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Abstract
Nonlinear partial differential equations (PDEs) are used to model dynamical processes in a
large number of scientific fields, ranging from finance to biology. In many applications stan-
dard local models are not sufficient to accurately account for certain non-local phenomena
such as, e.g., interactions at a distance. Non-local nonlinear PDE models can accurately cap-
ture these phenomena, but traditional numerical approximation methods are infeasible when
the considered non-local PDE is high-dimensional. In this article we propose two numerical
methods based on machine learning and on Picard iterations, respectively, to approximately
solve non-local nonlinear PDEs. The proposedmachine learning-basedmethod is an extended
variant of a deep learning-based splitting-up type approximation method previously intro-
duced in the literature and utilizes neural networks to provide approximate solutions on a
subset of the spatial domain of the solution. The Picard iterations-basedmethod is an extended
variant of the so-called full history recursive multilevel Picard approximation scheme previ-
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ously introduced in the literature and provides an approximate solution for a single point of
the domain. Both methods are mesh-free and allow non-local nonlinear PDEs with Neumann
boundary conditions to be solved in high dimensions. In the two methods, the numerical
difficulties arising due to the dimensionality of the PDEs are avoided by (i) using the corre-
spondence between the expected trajectory of reflected stochastic processes and the solution
of PDEs (given by the Feynman–Kac formula) and by (ii) using a plain vanilla Monte Carlo
integration to handle the non-local term. We evaluate the performance of the two methods
on five different PDEs arising in physics and biology. In all cases, the methods yield good
results in up to 10 dimensions with short run times. Our work extends recently developed
methods to overcome the curse of dimensionality in solving PDEs.

Keywords Non-local · Partial differential equation · PDE · Deep learning · Neural
networks · Neumann boundary condition · Reflected Brownian motion

Mathematics Subject Classification Primary 35R09; Secondary 65M75 · 45K05 · 35K20 ·
65C05 · 65M22 · 68T07

1 Introduction

In this article, we derive numerical schemes to approximately solve high-dimensional non-
local nonlinear partial differential equations (PDEs) with Neumann boundary conditions.
Such PDEs have been used to describe a variety of processes in physics, engineering, finance,
and biology, but can generally not be solved analytically, requiring numerical methods to
provide approximate solutions. However, traditional numerical methods are for the most part
computationally infeasible for high-dimensional problems, calling for the development of
novel approximation methods.

The need for solving non-local nonlinear PDEs has been expressed in various fields as they
provide a more general description of the dynamical systems than their local counterparts
[1–3]. In physics and engineering, non-local nonlinear PDEs are found, e.g., in models of
Ohmic heating production [4], in the investigation of the fully turbulent behavior of real
flows [5], in phase field models allowing non-local interactions [6–9], or in phase transition
models with conservation of mass [10, 11]; see [1] for further references. In finance, non-
local PDEs are used, e.g., in jump-diffusion models for the pricing of derivatives where the
dynamics of stock prices are described by stochastic processes experiencing large jumps [3,
12–18]. Penalty methods for pricing American put options such as in Kou’s jump-diffusion
model [19, 20], considering large investors where the agent policy affects the assets prices
[15, 21], or considering default risks [22, 23] can further introduce nonlinear terms in non-
local PDEs. In economics, non-local nonlinear PDEs appear, e.g., in evolutionary game
theory with the so-called replicator-mutator equation capturing continuous strategy spaces
[24–28] or in growth models where consumption is non-local [29]. In biology, non-local
nonlinear PDEs are used, e.g., to model processes determining the interaction and evolution
of organisms. Examples include models of morphogenesis and cancer evolution [30–32],
models of gene regulatory networks [33], population genetics models with the non-local
Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equations [34–40], and quantitative
geneticsmodelswhere populations are structured on a phenotypic and/or a geographical space
[41–48]. In such models, Neumann boundary conditions are used, e.g., to model the effect
of the borders of the geographical domain on the movement of the organisms.
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Real world systems such as those just mentioned may be of considerable complexity and
accurately capturing the dynamics of these systems may require models of high dimension-
ality [47], leading to complications in obtaining numerical approximations. For example, the
number of dimensions of the PDEs may correspond in finance to the number of financial
assets (such as stocks, commodities, exchange rates, and interest rates) in the involved port-
folio; in evolutionary dynamics, to the dimension of the strategy space; and in biology, to the
number of genes modelled [33] or to the dimension of the geographical or the phenotypic
space over which the organisms are structured. Standard approximation methods for PDEs
such as finite difference approximation methods, finite element methods, spectral Galerkin
approximation methods, and sparse grid approximation methods all suffer from the so called
curse of dimensionality [49], meaning that their computational costs increase exponentially
in the number of dimensions of the PDE under consideration.

Numerical methods exploiting stochastic representations of the solutions of PDEs can
in some cases overcome the curse of dimensionality. Specifically, simple Monte Carlo
averages of the associated stochastic processes have been proposed a long time ago to
solve high-dimensional linear PDEs, such as, e.g., Black–Scholes and Kolmogorov PDEs
[50, 51]. Recently, two novel classes of methods have proved successful in dealing with
high-dimensional nonlinear PDEs, namely deep learning-based and full history recursive
multilevel Picard approximation methods (in the following we will abbreviate full history
recursive multilevel Picard by MLP). The explosive success of deep learning in recent years
across a wide range of applications [52] has inspired a variety of neural network-based
approximation methods for high-dimensional PDEs; see [53–59] for a survey of this field
of research. One class of such methods is based on reformulating the PDE as a stochastic
learning problem through suitable Feynman–Kac formulas, cf., e.g., [60–65]. In particular,
the deep splitting scheme introduced in [65] relies on splitting the differential operator into
a linear part (which is reformulated using a suitable Feynman–Kac formula) and a nonlinear
part and in that sense belongs to the class of splitting-up methods [66–68]. The PDE approx-
imation problem is then decomposed along the time axis into a sequence of separate learning
problems. The deep splitting approximation scheme has proved capable of computing rea-
sonable approximations to the solutions of nonlinear PDEs in up to 10000 dimensions. On the
other hand, the MLP approximation method, introduced in [69–71], utilizes the Feynman–
Kac formula to reformulate the PDE problem as a fixed point equation. It further reduces the
complexity of the numerical approximation of the time integral through a multilevel Monte
Carlo approach. However, neither the deep splitting nor the MLP method can, until now,
account for non-localness and Neumann boundary conditions.

The goal of this article is to overcome these limitations and thus we generalize the deep
splitting method and the MLP approximation method to approximately solve non-local non-
linear PDEs with Neumann boundary conditions. We handle the non-local term by a plain
vanilla Monte Carlo integration and address Neumann boundary conditions by construct-
ing reflected stochastic processes. While the MLP method can, in one run, only provide
an approximate solution at a single point x ∈ D of the spatial domain D ⊆ R

d where
d ∈ N = {1, 2, . . . }, the machine learning-based method can in principle provide an approx-
imate solution on a full subset of the spatial domain D (however, cf., e.g., [72–74] for results
on limitations on the performance of such approximation schemes). We use both methods to
solve five non-local nonlinear PDEs arising in models from biology and physics and cross-
validate the results of the simulations. We manage to solve the non-local nonlinear PDEs
with reasonable accuracy in up to 10 dimensions.

For an account of classical numerical methods for solving non-local PDEs, such as finite
differences, finite elements, and spectral methods, we refer the reader to the recent survey [2].

123



51 Page 4 of 51 Partial Differential Equations and Applications (2023) 4 :51

Several machine-learning based schemes for solving non-local PDEs can also be found in the
literature. In particular, the physics-informed neural network and deep Galerkin approaches
[75, 76], based on representing an approximation of the whole solution of the PDE as a neural
network and using automatic differentiation to do a least-squaresminimization of the residual
of the PDE, have been extended to fractional PDEs and other non-local PDEs [77–81]. While
some of these approaches use classical methods susceptible to the curse of dimensionality
for the non-local part [77, 78], mesh-free methods suitable for high-dimensional problems
have also been investigated [79–81].

The literature also contains approaches that are more closely related to the machine
learning-based algorithm presented here. Frey and Köck [82, 83] propose an approxima-
tion method for non-local semilinear parabolic PDEs with Dirichlet boundary conditions
based on and extending the deep splitting method in [65] and carry out numerical simula-
tions for example PDEs in up to 4 dimensions. Castro [84] proposes a numerical scheme
for approximately solving non-local nonlinear PDEs based on [64] and proves convergence
results for this scheme. Finally, Gonon and Schwab [85] provide theoretical results show-
ing that neural networks with ReLU activation functions have sufficient expressive power to
approximate solutions of certain high-dimensional non-local linear PDEs without the curse
of dimensionality.

There is amore extensive literature onmachine learning-basedmethods for approximately
solving standard PDEs without non-local terms but with various boundary conditions, going
back to early works by Lagaris et al. [86, 87] (see also [88]), which employed a grid-based
method based on least-squares minimization of the residual and shallow neural networks
to solve low-dimensional ODEs and PDEs with Dirichlet, Neumann, and mixed boundary
conditions. More recently, approximation methods for PDEs with Neumann (and other)
boundary conditions have been proposed using, e.g., physics-informed neural networks [78,
89, 90], the deep Ritz method (based on a variational formulation of certain elliptic PDEs)
[91–93], or adversarial networks [94].

The remainder of this article is organized as follows. Section 2 discusses a special case of
the proposed machine learning-based method, in order to provide a readily comprehensible
exposition of the key ideas of the method. Section 3 discusses the general case, which is
flexible enough to cover a larger class of PDEs and to allow more sophisticated optimization
methods. Section 4 presents our extension of the MLP approximation method to non-local
nonlinear PDEs, which we use to obtain reference solutions in Sect. 5. Section 5 provides
numerical simulations for five concrete examples of (non-local) nonlinear PDEs.

2 Machine learning-based approximationmethod in a special case

In this section, we present in Framework 2.11 in Sect. 2.3 below a simplified version of our
generalmachine learning-based algorithm for approximating solutions of non-local nonlinear
PDEs with Neumann boundary conditions proposed in Sect. 3 below. This simplified version
applies to a smaller class of non-local heat PDEs, specified in Sect. 2.1 below. In Sect. 2.10
we present some elementary results related to the reflection of straight lines on the boundaries
of a suitable subset D ⊆ R

d where d ∈ N. These serve to elucidate and justify the notations
introduced in Framework 2.10 which in turn will be used to describe time-discrete reflected
stochastic processes that are employed in our approximations throughout the rest of the article.
The simplified algorithm described in Sect. 2.3 below is limited to using neural networks of a
particular architecture that are trained using plain vanilla stochastic gradient descent, whereas
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the full version proposed in Framework 3.1 in Sect. 3.2 below is formulated in such a way that
it encompasses a wide array of neural network architectures and more sophisticated training
methods, in particular Adam optimization, minibatches, and batch normalization. Stripping
away some of these more intricate aspects of the full algorithm is intended to exhibit more
acutely the central ideas in the proposed approximation method.

The simplified algorithm described in this section as well as the more general version pro-
posed in Framework 3.1 in Sect. 3.2 below are based on the deep splitting method introduced
in Beck et al. [65], which combines operator splitting with a previous deep learning-based
approximation method for Kolmogorov PDEs [62]; see also Beck et al. [53, Sections 2 and 3]
for an exposition of these methods.

2.1 Partial differential equations (PDEs) under consideration

Let T ∈ (0,∞), d ∈ N, let D ⊆ R
d be a sufficiently regular closed set, let1 n : ∂D →

R
d be a suitable outer unit normal vector field associated to D, let g ∈ C(D, R), let

νx : B(D) → [0, 1], x ∈ D, be probability measures, let f : R × R → R be measurable, let
u = (u(t, x))(t,x)∈[0,T ]×D ∈ C1,2([0, T ]×D, R) have at most polynomially growing partial
derivatives, assume2 for every t ∈ (0, T ], x ∈ ∂D that 〈n(x), (∇xu)(t, x)〉 = 0, and assume
for every t ∈ [0, T ], x ∈ D that u(0, x) = g(x),

∫
D| f (u(t, x), u(t, x))| νx (dx) < ∞, and

(
∂
∂t u

)
(t, x) = (�xu)(t, x) +

∫

D
f (u(t, x), u(t, x)) νx (dx). (1)

Our goal in this section is to approximately calculate under suitable hypotheses the solution
u : [0, T ] × D → R of the PDE in (1).

2.2 Reflection principle for the simulation of time discrete reflected processes

Lemma 2.1 Let d ∈ N, let D ⊆ R
d , let x, y, c ∈ R

d satisfy

c = x + [
inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1})](y − x), (2)

and assume c /∈ {x, y}. Then c ∈ ∂D.

Proof of Lemma 2.1 Throughout this proof let t ∈ [0, 1] satisfy
t = inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1}). (3)

Observe that (2) and (3) imply that

c = x + t(y − x). (4)

This and the assumption that c /∈ {x, y} show that

t /∈ {0, 1}. (5)

1 Throughout this article we denote for every topological space (X ,X) and every set D ⊆ X by ∂D the set
which satisfies ∂D = {x ∈ X : (∀U ∈ X : (x ∈ U → (U � D ∧U � X\D)))}.
2 Throughout this article we denote by 〈·, ·〉 : (⋃n∈N

(Rn ×R
n)
) → R and ‖·‖ : (⋃n∈N

R
n) → R the func-

tions which satisfy for every n ∈ N, v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ R
n that 〈v, w〉 = ∑n

i=1 viwi

and ‖v‖ = √〈v, v〉 = [∑n
i=1|vi |2

]1/2.

123



51 Page 6 of 51 Partial Differential Equations and Applications (2023) 4 :51

Combining this with (3) ensures that for every s ∈ [0, t) it holds that
x + s(y − x) ∈ D. (6)

Next observe that (3) and (5) imply that for every ε ∈ (0,∞) there exists s ∈ [t, t + ε) such
that

x + s(y − x) /∈ D. (7)

Combining this with (4), (5) and (6) shows that c ∈ ∂D . The proof of Lemma 2.1 is thus
complete. ��

Lemma 2.2 Let d ∈ N, x, n ∈ R
d and assume ‖n‖ = 1. Then

(i) it holds that ‖n − x‖ = ‖n + x − 2〈x, n〉n‖ and
(ii) it holds that ‖x − 2〈x, n〉n‖ = ‖x‖.

Proof of Lemma 2.2 Throughout this proof let y ∈ R
d satisfy

y = x − 〈x, n〉n. (8)

Observe that the assumption that ‖n‖ = 1 implies that

〈y, n〉 = 〈x, n〉 − 〈x, n〉〈n, n〉 = 〈x, n〉 − 〈x, n〉‖n‖2 = 0. (9)

This ensures that for every a, b ∈ R it holds that

‖an + by‖2 = 〈an + by, an + by〉
= 〈an, an〉 + 〈an, by〉 + 〈by, an〉 + 〈by, by〉
= a2〈n, n〉 + 2ab〈y, n〉 + b2〈y, y〉
= a2‖n‖2 + b2‖y‖2.

(10)

Hence, we obtain that

‖n + x − 2〈x, n〉n‖2 = ‖n + y − 〈x, n〉n‖2
= ‖(1 − 〈x, n〉)n + y‖2
= (1 − 〈x, n〉)2‖n‖2 + ‖y‖2
= ‖(1 − 〈x, n〉)n − y‖2
= ‖n − y − 〈x, n〉n‖2
= ‖n − x‖2.

