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The geography of climate and the global 
patterns of species diversity
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Rafael O. Wüest1, Wilhelmine Bach1,3, Alexander Skeels1,3, Ian R. McFadden1,3,4, 
David W. Roberts5, Loïc Pellissier1,3, Niklaus E. Zimmermann1 & Catherine H. Graham1

Climate’s effect on global biodiversity is typically viewed through the lens of 
temperature, humidity and resulting ecosystem productivity1–6. However, it is not 
known whether biodiversity depends solely on these climate conditions, or whether 
the size and fragmentation of these climates are also crucial. Here we shift the common 
perspective in global biodiversity studies, transitioning from geographic space to a 
climate-defined multidimensional space. Our findings suggest that larger and more 
isolated climate conditions tend to harbour higher diversity and species turnover 
among terrestrial tetrapods, encompassing more than 30,000 species. By considering 
both the characteristics of climate itself and its geographic attributes, we can explain 
almost 90% of the variation in global species richness. Half of the explanatory power 
(45%) may be attributed either to climate itself or to the geography of climate, 
suggesting a nuanced interplay between them. Our work evolves the conventional idea 
that larger climate regions, such as the tropics, host more species primarily because 
of their size7,8. Instead, we underscore the integral roles of both the geographic extent 
and degree of isolation of climates. This refined understanding presents a more 
intricate picture of biodiversity distribution, which can guide our approach to 
biodiversity conservation in an ever-changing world.

It is not clear why greater species richness is observed in warmer and 
more humid regions. Since the first description of large-scale patterns 
of species diversity by Alexander von Humboldt in 1807 (ref. 9), differ-
ences in climatic conditions between tropical and extratropical regions 
have been considered a plausible explanation for global diversity gra-
dients. It is now well established that species richness is often strongly 
correlated with climatic conditions, namely temperature, water avail-
ability and resulting ecosystem productivity1–6. Although several causal 
pathways link climatic variables to species diversity including both 
current ecology and deep-time evolutionary processes5,10, we lack an 
understanding of how the geography of climate is associated with 
diversity patterns. Specifically, it is unknown whether greater diver-
sity in warmer and more humid regions results from the effect of the 
climate itself, or from the geographic area occupied by these climatic 
conditions (that is, climate area) and the spatial isolation between 
similar climatic conditions (that is, climate isolation), both of which 
could lead to higher diversity.

In an influential piece7, John Terborgh argued that “unusual environ-
mental situations will carry impoverished flora in relation to nearby 
sites incorporating more usual conditions”. Conversely, more usual 
or common climatic conditions (that is, those that cover a greater 
geographic area) will have high species richness7. The relationship 
between climate area and species richness led to the area hypoth-
esis to explain global patterns of species diversity, originally arguing 

that climatic conditions occurring in the tropics are more common 
than those conditions occurring in extratropical regions. The area 
hypothesis was further popularized and amplified by Michael Rosen-
zweig8, but the emphasis on climate area was lost. At present, the area 
hypothesis is considered in a very broad geographic context building 
on the idea that tropical regions have more land than extratropical 
regions, thereby offering a reasonable explanation for why greater 
species richness is observed in the tropics. More recently, the com-
monness of climatic conditions (that is, the total global extent of a 
given climatic condition) has been used to explain empirical patterns 
of species richness11, leading to the formalization of species–area 
relationship within climate12. In addition to area, the isolation of 
fragments of a given climatic condition on the surface of the Earth 
can also be expected to affect species diversity. Speciation rates are 
expected to increase as a result of reduced gene flow and increased 
environmental heterogeneity13–15. The same expectation applies when 
biodiversity is analysed within different climates. Climatic condi-
tions with isolated and larger extent across the surface of the globe 
should reduce extinction rates, facilitate allopatric speciation and 
shelter biotas that evolved independently, and therefore strongly 
affect climatic gradients of diversity at the global scale. However, 
the combined effects of the geography of climate (that is, climate 
area and isolation) and climatic conditions per se on global patterns 
of diversity remain unknown.
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A substantial challenge in assessing the impact of the geography of 
climate, specifically climate area and isolation, arises from the neces-
sity to reorient traditional biodiversity studies—typically focused 
on geographic landscapes—towards the realm of climate space. 
This pivot demands a fresh perspective on examining the relation-
ships between diversity and climate. Using multidimensional space, 
defined by climatic conditions, to study biodiversity patterns is not 
a new concept. It has been previously proposed in the literature16–18. 
Primarily, this approach has been used for the classification of life 
zones and biomes19,20, as well as in species distribution modelling and 
its various applications21,22. By contrast, this perspective has been 
generally overlooked in studies investigating the emergence and 
maintenance of large-scale diversity patterns11,12. Here we investigate 

