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Supplementary Tables 

 

Table S1. Number and characteristics of the sampled beech trees with crown data in three 

different regions (Baselland (BL), Zurich/Aargau (ZH/AG) and Schaffhausen (SH)) per year. 

Only trees that were included in crown-related analyses were considered (22 trees with 

incomplete data). %CBL is the total crown biomass loss in %. For the vital trees in SH crown 

data was only available for 2021.  

Region Vitality class Year Number of trees Mean %CBL (range) [%] 

Basel (BL) Early-browning 2020 101 63.1 (19.3 – 100) 

Vital 2020 76 35.2 (0 –85) 

Schaffhausen 

(SH) 

Early-browning 2020 107 53.8 (5 – 100) 

Vital 2020 NA NA 

2021 74 23.6 (15 – 33.5) 

Zurich/Aargau 

(ZH/AG) 

Early-browning 2020 48 42.2 (5 – 94) 

Vital 2020 42 17.9 (0 – 64) 
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Table S2. Summary of the fitted linear mixed effects model that compared the tree-ring width 

(as log(TRW + 1)) of the three different crown vitality classes (vital, early-browning – minor 

damage, early-browning – severe damage) from 2016 to 2020 in the region of Basel following 

Eq. (3). Year was treated as a factor variable to allow for year specific predictions. 2016 is the 

reference year and “vital” (part A in table) or “early-browning – minor damage” (part B in table) 

the reference vitality class. In addition, tree ID nested in group was added as grouping variable 

of the random intercept. The estimate, standard error (std. error) and p-value (p) are given for 

each term. Significant results are in bold. 

Basel  Estimate Std. error p 

A) Log(tree-ring width + 1), “Vital” as reference    

 Intercept 0.745 0.048 <0.001 

 Year [2017] -0.095 0.031 0.003 

 Year [2018] 0.054 0.032 0.088 

 Year [2019] 0.039 0.032 0.210 

 Year [2020] 0.023 0.032 0.461 

 Vitality [Early-browning – minor damage] 0.021 0.068 0.761 

 Vitality [Early-browning – severe damage] -0.092 0.067 0.167 

 Year [2017] x Vitality [Early-browning – minor damage] -0.054 0.049 0.264 

 Year [2018] x Vitality [Early-browning – minor damage] 0.242 0.049 <0.001 

 Year [2019] x Vitality [Early-browning – minor damage] -0.331 0.049 <0.001 

 Year [2020] x Vitality [Early-browning – minor damage] -0.040 0.049 0.407 

 Year [2017] x Vitality [Early-browning – severe damage] -0.048 0.048 0.315 

 Year [2018] x Vitality [Early-browning – severe damage] -0.217 0.048 <0.001 

 Year [2019] x Vitality [Early-browning – severe damage] -0.336 0.048 <0.001 

 Year [2020] x Vitality [Early-browning – severe damage] -0.262 0.048 <0.001 

 Observations 845   

 Marginal R2 0.168   

 Conditional R2 0.718   

     

 Estimate Std. error p 

B) Log(tree-ring width + 1), “Early-browning – minor damage” as reference 

 Intercept 0.766 0.049 <0.001 

 Year [2017] -0.150 0.037 <0.001 

 Year [2018] -0.188 0.037 <0.001 

 Year [2019] -0.292 0.037 <0.001 

 Year [2020] -0.017 0.037 0.645 

 Vitality [Vital] -0.021 0.068 0.761 

 Vitality [Early-browning – severe damage] -0.114 0.062 0.069 

 Year [2017] x Vitality [Vital] 0.054 0.049 0.263 

 Year [2018] x Vitality [Vital] 0.242 0.049 <0.001 

 Year [2019] x Vitality [Vital] 0.331 0.049 <0.001 

 Year [2020] x Vitality [Vital] 0.040 0.049 0.407 

 Year [2017] x Vitality [Early-browning – severe damage] 0.006 0.052 0.903 

 Year [2018] x Vitality [Early-browning – severe damage] 0.025 0.052 0.624 

 Year [2019] x Vitality [Early-browning – severe damage] -0.004 0.052 0.931 

 Year [2020] x Vitality [Early-browning – severe damage] -0.221 0.052 <0.001 

 Observations 845   

 Marginal R2 0.168   

 Conditional R2 0.718   
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Table S3. Summary of the fitted linear mixed effects model that compared the tree-ring width 

(as log(TRW + 1)) of the three different crown vitality classes (vital, early-browning – minor 

damage, early-browning – severe damage) from 2016 to 2020 in the region of Zurich/Aargau 

following Eq. (3). Year was treated as a factor variable to allow for year specific predictions. 