(11)

This proves item (i). Next note that (10) implies that

‖x − 2〈x, n〉n‖2 = ‖y − 〈x, n〉n‖2 = 〈x, n〉2‖n‖2 + ‖y‖2 = ‖y + 〈x, n〉n‖2 = ‖x‖2.
(12)

This demonstrates item (ii). The proof of Lemma 2.2 is thus complete. ��

Lemma 2.3 Let d ∈ N, let D ⊆ R
d be a closed set, let c : (Rd)2 → R

d satisfy for every
x, y ∈ R

d that

c(x, y) = x + [
inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1})](y − x), (13)
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let n : ∂D → {x ∈ R
d : ‖x‖ = 1} and R : (Rd)2 → (Rd)2 satisfy for every x, y ∈ R

d that

R(x, y) =

⎧
⎪⎨

⎪⎩

(x, y) : c(x, y) = x
(
c(x, y), y − 2

〈
y − c(x, y),n(c(x, y))

〉
n(c(x, y))

) : c(x, y) /∈ {x, y}
(y, y) : c(x, y) = y,

(14)

and let xn ∈ R
d , n ∈ N0 = N ∪ {0}, and yn ∈ R

d , n ∈ N0, satisfy for every n ∈ N that

(xn, yn) = R(xn−1, yn−1) (15)

(cf. Lemma 2.1). Then

(i) it holds for every n ∈ N that xn = c(xn−1, yn−1),
(ii) it holds for every n, k ∈ N0 with xn ∈ D that xn+k ∈ D,
(iii) it holds for every n, k ∈ N with c(xn−1, yn−1) ∈ {xn−1, yn−1} that (xn+k, yn+k) =

(xn, yn),
(iv) it holds for every n ∈ N that ‖xn − yn−1‖ = ‖xn − yn‖,
(v) it holds that

∞∑

i=0

‖xi − xi+1‖ ≤ ‖x0 − y0‖. (16)

Proof of Lemma 2.3 First, observe that (14) and (15) imply item (i). Moreover, note that (13)
ensures that for every v,w ∈ R

d with v �= w and c(v,w) = w it holds that

inf({r ∈ [0, 1] : v + r(w − v) /∈ D} ∪ {1}) = 1. (17)

The assumption that D is a closed set hence shows that for every v,w ∈ R
d with v �= w and

c(v,w) = w it holds that w ∈ D. Combining this and the fact that for every v ∈ R
d it holds

that c(v, v) = v with Lemma 2.1 and the assumption that D is a closed set proves that for
every v ∈ D, w ∈ R

d it holds that
c(v,w) ∈ D. (18)

Item (i) and induction hence establish item (ii). Next observe that (14) and (15) imply that
for every n ∈ N with c(xn−1, yn−1) = xn−1 it holds that

(xn, yn) = R(xn−1, yn−1) = (xn−1, yn−1). (19)

Induction therefore ensures that for every n ∈ N, k ∈ N0 with c(xn−1, yn−1) = xn−1 it holds
that

(xn+k, yn+k) = (xn, yn) = (xn−1, yn−1). (20)

In addition, note that (14) and (15) show that for every n ∈ N with c(xn−1, yn−1) = yn−1 it
holds that

(xn, yn) = R(xn−1, yn−1) = (yn−1, yn−1). (21)

Hence, we obtain that for every n ∈ N with c(xn−1, yn−1) = yn−1 it holds that

c(xn, yn) = c(yn−1, yn−1) = yn−1 = xn . (22)

This and (20) demonstrate that for every n, k ∈ N with c(xn−1, yn−1) = yn−1 it holds that

(xn+k, yn+k) = (xn, yn). (23)

123



51 Page 8 of 51 Partial Differential Equations and Applications (2023) 4 :51

Combining this with (20) establishes item (iii). In the next step we observe that (14) and
(15) ensure that for every n ∈ N with c(xn−1, yn−1) ∈ {xn−1, yn−1} it holds that yn = yn−1.
Therefore, we obtain that for every n ∈ N with c(xn−1, yn−1) ∈ {xn−1, yn−1} it holds that

‖xn − yn‖ = ‖xn − yn−1‖. (24)

Next note that Lemma 2.1, item (ii) in Lemma 2.2 (applied for every v ∈ R
d , w ∈ {u ∈

R
d : c(v, u) /∈ {v, u}} with d � d , x � w − c(v,w), n � n(c(v,w)) in the notation

of Lemma 2.2), and (14) show that for every v,w, u, z ∈ R
d with c(v,w) /∈ {v,w} and

(u, z) = R(v,w) it holds that

‖z − c(v,w)‖ = ‖w − c(v,w) − 2〈w − c(v,w),n(c(v,w))〉n(c(v,w))‖ = ‖w − c(v,w)‖.
(25)

This, item (i), and (15) prove that for every n ∈ Nwith c(xn−1, yn−1) /∈ {xn−1, yn−1} it holds
that

‖xn − yn‖ = ‖yn − c(xn−1, yn−1)‖ = ‖yn−1 − c(xn−1, yn−1)‖ = ‖xn − yn−1‖. (26)

Combining this with (24) establishes item (iv). Moreover, observe that item (i) and (13)
ensure that for every n ∈ N there exists t ∈ [0, 1] such that xn = xn−1 + t(yn−1 − xn−1).
This and item (iv) show that for every n ∈ N there exists t ∈ [0, 1] such that

‖xn−1 − xn‖ + ‖xn − yn‖
= ‖xn−1 − xn‖ + ‖xn − yn−1‖
= ‖xn−1 − (xn−1 + t(yn−1 − xn−1))‖ + ‖(xn−1 + t(yn−1 − xn−1)) − yn−1‖
= ‖−t(yn−1 − xn−1)‖ + ‖(t − 1)(yn−1 − xn−1)‖
= t‖yn−1 − xn−1‖ + (1 − t)‖yn−1 − xn−1‖
= ‖xn−1 − yn−1‖. (27)

Combining this with induction proves that for every n ∈ N it holds that

‖x0 − y0‖ =
(

n∑

i=1

‖xi−1 − xi‖
)

+ ‖xn − yn‖. (28)

This implies item (v). The proof of Lemma 2.3 is thus complete. ��
Proposition 2.4 Let d ∈ N, let c : (Rd)2 → R

d satisfy for every x, y ∈ R
d that

c(x, y) = x + [
inf({r ∈ [0, 1] : ‖x + r(y − x)‖ > 1} ∪ {1})](y − x), (29)

let R : (Rd)2 → (Rd)2 satisfy for every x, y ∈ R
d that

R(x, y) =

⎧
⎪⎨

⎪⎩

(x, y) : c(x, y) = x
(
c(x, y), y − 2

〈
y − c(x, y), c(x, y)

〉
c(x, y)

) : c(x, y) /∈ {x, y}
(y, y) : c(x, y) = y,

(30)

and let xn ∈ R
d , n ∈ N0, and yn ∈ R

d , n ∈ N0, satisfy for every n ∈ N that

(xn, yn) = R(xn−1, yn−1). (31)

Then there exists N ∈ N0 such that for every n ∈ N0 ∩ [N ,∞) it holds that

(xn, yn) = (xN , yN ). (32)
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Proof of Proposition 2.4 Throughout this proof let tn ∈ [0, 1], n ∈ N0, satisfy for every
n ∈ N0 that

tn = inf({r ∈ [0, 1] : ‖xn + r(yn − xn)‖ > 1} ∪ {1}). (33)

Note that Lemma 2.1 (applied for every n ∈ {m ∈ N : c(xm−1, ym−1) /∈ {xm−1, ym−1}} with
d � d , D � {x ∈ R

d : ‖x‖ ≤ 1}, x � xn−1, y � yn−1, c � c(xn−1, yn−1) in the notation
of Lemma 2.1) implies that for every n ∈ N with c(xn−1, yn−1) /∈ {xn−1, yn−1} it holds that

‖c(xn−1, yn−1)‖ = 1. (34)

Next observe that item (i) in Lemma 2.1, (29), and (33) show that for every n ∈ N it holds
that

xn = c(xn−1, yn−1) = xn−1 + tn−1(yn−1 − xn−1). (35)

This and (30) ensure that for every n ∈ N, t ∈ R with c(xn−1, yn−1) /∈ {xn−1, yn−1} it holds
that

xn + t(yn − xn)

= xn + t
(
yn−1 − 2

〈
yn−1 − c(xn−1, yn−1), c(xn−1, yn−1)

〉
c(xn−1, yn−1) − xn

)

= xn + t(yn−1 − xn) − 2t
〈
yn−1 − c(xn−1, yn−1), c(xn−1, yn−1)

〉
c(xn−1, yn−1)

= xn + t(yn−1 − xn) − 2〈t(yn−1 − xn), xn〉xn .

(36)

Combining this, (34), and (35) with item (i) in Lemma 2.2 (applied for every t ∈ R, n ∈ {m ∈
N : c(xm−1, ym−1) /∈ {xm−1, ym−1}} with d � d , x � t(yn−1 − xn), n � xn in the notation
of Lemma 2.2) establishes that for every n ∈ N, t ∈ R with c(xn−1, yn−1) /∈ {xn−1, yn−1} it
holds that

‖xn + t(yn − xn)‖ = ‖xn − t(yn−1 − xn)‖. (37)

In the next step we note that (33) implies that for every n ∈ N0, t ∈ [0, tn] with tn > 0 it
holds that

‖xn + t(yn − xn)‖ ≤ 1. (38)

The fact that for every s ∈ [0, 1), t ∈ [0, s
1−s ] it holds that s − t(1 − s) ∈ [0, s] and (35)

hence ensure that for every n ∈ N, t ∈ [0, 1] with tn−1 ∈ (0, 1) and t ≤ tn−1
1−tn−1

it holds that

‖xn − t(yn−1 − xn)‖
= ‖xn−1 + tn−1(yn−1 − xn−1) − t(yn−1 − xn−1 − tn−1(yn−1 − xn−1))‖
= ‖xn−1 + (tn−1 − t(1 − tn−1))(yn−1 − xn−1)‖ ≤ 1.

(39)

Combining this with (37) shows that for every n ∈ N, t ∈ [0, 1] with c(xn−1, yn−1) /∈
{xn−1, yn−1} and t ≤ tn−1

1−tn−1
it holds that

‖xn + t(yn − xn)‖ ≤ 1. (40)

Hence, we obtain that for every n ∈ N with c(xn−1, yn−1) /∈ {xn−1, yn−1} it holds that
tn ≥ min

{
1, tn−1

1−tn−1

}
. (41)

Furthermore, note that (35) implies that for every n ∈ N0 with c(xn, yn) /∈ {xn, yn} it holds
that

xn �= yn and tn ∈ (0, 1). (42)
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Item (iv) in Lemma 2.3, (35), and (41) therefore establish that for every n ∈ N with
c(xn−1, yn−1) /∈ {xn−1, yn−1} and c(xn, yn) /∈ {xn, yn} it holds that

‖xn+1 − xn‖ = ‖tn(yn − xn)‖
≥ tn−1

1−tn−1
‖yn − xn‖

= tn−1
1−tn−1

‖yn−1 − xn‖
= tn−1

1−tn−1
‖yn−1 − xn−1 − tn−1(yn−1 − xn−1)‖

= ‖tn−1(yn−1 − xn−1)‖
= ‖xn − xn−1‖.

(43)

Moreover, observe that (42) ensures that for every n ∈ N with c(xn−1, yn−1) /∈ {xn−1, yn−1}
it holds that

‖xn − xn−1‖ = tn−1‖yn−1 − xn−1‖ > 0. (44)

Combining this and (43) with item (v) in Lemma 2.3 demonstrates that there exists n ∈ N0

such that c(xn, yn) ∈ {xn, yn}. Combining this with item (iii) in Lemma 2.3 establishes that
there exists N ∈ N0 such that for every n ∈ N0 ∩ [N ,∞) it holds that

(xn, yn) = (xN , yN ). (45)

The proof of Proposition 2.4 is thus complete. ��
Lemma 2.5 Let d ∈ N, for every k ∈ {1, 2, . . . , d} let a0k ∈ R, a1k ∈ (a0k ,∞), let D =
[a01, a11] × [a02, a12] × · · · × [a0d , a1d ] ⊆ R

d , let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . , ed = (0, . . . , 0, 0, 1) ∈ R

d , let n : ∂D → R
d satisfy for every x = (x1, . . . , xd) ∈ ∂D,

k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : xl ∈ {a0l , a1l }} that

n(x) =
{

−ek : xk = a0k
ek : xk = a1k,

(46)

let c : (Rd)2 → R
d satisfy for every x, y ∈ R

d that

c(x, y) = x + [
inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1})](y − x), (47)

let R : (Rd)2 → (Rd)2 satisfy for every x, y ∈ R
d that

R(x, y) =

⎧
⎪⎨

⎪⎩

(x, y) : c(x, y) = x
(
c(x, y), y − 2

〈
y − c(x, y),n(c(x, y))

〉
n(c(x, y))

) : c(x, y) /∈ {x, y}
(y, y) : c(x, y) = y,

(48)

for every a ∈ R, b ∈ (a,∞) let ra,b : R → Z satisfy for every x ∈ (−∞, a), y ∈ (b,∞)

that
|ra,b(2a − x)| < |ra,b(x)| and |ra,b(2b − x)| < |ra,b(y)|, (49)

let r : R
d → N0 satisfy for every x = (x1, . . . , xd) ∈ R

d that

r(x) =
d∑

k=1

|ra0k ,a1k (xk)|, (50)

and let u ∈ R
d , x = (x1, . . . , xd), y = (y1, . . . , yd), c = (c1, . . . , cd), v = (v1, . . . , vd) ∈

R
d satisfy c = c(x, y) /∈ {x, y} (cf. Lemma 2.1). Then
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(i) it holds that c ∈ ∂D = {z = (z1, . . . , zd) ∈ D : (∃ k ∈ {1, 2, . . . , d} : zk ∈ {a0k , a1k})},
(ii) it holds for every i, k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }}

that

vi =
{
yi : i �= k

2ck − yk : i = k,
(51)

(iii) it holds that
c(u, v) = u or r(v) < r(y), (52)

and
(iv) it holds for every k ∈ {1, 2, . . . , d} with {k} = {l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }} that

xk �= yk, c(u, v) �= u, and r(v) < r(y). (53)

Proof of Lemma 2.5 Throughout this proof let t ∈ [0, 1] satisfy
t = inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1}). (54)

Note that Lemma 2.1 and the assumption that c /∈ {x, y} imply item (i). Next observe that
(46) ensures that for every k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0k, a1k}}
it holds that

y − 〈y − c,n(c)〉n(c) = y − 2〈y − c, ek〉ek = y − 2(yk − ck)ek . (55)

This, (48), and the assumption that c /∈ {x, y} show that for every i, k ∈ {1, 2, . . . , d} with
k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }} it holds that

vi =
{
yi : i �= k

yk − 2(yk − ck) : i = k
=
{
yi : i �= k

2ck − yk : i = k.
(56)

Hence, we obtain item (ii). Next note that (47) implies that for every k ∈ {1, 2, . . . , d}
with xk = yk it holds that xk = ck = yk . Item (ii) therefore demonstrates that for every
k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }} and xk = yk it holds that

v = y. (57)

Moreover, observe that the assumption that c = c(x, y) /∈ {x, y}, (47), and (54) ensure that

t ∈ (0, 1). (58)

The fact that D ⊆ R
d is a closed, convex set, (54), and the assumption that c �= y hence

proves that for every s ∈ (t, 1] it holds that
x + s(y − x) /∈ D. (59)

In addition, note that (48) implies that
u = c. (60)

This, (57), (58), and (59) show that for every k ∈ {1, 2, . . . , d}, s ∈ (0, 1] with k = min{l ∈
{1, 2, . . . , d} : cl ∈ {a0l , a1l }} and xk = yk it holds that

u + s(v − u) = c + s(y − c)

= x + t(y − x) + s(y − x − t(y − x))

= x + (t + s(1 − t))(y − x) /∈ D. (61)
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Hence, we obtain that for every k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : cl ∈
{a0l , a1l }} and xk = yk it holds that

c(u, v) = u. (62)

Next observe that (47) and (58) ensure that for every k ∈ {1, 2, . . . , d} with xk �= yk it holds
that

xk < ck < yk or yk < ck < xk . (63)

Furthermore, note that (58) implies that

x ∈ D. (64)

This and (63) show that for every k ∈ {1, 2, . . . , d} with xk �= yk and ck = a0k it holds that

yk < ck = a0k . (65)

Combining this with item (ii), (49), and (50) proves that for every k ∈ {1, 2, . . . , d} with
k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }}, xk �= yk , and ck = a0k it holds that

r(v) =
[

d∑

i=1

|ra0i ,a1i (yi )|
]

− |ra0k ,a1k (yk)| + |ra0k ,a1k (2a
0
k − yk)|

<

d∑

i=1

|ra0i ,a1i (yi )| = r(y).