tetrapod diversity patterns thoroughly in climate space, disentan-
gling the effects of the geography of climate and climate conditions 
per se, on diversity–climate relationships. We anticipate finding a 
higher number of species in climatic conditions that both cover large 
geographic areas and exhibit characteristics of isolation or fragmen-
tation. We believe that these findings will hold true regardless of the 
inherent differences in thermal physiologies, such as endothermy 
and ectothermy, among tetrapod groups. These expectations are 
aligned with empirical evidence showing the effect of geographic 
area and isolation on geographic patterns of species richness inde-
pendent of species’ thermal and metabolic physiologies8,13,15,23. The 
shift towards understanding diversity as a pattern in climate space, 
driven by a process in climate space, can reveal insights into how 
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Fig. 1 | From geographic to climate space. a,b, Scores of the first and second 
principal components (PC1 and PC2) mapped across the world. c, Climatic 
information represented in a two-dimensional coordinate plane in which the 
x axis and y axis are represented by PC1 and PC2 and each point represents the 
climatic information of each geographic location (n = 13,312 geographic cells). 
d, Using the gridded climatic space created with PC1 and PC2 (c), the duality 
between climate and geographic spaces is shown by matching colours between 
climate and geographic grids, in which similarity in colour tone indicates 

similarity in climatic condition. The duality between geographic and climate 
space refers to the relationship between geographic and climate space: a given 
climatic condition (climate cell in climate space) is observed in several geographic 
locations, and several geographic locations belong to a unique climate condition. 
e, Climate area representing the sum of land surface area of a given climatic 
condition (that is, climate cell). f, Climate isolation representing the average 
geodesic distance among climate fragments (that is, geographic cells connected 
to each other that occur within a single climate).
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climate is structured globally and help face the challenges imposed 
by climate change.

We used the first two axes of a principal component analysis of 12 
global-scale climate variables to define a two-dimensional orthogonal 
climate space (Fig. 1a–c) that represents thermal and water availability 
limits to species distribution. Each axis of the climate space was then 
divided into climate cells of equal climate intervals (Fig. 1c; results 
robust to interval size, Supplementary Information). Thus, each cli-
mate cell represents several geographic locations that fall within a 
specific climate interval. Likewise, several geographic locations belong 
to a unique climate cell (Fig. 1d). This connection between climate 
and geographic space, referred to as Hutchinson’s duality18, allows 
geographic information to be mapped in climate space and vice versa. 
Using this approach, we computed the geographic extent of a climatic 
condition that we refer to as climate area (Fig. 1f). As a climate condition 
is scattered on the surface of the planet, we identified the individual 
fragments of a climate condition (that is, regions within a climate cell 
that are geographically isolated from other regions within the same cli-
mate cell) and measured the average geodesic distance among climate 
fragments, which we refer to as climate isolation (Fig. 1e). Climate area 
and climate isolation represent the geography of global climate. We 
also computed the within-climate-cell average of the first two principal 
components for each climate cell to evaluate the effect of the climate 
itself. Finally, for each climate cell we counted the number of species 
that fall within that climatic condition (Fig. 2) using range distribution 
data for terrestrial amphibians, reptiles, mammals and birds, and inves-
tigated the effect of the climate, and its area and isolation on richness 
patterns and species composition of each tetrapod group.

For each tetrapod group, we fitted a Poisson-distributed generalized 
additive mode to account for nonlinearity in model residuals with spe-
cies richness in climate space as the response variable, and the geog-
raphy of climate (that is, climate area and isolation) and climate itself 
(that is, first and second principal components) as predictors (Extended 
Data Table 1). Our model explained nearly 90% of the variation in rich-
ness for birds (proportion of null deviance = 0.90, adjusted R2 = 0.92), 
mammals (proportion of null deviance = 0.90, adjusted R2 = 0.91), 
amphibians (proportion of null deviance = 0.88, adjusted R2 = 0.90) 
and reptiles (proportion of null deviance = 0.88, adjusted R2 = 0.91)–
results hold consistent when nonlinearity is addressed through  
polynomial regressions (Supplementary Information). These results 
indicate that for all tetrapod groups, the geography of climate and 
climate itself can explain most of the variability of tetrapod richness in 
climate space. For all groups (Extended Data Figs. 1–3), partial residual 
richness (that is, richness not explained by other predictors) increases 
with area (Fig. 3a) and with isolation (Fig. 3b), even though climates 
occurring on opposite poles are isolated, their extreme conditions 
are suitable to only a few species. Thus, the geographic distribution 
of polar climates does not effectively isolate a substantial number 
of species. Partial residual richness is positively related to the first 
principal component (Fig. 3c) that is composed mostly by tempera-
ture variables and has a hump-shaped relationship with the second 
principal component that is defined by a balance of energy and water 
availability (Fig. 3d). The explanatory power of the geography of cli-
mate and climate itself is very similar for all groups (Fig. 4). In terms 
of proportion of null deviance, climate area contributes about 10%, 
whereas climate isolation accounts for roughly 5%. Comparatively, 
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axes of a principal component analysis of 12 global-scale climate variables 
(Supplementary Information).



540 | Nature | Vol 622 | 19 October 2023

Article

the first and second principal components contribute around 13% 
and 2%, respectively. Shared explanatory power within the geog-
raphy of climate totals about 12%, whereas within climate itself it is 
around 2%. Thus, when considering both isolated and shared contribu-
tions, the impact of the geography of climate is nearly double that of  
climate itself (Fig. 4). The remaining 45% of shared explanatory power 
comes from overlapping contributions of geography of climate and 
climate itself. Using different resolutions and combinations of vari-
ables to define climate space did not qualitatively change the results  
(Supplementary Information).