2016 is the reference year and “vital” (part A in table) or “early-browning – minor damage” (part 

B in table) the reference vitality class. In addition, tree ID nested in group was added as 

grouping variable of the random intercept. The estimate, standard error (std. error) and p-value 

(p) are given for each term. Significant results are in bold. 

Zurich/Aargau  Estimate Std. error p 

A) Log(tree-ring width + 1), “Vital” as reference    

 Intercept 0.957 0.061 <0.001 

 Year [2017] -0.207 0.038 <0.001 

 Year [2018] -0.015 0.038 0.702 

 Year [2019] 0.059 0.038 0.125 

 Year [2020] 0.040 0.038 0.289 

 Vitality [Early-browning – minor damage] -0.241 0.086 0.009 

 Vitality [Early-browning – severe damage] -0.069 0.112 0.537 

 Year [2017] x Vitality [Early-browning – minor damage] 0.033 0.055 0.553 

 Year [2018] x Vitality [Early-browning – minor damage] -0.190 0.055 <0.001 

 Year [2019] x Vitality [Early-browning – minor damage] -0.276 0.055 <0.001 

 Year [2020] x Vitality [Early-browning – minor damage] -0.023 0.055 0.683 

 Year [2017] x Vitality [Early-browning – severe damage] -0.057 0.083 0.491 

 Year [2018] x Vitality [Early-browning – severe damage] -0.363 0.083 <0.001 

 Year [2019] x Vitality [Early-browning – severe damage] -0.434 0.083 <0.001 

 Year [2020] x Vitality [Early-browning – severe damage] -0.220 0.083 0.008 

 Observations 445   

 Marginal R2 0.301   

 Conditional R2 0.759   

     

 Estimate Std. error p 

B) Log(tree-ring width + 1), “Early-browning – minor damage” as reference 

 Intercept 0.716  0.060 <0.001 

 Year [2017] -0.174 0.040 <0.001 

 Year [2018] -0.204 0.040 <0.001 

 Year [2019] -0.218 0.040 <0.001 

 Year [2020] 0.018 0.040 0.657 

 Vitality [Vital] 0.241 0.086 0.009 

 Vitality [Early-browning – severe damage] 0.171 0.100 0.074 

 Year [2017] x Vitality [Vital] -0.033 0.055 0.553 

 Year [2018] x Vitality [Vital] 0.190 0.055 <0.001 

 Year [2019] x Vitality [Vital] 0.276 0.055 <0.001 

 Year [2020] x Vitality [Vital] 0.023 0.055 0.683 

 Year [2017] x Vitality [Early-browning – severe damage] -0.090 0.084 0.284 

 Year [2018] x Vitality [Early-browning – severe damage] -0.173 0.084 0.039 

 Year [2019] x Vitality [Early-browning – severe damage] -0.158 0.084 0.060 

 Year [2020] x Vitality [Early-browning – severe damage] -0.197 0.084 0.019 

 Observations 445   

 Marginal R2 0.301   

 Conditional R2 0.759   



7 
 

Table S4. Summary of the fitted linear mixed effects model that compared the tree-ring width 

(as log(TRW + 1)) of the three different crown vitality classes (vital, early-browning – minor 

damage, early-browning – severe damage) from 2016 to 2020 in the region of Schaffhausen 

following Eq. (3). Year was treated as a factor variable to allow for year specific predictions. 

2016 is the reference year and “vital” (part A in table) or “early-browning – minor damage” (part 

B in table) the reference vitality class. In addition, tree ID nested in group was added as 

grouping variable of the random intercept. The estimate, standard error (std. error) and p-value 

(p) are given for each term. Significant results are in bold. 