(66)

In addition, observe that (64) and (63) imply that for every k ∈ {1, 2, . . . , d} with xk �= yk
and ck = a1k it holds that

a1k = ck < yk . (67)

Combining this with item (ii), (49), and (50) shows that for every k ∈ {1, 2, . . . , d} with
k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }}, xk �= yk , and ck = a1k it holds that

r(v) =
[

d∑

i=1

|ra0i ,a1i (yi )|
]

− |ra0k ,a1k (yk)| + |ra0k ,a1k (2a
1
k − yk)|

<

d∑

i=1

|ra0i ,a1i (yi )| = r(y).

(68)

This and (66) establish that for every k ∈ {1, 2, . . . , d}with k = min{l ∈ {1, 2, . . . , d} : cl ∈
{a0l , a1l }} and xk �= yk it holds that

r(v) < r(y). (69)

Combining this with (62) proves item (iii). Next note that the fact that for every z =
(z1, . . . , zd) ∈ D, k ∈ {1, 2, . . . , d} with zk /∈ {a0k, a1k} it holds that zk ∈ (a0k, a

1
k) implies

that for every k ∈ {1, 2, . . . , d} with ck /∈ {a0k , a1k} there exists T ∈ (0,∞) such that for
every t ∈ [0, T ] it holds that

ck + t(vk − ck) ∈ [a0k , a1k]. (70)

Moreover, observe that (47) demonstrates that for every k ∈ {1, 2, . . . , d} it holds that
xk ≤ ck ≤ yk or yk ≤ ck ≤ xk . (71)
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This and (64) show that for every k ∈ {1, 2, . . . , d} with ck ∈ {a0k , a1k} it holds that
yk ≤ ck = a0k or a1k = ck ≤ yk . (72)

This and item (ii) ensure that for every k ∈ {1, 2, . . . , d}with k = min{l ∈ {1, 2, . . . , d} : cl ∈
{a0l , a1l }} and ck = a0k it holds that

vk = 2a0k − yk ≥ a0k . (73)

In addition, observe that item (ii) and (72) demonstrate that for every k ∈ {1, 2, . . . , d} with
k = min{l ∈ {1, 2, . . . , d} : cl ∈ {a0l , a1l }} and ck = a1k it holds that

vk = 2a1k − yk ≤ a1k . (74)

Combining this and (73) proves that for every k ∈ {1, 2, . . . , d} with k = min{l ∈
{1, 2, . . . , d} : cl ∈ {a0l , a1l }} there exists T ∈ (0,∞) such that for every t ∈ [0, T ] it
holds that

ck + t(vk − ck) ∈ [a0k , a1k]. (75)

This and (70) establish that for every k ∈ {1, 2, . . . , d} with {k} = {l ∈ {1, 2, . . . , d} :
cl ∈ {a0l , a1l }} there exists T ∈ (0,∞) such that for every t ∈ [0, T ] it holds that

c + t(v − c) ∈ D. (76)

Moreover, note that item (ii) and the assumption that c �= y show that v �= c(x, y). Combining
this and (76) with (47) and (60) shows that for every k ∈ {1, 2, . . . , d} with {k} = {l ∈
{1, 2, . . . , d} : cl ∈ {a0l , a1l }} it holds that

u = c �= c(c, v) = c(u, v). (77)

This and (62) imply that for every k ∈ {1, 2, . . . , d} with {k} = {l ∈ {1, 2, . . . , d} : cl ∈
{a0l , a1l }} it holds that

xk �= yk . (78)

Combining this with (69) proves that for every k ∈ {1, 2, . . . , d} with {k} = {l ∈ {1, 2, . . . ,
d} : cl ∈ {a0l , a1l }} it holds that

r(v) < r(y). (79)

This, (77), and (78) establish item (iv). The proof of Lemma 2.5 is thus complete. ��
Lemma 2.6 Let �·� : R → Z satisfy for every k ∈ N, x ∈ [−k−1/2,−k+1/2), y ∈ [−1/2, 1/2],
z ∈ (k − 1/2, k + 1/2] that

�x� = −k, �y� = 0, and �z� = k, (80)

let a ∈ R, b ∈ (a,∞), and let r : R → Z satisfy for every x ∈ R that

r(x) = ⌈ x−a
b−a − 1

2

⌋
. (81)

Then it holds for every x ∈ (−∞, a), y ∈ (b,∞) that

|r(2a − x)| = |r(x)| − 1 and |r(2b − y)| = |r(y)| − 1. (82)

Proof of Lemma 2.6 Observe that (80) and the fact that for every x ∈ (0, b − a] it holds that
k + x

b−a − 1
2 ∈ (k − 1

2 ,−k + 1
2 ] ensure that for every k ∈ N, x ∈ (0, b − a] it holds that

r(a + k(b − a) + x) = ⌈
k + x

b−a − 1
2

⌋ = k. (83)
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Moreover, note that (80) and the fact that for every x ∈ (0, b−a] it holds that−k+ 1
2 − x

b−a ∈
[−k − 1

2 ,−k + 1
2 ) imply that for every k ∈ N, x ∈ (0, b − a] it holds that

r(b − k(b − a) − x) = ⌈
1 − k − x

b−a − 1
2

⌋ = ⌈−k + 1
2 − x

b−a

⌋ = −k. (84)

Next observe that (83) and (84) show that for every k ∈ N0, x ∈ (0, b − a] it holds that
|r(2a − (a − k(b − a) − x))| = |r(a + k(b − a) + x)| = |k| = k

= |−(k + 1)| − 1 = |r(b − (k + 1)(b − a) − x)| − 1 = |r(a − k(b − a) − x)| − 1.

(85)

This and the fact that for every x ∈ (−∞, a) there exist k ∈ N0, y ∈ (0, b − a] such that
x = a − k(b − a) − y prove that for every x ∈ (−∞, a) it holds that

|r(2a − x)| = |r(x)| − 1. (86)

Furthermore, note that (83) and (84) ensure that for every k ∈ N0, x ∈ (0, b − a] it holds
that

|r(2b − (b + k(b − a) + x))| = |r(b − k(b − a) − x)| = |−k| = k

= |r(a + (k + 1)(b − a) + x)| − 1 = |r(b + k(b − a) + x)| − 1. (87)

This and the fact that for every x ∈ (b,∞) there exist k ∈ N0, y ∈ (0, b − a] such that
x = b + k(b − a) + y demonstrate that for every x ∈ (b,∞) it holds that

|r(2b − x)| = |r(x)| − 1. (88)

This and (86) establish (82). The proof of Lemma 2.6 is thus complete. ��
Corollary 2.7 Let d ∈ N, for every k ∈ {1, 2, . . . , d} let a0k ∈ R, a1k ∈ (a0k ,∞), let D =
[a01, a11] × [a02, a12] × · · · × [a0d , a1d ] ⊆ R

d , let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . , ed = (0, . . . , 0, 0, 1) ∈ R

d , let n : ∂D → R
d satisfy for every x = (x1, . . . , xd) ∈ ∂D,

k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : xl ∈ {a0l , a1l }} that

n(x) =
{

−ek : xk = a0k
ek : xk = a1k,

(89)

let c : (Rd)2 → R
d satisfy for every x, y ∈ R

d that

c(x, y) = x + [
inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1})](y − x), (90)

let R : (Rd)2 → (Rd)2 satisfy for every x, y ∈ R
d that

R(x, y) =

⎧
⎪⎨

⎪⎩

(x, y) : c(x, y) = x
(
c(x, y), y − 2

〈
y − c(x, y),n(c(x, y))

〉
n(c(x, y))

) : c(x, y) /∈ {x, y}
(y, y) : c(x, y) = y,

(91)

let xn ∈ R
d , n ∈ N0, and yn ∈ R

d , n ∈ N0, satisfy for every n ∈ N that

x0 ∈ D and (xn, yn) = R(xn−1, yn−1), (92)

and let N ∈ N ∪ {∞} satisfy
N = min({n ∈ N : c(xn−1, yn−1) ∈ {xn−1, yn−1}} ∪ {∞}) (93)

(cf. Lemma 2.1). Then
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(i) it holds that N < ∞ and
(ii) it holds for every n ∈ N ∩ [N ,∞) that (xn, yn) = (xN , yN ).

Proof of Corollary 2.7 Throughout this proof let �·� : R → Z satisfy for every k ∈ N, u ∈
[−k − 1/2,−k + 1/2), v ∈ [−1/2, 1/2], w ∈ (k − 1/2, k + 1/2] that

�u� = −k, �v� = 0, and �w� = k, (94)

for every a ∈ R, b ∈ (a,∞) let ra,b : R → Z satisfy for every z ∈ R that

ra,b(z) = ⌈ z−a
b−a − 1

2

⌋
, (95)

and let r : R
d → N0 satisfy for every z = (z1, . . . , zd) ∈ R

d that

r(z) =
d∑

k=1

|ra0k ,a1k (zk)|. (96)

Observe that Lemma 2.6 shows that for every a, b, w, z ∈ R with w < a < b < z it holds
that

|ra,b(2a − w)| < |ra,b(w)| and |ra,b(2b − z)| < |ra,b(z)|. (97)

Item (iii) in Lemma 2.5 and (92) therefore establish that for every n ∈ Nwith c(xn−1, yn−1) /∈
{xn−1, yn−1} and c(xn, yn) /∈ {xn, yn} it holds that

r(yn) < r(yn−1). (98)

The fact that for every z ∈ R
d it holds that r(z) ∈ N0 and (93) hence imply that

N < ∞. (99)

Moreover, note that item (iii) in Lemma 2.3 ensures that for every n ∈ N ∩ [N ,∞) it holds
that

(xn, yn) = (xN , yN ). (100)

The proof of Corollary 2.7 is thus complete.

Lemma 2.8 Let �·� : R → Z satisfy for every k ∈ Z, x ∈ [k, k + 1) that

�x� = k, (101)

let a ∈ R, b ∈ (a,∞), and let R : R → [0, 1] and S : R → [a, b] satisfy for every x ∈ R

that

R(x) =
{
x − �x� : �x� ∈ {2n : n ∈ Z}
�x� − x + 1 : �x� ∈ {2n + 1 : n ∈ Z} and S (x) = (b − a)R

( x−a
b−a

) + a.

(102)
Then

(i) it holds for every k ∈ Z, x ∈ [0, b − a] that
S (a + 2k(b − a) + x) = a + x = S (b − (2k + 1)(b − a) − x) (103)

and
(ii) it holds for every x ∈ R that S (2a − x) = S (x) = S (2b − x).
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Proof of Lemma 2.8 First, observe that (101) and (102) imply that for every k ∈ Z, x ∈ [0, 1)
it holds that

R(2k + x) = (2k + x) − 2k = x . (104)

Combining this with (102) shows that for every k ∈ Z, x ∈ [0, b − a) it holds that

S (a + 2k(b − a) + x) = (b − a)R
(
2k + x

b−a

) + a = a + x . (105)

Furthermore, note that (101) and (102) ensure that for every k ∈ Z, x ∈ [0, 1) it holds that
R(2k + 1 + x) = 2k + 1 − (2k + 1 + x) + 1 = 1 − x . (106)

This and (102) imply that for every k ∈ Z it holds that

S (a + 2k(b − a) + (b − a)) = (b − a)R(2k + 1) + a = a + (b − a). (107)

Combining this with (105) shows that for every k ∈ Z, x ∈ [0, b − a] it holds that
S (a + 2k(b − a) + x) = a + x . (108)

Next observe that (106) and (102) prove that for every k ∈ Z, x ∈ (0, b − a] it holds that
S (b − (2k + 1)(b − a) − x) = (b − a)R

(
1 − (2k + 1) − x

b−a

) + a

= (b − a)R
(
2(−k − 1) + 1 + (

1 − x
b−a

)) + a

= (b − a)
(
1 − (

1 − x
b−a

)) + a

= a + x . (109)

Moreover, note that (104) and (102) imply that for every k ∈ Z it holds that

S (b− (2k +1)(b−a)) = (b−a)R(1− (2k +1))+a = (b−a)R(−2k)+a = a. (110)

Combining this with (109) demonstrates that for every k ∈ Z, x ∈ [0, b − a] it holds that
S (b − (2k + 1)(b − a) − x) = a + x . (111)

This and (108) establish item (i). In the next step we observe that item (i) shows that for every
k ∈ Z, x ∈ [0, b − a] it holds that

S (2a − (a + 2k(b − a) + x)) = S (b − (2k + 1)(b − a) − x)

= a + x = S (a + 2k(b − a) + x). (112)

Furthermore, note that item (i) ensures that for every k ∈ Z, x ∈ [0, b − a] it holds that
S (2a − (b − (2k + 1)(b − a) − x)) = S (a + 2k(b − a) + x)

= a + x = S (b − (2k + 1)(b − a) − x). (113)

Moreover, observe that item (i) implies that for every k ∈ Z, x ∈ [0, b − a] it holds that
S (2b − (a + 2k(b − a) + x)) = S (b − (2k − 1)(b − a) − x)

= a + x = S (a + 2k(b − a) + x). (114)

In addition, note that item (i) shows that for every k ∈ Z, x ∈ [0, b − a] it holds that
S (2b − (b − (2k + 1)(b − a) − x)) = S (a + (2k + 2)(b − a) + x)