Our results reinforce previous findings that the geographic extent of 
climatic conditions is positively associated with species diversity7,11,12, 
but further highlight that only 10% of the variation in richness comes 
exclusively from climate area alone. The mechanisms underlying the 
species–area relationship in climate space are different from those 
proposed for geographic space because similar climatic conditions 
are not continuously distributed across geography. In geographicl 
space, a continuous large area often leads to higher environmental 
heterogeneity and consequently different species exploring different 
ecological opportunities24. However, scattered climatic conditions 
in climate space, that sum up to define climate area, represent sev-
eral geographic locations within the same type of environment. As a 
result, within a given climate, there is little environmental heterogeneity 
(assuming climate variation influences environmental heterogeneity) 
that could lead to specialization for different environmental conditions. 

Therefore, the finding of more species occurring with homogeneous 
climatic conditions that occupy larger geographic extents is probably 
attributable to capacity rules25. Climatic conditions that cover more 
extensive land areas are believed to support more individuals, lead-
ing to larger populations. Larger populations, in turn, are associated 
with increased rates of speciation and reduced rates of extinction5,25,26.

Another aspect of the geography of climatic conditions is that a larger 
climate area does not necessarily translate to larger continuous habitat. 
In fact, climate area is strongly correlated with the number of climate 
fragments (that is, geographic cells connected to each other that occur 
within a single climate; Pearson’s r = 0.95; Fig. 5a and Extended Data 
Fig. 4). However, the correlation between the number of climate frag-
ments or climate area and climate isolation (measured as the average 
distance between climate fragments) is weak, with Pearson’s correla-
tion coefficients of 0.23 and 0.11, respectively. These observations 
highlight the importance of characterizing climate isolation in addition 
to the area of climatic conditions when macroecological patterns are 
analysed in climate space.

The mechanism underlying the association between species richness 
and climate isolation is probably linked to climate isolation influencing 
gene flow among diverging populations. Over deep time, at the global 
scale, climate change, continental drift and mountain uplift can affect 
the spatial connection among similar climatic conditions. Populations 
of a species dispersing to follow their optimum climatic conditions 
expand, contract and fragment their geographic distribution within 
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climatic conditions27. The isolation of populations within spatially dis-
connected climatic conditions increases the chances of allopatric spe-
ciation events and founder speciation events caused by long-distance 
dispersal27,28. Therefore, at the global scale we expect that locations 
where climatic conditions are more isolated will also have more spe-
cies, which is consistent with our findings. In addition, isolated climatic 
conditions shelter biotas that independently evolved within that cli-
matic condition making it likely that different species pools will be 
sampled. This is in fact evidenced by the increase in the turnover of 
species composition with the increase of climate isolation (Fig. 5c).

Notably, the most conspicuous and discussed pattern of climate 
isolation at the global scale is that of two broad climatic zones in high 
latitudes, with northern and southern polar and temperate zones being 
disjunct and separated by a large contiguous tropical zone8,29. How-
ever, our results show that tropical climates, spread across several 
continents, are more isolated than polar and temperate climates. There 
is an envelope relationship between the distance of similar climates 
(distance among climate fragments) and latitude (Fig. 5b and Extended 
Data Fig. 5), with a tendency of shorter distances among similar climates 
at higher latitudes (Fig. 5b, ordinary least squares model) and greater 
variability in geographic isolation of similar climates in tropical zones. 
The general tendency of greater isolation in lower latitudes increases 
the probability of independent pools of species evolving within 
warmer and more humid climates spread in a mosaic of similar but 
isolated climatic conditions. We find that climates occupying large and  
isolated areas have increased community differentiation with both area  
and isolation of climate (Fig. 5c,d and Extended Data Figs. 6–8), indicat-
ing that ecological communities occurring within larger and isolated 
climates have high replacement of species among communities. The 
likely mechanism behind this pattern is that independent pools of 
species evolve as a consequence of dispersal limitation and historical 
changes in the geography of climate30. In addition, climates occupying 
small and connected areas have a nested community structure with 
fewer species that are a subset of richer communities within climates 
(Fig. 5e,f and Extended Data Figs. 6–8). This pattern probably emerges 

because of lower dispersal limitation within smaller and connected cli-
matic conditions. These results demonstrate how the area and isolation 
of climate strongly capture changes in community composition even 
within homogeneous climatic conditions. Thus, climate area and isola-
tion capture patterns of community differentiation across the globe.

The area hypothesis to explain latitudinal diversity gradients 
emerged through observations that climatic conditions that occur in 
tropical environments are more common than climatic conditions that 
occur in extratropical regions7,8. However, with the observed reduction 
in climate isolation at higher latitudes, it becomes evident that not 
only the commonness of climatic conditions, but also the geographic 
distribution and isolation of similar climatic conditions, need to be 
taken into account. Here we propose that the area hypothesis to explain 
global-scale patterns of species diversity should be modified into an 
area–isolation hypothesis because not only do lower-latitude climates 
have larger geographic extent, but climate isolation decreases towards 
the poles. Thus, tropical climates, characterized by large areas that 
are both fragmented and isolated, tend to have more observed spe-
cies. Such climatic structures could promote greater speciation rates 
through capacity rules and reduced gene flow. Our results show: (1) 
increase of species richness and turnover with climate area and isola-
tion; (2) larger isolation of tropical climates; and (3) the degree of frag-
mentation of larger climates call for a revision of the area hypothesis. 
Although climates occurring in the tropics are more common, these 
climates are also more fragmented and isolated.