Schaffhausen  Estimate Std. error p 

A) Log(tree-ring width + 1), “Vital” as reference    

 Intercept 0.921 0.043 <0.001 

 Year [2017] -0.279 0.030 <0.001 

 Year [2018] -0.157 0.030 <0.001 

 Year [2019] -0.037 0.030 0.210 

 Year [2020] 0.033 0.030 0.270 

 Vitality [Early-browning – minor damage] -0.135 0.058 0.022 

 Vitality [Early-browning – severe damage] -0.254 0.064 <0.001 

 Year [2017] x Vitality [Early-browning – minor damage] -0.042 0.043 0.328 

 Year [2018] x Vitality [Early-browning – minor damage] -0.214 0.043 <0.001 

 Year [2019] x Vitality [Early-browning – minor damage] -0.262 0.043 <0.001 

 Year [2020] x Vitality [Early-browning – minor damage] -0.146 0.043 <0.001 

 Year [2017] x Vitality [Early-browning – severe damage] 0.031 0.050 0.535 

 Year [2018] x Vitality [Early-browning – severe damage] -0.113 0.050 0.025 

 Year [2019] x Vitality [Early-browning – severe damage] -0.265 0.050 <0.001 

 Year [2020] x Vitality [Early-browning – severe damage] -0.289 0.050 <0.001 

 Observations 905   

 Marginal R2 0.341   

 Conditional R2 0.725   

     

 Estimate Std. error p 

B) Log(tree-ring width + 1), “Early-browning – minor damage” as reference 

 Intercept 0.786 0.039 <0.001 

 Year [2017] 0.321 0.031 <0.001 

 Year [2018] -0.371 0.031 <0.001 

 Year [2019] -0.299 0.031 <0.001 

 Year [2020] -0.113 0.031 <0.001 

 Vitality [Vital] 0.135 0.058 0.022 

 Vitality [Early-browning – severe damage] -0.119 0.054 0.027 

 Year [2017] x Vitality [Vital] 0.042 0.043 0.328 

 Year [2018] x Vitality [Vital] 0.214 0.043 <0.001 

 Year [2019] x Vitality [Vital] 0.262 0.043 <0.001 

 Year [2020] x Vitality [Vital] 0.146 0.043 <0.001 

 Year [2017] x Vitality [Early-browning – severe damage] 0.073 0.051 0.151 

 Year [2018] x Vitality [Early-browning – severe damage] 0.101 0.051 0.049 

 Year [2019] x Vitality [Early-browning – severe damage] -0.004 0.051 0.942 

 Year [2020] x Vitality [Early-browning – severe damage] -0.143 0.051 0.006 

 Observations 905   

 Marginal R2 0.341   

 Conditional R2 0.725   
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Supplementary Figures 

 

      

Figure S1. Differences in diameter at breast height (DBH, left) and estimated age (right) 

between vital (green) and early-browning (orange) trees for each region (BL, ZH/AG, SH) 

separately. The differences between the vitality classes were tested using Wilcoxon rank sum 

test (α < 0.05). The age could be only estimated for 455 out of 470 trees. The mean difference 

between the age estimates of the two increment cores per tree was 10 years. 
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Figure S2. Example of vital beech trees selection in the region of Schaffhausen close to 

previously observed early-browning beech trees (orange dots) with no early browning between 

25th of August 2018 and the 20th of September 2018 (green dots). The pixels (10 m resolution) 

in which remote sensing detected early browning are given in red. To map beech trees with 

early browning across Switzerland, we utilized Sentinel-2 satellite images. Vegetation indices 

(VIs) were derived for 2018, 2017, and 2016 (Baltensweiler, 2020). To compare with previous 

years, we calculated VIs (specifically NDVI (normalized difference vegetation index) and NDWI 

(normalized difference water index)) at various time intervals between June and September 

2018 and compared them to the corresponding periods in 2016 and 2017. Significant 

decreases in VI from 2018 to previous years indicated the occurrence of early browning. By 

extracting the VI data at the locations of the 963 observed vital and early discolored beech 

trees published in Frei et al. (2022), we established a threshold and subsequently classified 

the trees as either vital or affected by drought in the Swiss forest. This classification process 

was limited to areas delineated by a beech distribution map (Wüest et al., 2021) and high-

resolution classification of tree types (broadleaved/coniferous) (Waser et al., 2017). 
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Figure S3. Modeled soil parameters (clay content, gravel content, soil depth) per tree group 

and region (BL, ZH/AG, SH). The data was extracted for each tree group from machine-

learning based soil maps for forested areas in Switzerland (Baltensweiler et al., 2021, 

www.wsl.ch/soilmaps/). The model predicts soil data on a 25x25 m grid. Differences between 

vital and early-browning tree groups were tested separately for each region and soil parameter 

using a Wilcoxon rank sum test (α < 0.05). 
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Figure S4. Masting index based on beech pollen data from three MeteoSwiss weather stations 

between 1969 and 2020 (Swiss Federal Office of Meteorology and Climatology, PBS (Basel, 