= a + x = S (b − (2k + 1)(b − a) − x). (115)
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Combining this, (112), (113), and (114) with the fact that for every y ∈ R there exist k ∈ Z,
x ∈ [0, b − a] such that y ∈ {a + 2k(b − a) + x, b − (2k + 1)(b − a) − x} establishes
item (ii). The proof of Lemma 2.8 is thus complete. ��
Corollary 2.9 Let d ∈ N, for every k ∈ {1, 2, . . . , d} let a0k ∈ R, a1k ∈ (a0k ,∞), let D =
[a01, a11] × [a02, a12] × · · · × [a0d , a1d ] ⊆ R

d , let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . , ed = (0, . . . , 0, 0, 1) ∈ R

d , let n : ∂D → R
d satisfy for every x = (x1, . . . , xd) ∈ ∂D,

k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : xl ∈ {a0l , a1l }} that

n(x) =
{

−ek : xk = a0k
ek : xk = a1k,

(116)

let c : (Rd)2 → R
d satisfy for every x, y ∈ R

d that

c(x, y) = x + [
inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1})](y − x), (117)

let R : (Rd)2 → (Rd)2 satisfy for every x, y ∈ R
d that

R(x, y) =

⎧
⎪⎨

⎪⎩

(x, y) : c(x, y) = x
(
c(x, y), y − 2

〈
y − c(x, y),n(c(x, y))

〉
n(c(x, y))

) : c(x, y) /∈ {x, y}
(y, y) : c(x, y) = y,

(118)

let �·� : R → Z satisfy for every k ∈ Z, z ∈ [k, k + 1) that �z� = k, let r : R → [0, 1] satisfy
for every z ∈ R that

r(x) =
{
z − �z� : �z� ∈ {2n : n ∈ Z}
�z� − z + 1 : �z� ∈ {2n + 1 : n ∈ Z}, (119)

for every a, b ∈ R let ra,b : R → [a, b] satisfy for every z ∈ R that ra,b(z) = (b −
a)r

( z−a
b−a

) + a, let S : R
d → D satisfy for every z = (z1, . . . , zd) ∈ R

d that

S (z) = (
ra01,a11

(z1), ra02,a12
(z2), . . . , ra0d ,a1d

(zd)
)
, (120)

let xn ∈ R
d , n ∈ N0, and yn ∈ R

d , n ∈ N0, satisfy for every n ∈ N that

x0 ∈ D\∂D and (xn, yn) = R(xn−1, yn−1), (121)

and assume for every n ∈ N that

c(xn, yn) /∈ {z = (z1, . . . , zd) ∈ R
d : |{k ∈ {1, 2, . . . , d} : zk ∈ {a0k , a1k}}| > 1} (122)

(cf. Lemma 2.1). Then there exists N ∈ N such that for every n ∈ N ∩ [N ,∞) it holds that

yn = S (y0). (123)

Proof of Corollary 2.9 Throughout this proof let N ∈ N ∪ {∞} satisfy
N = min({n ∈ N : c(xn−1, yn−1) ∈ {xn−1, yn−1}} ∪ {∞}). (124)

Note that Corollary 2.7 proves that

(A) it holds that N < ∞ and
(B) it holds for every n ∈ N ∩ [N ,∞) that (xn, yn) = (xN , yN ).
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Observe that Lemma 2.1 and (122) ensure that for every n ∈ N0 with c(xn, yn) /∈ {xn, yn} it
holds that

c(xn, yn) ∈ {z = (z1, . . . , zd) ∈ R
d : |{k ∈ {1, 2, . . . , d} : zk ∈ {a0k , a1k}}| = 1}. (125)

Item (iv) in Lemma 2.5 therefore establishes that for every n ∈ N with c(xn−1, yn−1) /∈
{xn−1, yn−1} it holds that

c(xn, yn) �= xn . (126)

Furthermore, note that the assumption that x ∈ D\∂D and (117) imply that

c(x0, y0) �= x0. (127)

Combining this and (126) with (124) and item (A) shows that

c(xN−1, yN−1) = yN−1. (128)

The fact that D is a closed set and (117) therefore demonstrate that yN−1 ∈ D. This, (118),
and items (A) and (B) prove that for every n ∈ N ∩ [N ,∞) it holds that

yn = yN = yN−1 ∈ D. (129)

In the next step we observe that item (ii) in Lemma 2.8 establishes that for every k ∈
{1, 2, . . . , d}, z ∈ R it holds that

ra0k ,a1k
(2a0k − z) = ra0k ,a1k

(z) and ra0k ,a1k
(2a1k − z) = ra0k ,a1k

(z). (130)

Item (ii) in Lemma 2.5 and (121) therefore imply that for every n ∈ N with c(xn−1, yn−1) /∈
{xn−1, yn−1} it holds thatS (yn) = S (yn−1). Combining this and the fact that for every n ∈
N with c(xn−1, yn−1) ∈ {xn−1, yn−1} it holds that yn = yn−1 with induction demonstrates
that for every n ∈ N it holds that

S (yn) = S (y0). (131)

In addition, note that item (i) in Lemma 2.8 ensures that for every a ∈ R, b ∈ (a,∞),
z ∈ [a, b] it holds that ra,b(z) = z. Hence, we obtain that for every z ∈ D it holds that

S (z) = z. (132)

Combining this with (129) and (131) establishes that for every n ∈ N ∩ [N ,∞) it holds that

yn = S (yn) = S (y0). (133)

The proof of Corollary 2.9 is thus complete. ��
Framework 2.10 (Reflection principle for the simulation of time discrete reflected processes)
Let d ∈ N, let D ⊆ R

d be a sufficiently regular closed set, let n : ∂D → R
d be a suitable

outer unit normal vector field associated to D, let c : (Rd)2 → R
d satisfy for every x, y ∈ R

d

that
c(x, y) = x + [

inf({r ∈ [0, 1] : x + r(y − x) /∈ D} ∪ {1})](y − x), (134)

let R : (Rd)2 → (Rd)2 satisfy for every x, y ∈ R
d that

R(x, y) =

⎧
⎪⎨

⎪⎩

(x, y) : c(x, y) = x
(
c(x, y), y − 2

〈
y − c(x, y),n(c(x, y))

〉
n(c(x, y))

) : c(x, y) /∈ {x, y}
(y, y) : c(x, y) = y,

(135)
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Fig. 1 Two illustrations for Framework 2.10. The diagram on the left shows the reflection of a line segment
from a to b on a hyperplane with unit normal vector n. The diagram on the right illustrates the recursive
definition of the functionsRn : (Rd )2 → (Rd )2, n ∈ N0, and R : (Rd )2 → R defined in Framework 2.10 in
the case where d = 2 and D ⊆ R

d is a closed rectangle

let P : (Rd)2 → R
d satisfy for every x, y ∈ R

d that P(x, y) = y, let Rn : (Rd)2 → (Rd)2,
n ∈ N0, satisfy for every n ∈ N0, x, y ∈ R

d that R0(x, y) = (x, y) and Rn+1(x, y) =
R(Rn(x, y)), and let R : (Rd)2 → R

d satisfy for every x, y ∈ R
d that

R(x, y) = limn→∞P(Rn(x, y)) (136)

(cf. Lemma 2.1).

Note that in Framework 2.10 above, for every d ∈ N, every closed set D ⊆ R
d with a

smooth boundary ∂D , every suitable outer unit normal vector field n : ∂D → R
d , and every

a ∈ D\∂D , b ∈ R
d\D we have

(i) that c(a, b) is the point closest to a on the line segment from a to b which lies on ∂D and
(ii) that R(a, b) is the reflection of b on the hyperplane through c(a, b) tangent to ∂D

(cf. Fig. 1).

In view of this, we can, roughly speaking, think of R(a, b) as the point where a particle that
travels a length of ‖b − a‖ starting in a going towards b and getting reflected every time it
hits the boundary of D, ends up; cf. Fig. 1.

Also, observe that in Framework 2.10 above, we have used the vague notions of “suf-
ficiently regular set” and “suitable outer unit normal vector field”. Corollaries 2.7 and 2.9
and Proposition 2.4 above provide more information on two particular special cases of the
construction in Framework 2.10. More specifically, we consider the conditions satisfied in
(at least) the following two cases:

(a) The case where D = {x ∈ R
d : ‖x‖ = 1} and where n : ∂D → R

d satisfies for every
x ∈ ∂D = {x ∈ R

d : ‖x‖ = 1} that n(x) = x . Note that in this case, Proposition 2.4
demonstrates that the limit in (136) exists.

(b) The case where for every k ∈ {1, 2, . . . , d} there exist a0k ∈ R, a1k ∈ (a0k ,∞)

such that D = [a01, a11] × [a02, a12] × · · · × [a0d , a1d ], where e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 0, 1) ∈ R

d , and where n : ∂D → R
d , satisfies

for every x = (x1, . . . , xd) ∈ ∂D = {x = (x1, . . . , xd) ∈ D : (∃ k ∈ {1, 2, . . . , d} : xk ∈
{a0k , a1k})}, k ∈ {1, 2, . . . , d} with k = min{l ∈ {1, 2, . . . , d} : xl ∈ {a0l , a1l }} that

n(x) =
{

−ek : xk = a0k
ek : xk = a1k .

(137)
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Note that in this case, Corollary 2.7 demonstrates that the limit in (136) exists and
Corollary 2.9 shows how the function R can be practically computed (up to a zero set).

2.3 Description of the proposed approximationmethod in a special case

Framework 2.11 (Special case of the machine learning-based approximation method)
Assume Framework 2.10, let T , γ ∈ (0,∞), N , M, K ∈ N, g ∈ C2(Rd , R), d, h ∈ N\{1},
t0, t1, . . . , tN ∈ [0, T ] satisfy d = h(N + 1)d(d + 1) and

0 = t0 < t1 < · · · < tN = T , (138)

let τ0, τ1, . . . , τN ∈ [0, T ] satisfy for every n ∈ {0, 1, . . . , N } that τn = T − tN−n, let
f : R × R → R be measurable, let (�,F, P, (Ft )t∈[0,T ]) be a filtered probability space, let
ξm : � → R

d , m ∈ N, be i.i.d. F0/B(Rd)-measurable random variables, let Wm : [0, T ] ×
� → R

d , m ∈ N, be i.i.d. standard (Ft )t∈[0,T ]-Brownian motions, for every m ∈ N let
Ym : {0, 1, . . . , N } × � → R

d be the stochastic process which satisfies for every n ∈
{0, 1, . . . , N − 1} that Ym

0 = ξm and

Ym
n+1 = R

(Ym
n ,Ym

n + √
2(Wm

τn+1
− Wm

τn
)
)
, (139)

let L : R
d → R

d satisfy for every x = (x1, . . . , xd) ∈ R
d that

L(x) =
(

exp(x1)

exp(x1) + 1
, . . . ,

exp(xd)

exp(xd) + 1

)

, (140)

for every θ = (θ1, . . . , θd) ∈ R
d, k, l, v ∈ N with v + l(k + 1) ≤ d let Aθ,v

k,l : R
k → R

l

satisfy for every x = (x1, . . . , xk) ∈ R
k that

Aθ,v
k,l (x) =

(

θv+kl+1 +
[

k∑

i=1
xi θv+i

]

, . . . , θv+kl+l +
[

k∑

i=1
xi θv+(l−1)k+i

])

, (141)

let Vn : R
d × R

d → R, n ∈ {0, 1, . . . , N }, satisfy for every n ∈ {1, 2, . . . , N }, θ ∈ R
d,

x ∈ R
d that V0(θ, x) = g(x) and

Vn(θ, x) =
(
Aθ,(hn+h−1)d(d+1)
d,1 ◦ L ◦ Aθ,(hn+h−2)d(d+1)

d,d ◦ · · · ◦ L ◦ Aθ,(hn+1)d(d+1)
d,d ◦ L ◦ Aθ,hnd(d+1)

d,d

)
(x),

(142)

let νx : B(D) → [0, 1], x ∈ D, be probability measures, for every x ∈ D let Zn,m
x,k : � → D,

k, n,m ∈ N, be i.i.d. random variables which satisfy for every A ∈ B(D) that P(Z1,1
x,1 ∈

A) = νx (A), let �n : N0 × � → R
d, n ∈ {0, 1, . . . , N }, be stochastic processes, for every

n ∈ {1, 2, . . . , N }, m ∈ N let φn,m : R
d × � → R satisfy for every θ ∈ R

d, ω ∈ � that

φn,m(θ, ω) =
[

Vn
(
θ,Ym

N−n(ω)
) − Vn−1

(
�n−1

M (ω),Ym
N−n+1(ω)

)

− (tn−tn−1)
K

[
K∑

k=1
f
(
Vn−1(�

n−1
M (ω),Ym

N−n+1(ω)), Vn−1(�
n−1
M (ω), Zn,m

Ym
N−n+1(ω),k(ω))

)
] ]2

,

(143)
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for every n ∈ {1, 2, . . . , N }, m ∈ N let�n,m : R
d×� → R

d satisfy for every θ ∈ R
d,ω ∈ �

that �n,m(θ, ω) = (∇θφ
n,m)(θ, ω), and assume for every n ∈ {1, 2, . . . , N }, m ∈ N that

�n
m = �n

m−1 − γ �n,m(�n
m−1). (144)

As indicated in Sect. 2.1 above, the algorithm described in Framework 2.11 computes
an approximation for a solution of the PDE in (1), i.e., a function u ∈ C1,2([0, T ] × D, R)

which has at most polynomially growing derivatives, which satisfies for every t ∈ (0, T ],
x ∈ ∂D that 〈n(x), (∇xu)(t, x)〉 = 0 and which satisfies for every t ∈ [0, T ], x ∈ D that
u(0, x) = g(x),

∫
D| f (u(t, x), u(t, x))| νx (dx) < ∞, and

(
∂
∂t u

)
(t, x) = (�xu)(t, x) +

∫

D
f (u(t, x), u(t, x)) νx (dx). (145)

Let us now add some explanatory comments on the objects and notations employed in Frame-
work 2.11 above. The algorithm in Framework 2.11 decomposes the time interval [0, T ] into
N subintervals at the times t0, t1, t2, . . . , tN ∈ [0, T ] (cf. (138)). For every n ∈ {1, 2, . . . , N }
we aim to approximate the function R

d � x �→ u(tn, x) ∈ R by a suitable (realization func-
tion of a) fully-connected feedforward neural network. Each of these neural networks is an
alternating composition of h − 1 affine linear functions from R

d to R
d (where we think of

h ∈ N\{1} as the length or depth of the neural network), of h−1 instances of a d-dimensional
version of the standard logistic function, and finally of an affine linear function fromR

d toR.
Every such neural network can be specified by means of (h−1)(d2+d)+d+1 ≤ hd(d+1)
real parameters and so N +1 of these neural networks can be specified by a parameter vector
of length d = h(N + 1)d(d + 1) ∈ N. Note that L : R

d → R
d in Framework 2.11 above

denotes the d-dimensional version of the standard logistic function (cf. (140)) and for every
k, l, v ∈ N, θ = (θ1, . . . , θd) ∈ R

d with v + kl + l ≤ d the function Aθ,v
k,l : R

k → R
l

in Framework 2.11 denotes an affine linear function specified by means of the parameters
θv+1, θv+2, . . . , θv+kl+l (cf. (141)). Furthermore, observe that for every n ∈ {1, 2, . . . , N },
θ ∈ R

d the function

R
d � x �→ Vn(θ, x) ∈ R (146)

denotes a neural network specified by means of the parameters hnd(d + 1) + 1, hnd(d +
1) + 2, . . . , (hn + h − 1)d(d + 1) + d + 1.