Even though our model, considering all geographic features of cli-
mate, explains a large fraction of the variation in tetrapod diversity, the 
remaining 10% of unexplained variation showed interesting patterns 
when projected to climate and geographic space (Fig. 6). Along with 
the model’s goodness of fit, residual patterns are consistent among 
tetrapod groups (Fig. 6). These residual patterns highlight an important 
aspect of analysing species diversity directly in climate space. Historical 
contingencies of different regions with the same climatic conditions 
are disregarded by combining the presence and absence of all species 
in those regions, regardless of whether the regions are clustered or 
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scattered around the globe. However, geographic patterns of model 
residuals can give insights into why more or fewer species are observed 
under certain climatic conditions after controlling for the effects of 
the geography of climate and climate itself.

With few exceptions, parts of mountainous climates across all con-
tinents have more species than expected by the climate and climate 
geography. However, the spatial resolution in our global-scale study 
may not be enough to precisely characterize mountainous climates. 
These climates usually occupy a small geographic extent (25% of ter-
restrial landmass31) when compared to lowlands and yet, especially in 
tropical environments, are home to approximately 90% of tetrapod spe-
cies31. Tropical mountains usually have more species than expected by 
climate itself (that is, positive residuals31,32) and the same occurs when 
the geography of climate is also considered (Fig. 6). Using the present 
climate to define the effect of climate on mountainous regions misses 
one important aspect, namely the great importance of mountains 
for biodiversity refugia under climatic oscillations31. Therefore, both 
the area and isolation of climate and climate per se are not enough 
to explain the building of mountain diversity, especially in tropical 
mountains such as the Andes.

Lower species richness than expected by climate itself and the geog-
raphy of climate (that is, negative residuals) are observed in many arid 
regions across the world with few exceptions. In South America, the 
eastern dry diagonal connecting Caatinga, Cerrado and Chaco and 
the western dry diagonal connecting Patagonia, Monte, Prepruna dry 
Pruna and the Atacama Desert, and in Africa, part of the Sahara Desert 
and the Somalian Desert, among other dry regions (Fig. 6), show a 
very clear pattern of fewer species than expected by the geography 

of climate and climate itself. Contrary to mountainous regions, dry 
regions occupy a large geographic extent, which given the expected 
species–area relationship, should support a greater number of species. 
However, their extreme climates act as a barrier for lineages that are 
not capable of surviving in such arid environments33. The difficulty of 
adapting to extreme conditions33, even if these conditions are com-
mon on the surface of the planet, could explain why fewer species 
are observed in these regions than expected by climate itself and the 
geography of climate.

Here we demonstrated that the present geography of climate and 
climate itself can explain a large fraction of the tetrapod diversity and 
that the isolated effect of the geography of climate almost doubles the 
effect of climate itself. However, species richness might not be associ-
ated only with the present climate, but also with past climate and past 
geographic structures of climate. It should be expected that over deep 
time some climatic conditions were more common than others, that 
connections and disconnections of climatic conditions occurred and 
that some conditions appear and disappear across millions of years. 
Therefore, exploring the dynamics of the geography of climate over 
deep time is a natural next step for studying diversity–climate relation-
ships in climate space. The same rationale for past climatic dynamics 
can also be used for future climate change. Ongoing climate changes 
may alter the commonness of climatic conditions as well as their con-
nection and isolation. For example, climate velocity, representing the 
direction and speed that species move to maintain their current climatic 
condition under climate change34,35, is largely affected by climate con-
nectivity36 and can benefit from better understanding of the effect of 
the geography of climate on biodiversity patterns. If many species 
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have their optimum climate within a climatic condition that contracts 
its geographic extent with climate change, then competition might 
increase, potentially influencing species coexistence. In addition, the 
contraction of the geographic extent of a climatic condition imposes 
evolutionary pressure for individuals to shift their optimum to other 
similar climatic conditions that are either less saturated with species 
or have expanded their geographic extent on the surface of the planet. 
Finally, connections and disconnections of climate affect the ability 
of species to disperse between similar climatic conditions affecting 
the isolation among populations and consequently influencing their 
gene flow. Therefore, understanding how the geography of climate is 
associated with biodiversity is key to better understand and mitigate 
the impacts of climate change on biodiversity.

Building on these insights, we underline the urgent necessity to incor-
porate the geography of climate into studies examining the impact 
of climate change on biodiversity patterns. This crucial element has 
been largely disregarded. Recognizing the demonstrated connection 
between these geographic factors and species richness, it is critical 
that we unravel their temporal dynamics for effective biodiversity 
conservation. We must look beyond mere changes in climate and also 
consider their commonness and isolation across the planet. Neglect-
ing these factors may result in unexpected climate change impacts 

on biodiversity, stemming from our failure to track changes in the 
geography of climate.

Key considerations that emerge include whether our current con-
servation efforts are inadvertently biased towards protecting com-
mon climates, thereby neglecting rarer climates that may harbour 
unique species. Furthermore, we must understand how ongoing climate 
change might influence the prevalence and isolation of various climatic 
conditions. Climate change could fragment previously continuous cli-
mates, intensifying the challenges for species to disperse and maintain 
their preferred climatic conditions. Likewise, if a previously extensive 
climate shrinks owing to climate change, this could influence species 
coexistence.