7°35'/47°34'), PMU (Münsterlingen, 9°14'/47°38') and PZH (Zurich, 8°34'/47°23'), Fig. S5), 

seed data from the region of Baden-Württemberg (Germany) for the time window 1961–1968 

(Ascoli et al., 2017) and beech mast data from Switzerland from Jenni (1987) for the year 1960. 

The masting likelihood was estimated on an ordinal scale with three levels: 0 – low likelihood, 

1 – medium likelihood, 2 - high likelihood.  

The masting index was calculated as follows. First, we calculated the yearly pollen 

concentration for each tree group based on the available daily beech pollen count data 

collected by MeteoSwiss weather stations (Swiss Federal Office of Meteorology and 

Climatology) closest to the groups. The pollen count data was available for the period 1969–

2020 for the station Basel (7°35'/47°34'), for 1981 – 2020 for the station Zürich (8°34'/47°23') 

and for 1987–2020 for the station Münsterlingen (9°14'/47°38'). The masting index was 

calculated by grouping the yearly pollen concentrations of each station into three different 

classes assuming that pollen concentration can be used as a bioindicator for masting 

(Kasprzyk et al., 2014). The highest one-third of the yearly pollen concentrations per station 

received a score of 2, while the lowest third received a score of 0 and average pollen 

concentration a score of 1. The pollen concentration data from the station Basel was used to 

complete the missing data for the other two stations (Fig. S5). Second, masting data based on 
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field observations conducted in Baden-Württemberg (Germany) by the “Staatsklenge Forstamt 

Nagold” (Ascoli et al., 2017) spanning the period 1961–1968 were used. The original ordinal 

masting scale ranged from 1 to 5, with 1 signifying no or very low masting, and 5 full mast. We 

homogenized the scale of these two data sets by rescaling the data so that 1 was converted 

to 0; 2 and 3 became 1; and 4 and 5 were converted to 2. Third, Jenni (1987) reported a full 

mast for beech in Switzerland in 1960, which was included in the masting index with the value 

2. 

 

 

 
Figure S5. Yearly pollen concentration (given as the sum of yearly measured pollen amount 

per m3 air) for beech measured at three different MeteoSwiss weather stations (Swiss Federal 

Office of Meteorology and Climatology): Basel (PBS, 7°35'/47°34'), Münsterlingen (PMU, 

9°14'/47°38') and Zurich (PZH, 8°34'/47°23'). Because the data for PMU was only available 

between 1987 – 2020 and for PZH between 1981–2020, the data from PBS (data for 1969–

2020) was used to fill the gaps. 
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Figure S6. Raw individual tree tree-ring width chronologies (gray lines) plotted separately for 

the three investigated regions: BL, ZH/AG and SH. Mean tree-ring width for vital (green lines) 

and early-browning (orange lines) beech trees are shown per study region. The red vertical 

line highlights the year 2018. 
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Figure S7. Individual tree-ring width index series (gray lines) plotted separately for the three 

investigated regions: BL, ZH/AG and SH. The raw tree-ring width series were detrended 

following Eq. (S1). Mean tree-ring width index for vital (green lines) and early-browning (orange 

lines) beech trees are shown per study region. The red vertical line highlights the year 2018. 
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Figure S8. Population-wide smooth function for the partial effect of the diameter at breast 

height (DBH) corresponding to term 𝑓1(𝐷𝐵𝐻𝑖𝑔) in Eq. (2) for vital and early-browning trees. 

