x}$ for feasibility.

Supplementary Figure S2. Points $s=\left(s_{\min }, s_{\max }\right)$ with changeable stability for $3 \leq n \leq 23$, with the stability probability $p_{s t, s}$ over 1000 different relative intrinsic growth rate vectors r_{k}. All points with changeable stability were in the triangles T_{n} which are delimited by the green lines through the point $s=(1,1)$ and the points with the maximum and minimum slope (two larger dots per panel). The simulation range (yellow delimited triangle) was chosen heuristically slightly larger than the triangle T_{n-1} to ensure that points with changeable stability were not overlooked. For $n=3$, the simulation range was chosen heuristically large. Note, the scale for $s_{\max }$ differs in the panels.

Supplementary Figure S3. Points $s=\left(s_{\min }, s_{\max }\right)$ with only stable matrices S. For details, cf. Supplementary Figure 2.

Supplementary Figure S4. Points $s=\left(s_{\min }, s_{\max }\right)$ with only unstable matrices S. For details, cf. Supplementary Figure 2.

Supplementary Figure S5. Relative frequency distribution of local sensitivities γ_{τ} for all intrinsic growth rate r_{τ} vectors pooled over all changeable stability $s=\left(s_{\min }, s_{\max }\right)$ points, for all species numbers n (right columns) and stability probabilities $p_{s t, s}$ are given in the middle of the classes with width 0.1 . The white numbers are the means of the sensitivities γ_{τ}.

Supplementary Figure S6. Example for random, centre- and corner-clustered spatial arrangements of 1000 blue and red points representing stable and unstable ones for different probabilities p of blue points (rows of panels) on the unit simplex Δ_{2} for $n=3$. The view goes along the axis r_{3} with depth indicated by paler colours.

Supplementary Figure S7. Comparison between distributions of sensitivity measure γ_{τ} applied to stability in r-space (fig. E5) and prescribed spatial arrangements of 1000 stable and unstable points (cf. example in fig. E6), in unit simplexes $\Delta_{n-1}, n=3, \ldots, 23$. The probability (of stability) p classes have class width 0.1 (panels). Panel all p's: all probabilities together. Points: single similarity values, lines: LOESS smoothing, center: all stable points clustered around the centre, corner: all stable points clustered around one corner, random: random arrangement. The similarity was calculated by $1-\mathrm{KS}$, the test statistic of the Kolmogorov Smirnov test, i.e., the maximum distance of the cumulative distributions.