In essence, to mitigate the impacts of climate change on biodiversity, 
it is paramount that we deepen our understanding of the geography 
of climate and its shifts over time. This approach  could represent a 
substantial contribution to conservation biology, providing more 
comprehensive and effective strategies for biodiversity preservation.

Conclusions
Here we show that the observation of greater species richness in warmer 
and more humid regions relies not only on climate itself but also on 
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how climate is distributed on the surface of the planet. We demonstrate 
that the geography of climate plays a key role in the diversity–climate 
relationship of tetrapods. Its effect can be separated from the effect of 
climate itself, and the amount of explanation attributed to the geogra-
phy of climate is almost double the effect of climate itself. Unexplained 
variation can be clearly linked to historical processes among different 
regions that are removed when diversity is analysed directly in climatic 
dimensions. Moreover, shifting the focus of macroecological studies 
from geographic to climate space allowed us to describe basic prop-
erties of the geography of climate. We showed that climate area can 
precisely capture the number of climate fragments across the globe 
but is not a good representative of climate isolation. Finally, we showed 
that climate isolation decreases towards the poles, but has a high vari-
ability in the tropics.

Our model, considering both climate and climate geography, 
explains nearly all of the variability in species richness for each tet-
rapod group. Even though ectotherms do not occupy all available 
climates on the planet, ectotherms and endotherms are consistent 
in their response to climate and the geography of climate with similar 
patterns even when unexplained richness is mapped. Given the positive 
effects of climate area and isolation on species richness and how these 
geographic properties of the climate are structured on the surface of 
the Earth, we propose that the area hypothesis to explain large-scale 
patterns of species diversity should be merged into an area and isolation 
hypothesis. Such a shift in studies exploring diversity patterns directly 
in climate dimensions could bring a much-needed focus to how ongo-
ing climate change can alter both the geographic extent and isolation 
of climatic conditions. Describing patterns at large taxonomic, spatial 
and temporal scales directly in climate space promises substantial new 
insights into macroecology and biogeography by revealing previously 
hidden effects of climate on global biodiversity patterns.
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Methods

Biological data in geographic space
We obtained vector range maps of all amphibians and mammals avail-
able from the International Union for Conservation of Nature (https://
iucn.org). We obtained bird and updated squamate range maps, respec-
tively, from BirdLife (version 2020.1; http://datazone.birdlife.org) and 
ref. 37 (Global Assessment of Reptile Distributions internal version 1.5). 
Resident and native current distribution ranges of the species were grid-
ded at about 110-km resolution with Behrmann equal area projection 
(approximately 1° resolution). This resolution has been suggested as 
the most appropriate grain for this type of data38,39, being less prone 
to incur false presence of species at the global scale, our geographic 
scale of exploration in this study.

From geographic to climate space
Species distributions and their habitats can inform us about the 
n-dimensional hypervolume of biotic and abiotic conditions in which 
each species can maintain viable populations17,18. As the climatic infor-
mation underlying a species’ distribution (that is, Grinellian niche) 
is easier to access than biotic conditions (that is, Eltonian niche), an 
n-dimensional environmental space, built with climatic variables (that 
is, climate space), can be constructed and used to measure biodiver-
sity within climate space. Here we defined a two-dimensional climate 
space that considers the limits imposed by temperature and water 
availability for terrestrial species. A two-dimensional climate space 
allows us to use the same methodologies to study diversity patterns as 
traditionally used in two-dimensional (that is, longitude and latitude) 
geographic space. To establish each axis, we first averaged several cur-
rent climatic variables within each spatial grid cell of approximately 
110-km resolution. These variables describe variations in temperature 
and water availability, and include mean annual air temperature, mean 
diurnal air temperature, isothermality, temperature seasonality, mean 
daily maximum air temperature of the warmest month, mean daily 
minimum air temperature of the coldest month, annual range of air 
temperature, annual precipitation amount, precipitation amount of 
the wettest month, precipitation amount of the driest month, precipita-
tion seasonality and potential evapotranspiration. Subsequently, we 
computed the principal components on the correlation matrix of these 
averaged variables (Supplementary Information). We obtained the 
bioclimatic variables from the Climatologies at High Resolution for 
the Earth’s Land Surface Areas (CHELSA; https://chelsa-climate.org/
bioclim/) dataset40 and potential evapotranspiration from the CGIAR 
(Consultative Group on International Agricultural Research) Consor-
tium for Spatial Information (https://cgiarcsi.community)41. The two 
axes of the principal component analysis captured about 80% of the 
global variation in climate. Using different combinations of variables, 
such as replacing potential evapotranspiration by net primary produc-
tion, also obtained from CHELSA40 (Supplementary Tables 3–6), log 
transforming skewed variables or defining a two-dimensional climate 
space with mean annual temperature and mean annual precipitation 
(Supplementary Tables 7–10) did not qualitatively change the results 
(Supplementary Information). Defining a space with independent 
axes can be complex when dealing with correlated variables, such as 
mean annual temperature and precipitation. Their interrelation can 
challenge the concept of a genuine two-dimensional space, similar to 
geographic mapping with longitude and latitude. To overcome this 
challenge, we used principal components from a principal compo-
nent analysis to define our climate space in the primary results. This 
method not only incorporates several variables reflecting energy and 
water availability constraints but also ensures the creation of truly 
orthogonal climate axes. Future studies of different organism groups 
should define an environmental space in line with the specifics of the 
group under investigation, as different organisms (for instance, aquatic 
versus terrestrial) might face different limiting variables.