The effect was modeled by a cubic regression spline. The y-axis gives the value of the centered 

smooth (s(DBH)). Thus, it is the contribution of the smooth function to the fitted value. The 

confidence intervals are given as grey shaded areas. 
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Figure S9. Predicted log +1 transformed tree-ring width (TRW) in function to diameter at breast 

height (DBH) for each individual tree (black lines) grouped by region: Baselland (BL), 

Schaffhausen (SH) and Zurich/Aargau (ZH/AG) and vitality class (vital or early-browning). The 

values were predicted while setting the climate terms to the mean and the masting index to 0.  
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Figure S10: Predicted change in tree-ring width (TRW) of vital and early-browning beech trees in function of mean temperature and precipitation 

sum of the previous and current year for two-months periods from previous year January to current year August following Eq. (S6 & S7) and calculated 
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for the period 1960–2017. The months are abbreviated by the first three letters. Brown signifies narrower TRW values compared to mean conditions 

and green indicates larger TRW values. The black circles give the raw data points used for the predictions.
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Figure S11. Difference in total crown biomass loss observed in 2020 between the three vitality 

classes (vital, early-browning – minor damage, early-browning – severe damage) per region 

(Basel (BL), Zurich/Aargau (ZH/AG), Schaffhausen (SH)). %CBL is the total crown biomass 

loss percentage observed in 2020. Early-browning trees that had %CBL > 58% were 

categorized as “severe damage”, trees with %CBL ≤ 58% minor damage”. The p-values 

displayed over the boxplots are the results of a Wilcoxon rank sum test (α < 0.05). 
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Figure S12. Average Climatic water balance (CWB) for the period January–August calculated 

separately for the three different regions (Basel (BL, green), Zurich/Aargau (ZH/AG, blue), 

Schaffhausen (SH, orange)) between 1960 and 2020. The gray vertical line highlights 2018. 

CWB was calculated by subtracting the monthly potential evapotranspiration (Thornthwaite, 

1948) from the monthly precipitations sum. 
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Figure S13. Temperature anomalies of the months May to August calculated from 1960 to 

2020 for each region separately. Red bars indicate years with higher and blue bars lower mean 

temperatures compared to the reference period 1960–1990. 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Supplementary Equations 

 

Equations S1 & S2. We calculated the standard deviation and the first order autoregressive 

coefficient (AR1) of the detrended tree-ring width series (TRW) as follows according to 

Venables and Ripley (2002): 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √
∑|𝑥𝑡−𝑥̅|2

𝑛
         

𝐴𝑅𝑘 =
∑ (𝑥𝑡−𝑥̅)(𝑥𝑡−𝑘−𝑥̅)𝑛

𝑡=𝑘+1

∑ (𝑥𝑡−𝑥̅)2𝑛
𝑡=1

, 𝑤𝑖𝑡ℎ 𝑘 = 1        

xt is the time series (in our case TRW), 𝑥̅ is the mean of the timeseries, n the number of 

observations and 𝑥𝑡−𝑘 the timeseries shifted by k units (for AR1 k =1). The formula for AR1 

further assumes second-order stationarity of the time series. 

 

Equations S3 & S4. We used an additive model (Wood, 2017) to detrend tree individual tree-

ring width chronologies along reconstructed DBH (diameter at breast height). The model was 

run for each tree separately between 1960 and 2020. DBH was modeled as a flexible cubic 

regression spline with a maximum of six degrees of freedom and restricted maximum likelihood 

(REML) as the smoothing parameter estimation method. The model was formulated as follows: 

log(𝑇𝑅𝑊𝑖𝑡 + 1) = 𝑓(𝐷𝐵𝐻𝑖𝑡) + 𝜀𝑖𝑡        

  

where 𝑇𝑅𝑊𝑖𝑡 is the tree-ring width of tree i in year t and 𝐷𝐵𝐻𝑖𝑡 is the diameter at breast height 

of tree i in year t. The formulation of the R-code using the R-package mgcv (v1.8-40, Wood, 

2011) was: 

 

gam(log(TRW +1) ~ s(DBH, k = 6, bs = "cr"),  

method = "REML", family = "gaussian",  

data = data)            
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log(TRW +1) gives the log + 1 transformed TRW. The transformation was applied to achieve 

the normal distribution of the residuals. s(DBH, k = 6, bs = "cr")describes the cubic 

regression spline (bs = "cr") with a maximum of six degrees of freedom (k = 6) for the 

tree individual size trend. The model was fitted with a gaussian distribution (family = 

"gaussian). 