The goal of the optimization algorithm in Framework 2.11 above is to find a suitable
parameter vector θ ∈ R

d such that for every n ∈ {1, 2, . . . , N } the neural network R
d �

x �→ Vn(θ, x) ∈ R is a good approximation for the solution R
d � x �→ u(tn, x) ∈ R to the

PDE in (145) at time tn . This is done by performing successively for each n ∈ {1, 2, . . . , N }
a plain vanilla stochastic gradient descent (SGD) optimization on a suitable loss function
(cf. (144)).

Observe that for every n ∈ {1, 2, . . . , N } the stochastic process �n : N0 × � → R
d

describes the successive estimates computed by the SGD algorithm for the parameter vector
that represents (via Vn : R

d × R
d → R) a suitable approximation to the solution R

d �
x �→ u(tn, x) ∈ R of the PDE in (145) at time tn . Next note that M ∈ N in Framework 2.11
above denotes the number of gradient descent steps taken for each n ∈ {1, 2, . . . , N } and that
γ ∈ (0,∞) denotes the learning rate employed in the SGD algorithm.Moreover, observe that
for every n ∈ {1, 2, . . . , N }, m ∈ {1, 2, . . . , M} the function φn,m : R

d × � → R denotes
the loss function employed in the mth gradient descent step during the approximation of the
solution of the PDE in (145) at time tn (cf. (143)). The loss functions employ a family of
i.i.d. time-discrete stochastic processes Ym : {0, 1, . . . N } × � → R

d , m ∈ N, which we
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think of as discretizations of suitable reflected Brownian motions (cf. (139)). In addition, for
every n ∈ {1, 2, . . . , N }, m ∈ {1, 2, . . . , M}, x ∈ D the loss function φn,m : R

d × � → R

employs a family of i.i.d. random variables Zn,m
x,k : � → D, k ∈ N, which are used for the

Monte Carlo approximation of the non-local term in the PDE in (145) whose solution we are
trying to approximate. The number of samples used in these Monte Carlo approximations is
denoted by K ∈ N in Framework 2.11 above.

Finally, for sufficiently large N , M, K ∈ N and sufficiently small γ ∈ (0,∞) the algo-
rithm in Framework 2.11 above yields for every n ∈ {1, 2, . . . , N } a (random) parameter
vector �n

M : � → R
d which represents a function R

d × � � (x, ω) �→ Vn(�
n
M (ω), x) ∈ R

that we think of as providing for every x ∈ D a suitable approximation

Vn(�
n
M , x) ≈ u(tn, x). (147)

3 Machine learning-based approximationmethod in the general case

In this section we describe in Framework 3.1 in Sect. 3.2 below the full version of our
deep learning-based method for approximating solutions of non-local nonlinear PDEs with
Neumann boundary conditions (see Sect. 3.1 for a description of the class of PDEs our
approximation method applies to), which generalizes the algorithm introduced in Frame-
work 2.11 in Sect. 2.3 above and which we apply in Sect. 5 below to several examples of
non-local nonlinear PDEs.

3.1 PDEs under consideration

Let T ∈ (0,∞), d ∈ N, let D ⊆ R
d be a closed set with sufficiently smooth boundary ∂D , let

n : ∂D → R
d be an outer unit normal vector field associated to D, let g : D → R, μ : D →

R
d , and σ : D → R

d×d be continuous, let νx : B(D) → [0, 1], x ∈ D, be probability
measures, let f : [0, T ]×D×D×R×R → R bemeasurable, let u = (u(t, x))(t,x)∈[0,T ]×D ∈
C1,2([0, T ]×D, R) have at most polynomially growing partial derivatives, assume for every
t ∈ [0, T ], x ∈ ∂D that 〈n(x), (∇xu)(t, x)〉 = 0, and assume for every t ∈ [0, T ], x ∈ D
that u(0, x) = g(x),

∫
D

∣
∣ f
(
t, x, x, u(t, x), u(t, x)

)∣∣ νx (dx) < ∞, and

(
∂
∂t u

)
(t, x) =

∫

D
f
(
t, x, x, u(t, x), u(t, x)

)
νx (dx)

+ 〈
μ(x), (∇xu)(t, x)

〉 + 1
2 Trace

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)
.

(148)

Our goal is to approximately calculate under suitable hypotheses the solution u : [0, T ]×
D → R of the PDE in (148).

3.2 Description of the proposed approximationmethod in the general case

Framework 3.1 (General case of themachine learning-based approximationmethod) Assume
Framework 2.10, let T ∈ (0,∞), N , �, d, ς ∈ N, (Mn)n∈N0 ⊆ N, (Kn)n∈N ⊆ N, (Jm)m∈N ⊆
N, t0, t1, . . . , tN ∈ [0, T ] satisfy

0 = t0 < t1 < . . . < tN = T , (149)

let τ0, τ1, . . . , τN ∈ [0, T ] satisfy for every n ∈ {0, 1, . . . , N } that τn = T − tN−n, let
νx : B(D) → [0, 1], x ∈ D, be probability measures, for every x ∈ D let Zn,m, j

x,k : � → D,
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k, n,m, j ∈ N, be i.i.d. random variables which satisfy for every A ∈ B(D) that
P(Z1,1,1

x,1 ∈ A) = νx (A), let f : [0, T ] × D × D × R × R → R be measurable,
let (�,F, P, (Ft )t∈[0,T ]) be a filtered probability space, for every n ∈ {1, 2, . . . , N } let
Wn,m, j : [0, T ] × � → R

d , m, j ∈ N, be i.i.d. standard (Ft )t∈[0,T ]-Brownian motions, for
every n ∈ {1, 2, . . . , N } let ξn,m, j : � → R

d , m, j ∈ N, be i.i.d. F0/B(Rd)-measurable
random variables, let H : [0, T ]2 × R

d × R
d → R

d be a function, for every j ∈ N, s ∈ R
ς ,

n ∈ {0, 1, . . . , N } let V
j,s
n : R

d × R
d → R be a function, for every n ∈ {1, 2, . . . , N },

m, j ∈ N let Yn,m, j : {0, 1, . . . , N } × � → R
d be a stochastic process which satisfies for

every k ∈ {0, 1, . . . , N − 1} that Yn,m, j
0 = ξn,m, j and

Yn,m, j
k+1 = H

(
τk+1, τk,Yn,m, j

k ,Wn,m, j
τk+1

− Wn,m, j
τk

)
, (150)

let �n : N0 × � → R
d, n ∈ {0, 1, . . . , N }, be stochastic processes, for every n ∈

{1, 2, . . . , N }, m ∈ N, s ∈ R
ς let φn,m,s : R

d × � → R satisfy for every θ ∈ R
d, ω ∈ � that

φn,m,s(θ, ω) = 1

Jm

Jm∑

j=1

[

V
j,s
n
(
θ,Yn,m, j

N−n (ω)
) − V

j,s
n−1

(
�n−1

Mn−1
(ω),Yn,m, j

N−n+1(ω)
)

− (tn−tn−1)
Kn

[ Kn∑

k=1
f
(
tn−1,Yn,m, j

N−n+1(ω), Zn,m, j

Yn,m, j
N−n+1(ω),k

(ω),

bV j,s
n−1

(
�n−1

Mn−1
(ω),Yn,m, j

N−n+1(ω)
)
, V

j,s
n−1

(
�n−1

Mn−1
(ω), Zn,m, j

Yn,m, j
N−n+1(ω),k

(ω)
))
]]2

,

(151)
for every n ∈ {1, 2, . . . , N }, m ∈ N, s ∈ R

ς let �n,m,s : R
d × � → R

d satisfy for every
ω ∈ �, θ ∈ {ϑ ∈ R

d : (Rd � η �→ φn,m,s(η, ω) ∈ R) is differentiable at ϑ} that
�n,m,s(θ, ω) = (∇θφ

n,m,s)(θ, ω), (152)

let Sn : R
ς × R

d × (Rd){0,1,...,N }×N → R
ς , n ∈ {1, 2, . . . , N }, be functions, for every

n ∈ {1, 2, . . . , N }, m ∈ N let ψn
m : R

� → R
d and �n

m : R
� × R

d → R
� be functions, and

for every n ∈ {1, 2, . . . , N } let S
n : N0 × � → R

ς and �n : N0 × � → R
� be stochastic

processes which satisfy for every m ∈ N that

S
n
m = Sn(

S
n
m−1,�

n
m−1, (Yn,m,i

k )(k,i)∈{0,1,...,N }×N

)
, (153)

�n
m = �n

m(�n
m−1,�

n,m,Snm (�n
m−1)), and �n

m = �n
m−1 − ψn

m(�n
m). (154)

In the setting of Framework 3.1 above we think under suitable hypotheses for sufficiently
large N ∈ N, sufficiently large (Mn)n∈N0 ⊆ N, sufficiently large (Kn)n∈N ⊆ N, every

n ∈ {0, 1, . . . , N }, and every x ∈ D ofV
1,SnMn
n (�n

Mn
, x) : � → R as a suitable approximation

V
1,SnMn
n (�n

Mn
, x) ≈ u(tn, x) (155)

of u(tn, x) where u = (u(t, x))(t,x)∈[0,T ]×R
d ∈ C1,2([0, T ] × R

d , R) is a function with at
most polynomially growing derivatives which satisfies for every t ∈ (0, T ], x ∈ ∂D that
〈n(x), (∇xu)(t, x)〉 = 0 and which satisfies for every t ∈ [0, T ], x ∈ D that u(0, x) = g(x),∫
D

∣
∣ f
(
t, x, x, u(t, x), u(t, x)

)∣∣ νx (dx) < ∞, and

(
∂
∂t u

)
(t, x) =

∫

D
f
(
t, x, x, u(t, x), u(t, x)

)
νx (dx)

+ 〈
μ(x), (∇xu)(t, x)

〉 + 1
2 Trace

(
σ(x)[σ(x)]∗(Hessx u)(t, x)

)
(156)
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(cf. (148)). Compared to the simplified algorithm in Framework 2.11 above, the major new
elements introduced in Framework 3.1 are the following:

(a) The numbers of gradient descent steps taken to compute approximations for the solution
of the PDE at the times tn , n ∈ {1, 2, . . . , N }, are allowed to vary with n, and so are
specified by a sequence (Mn)n∈N0 ⊆ N in Framework 3.1 above.

(b) The numbers of samples used for the Monte Carlo approximation of the non-local term
in the approximation for the solution of the PDE at the times tn , n ∈ {1, 2, . . . , N }, are
allowed to vary with n, and so are specified by a sequence (Kn)n∈N0 ⊆ N in Frame-
work 3.1 above.

(c) The approximating functionsV
j,s
n , ( j, s, n) ∈ N×R

ς ×{0, 1, . . . , N }, in Framework 3.1
above are not specified concretely in order to allow for a variety of neural network
architectures. For the concrete choice of these functions employed in our numerical
simulations, we refer the reader to Sect. 5.

(d) For everym ∈ {1, 2, . . . , M} the loss function used in themth gradient descent step may
be computed using a minibatch of samples instead of just one sample (cf. (151)). The
sizes of these minibatches are specified by a sequence (Jm)m∈N ⊆ N.

(e) Compared toFramework 2.11 above, themore general formof thePDEs considered in this
section (cf. (156)) requiresmore flexibility in the definition of the time-discrete stochastic
processes Yn,m, j : {0, 1, . . . , N } × � → R

d , (n,m, j) ∈ {1, 2, . . . , N } × N × N, which
are specified in Framework 3.1 above in terms of the BrownianmotionsWn,m, j : [0, T ]×
� → R

d , (n,m, j) ∈ {1, 2, . . . , N }×N×N, via a function H : [0, T ]2×R
d×R

d → R
d

(cf. (150)). We refer the reader to (181) in Sect. 5.1 below, (183) in Sect. 5.2 below, (185)
in Sect. 5.3 below, (206) in Sect. 5.4 below, and (211) in Sect. 5.5 below for concrete
choices of H in the approximation of various example PDEs.

(f) For every n ∈ {1, 2, . . . , N }, m ∈ N the optimization step in (154) in Framework 3.1
above is specified generically in terms of the functions ψn

m : R
� → R

d and �n
m : R

� ×
R
d → R

� and the random variable �n
m : � → R

�. This generic formulation covers a
variety of SGD based optimization algorithms such as Adagrad [95], RMSprop, or Adam
[96]. For example, in order to implement the Adam optimization algorithm, for every
n ∈ {1, 2, . . . , N }, m ∈ N the random variable �n

m can be used to hold suitable first
and second moment estimates (see (175) and (176) in Sect. 5 below for the concrete
specification of these functions implementing the Adam optimization algorithm).

(g) The processes S
n : N0 × � → R

ς , n ∈ {1, 2, . . . , N }, and functions Sn : R
ς × R

d ×
(Rd){0,1,...,N }×N → R

ς , n ∈ {1, 2, . . . , N }, in Framework 3.1 above can be used to
implement batch normalization; see [97] for details. Loosely speaking, for every n ∈
{1, 2, . . . , N }, m ∈ N the random variable S

n
m : � → R

ς then holds mean and variance
estimates of the outputs of each layer of the approximating neural networks related to the
minibatches that are used as inputs to the neural networks in computing the loss function
at the corresponding gradient descent step.

4 Multilevel Picard approximationmethod for non-local PDEs

In this section we introduce in Framework 4.1 in Sect. 4.1 below our extension of the full
history recursive multilevel Picard approximation method for approximating solutions of
non-local nonlinear PDEs with Neumann boundary conditions. The MLP method was first
introduced in E et al. [71] and Hutzenthaler et al. [69] and later extended in a number of
directions; see E et al. [98] and Beck et al. [53] for recent surveys. We also refer the reader
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to Becker et al. [99] and E et al. [70] for numerical simulations illustrating the performance
of MLP methods across a range of example PDE problems.

In Sect. 4.2 below, we will specify five concrete examples of (non-local) nonlinear PDEs
and describe how Framework 4.1 can be specialized to compute approximate solutions to
these example PDEs. These computations will be used in Sect. 5 to obtain reference values to
compare the deep learning-based approximation method proposed in Sect. 3 above against.