We extracted the scores of each principal component for the grid-
ded map at about 110 km (Fig. 1a,b) that were used to define species 
presence and absence for tetrapod groups. Choosing a procedure 
similar to that of defining a gridded geographic map through intervals 
of latitudinal and longitudinal degrees (or kilometres), we defined a 
gridded climate domain by assuming intervals of equal size within the 
climatic axes. Based on adjustable equal intervals across the climatic 
axes, a gridded climate domain can be defined at any desired resolu-
tion. Resolutions below 20 intervals in each climate variable produce 
a small number of climate cells that are too few to fit the nonlinear 
models used in our study. Resolutions above 60 intervals in climate 
variables do not substantially increase the amount of climate cells. 
Therefore, we tested the sensitivity of our model to different resolu-
tions of climate space by defining climate spaces with 20, 30, 40, 50 and 
60 equal intervals attributed to each climatic variable (Supplementary 
Information). We showed the results for 20 equal intervals in the main 
text, which is the resolution that maximizes model fit for all groups. 
Results are consistent for all resolutions and tetrapod groups (Sup-
plementary Information). On the one hand, each climate cell of the 
climate domain represents several geographic locations that fall within 
the climatic intervals defined by the two climatic variables (Fig. 1). On 
the other hand, each geographic location belongs to a unique climate 
cell (Fig. 1). These properties represent the duality between geographic 
and climate space18, allowing geographic information to be mapped in 
climate space and vice versa.

The presence and absence information of species within climate cells 
is thus dependent on the geographic locations that occur within a given 
climatic interval. With this information, species richness is computed 
for all tetrapod groups by summing the presence of species within 
climate cells. The presence and absence information of species on the 
geographic cells that occur within a given climatic interval is also used 
to compute the multi-site β-diversity within a climate cell. The turnover 
component of β-diversity is computed through the Simpson index of 
dissimilarity, and the nestedness component of β-diversity is computed 
through the difference between Simpson and Sorensen dissimilari-
ties42. The area of each climate cell (that is, climate area) is computed 
by summing the land surface area of all the geographic cells that occur 
within each climate cell (that is, all geographic cells with that respective 
climatic condition). To better represent climate isolation, we used three 
alternative metrics, but because some of them are strongly correlated 
with climate area and also correlated to each other we chose one of the 
three for the final analysis. We measured climate isolation as (1) the mean 
geodesic distance among all geographic cells that occur within a climate 
cell. Alternatively, we considered that some geographic cells that occur 
within a climate cell form fragments of climates (geographic cells con-
nected to each other that occur within a single climate). Therefore, the 
size of climate fragments could affect the isolation measures. To control 
for this effect, we measured (2) the average distance between climate 
fragments that occur within a climate cell and (3) the number of climate 
fragments within a climate cell. The total count of fragments within a 
climate cell has a strong link with the overall climate area (with a Pear-
son’s correlation of 0.94). Similarly, the average distance between all 
geographic cells within a climate cell is also strongly related to the aver-
age distance between climate fragments (Pearson’s correlation of 0.88).  
In a process in which we calculate the average distance between all geo-
graphic cells within a climate cell, larger climate fragments may have 
a greater impact on the average because they provide more points of 
comparison. Therefore, in our final models, we chose to use the aver-
age distance between climate fragments within a climate cell. Finally, 
to represent the effect of the climate itself we computed the average 
principal components (PC1 and PC2) for each climate cell.

Statistical analysis
The main questions we investigated in our study are whether gradients 
of species richness (response variable) are associated with climate  

https://iucn.org
https://iucn.org
http://datazone.birdlife.org
https://chelsa-climate.org/bioclim/
https://chelsa-climate.org/bioclim/
https://cgiarcsi.community
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(PC1 and PC2) and the geography of climate (climate area and isolation). 
Model predictors were also inspected for multicollinearity with the 
variance inflation factor but showed very low collinearity (VIF < 1.5).