 

Equation S5. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑗 = 𝛽0 + 𝛽1vitality 𝑖 + 𝛽2𝐷𝐵𝐻2018,𝑖 + 𝑢𝑗 + 𝜀𝑖𝑗   

where 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑗 is either the mean raw TRW for 1960–2017, the linear regression 

coefficient of raw TRW of 1960–2017, growth variability of the period 1960–2017 or AR1 for 

the period 1960–2017 of tree i in group j, vitality 
𝑖
 indicates the vitality class of each tree i, 

𝐷𝐵𝐻2018,𝑖 is the diameter at breast height in the year 2018 of each tree i, 𝑢𝑗 is the random 

intercept for tree group j, and 𝜀𝑖𝑗 indicates the error term. Growth standard deviation was log- 

transformed to achieve normal distributed residuals. 

 

Equation S6 & S7. The distributed time lag models were built from three main components: 

a) a first part describing the size-dependent long-term growth trend for the whole set of study 

trees and each individual tree, which can be understood as a “model internal detrending” of 

each TRW series along its own reconstructed DBH time series; b) a second part relating the 

effect of variabilities in temperature and precipitation, and their interaction over the different 

lags on raw TRW; and c) a third part including the masting index. We used the flexible 

penalized spline formulation of the bam function from the mgcv package (v 1.8-40, Wood, 

2011) to model the effects of DBH and climate on growth response. For each vitality class, a 

separate model was formulated as follows: 
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log (𝑇𝑅𝑊𝑖𝑔 + 1)  

= 𝑓1(𝐷𝐵𝐻𝑖𝑔)  +  𝑓2(𝐷𝐵𝐻𝑖𝑔)𝐼𝐷𝑖𝑔 + ∑ 𝑓3

10

𝑘=1

(𝑇𝑚𝑒𝑎𝑛𝑖𝑔𝑘, 𝑙𝑎𝑔𝑖𝑔𝑘)

+ ∑ 𝑓4(𝑃𝑟𝑒𝑐𝑆𝑢𝑚𝑖𝑔𝑘, 𝑙𝑎𝑔𝑖𝑔𝑘)

10

𝑘=1

+ ∑ 𝑓5(𝑇𝑚𝑒𝑎𝑛𝑖𝑔𝑘, 𝑃𝑟𝑒𝑐𝑆𝑢𝑚𝑖𝑔𝑘 , 𝑙𝑎𝑔𝑖𝑔𝑘) + 𝑀𝑎𝑠𝑡𝑖𝑛𝑔𝑖𝑔  +  𝑓6(𝐼𝐷𝑖𝑔)  

10

𝑘=1

+  𝑓7(𝐺𝑟𝑜𝑢𝑝𝑔)  +  𝜀𝑖𝑔  

with  𝑙𝑎𝑔𝑖𝑔𝑘 =  (𝑘 − 1)       

where log (𝑇𝑅𝑊𝑖𝑔 + 1) is the log + 1 transformed TRW of tree i in group g. 𝑓1(𝐷𝐵𝐻𝑖𝑔) describes 

a smoother which characterizes a common (population) growth trend over increasing DBH 

(size trend). This size trend is shared by all i trees in groups g of the model. Because each tree 

might have its own size trend which deviates from the common trend, 𝑓2(𝐷𝐵𝐻𝑖𝑔)𝐼𝐷𝑖𝑔 allows 

for an additional separate DBH smoother for each tree i in group g. The third, fourth and fifth 

sum terms in the formula describe the distributed time lag model. Term 

∑ 𝑓3
10
𝑘=1 (𝑇𝑚𝑒𝑎𝑛𝑖𝑔𝑘 , 𝑙𝑎𝑔𝑖𝑔𝑘) models the effect of the temperature measured for tree i in group g 

during 𝑙𝑎𝑔𝑖𝑔𝑘 =  (𝑘 − 1) as smooth surface, while ∑ 𝑓4(𝑃𝑟𝑒𝑐𝑆𝑢𝑚𝑖𝑔𝑘 , 𝑙𝑎𝑔𝑖𝑔𝑘)10
𝑘=1  does the same 

for precipitation. The maximum number of lags (10) is set by the number of time periods 

investigated. To also consider the interaction between temperature and precipitation in each 

lag, the tensor product ∑ 𝑓5(𝑇𝑚𝑒𝑎𝑛𝑖𝑔𝑘 , 𝑃𝑟𝑒𝑐𝑆𝑢𝑚𝑖𝑔𝑘, 𝑙𝑎𝑔𝑖𝑔𝑘)10
𝑘=1  was added to the model. 