4.1 Description of the proposed approximationmethod

Framework 4.1 (Multilevel Picard approximation method) Assume Framework 2.10, let
c, T ∈ (0,∞), I = ⋃

n∈N
Z
n, f ∈ C([0, T ] × D × D × R × R, R), g ∈ C(D, R),

u ∈ C([0, T ] × D, R), assume u|[0,T )×D ∈ C1,2([0, T ) × D, R), let νx : B(D) → [0, 1],
x ∈ D, be probability measures, for every x ∈ D let Z i

x : � → D, i ∈ I, be i.i.d. ran-
dom variables, assume for every A ∈ B(D), i ∈ I that P(Z i

x ∈ A) = νx (A), for every
r1 ∈ [−∞,∞), r2 ∈ [r1,∞] let φr1,r2 : R → R satisfy for every y ∈ R that

φr1,r2(y) = min{r2,max{r1, y}}, (157)

let (�,F, P) be a probability space, let Vi : � → (0, 1), i ∈ I, be independent U(0,1)-
distributed random variables, let V i : [0, T ]×� → [0, T ], i ∈ I, satisfy for every t ∈ [0, T ],
i ∈ I that

V i
t = t + (T − t)Vi, (158)

let W i : [0, T ]×� → R
d , i ∈ I, be independent standard Brownian motions, assume (Vi)i∈I

and (W i)i∈I are independent, let μ : R
d → R

d and σ : R
d → R

d×d be globally Lipschitz
continuous, for every x ∈ R

d , i ∈ I, t ∈ [0, T ] let X x,i
t = (Xx,i

t,s )s∈[t,T ] : [t, T ] × � → R
d

be a stochastic process with continuous sample paths, let (Kn,l,m)n,l,m∈N0 ⊆ N, for every
i ∈ I, n, M ∈ N0, r1 ∈ [−∞,∞), r2 ∈ [r1,∞] let U i

n,M,r1,r2
: [0, T ] × R

d × � → R
k

satisfy for every t ∈ [0, T ], x ∈ R
d that

U i
n,M,r1,r2(t, x) =

[
n−1∑

l=0

(T−t)
Mn−l

Mn−l∑

m=1

1
Kn,l,m

Kn,l,m∑

k=1

[

f
(
V (i,l,m)
t , Xx,(i,l,m)

t,V (i,l,m)
t

, Z (i,l,m,k)

Xx,(i,l,m)

t,V (i,l,m)
t

,

φr1,r2

(
U (i,l,m)
l,M,r1,r2

(
V (i,l,m)
t , Xx,(i,l,m)

t,V (i,l,m)
t

))
, φr1,r2

(
U (i,l,m)
l,M,r1,r2

(
V (i,l,m)
t , Z (i,l,m,k)

Xx,(i,l,m)

t,V (i,l,m)
t

)))

− 1N(l) f
(
V (i,l,m)
t , Xx,(i,l,m)

t,V (i,l,m)
t

, Z (i,l,m,k)

Xx,(i,l,m)

t,V (i,l,m)
t

, φr1,r2

(
U (i,l,−m)
max{l−1,0},M,r1,r2

(
V (i,l,m)
t , Xx,(i,l,m)

t,V (i,l,m)
t

))
,

φr1,r2

(
U (i,l,−m)
max{l−1,0},M,r1,r2

(
V (i,l,m)
t , Z (i,l,m,k)

Xx,(i,l,m)

t,V (i,l,m)
t

)))
]]

+ 1N(n)

Mn

[
Mn∑

m=1
g
(
Xx,(i,0,−m)
t,T

)
]

,

(159)

assume for every t ∈ [0, T ), x ∈ ∂D that 〈n(x), (∇xu)(t, x)〉 = 0, and assume for every
t ∈ [0, T ), x ∈ D that ‖u(t, x)‖ ≤ c(1 + ‖x‖c), u(T , x) = g(x), and

(
∂
∂t u

)
(t, x) + 1

2 Trace
(
σ(x)[σ(x)]∗(Hessx u)(t, x)

) + 〈μ(x), (∇xu)(t, x)〉 (160)

+
∫

D
f (t, x, x, u(t, x), u(t, x)) νx (dx) = 0.
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4.2 Examples for the approximationmethod

Example 4.2 (Fisher–KPP PDEs with Neumann boundary conditions) In this example we
specialize Framework 4.1 to the case of certain Fisher–KPP PDEs with Neumann boundary
conditions (cf., e.g., Bian et al. [36] and Wang et al. [40]).

Assume Framework 4.1, let ε ∈ (0,∞), assume for every t ∈ [0, T ], x, x ∈ D, y, y ∈ R,
v ∈ R

d that g(x) = exp
(− 1

4‖x‖2
)
, μ(x) = (0, . . . , 0), σ(x)v = εv, and f (t, x, x, y, y) =

y(1 − y), and assume that for every x ∈ R
d , i ∈ I, t ∈ [0, T ], s ∈ [t, T ] it holds P-a.s. that

Xx,i
t,s = R

(

x, x +
∫ s

t
μ
(
Xx,i
t,r
)
dr +

∫ s

t
σ
(
Xx,i
t,r
)
dW i

r

)

= R(x, x + ε(W i
s − W i

t )). (161)

The solution u : [0, T ]× D → R of the PDE in (160) then satisfies that for every t ∈ [0, T ),
x ∈ ∂D it holds that 〈n(x), (∇xu)(t, x)〉 = 0 and that for every t ∈ [0, T ), x ∈ D it holds
that u(T , x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) + ε2

2 (�xu)(t, x) + u(t, x)
(
1 − u(t, x)

) = 0. (162)

Example 4.3 (Non-local competition PDEs) In this example we specialize Framework 4.1
to the case of certain non-local competition PDEs (cf., e.g., Doebeli and Ispolatov [47],
Berestycki et al. [38], Perthame and Génieys [37], and Génieys et al. [42]).

Assume Framework 4.1, let s, ε ∈ (0,∞), assume for every x ∈ R
d , A ∈ B(Rd) that

νx (A) = π−d/2s−d
∫
A exp

(−s−2‖x − x‖2) dx, assume for every t ∈ [0, T ], v, x, x ∈ R
d ,

y, y ∈ R that g(x) = exp(− 1
4‖x‖2), μ(x) = (0, . . . , 0), σ(x)v = εv, and f (t, x, x, y, y) =

y(1−yπ d/2sd), and assume that for every x ∈ R
d , i ∈ I, t ∈ [0, T ], s ∈ [t, T ] it holds P-a.s.

that

Xx,i
t,s = x +

∫ s

t
μ
(
Xx,i
t,r
)
dr +

∫ s

t
σ
(
Xx,i
t,r
)
dW i

r = x + ε(W i
s − W i

t ). (163)

The solution u : [0, T ]×R
d → R of the PDE in (160) then satisfies that for every t ∈ [0, T ),

x ∈ R
d it holds that u(T , x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) + ε2

2 (�xu)(t, x) + u(t, x)

(

1 −
∫

R
d
u(t, x) exp

(−‖x−x‖2
s2

)
dx
)

= 0. (164)

Example 4.4 (Non-local sine-Gordon PDEs) In this example we specialize Framework 4.1 to
the case of certain non-local sine-Gordon type PDEs (cf., e.g., Hairer and Shen [9], Barone
et al. [6], and Coleman [8]).

Assume Framework 4.1, let s, ε ∈ (0,∞) , assume for every x ∈ R
d , A ∈ B(Rd) that

νx (A) = π−d/2s−d
∫
A exp

(−s−2‖x − x‖2) dx, assume for every t ∈ [0, T ], v, x, x ∈ R
d ,

y, y ∈ R that g(x) = exp(− 1
4‖x‖2), μ(x) = (0, . . . , 0), σ(x)v = εv, and f (t, x, x, y, y) =

sin(y) − yπ d/2sd , and assume that for every x ∈ R
d , i ∈ I, t ∈ [0, T ], s ∈ [t, T ] it holds

P-a.s. that

Xx,i
t,s = x +

∫ s

t
μ
(
Xx,i
t,r
)
dr +

∫ s

t
σ
(
Xx,i
t,r
)
dW i

r = x + ε(W i
s − W i

t ). (165)

The solution u : [0, T ]×R
d → R of the PDE in (160) then satisfies that for every t ∈ [0, T ),

x ∈ R
d it holds that u(T , x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) + ε2

2 (�xu)(t, x) + sin(u(t, x)) −
∫

R
d
u(t, x) exp

(−‖x−x‖2
s2

)
dx = 0. (166)
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Example 4.5 (Replicator-mutator PDEs) In this example we specialize Framework 4.1 to the
case of certain d-dimensional replicator-mutator PDEs (cf., e.g., Hamel et al. [26]).

Assume Framework 4.1, let m1,m2, . . . ,md , s1, s2, . . . , sd , u1, u2, . . . , ud ∈ R ,
let a : R

d → R satisfy for every x ∈ R
d that a(x) = − 1

2‖x‖2, assume for
every x ∈ R

d , A ∈ B(Rd) that νx (A) = ∫
A∩[−1/2,1/2]d dx, assume for every t ∈

[0, T ], v = (v1, . . . , vd), x = (x1, . . . , xd) ∈ R
d , x ∈ R

d , y, y ∈ R that

g(x) = (2π)−d/2
[∏d

i=1|si |−1/2
]
exp

(−∑d
i=1

(xi−ui )
2

2si

)
, μ(x) = (0, . . . , 0), σ(x)v =

(m1v1, . . . ,mdvd), and
f (t, x, x, y, y) = y

(
a(x) − ya(x)

)
, (167)

and assume that for every x ∈ R
d , i ∈ I, t ∈ [0, T ], s ∈ [t, T ] it holds P-a.s. that

Xx,i
t,s = x +

∫ s

t
μ
(
Xx,i
t,r
)
dr +

∫ s

t
σ
(
Xx,i
t,r
)
dW i

r = x + σ(0)(W i
s − W i

t ). (168)

The solution u : [0, T ]×R
d → R of the PDE in (160) then satisfies that for every t ∈ [0, T ),

x = (x1, . . . , xd) ∈ R
d it holds thatu(T , x) = (2π)−d/2

[∏d
i=1|si |−1/2

]
exp

(−∑d
i=1

(xi−ui )
2

2si

)

and

(
∂
∂t u

)
(t, x) + u(t, x)

(

a(x) −
∫

[−1/2,1/2]d
u(t, x) a(x) dx

)

+
d∑

i=1

1
2 |mi |2

(
∂2

∂x2i
u
)
(t, x) = 0.

(169)

Example 4.6 (Allen–Cahn PDEs with conservation of mass) In this example we specialize
Framework 4.1 to the case of certain Allen–Cahn PDEs with cubic nonlinearity, conservation
of mass, and no-flux boundary conditions (cf., e.g., Rubinstein and Sternberg [10]).

Assume Framework 4.1, let ε ∈ (0,∞) , assume for every x ∈ D, A ∈ B(D) that νx (A) =∫
A dx, assume for every t ∈ [0, T ], x, x ∈ D, y, y ∈ R, v ∈ R

d that g(x) = exp(− 1
4‖x‖2),

μ(x) = (0, . . . , 0), σ(x)v = εv, and f (t, x, x, y, y) = y − y3 − (y − y3), and assume that
for every x ∈ R

d , i ∈ I, t ∈ [0, T ], s ∈ [t, T ] it holds P-a.s. that

Xx,i
t,s = R

(

x, x +
∫ s

t
μ
(
Xx,i
t,r
)
dr +

∫ s

t
σ
(
Xx,i
t,r
)
dW i

r

)

= R(x, x + ε(W i
s − W i

t )). (170)

The solution u : [0, T ]× D → R of the PDE in (160) then satisfies that for every t ∈ [0, T ),
x ∈ ∂D it holds that 〈n(x), (∇xu)(t, x)〉 = 0 and that for every t ∈ [0, T ), x ∈ D it holds
that u(T , x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) + ε2

2 (�xu)(t, x) + u(t, x) − [u(t, x)]3 −
∫

[−1/2,1/2]d
u(t, x) − [u(t, x)]3 dx = 0.

(171)

5 Numerical simulations

In this section we illustrate the performance of the machine learning-based approximation
method proposed in Framework 3.1 in Sect. 3.2 above by means of numerical simulations for
five concrete (non-local) nonlinear PDEs; see Sects. 5.1, 5.2, 5.3, 5.4, and 5.5 below. In each
of these numerical simulationswe employ the generalmachine learning-based approximation
method proposed in Framework 3.1 with certain 4-layer neural networks in conjunction with
the Adam optimizer (cf. (175) and (176) in Framework 5.1 below and Kingma and Ba [96]).
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Fig. 2 Graphical illustration of the neural network architecture used in the numerical simulations. In Sects. 5.1,
5.2, 5.3, 5.4, and 5.5 we employ neural networks with 4 layers (corresponding to 3 affine linear transformations
in the neural networks) with d neurons on the input layer (corresponding to a d-dimensional input layer), with
d + 50 neurons on the 1st hidden layer (corresponding to a (d + 50)-dimensional 1st hidden layer), with
d +50 neurons on the 2nd hidden layer (corresponding to a (d +50)-dimensional 2nd hidden layer), and with
1 neuron on the output layer (corresponding to a 1-dimensional output layer) in the numerical simulations

More precisely, in each of the numerical simulations in Sects. 5.1, 5.2, 5.3, 5.4, and 5.5
the functions V

j,s
n : R

d × R
d → R with n ∈ {1, 2, . . . , N }, j ∈ {1, 2, . . . , 8000}, s ∈ R

ς

are implemented as N fully-connected feedforward neural networks. These neural networks
consist of 4 layers (corresponding to 3 affine linear transformations in the neural networks)
where the input layer is d-dimensional (with d neurons on the input layer), where the two
hidden layers are both (d +50)-dimensional (with d +50 neurons on each of the two hidden
layers), and where the output layer is 1-dimensional (with 1 neuron on the output layer).
We refer to Fig. 2 for a graphical illustration of the neural network architecture used in the
numerical simulations in Sects. 5.1, 5.2, 5.3, 5.4, and 5.5.

As activation functions just in front of the two hidden layers we employ, in Sects. 5.1, 5.2,
5.3, and 5.4 below, multidimensional versions of the hyperbolic tangent function

R � x �→ (ex + e−x )−1(ex − e−x ) ∈ R, (172)

and we employ, in Sect. 5.5 below, multidimensional versions of the ReLU function

R � x �→ max{x, 0} ∈ R. (173)

In addition, in Sects. 5.1, 5.2, and 5.4 we use the square function and R � x �→ x2 ∈ R as
activation function just in front of the output layer and in Sects. 5.3 and 5.5 we use the identity
functionR � x �→ x ∈ R as activation function just in front of the output layer. Furthermore,
we employ Xavier initialization to initialize all neural network parameters; see Glorot and
Bengio [100] for details. We did not employ batch normalization in our simulations.
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Each of the numerical experiments presented below was performed with the Julia library
HighDimPDE.jl on a NVIDIA TITAN RTX GPU with 1350 MHz core clock and 24 GB
GDDR6 memory with 7000 MHz clock rate where the underlying system consisted of an
AMD EPYC 7742 64-core CPU with 2TB memory running Julia 1.7.2 on Ubuntu 20.04.3.

The algorithms proposed in Framework 3.1 and Sect. 4.1 have been implemented as a
Julia library named HighDimPDE, which belongs to the SciML software ecosystem. The
library is listed in the official registry of general Julia packages, and its source code can
be accessed at https://github.com/SciML/HighDimPDE.jl. The exact source code we used
for the simulations in this section is available from two sources: It is included (along with
the source code of the library) in the arXiv version of this article available at https://arxiv.
org/abs/2205.03672 where the source files can be downloaded by choosing “Other sources”
under “Download” and then following the link “Download sources” (or using the URL
https://arxiv.org/e-print/2205.03672). Additionally, the specific Julia source code used for
the simulations in this section can be found in a dedicated Github repository located at https://
github.com/vboussange/HighDimPDE_examples.