As our response variable is richness, a count data value represented 
by an integer variable equal to or greater than 1, a Poisson link is a natural 
choice. We fitted a Poisson generalized linear model with richness as 
response variable and geography of climate (that is, area and isolation) 
and climate itself (PC1 and PC2) as predictors. The generalized linear 
model explains approximately 75% of richness as measured by the 
proportion of null deviance and R2 (MacFadden’s R2; Supplementary 
Table 19); however, the linear model violates the assumptions of linear-
ity, deeming estimated parameters uninterpretable (Supplementary 
Fig 15). Nonlinear models implemented either by polynomial general-
ized linear models and general additive models are equivalent (Sup-
plementary Information). In the main text, we opted to use general 
additive models because these are extensions of generalized linear 
models, being a safer and simpler option over polynomial regressions, 
which were originally designed for linear regression with normally 
distributed errors (Supplementary Information). Thus, we replace the 
β-coefficients from linear regression with flexible functions that allow 
nonlinear association between the variables in our dataset. For this 
matter, we used Poisson generalized additive models with penalized 
smooth functions conducted through generalized cross-validation43,44. 
Generalized cross-validation trades-off curve complexity against good-
ness of fit to avoid complex overfitted estimates. Basis dimension 
choices for smooth terms were set to four (k = 4) as patterns in our 
residuals are not better explained by higher dimensions of k. In our 
general additive models assuming Poisson distribution, the response 
variable for each tetrapod group consisted of the richness observed 
in climate space and the predictors consisted of climate area, climate 
isolation and the average principal components of the first two axis of 
our climatic principal component analysis (PC1 and PC2). We assess 
the goodness of fit for our model with three metrics: proportion  
(or percentage) of null deviance, adjusted R2 and predicted R2. The 
percentage of null deviance, suitable for nonlinear models with 
non-normally distributed errors, measures the divergence between 
the observed data and the model’s predictions. It compares the null 
deviance (the fit for a baseline model with only an intercept and, if 
applicable, an offset) to the residual deviance (the deviance of the fitted 
model). Lower deviance values indicate a better model fit. The adjusted 
R2 is a modified version of a standard R2 value that accounts for the 
number of predictors in the model, providing a more precise measure 
of the model’s explanatory power. The predicted R2 measures the asso-
ciation between the predicted values produced by the model and the 
observed data, thus reflecting the model’s predictive capacity. Values 
across the three metrics were similar (Supplementary Information). 
We retain the percentage of null deviance in the main text as it is more 
suitable for nonlinear models with non-normally distributed errors.

On the basis of the complete model incorporating all predictors, we 
wanted to know how much of the proportion of null deviance can be 
attributed to each predictor alone, the joint effect of the geography 
of climate (climate area and isolation), the joint effect of climate itself 
(principal components one and two) and the joint effect between the 
geography of climate and climate itself. To do so, we fitted alternative 
models without each predictor and pairs of predictors and computed a 
reduction in deviance. In this case, the reduced models used the same 
smoothing parameters as the complete model.

Model residuals were inspected for climate autocorrelation using 
Moran’s I correlogram45 as the existence of climate autocorrelation can 
upward bias the significance of predictor variables and their coefficients. 
Spatial autocorrelation was removed by adding axes of principal compo-
nents of neighbour matrices45 that were created from a distance matrix 
among climate cells. As principal components of neighbour matrices are 
used only to check whether predictors remain significant in the absence 
of spatial autocorrelation in the model’s residuals, the model’s R2 values 

are reported without the addition of axes of principal components of 
neighbour matrices because these spatially structured variables are 
added to our models to solve a statistic problem of upward bias in the sig-
nificance (Extended Data Table 1). Finally, we used quantile regression to 
analyse the envelope pattern46 emerging from the relationship between 
average absolute latitudes and climate isolation with lower and upper 
boundaries of the relationship modelled with 0.05 and 0.95 quantiles.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Global climate and biological data used in our study are open source. 
All climate data are available at CHELSA (https://chelsa-climate.org/
bioclim/) and CGIAR (https://cgiarcsi.community). Vector range maps 
of all amphibians and mammals are available at the International Union 
for Conservation of Nature (https://iucn.org). Bird and squamate range 
maps are available, respectively, at BirdLife (version 2020.1, http://
datazone.birdlife.org) and ref. 37 (https://doi.org/10.1038/s41559-017-
0332-2). Source data are provided with this paper.

Code availability
R code for statistical analyses and data tables are available as Supple-
mentary Information.
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Extended Data Fig. 1 | Relationships between partial residual richness  
(i.e., richness not explained by other predictors of the multivariate model) 
and all model predictors for mammals. a,b, partial residual richness vs 

climate area. c,d, partial residual richness vs climate here represented by the 
first two principal components (n = 164 climate cells). The grey shading around 
each regression line represents the 95% confidence interval.
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Extended Data Fig. 2 | Relationships between partial residual richness  
(i.e., richness not explained by other predictors of the multivariate model) 
and all model predictors for amphibians. a,b, partial residual richness vs 

climate area. c,d, partial residual richness vs climate here represented by the 
first two principal components (n = 159 climate cells). The grey shading around 
each regression line represents the 95% confidence interval.



Extended Data Fig. 3 | Relationships between partial residual richness  
(i.e., richness not explained by other predictors of the multivariate model) 
and all model predictors for reptiles. a,b, partial residual richness vs climate 

area. c,d, partial residual richness vs climate here represented by the first two 
principal components (n = 151 climate cells). The grey shading around each 
regression line represents the 95% confidence interval.
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Extended Data Fig. 4 | The relationship between climate area and the 
number of climate fragments across different resolutions. From a to d, 
gridded climate spaces were built based on 30 (n = 326 climate cells), 40 (n = 525 

climate cells), 50 (n = 756 climate cells) and 60 (n = 1028 climate cells) equal 
interval divisions of the climate axis. The grey shading around each regression 
line represents the 95% confidence interval.



Extended Data Fig. 5 | The relationship between average absolute latitudes 
of each climate cell in climate space and climate isolation across different 
resolutions of climate space. The green line at the bottom represents a 
quantile regression where τ = 0.05. The yellow line at the bottom represents a 
quantile regression where τ = 0.95. The continuous red line represents a 

quantile regression where τ = 0.5. The dashed red line represents the ordinary 
least square regression. Here, the same relationship is shown for 30 (n = 326 
climate cells), 40 (n = 525 climate cells), 50 (n = 756 climate cells) and 60 (n = 1028 
climate cells) equal divisions of the climatic axis when defining climate space.