𝑀𝑎𝑠𝑡𝑖𝑛𝑔𝑖𝑔 is the masting index for tree i in group g for the current year. This term was 

considered as parametric term without smoother. 𝑓6(𝐼𝐷𝑖𝑔) and 𝑓7(𝐺𝑟𝑜𝑢𝑝𝑔) give the random 

intercepts for tree individual i and tree group g. Last, 𝜀𝑖𝑔 gives the common error term which is 

normally distributed. All variables were scaled to mean 0 and variance 1 before modeling.  

The advantage of this method is that no a priori assumption of strict linearity of the effects is 

made. Moreover, the model penalizes overly wiggly smooths and thereby reduces overfitting. 
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The model was fitted separately for vital and early-browning trees because no possibility to 

include a by-factor interaction into a matrix argument exists. The by-factor interaction would 

allow to fit two separate smooths per vitality class (see for example Neycken et al., 2022). The 

matrix formulation of the predictors is necessary so that multiple lagged temperatures and 

precipitation sums can be computed by the model at the same time.  

The two models were run with the bam function from the mgcv package (v 1.8-40, Wood, 

2011) in R 4.2.1 (R Core Team, 2022) with the following code: 

bam(log(TRW + 1) ~ s(DBH, bs = "cr", m = 2, k = 4) + 

                s(DBH, by = ID, bs = "cr", m = 1, k = 4) + 

                te(Tmean, lag, k = c(3, 10)) + 

                te(PrecSum, lag, k = c(3, 10)) + 

                te(Tmean, PrecSum, lag, k = c(3, 3, 10)) + 

                s(group, bs = "re") + 

                s(ID, bs = "re") + 

                Masting_index, 

family = "gaussian", 

method = "fREML", 

                data = data)  

 

Log(TRW + 1) indicates that TRW was log-transformed and 1 was added to achieve 

normality of the residuals. This allowed us to run the model under gaussian assumptions 

(family = "gaussian") which decreased computation time significantly compared to a 

generalized additive model (GAM, Wood, 2017). s(DBH, bs = "cr", m = 2, k = 

4)describes the population-wide size trend along DBH (diameter at breast height) and s(DBH, 

by = ID, bs = "cr", m = 1, k = 4) the tree individual (defined through the tree ID) 

deviation from the common size trend. The smooths were fitted with cubic regression splines 

(bs = "cr") which are more computational efficient compared to the standard thin-plate 

splines. Moreover, we set the marginal basis penalization to the squared second derivative of 

the function (m = 2) for the population-smooth and to the first derivative for the individual 

smooth (m = 1). This setup reduces the collinearity between the population-smooth and the 

individual ones (Pedersen et al., 2019). In addition, the maximum number of degrees of 

freedom was restricted to 4 (k = 4) because we wanted to retain the high-frequency growth 

changes.  
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To model the distributed time lag model with the climatic parameters we used tensor product 

smooths (te()). These smooths are used to define the interactions between temperature, 

precipitation, and the lags. Each of the parameters is set up as a matrix which includes one 

column per lag. The maximum amount of freedom was set to 3 for the climate parameters and 

to 10 for the lag matrix (because 10 lags were included in the analysis).  

Next, s(group, bs = "re")and s(ID, bs = "re")define random intercepts for ID (tree 

individual) and tree group. This is necessary to account for the sampling design and add the 

growth level for each tree (Pedersen et al., 2019). Last, the masting index was added to the 

model as continuous parametric term without smoothing parameter. The model computation 

method was left at the default which is fast REML (fREML,Wood et al., 2015). 

 

Equation S8.  

log (𝑇𝑅𝑊 + 1)𝑖𝑗𝑡 = 𝛽0 + 𝛽1𝑦𝑒𝑎𝑟𝑡 + 𝛽2𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦𝑖 + 𝛽3𝑦𝑒𝑎𝑟𝑡 × 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦𝑖 + 𝑏𝑖 + 𝑢𝑖𝑗 + 𝜀𝑖𝑗𝑡  

where log (𝑇𝑅𝑊 + 1)𝑖𝑗𝑡  is the log + 1 transformed TRW of tree i in group j in year t, 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦𝑖 is 

the vitality class of each tree i, 𝑏𝑖 and 𝑢𝑖𝑗 are the grouping variables for the random intercept 

of tree ID nested in tree group, finally 𝜀𝑖𝑗𝑡 gives the error term. The model was fitted separately 

for each region with REML. 
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