Framework 5.1 Assume Framework 3.1, assume d = (d + 50)(d + 1) + (d + 50)(d +
51) + (d + 51), let ε, β1, β2 ∈ R, (γm)m∈N ⊆ (0,∞) satisfy ε = 10−8, β1 = 9

10 ,
and β2 = 999

1000 , let g : D → R, μ : D → R
d , and σ : D → R

d×d be continuous, let
u = (u(t, x))(t,x)∈[0,T ]×D ∈ C1,2([0, T ] × D, R) have at most polynomially growing
partial derivatives, assume for every t ∈ (0, T ], x ∈ ∂D that 〈n(x), (∇xu)(t, x)〉 = 0,
assume for every t ∈ [0, T ], x ∈ D, j ∈ N, s ∈ R

ς that u(0, x) = g(x) = V
j,s
0 (θ, x),∫

D

∣
∣ f
(
t, x, x, u(t, x), u(t, x)

)∣∣ νx (dx) < ∞, and

(
∂
∂t u

)
(t, x) = 1

2 Trace
(
σ(x)[σ(x)]∗(Hessx u)(t, x)

) + 〈
μ(x), (∇xu)(t, x)

〉

+
∫

D
f
(
t, x, x, u(t, x), u(t, x)

)
νx (dx),

(174)

assume for every m ∈ N, i ∈ {0, 1, . . . , N } that Jm = 8000, ti = iT
N , and � = 2d,

and assume for every n ∈ {1, 2, . . . , N }, m ∈ N, x = (x1, . . . , xd), y = (y1, . . . , yd),
η = (η1, . . . , ηd) ∈ R

d that

�n
0(x, y, η) = 0, �n

m(x, y, η) = (
β1x + (1 − β1)η, β2y + (1 − β2)((η1)

2, . . . , (ηd)
2)
)
,

(175)

and

ψn
m(x, y) =

([√ |y1|
1−(β2)m

+ ε
]−1 γmx1

1 − (β1)m
, . . . ,

[√ |yd|
1−(β2)m

+ ε
]−1 γmxd

1 − (β1)m

)

. (176)

InSects. 5.1, 5.2, 5.3, 5.4, and5.5 below,weuse themachine learning-based approximation
method in Framework 5.1 to approximately calculate the solutions to a variety of PDEs with
a non-local term and/or Neumann boundary conditions in dimension d ∈ {1, 2, 5, 10} and
with time horizon T ∈ {1/5, 1/2, 1}. We evaluate these approximations by comparing them
to a reference solution. Specifically, in Sects. 5.1, 5.2, 5.3, and 5.5 we use the multilevel
Picard approximation method presented in Framework 4.1 to compute an approximation
for u(T , (0, . . . , 0)) which we use as the reference solution to approximate the unknown
exact solution u(T , (0, . . . , 0)). For the PDEs treated in Sect. 5.4 we can compute the exact
solution directly and use this exact solution as the reference solution. In all cases, we run the
simulation 5 times, for each value of d and for each value of T , thus obtaining 5 independent
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realizations of the random variable V
1,0
N (�N

MN
, (0, . . . , 0)). We use these to approximately

compute and report, in Tables 1, 2, 3, 4, and 7 below, the mean

E
[
V
1,0
N (�N

MN
, (0, . . . , 0))

]
, (177)

the standard deviation
(
E
[|V1,0

N (�N
MN

, (0, . . . , 0)) − E[V1,0
N (�N

MN
, (0, . . . , 0))]|2]

)1/2
, (178)

the relative L1-approximation error

E

[ |V1,0
N (�N

MN
,(0,...,0))−u(T ,(0,...,0))|
|u(T ,(0,...,0))|

]

, (179)

the standard deviation
(

E

[∣∣
∣
∣
|V1,0

N (�N
MN

,(0,...,0))−u(T ,(0,...,0))|
|u(T ,(0,...,0))| − E

[ |V1,0
N (�N

MN
,(0,...,0))−u(T ,(0,...,0))|
|u(T ,(0,...,0))|

]∣∣
∣
∣

2])1/2
(180)

of the relative L1-approximation error, as well as the average of the runtimes of the 5 indepen-
dent runs. This runtime is measured from the start of the training of the first neural network
until the end of the training of the final neural network (note that the time required for the
evaluation of the neural networks is negligible).

5.1 Fisher–KPP PDEs with Neumann boundary conditions

In this subsection we use the machine learning-based approximation method in Frame-
work 5.1 to approximately calculate the solutions of certain Fisher–KPPPDEswithNeumann
boundary conditions (cf., e.g., Bian et al. [36] and Wang et al. [40]).

Assume Framework 5.1, let ε ∈ (0,∞) satisfy ε = 1
10 , assume d ∈ {1, 2, 5, 10}, D =

[−1/2, 1/2]d , T ∈ {1/5, 1/2, 1}, N = 10, K1 = K2 = . . . = KN = 1, and M1 = M2 = . . . =
MN = 500, assume for every n,m, j ∈ N, ω ∈ � that ξn,m, j (ω) = (0, . . . , 0), assume for
everym ∈ N that γm = 10−2, and assume for every s, t ∈ [0, T ], x, x ∈ D, y, y ∈ R, v ∈ R

d

that g(x) = exp(− 1
4‖x‖2), μ(x) = (0, . . . , 0), σ(x)v = εv, f (t, x, x, y, y) = y(1 − y),

and
H(t, s, x, v) = R(x, x + μ(x)(t − s) + σ(x)v) = R(x, x + εv) (181)

(cf. (139) and (150)). The solution u : [0, T ] × D → R of the PDE in (174) then satisfies
that for every t ∈ (0, T ], x ∈ ∂D it holds that 〈n(x), (∇xu)(t, x)〉 = 0 and that for every
t ∈ [0, T ], x ∈ D it holds that u(0, x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) = ε2

2 (�xu)(t, x) + u(t, x)
(
1 − u(t, x)

)
. (182)

In (182) the function u : [0, T ] × D → R models the proportion of a particular type of
alleles in a biological population spatially structured over D. For every t ∈ [0, T ], x ∈ R

d

the number u(t, x) ∈ R describes the proportion of individuals with a particular type of
alleles located at position x = (x1, . . . , xd) ∈ R

d at time t ∈ [0, T ].
For each choice of d ∈ {1, 2, 5, 10} and T ∈ {1/5, 1/2, 1} we approximate the unknown

value u(T , (0, . . . , 0)) by computing 5 independent realizations of V
1,0
N (�N

MN
, (0, . . . , 0)).

We report in Table 1 approximations of the mean and the standard deviation of this random
variable as well as approximations of the relative L1-approximation error and the uncorrected
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Table 1 Numerical simulations for the approximation method in Framework 3.1 in the case of the Fisher–KPP
PDEs with Neumann boundary conditions in (182) in Sect. 5.1

d T N Mean of
the approx.
method

Standard deviation
of the approx.
method

Reference
value

Relative
L1-approx.
error

Standard
deviation
of the error

Average
runtime in
seconds

1 1/5 10 0.9995949 0.0000156 0.9995965 0.0000120 0.0000082 15.818

2 1/5 10 0.9990286 0.0004035 0.9991810 0.0001973 0.0003788 16.333

5 1/5 10 0.9979573 0.0000567 0.9979502 0.0000423 0.0000325 16.085

10 1/5 10 0.9958883 0.0000236 0.9959512 0.0000632 0.0000237 16.232

1 1/2 10 0.9992189 0.0000115 0.9992664 0.0000475 0.0000115 16.120

2 1/2 10 0.9985348 0.0000603 0.9984853 0.0000637 0.0000408 16.393

5 1/2 10 0.9962728 0.0000687 0.9962840 0.0000517 0.0000395 16.324

10 1/2 10 0.9925187 0.0001019 0.9924206 0.0000988 0.0001027 16.336

1 1 10 0.9991205 0.0000484 0.9989034 0.0002174 0.0000485 16.221

2 1 10 0.9982253 0.0000424 0.9980188 0.0002069 0.0000425 16.822

5 1 10 0.9956714 0.0000491 0.9956116 0.0000600 0.0000493 16.533

10 1 10 0.9912150 0.0001519 0.9908484 0.0003700 0.0001533 16.520

sample standard deviation of the approximation error (see the discussion below Frame-
work 5.1 for more details). For the latter two statistics, the reference value which is used
as an approximation for the unknown value u(T , (0, . . . , 0)) of the exact solution of the
PDE in (182) is computed via the MLP approximation method for non-local nonlinear PDEs
in Framework 4.1 as described in Example 4.2 (cf. Beck et al. [101, Remark 3.3]). More
precisely, we apply Example 4.2 with d ∈ {1, 2, 5, 10}, T ∈ {1/5, 1/2, 1}, D = [−1/2, 1/2]d ,
ε = 1

10 in the notation of Example 4.2 and we use the mean of 5 independent realizations of

U (0)
5,5,0,∞(0, (0, . . . , 0)) as the reference value.

5.2 Non-local competition PDEs

In this subsection we use the machine learning-based approximation method in Frame-
work 5.1 to approximately calculate the solutions of certain non-local competition PDEs
(cf., e.g., Doebeli and Ispolatov [47], Berestycki et al. [38], Perthame and Génieys [37], and
Génieys et al. [42]).

Assume Framework 5.1, let s, ε ∈ (0,∞) satisfy s = ε = 1
10 , assume d ∈ {1, 2, 5, 10},

D = R
d , T ∈ {1/5, 1/2, 1}, N = 10, K1 = K2 = · · · = KN = 1, and M1 = M2 = · · · =

MN = 500, assume for every n,m, j ∈ N, ω ∈ � that ξn,m, j (ω) = (0, . . . , 0), assume for
every m ∈ N that γm = 10−2, and assume for every s, t ∈ [0, T ], v, x, x ∈ R

d , y, y ∈ R,
A ∈ B(Rd) that νx (A) = π−d/2s−d

∫
A exp

( − s−2‖x − x‖2) dx, g(x) = exp(− 1
4‖x‖2),

μ(x) = (0, . . . , 0), σ(x)v = εv, f (t, x, x, y, y) = y(1 − ysdπ d/2), and

H(t, s, x, v) = x + μ(x)(t − s) + σ(x)v = x + εv (183)

(cf. (139) and (150)). The solution u : [0, T ] × R
d → R of the PDE in (174) then satisfies

that for every t ∈ [0, T ], x ∈ R
d it holds that u(0, x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) = ε2

2 (�xu)(t, x) + u(t, x)

(

1 −
∫

R
d
u(t, x) exp

(−‖x−x‖2
s2

)
dx
)

. (184)
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Table 2 Numerical simulations for the approximation method in Framework 3.1 in the case of the non-local
competition PDEs in (184) in Sect. 5.2

d T N Mean of
the approx.
method

Standard deviation
of the approx.
method

Reference
value

Relative
L1-approx.
error

Standard
deviation
of the error

Average
runtime in
seconds

1 1/5 10 1.1736135 0.0000097 1.1750579 0.0012292 0.0000083 13.333

2 1/5 10 1.2096596 0.0000269 1.2118434 0.0018021 0.0000222 13.740

5 1/5 10 1.2159404 0.0000304 1.2180500 0.0017319 0.0000250 13.390

10 1/5 10 1.2129205 0.0000767 1.2152996 0.0019576 0.0000631 13.363

1 1/2 10 1.4695143 0.0000762 1.4782081 0.0058813 0.0000515 13.271

2 1/2 10 1.5948946 0.0000863 1.6153017 0.0126336 0.0000535 13.741

5 1/2 10 1.6186081 0.0003448 1.6354169 0.0102780 0.0002109 13.679

10 1/2 10 1.6088821 0.0000915 1.6248389 0.0098205 0.0000563 13.645

1 1 10 2.0494258 0.0000557 2.0684438 0.0091944 0.0000269 13.464

2 1 10 2.4684410 0.0006871 2.5772161 0.0422064 0.0002666 14.100

5 1 10 2.5609298 0.0005965 2.6627727 0.0382469 0.0002240 13.705

10 1 10 2.5310452 0.0011283 2.6514871 0.0454243 0.0004255 13.585

In (184) the function u : [0, T ]×R
d → Rmodels the evolution of a population characterized

by a set of d biological traits under the combined effects of selection, competition, and
mutation. For every t ∈ [0, T ], x ∈ R

d the number u(t, x) ∈ R describes the number of
individuals with traits x = (x1, . . . , xd) ∈ R

d at time t ∈ [0, T ].
For each choice of d ∈ {1, 2, 5, 10} and T ∈ {1/5, 1/2, 1} we approximate the unknown

value u(T , (0, . . . , 0)) by computing 5 independent realizations of V
1,0
N (�N

MN
, (0, . . . , 0)).

We report in Table 2 approximations of the mean and the standard deviation of this ran-
dom variable as well as approximations of the relative L1-approximation error and the
uncorrected sample standard deviation of the approximation error (see the discussion below
Framework 5.1 for more details). For the latter two statistics, the reference value which is
used as an approximation for the unknown value u(T , (0, . . . , 0)) of the exact solution of
the PDE in (184) is computed via the MLP approximation method for non-local nonlinear
PDEs in Framework 4.1 as described in Example 4.3 (cf. Beck et al. [101, Remark 3.3]).
More precisely, we apply Example 4.3 with d ∈ {1, 2, 5, 10}, T ∈ {1/5, 1/2, 1}, D = R

d ,
s = ε = 1

10 in the notation of Example 4.3 and we use the mean of 5 independent realizations

of U (0)
5,5,0,∞(0, (0, . . . , 0)) as the reference value.

5.3 Non-local sine-Gordon type PDEs

In this subsection we use the machine learning-based approximation method in Frame-
work 5.1 to approximately calculate the solutions of non-local sine-Gordon type PDEs (cf.,
e.g., Hairer and Shen [9], Barone et al. [6], and Coleman [8]).

Assume Framework 5.1, let s, ε ∈ (0,∞) satisfy s = ε = 1
10 , assume d ∈ {1, 2, 5, 10},

D = R
d , T ∈ {1/5, 1/2, 1}, N = 10, K1 = K2 = · · · = KN = 1, and M1 = M2 = · · · =

MN = 500, assume for every n,m, j ∈ N, ω ∈ � that ξn,m, j (ω) = (0, . . . , 0), assume for
every m ∈ N that γm = 10−3, and assume for every s, t ∈ [0, T ], v, x, x ∈ R

d , y, y ∈ R,
A ∈ B(Rd) that νx (A) = π−d/2s−d

∫
A exp

( − s−2‖x − x‖2) dx, g(x) = exp(− 1
4‖x‖2),
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Table 3 Numerical simulations for the approximation method in Framework 3.1 in the case of the non-local
sine-Gordon PDEs in (186) in Sect. 5.3

d T N Mean of
the approx.
method

Standard deviation
of the approx.
method

Reference
value

Relative
L1-approx.
error

Standard
deviation
of the error

Average
runtime in
seconds

1 1/5 10 1.1362996 0.0000110 1.1367379 0.0003856 0.0000097 12.377

2 1/5 10 1.1678523 0.0000105 1.1685355 0.0005847 0.0000090 12.807

5 1/5 10 1.1731904 0.0000270 1.1739435 0.0006415 0.0000230 12.642

10 1/5 10 1.1704623 0.0000237 1.1717243 0.0010771 0.0000202 12.487

1 1/2 10 1.3513988 0.0000170 1.3537606 0.0017446 0.0000126 12.515

2 1/2 10 1.4393396 0.0000260 1.4421450 0.0019453 0.0000181 12.885

5 1/2 10 1.4546689 0.0000184 1.4588427 0.0028610 0.0000126 12.404

10 1/2 10 1.4473806 0.0000648 1.4535572 0.0042493 0.0000446 12.348

1 1 10 1.7114100 0.0000522 1.7128565 0.0008445 0.0000304 12.296

2 1 10 1.9019937 0.0000758 1.9079758 0.0031353 0.0000397 12.957

5 1 10 1.9364048 0.0000398 1.9437583 0.0037831 0.0000205 12.572

10 1 10 1.9222919 0.0000647 1.9265107 0.0021899 0.0000336 12.461

μ(x) = (0, . . . , 0), σ(x)v = εv, f (t, x, x, y, y) = sin(y) − yπ d/2sd , and

H(t, s, x, v) = x + μ(x)(t − s) + σ(x)v = x + εv (185)

(cf. (139) and (150)). The solution u : [0, T ] × R
d → R of the PDE in (174) then satisfies

that for every t ∈ [0, T ], x ∈ R
d it holds that u(0, x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) = ε2

2 (�xu)(t, x) + sin(u(t, x)) −
∫

R
d
u(t, x) exp

(−‖x−x‖2
s2

)
dx. (186)

For each choice of d ∈ {1, 2, 5, 10} and T ∈ {1/5, 1/2, 1} we approximate the unknown
value u(T , (0, . . . , 0)) by computing 5 independent realizations of V

1,0
N (�N

MN
, (0, . . . , 0)).