Article

Extended Data Fig. 6 | The geography of climate and its relationship with 
community composition for mammals. a, b the relationship between the 
geography of climate and the turnover component of beta-diversity. c, d the 

relationship between the geography of climate and the nestedness component 
of beta-diversity (n = 164 climate cells). The grey shading around each regression 
line represents the 95% confidence interval.



Extended Data Fig. 7 | The geography of climate and its relationship with 
community composition for amphibians. a, b the relationship between the 
geography of climate and the turnover component of beta-diversity. c, d the 

relationship between the geography of climate and the nestedness component 
of beta-diversity (n = 159 climate cells). The grey shading around each regression 
line represents the 95% confidence interval.
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Extended Data Fig. 8 | The geography of climate and its relationship with 
community composition for reptiles. a, b the relationship between the 
geography of climate and the turnover component of beta-diversity. c, d the 

relationship between the geography of climate and the nestedness component 
of beta-diversity (n = 151 climate cells). The grey shading around each regression 
line represents the 95% confidence interval.



Extended Data Table 1 | Assessment of Predictor Impact on 
Tetrapod Richness Patterns Using General Additive Models

These models estimate the influence of climate area, climate isolation (geography of climate 
component), and principal components one and two (climate itself component), on the 
observed patterns of tetrapod richness. The analysis was conducted on a gridded climate 
space, defined with 20 equal interval divisions along the climate axis. Each predictor’s 
importance is gauged by the reduction in deviance when excluded from a model that initially 
included all predictors. The collective influence of predictors is evaluated in three dimen-
sions: (i) the joint effect of geography of climate elements (climate area and climate isolation), 
(ii) the joint effect of climate itself elements (PC1 and PC2), and (iii) the integrated effect of 
both geographical and climate elements. Thus, the analysis captures the shared influence 
within each predictor group (i.e., geography of climate or climate itself) and between the two 
groups. The p-values for each variable are computed using two-sided tests.



1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Marco Túlio Pacheco Coelho

Last updated by author(s): Aug 17, 2023
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection In the course of this study, we did not utilize any specialized software to collect our data.

Data analysis Data analysis was performed in R version 4.1.2 (2021-11-01) on platform aarch64-apple-darwin20. The code used for statistical analysis is 
available as supporting material. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Global climate and biological data used in our study are open source. All climate data is available at CHELSA (https://chelsa-climate.org/bioclim/) and CGIAR (https://
cgiarcsi.community). Vector range maps of all amphibians and mammals are available at IUCN (iucn.org). Bird and squamate range maps are available respectively 
on Birdlife (Version 2020.1, http://datazone.birdlife.org/species/) and Roll, U. et al. (https://doi.org/10.1038/s41559-017-0332-2). 
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Not applicable. 

Population characteristics Not applicable. 

Recruitment Not applicable. 

Ethics oversight Not applicable. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In this study, we conducted a global assessment to analyze the influence of climate and geographical characteristics - including 
fragmentation and size - on the richness and composition of tetrapods. We developed a two-dimensional orthogonal climate space, 
defined by twelve global scale climate variables, using multiple resolutions from fine to coarse, and considering different definitions 
of climate space. This enabled us to measure species diversity and compositional dissimilarities for each uniquely classified climate. 
Each climate was defined by its size, degree of fragmentation and dispersion across the globe, and intrinsic climatic characteristics. 
These parameters served as predictor variables, which we analyzed in relation to species richness and composition. Our analytical 
approach involved both linear and non-linear multivariate models, with the non-linear models being tested using different 
implementation methods. This comprehensive approach allowed us to account for a variety of climatic variables and better 
understand their effects on tetrapod richness and composition.

Research sample In our study, we first established the presence and absence of various tetrapod groups, specifically amphibians, reptiles, birds, and 
mammals, across more than 30,000 species, within each classified climate. The climate classification was global, implying that our 
study also spans a global scale. To execute this classification, we utilized twelve distinct climatic variables that represent the current 
climate. This approach allowed us to accurately determine the distribution and prevalence of the studied species across different 
climate classifications worldwide.

Sampling strategy Given the global scale of our research, our approach was designed to encompass a comprehensive scope, ensuring the inclusion of all 
pertinent data in order to effectively capture the richness and composition of tetrapods across various climatic classifications 
worldwide. Thus, we utilized all relevant data available to us without predetermining sample size through statistical methods. 

Data collection All data for this study were derived from existing datasets, and were collected online by the authors themselves.

Timing and spatial scale The spatial scale of this study is global, with both biodiversity and climate data representing current conditions. As such, our findings 
provide a snapshot of the present state of tetrapod richness and composition in relation to various climatic classifications worldwide.

Data exclusions No data were excluded from the analyses.

Reproducibility This research does not fall into the category of experimental studies; rather, it is an observational study. Consequently, traditional 
experimental reproducibility is not applicable. 

Randomization This research does not fall into the category of experimental studies; rather, it is an observational study. Consequently, traditional 
experimental randomization is not applicable. 

Blinding This research does not fall into the category of experimental studies; rather, it is an observational study. Consequently, blinding is not 
applicable.

Did the study involve field work? Yes No
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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