We report in Table 3 approximations of the mean and the standard deviation of this ran-
dom variable as well as approximations of the relative L1-approximation error and the
uncorrected sample standard deviation of the approximation error (see the discussion below
Framework 5.1 for more details). For the latter two statistics, the reference value which is
used as an approximation for the unknown value u(T , (0, . . . , 0)) of the exact solution of
the PDE in (186) is computed via the MLP approximation method for non-local nonlinear
PDEs in Framework 4.1 as described in Example 4.4 (cf. Beck et al. [101, Remark 3.3]).
More precisely, we apply Example 4.4 with d ∈ {1, 2, 5, 10}, T ∈ {1/5, 1/2, 1}, D = R

d ,
s = ε = 1

10 in the notation of Example 4.4 and we use the mean of 5 independent realizations

of U (0)
5,5,−∞,∞(0, (0, . . . , 0)) as the reference value.

5.4 Replicator-mutator PDEs

In this subsection we use both the machine learning-based approximation method in Frame-
work 5.1 and the MLP approximation method in Framework 4.1 to approximately calculate
the solutions of certain replicator-mutator PDEs describing the dynamics of a phenotype dis-
tribution under the combined effects of selection and mutation (cf., e.g., Hamel et al. [26]).
The solutions to the PDEs we are trying to approximate in this subsection can be represented
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explicitly (cf., e.g., Lemma 5.2 below). The gives us the opportunity to compare the perfor-
mance of the two approximation methods presented here and it also allows us to evaluate
the capability of the machine learning-based approximation method in Framework 5.1 to
produce approximations on an entire subset of the domain.

Exact solutions. The following results, Lemma 5.2 below, give an explicit representation
of the exact solutions of certain replicator-mutator PDEs. In (190) the function u : [0, T ] ×
R
d → R models the evolution of the phenotype distribution of a population composed of

a set of d biological traits under the combined effects of selection and mutation. For every
t ∈ [0, T ], x ∈ R

d the number u(t, x) ∈ R describes the number of individuals with traits
x = (x1, . . . , xd) ∈ R

d at time t ∈ [0, T ]. The function amodels a quadratic fitness function.

Lemma 5.2 Let d ∈ N, u1, u2, . . . , ud ∈ R, m1,m2, . . . ,md , s1, s2, . . . , sd ∈ (0,∞), let
a : R

d → R satisfy for every x ∈ R
d that a(x) = − 1

2‖x‖2, for every i ∈ {1, 2, . . . , d} let
Si : [0,∞) → (0,∞) and Ui : [0,∞) → R satisfy for every t ∈ [0,∞) that

Si (t) = mi

[
mi sinh(mi t) + si cosh(mi t)

mi cosh(mi t) + si sinh(mi t)

]

and Ui (t) = miui

mi cosh(mi t) + si sinh(mi t)
, (187)

and let u : [0,∞) × R
d → R satisfy for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R

d that

u(t, x) = (2π)−d/2

[
d∏

i=1

|Si (t)|−1/2

]

exp

(

−
d∑

i=1

(xi − Ui (t))2

2Si (t)

)

. (188)

Then

(i) it holds that u ∈ C1,2([0,∞) × R
d , R),

(ii) it holds for every x = (x1, . . . , xd) ∈ R
d that

u(0, x) = (2π)−d/2

[
d∏

i=1

|si |−1/2

]

exp

(

−
d∑

i=1

(xi − ui )
2

2si

)

,

(189)

and
(iii) it holds for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R

d that

(
∂
∂t u

)
(t, x) = u(t, x)

(

a(x) −
∫

R
d
u(t, x) a(x) dx

)

+
d∑

i=1

1
2 |mi |2

(
∂2

∂x2i
u
)
(t, x). (190)

Proof of Lemma 5.2 First, note that the fact that for every i ∈ {1, 2, . . . , d} it holds that
Si ∈ C∞([0,∞), (0,∞)), the fact that for every i ∈ {1, 2, . . . , d} it holds that Ui ∈
C∞([0,∞), R), and (188) establish item (i). Moreover, observe that the fact that for every
i ∈ {1, 2, . . . , d} it holds thatSi (0) = si , the fact that for every i ∈ {1, 2, . . . , d} it holds that
Ui (0) = ui , and (187) prove item (ii). Next note that (188) ensures that for every t ∈ [0,∞),
x = (x1, . . . , xd) ∈ R

d it holds that

u(t, x) =
d∏

i=1

[

(2πSi (t))
−1/2 exp

(

− (xi − Ui (t))2

2Si (t)

)]

. (191)
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The product rule hence implies that for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R
d it holds

that (
∂
∂t u

)
(t, x)

= ∂

∂t

(
d∏

i=1

[

(2πSi (t))
−1/2 exp

(

− (xi − Ui (t))2

2Si (t)

)])

=
d∑

i=1

[[∏

j∈{1,...,d}\{i}

(

(2πS j (t))
−1/2 exp

(

− (x j − U j (t))2

2S j (t)

))]

·
[

∂

∂t

(

(2πSi (t))
−1/2 exp

(

− (xi − Ui (t))2

2Si (t)

))]]

.

(192)

The chain rule, the product rule, and (191) therefore show that for every t ∈ [0,∞), x =
(x1, . . . , xd) ∈ R

d it holds that

(
∂
∂t u

)
(t, x)

=
d∑

i=1

[[∏

j∈{1,...,d}\{i}

(

(2πS j (t))
−1/2 exp

(

− (x j − U j (t))2

2S j (t)

))]

·
[(

∂

∂t

(
(2πSi (t))

−1/2
))

exp

(

− (xi − Ui (t))2

2Si (t)

)

+ (2πSi (t))
−1/2

(
∂

∂t

(

− (xi − Ui (t))2

2Si (t)

))

exp

(

− (xi − Ui (t))2

2Si (t)

)]]

=
d∑

i=1

[[∏

j∈{1,...,d}\{i}

(

(2πS j (t))
−1/2 exp

(

− (x j − U j (t))2

2S j (t)

))]

·
[

−(2πSi (t))
−1/2

[(
∂
∂tSi

)
(t)

2Si (t)

]

exp

(

− (xi − Ui (t))2

2Si (t)

)

+(2πSi (t))
−1/2

(
2
(

∂
∂t Ui

)
(t)(xi − Ui (t))

2Si (t)

+ (xi − Ui (t))2
(

∂
∂tSi

)
(t)

2|Si (t)|2
)

exp

(

− (xi − Ui (t))2

2Si (t)

)]]

= u(t, x)

[
d∑

i=1

(−(
∂
∂tSi

)
(t)

2Si (t)
+ 2Si (t)

(
∂
∂t Ui

)
(t)(xi − Ui (t)) + (xi − Ui (t))2

(
∂
∂tSi

)
(t)

2|Si (t)|2
)]

.

(193)

Moreover, observe that (187), the chain rule, and the product rule ensure that for every
i ∈ {1, . . . , d}, t ∈ [0,∞) it holds that

(
∂
∂t Ui

)
(t) = ∂

∂t

(
miui

mi cosh(mi t) + si sinh(mi t)

)

= −|mi |2ui
[

mi sinh(mi t) + si cosh(mi t)

[mi cosh(mi t) + si sinh(mi t)]2

]

= −Si (t)Ui (t)

(194)
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and
(

∂
∂tSi

)
(t)

= ∂

∂t

(

mi

[
mi sinh(mi t) + si cosh(mi t)

mi cosh(mi t) + si sinh(mi t)

])

= |mi |2
[
mi cosh(mi t) + si sinh(mi t)

mi cosh(mi t) + si sinh(mi t)

]

− |mi |2
[
mi sinh(mi t) + si cosh(mi t)

mi cosh(mi t) + si sinh(mi t)

]2

= |mi |2 − |Si (t)|2.
(195)

Combining this with (193) implies that for every i ∈ {1, 2, . . . , d}, t ∈ [0,∞) it holds that

(
∂
∂t u

)
(t, x) = u(t, x)

2

d∑

i=1

[
−[|mi |2 − |Si (t)|2

]

Si (t)

+2|Si (t)|2Ui (t)(Ui (t) − xi ) + (xi − Ui (t))2(|mi |2 − |Si (t)|2)
|Si (t)|2

]

= u(t, x)

2

d∑

i=1

[

|mi |2
((

xi − Ui (t)

Si (t)

)2

− 1

Si (t)

)

+ Si (t) + 2
(|Ui (t)|2 − Ui (t) xi

) − (|xi |2 − 2Ui (t) xi + |Ui (t)|2
)
]

= u(t, x)

2

d∑

i=1

[

|mi |2
((

xi − Ui (t)

Si (t)

)2

− 1

Si (t)

)

+ Si (t) + |Ui (t)|2 − |xi |2
]

.

(196)

Furthermore, note that (191) and the product rule show that for every i ∈ {1, 2, . . . , d},
t ∈ [0,∞), x = (x1, . . . , xd) ∈ R

d it holds that

(
∂

∂xi
u
)
(t, x) = ∂

∂xi

⎡

⎣
d∏

j=1

[

(2πS j (t))
−1/2 exp

(

− (x j − U j (t))2

2S j (t)

)]
⎤

⎦

=
[

∂

∂xi

[

(2πSi (t))
−1/2 exp

(

− (xi − Ui (t))2

2Si (t)

)]]

·
∏

j∈{1,2,...,d}\{i}

[

(2πS j (t))
−1/2 exp

(

− (x j − U j (t))2

2S j (t)

)]

= −u(t, x)

(
xi − Ui (t)

Si (t)

)

= u(t, x)

(
Ui (t) − xi
Si (t)

)

.

(197)

The product rule therefore assures that for every i ∈ {1, 2, . . . , d}, t ∈ [0,∞), x =
(x1, . . . , xd) ∈ R

d it holds that

(
∂2

∂x2i
u
)
(t, x) = ∂

∂xi

(

u(t, x)

(
Ui (t) − xi
Si (t)

))

= (
∂

∂xi
u
)
(t, x)

(
Ui (t) − xi
Si (t)

)

− u(t, x)

Si (t)
= u(t, x)

[(
xi − Ui (t)

Si (t)

)2

− 1

Si (t)

]

.

(198)
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Hence, we obtain that for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R
d it holds that

d∑

i=1

[
1
2 |mi |2

(
∂2

∂x2i
u
)
(t, x)

]

= u(t, x)

2

d∑

i=1

[

|mi |2
((

xi − Ui (t)

Si (t)

)2

− 1

Si (t)

)]

. (199)

Next observe that (191) and Fubini’s theorem ensure that for every t ∈ [0,∞), x =
(x1, . . . , xd) ∈ R

d it holds that

u(t, x)

(

a(x) −
∫

R
d
u(t, x) a(x) dx

)

= u(t, x)

(

−1

2

[
d∑

i=1

|xi |2
]

−
∫

R
d
−1

2

[
d∑

i=1

|xi |2
]

u(t, x) dx

)

= u(t, x)

2

(

−
[

d∑

i=1

|xi |2
]

+
d∑

i=1

[∫

R

|xi |2 (2πSi (t))
−1/2 exp

(

− (xi − Ui (t))2

2Si (t)

)

dxi

·
(∏

j∈{1,2,...,d}\{i}

∫

R

(2πS j (t))
−1/2 exp

(

− (x j − U j (t))2

2S j (t)

)

dx j

)])

.

(200)

This and the fact that for every i ∈ {1, 2, . . . , d}, t ∈ [0,∞) it holds that

∫

R

(2πSi (t))
−1/2 exp

(

− (x − Ui (t))2

2Si (t)

)

dx = 1 (201)

imply that for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R
d it holds that

u(t, x)

(

a(x) −
∫

R
d
u(t, x) a(x) dx

)

= u(t, x)

2

d∑

i=1

[

−|xi |2 +
∫

R

|xi |2 (2πSi (t))
−1/2 exp

(

− (xi − Ui (t))2

2Si (t)

)

dxi

]

.

(202)

Next observe that the integral transformation theorem demonstrates that for every i ∈
{1, 2, . . . , d}, t ∈ [0,∞) it holds that

∫

R

x2
[

(2πSi (t))
−1/2 exp

(

− (x − Ui (t))2

2Si (t)

)]

dx

=
∫

R

(x + Ui (t))
2
[

(2πSi (t))
−1/2 exp

(

− x2

2Si (t)

)]

dx

=
∫

R

x2
[

(2πSi (t))
−1/2 exp

(

− x2

2Si (t)

)]

dx

+
∫

R

|Ui (t)|2
[

(2πSi (t))
−1/2 exp

(

− x2

2Si (t)

)]

dx

= Si (t) + |Ui (t)|2.

(203)
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Combining this with (202) ensures that for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R
d it holds

that

u(t, x)

(

a(x) −
∫

R
d
u(t, x) a(x) dx

)

= u(t, x)

2

d∑

i=1

(
Si (t) + |Ui (t)|2 − |xi |2

)
. (204)

This and (199) demonstrate that for every t ∈ [0,∞), x = (x1, . . . , xd) ∈ R
d it holds that

u(t, x)

(

a(x) −
∫

D
u(t, x) a(x) dx

)

+
d∑

i=1

1
2 |mi |2

(
∂2

∂x2i
u
)
(t, x)

= u(t, x)

2

d∑

i=1

[

|mi |2
((

xi − Ui (t)

Si (t)

)2

− 1

Si (t)

)

+ Si (t) + |Ui (t)|2 − |xi |2
]

.

(205)

Combining this with (196) proves item (iii). The proof of Lemma 5.2 is thus complete. ��

Machine-learning based approximations. Assume Framework 5.1, let D ⊆ R
d , m1,

m2, . . . ,md , s1, s2, . . . , sd , u1, u2, . . . , ud , t ∈ R satisfy for every k ∈ {1, 2, . . . , d} that
mk = 1

10 , sk = 1
20 , uk = 0, and t = 1

50 , assume d ∈ {1, 2, 5, 10}, D = R
d ,

T ∈ {1/10, 1/5, 1/2}, N = 10, K1 = K2 = · · · = KN = 1, let a ∈ C(Rd , R),
δ ∈ C(Rd , (0,∞)) satisfy for every x ∈ R

d that a(x) = − 1
2‖x‖2, and assume for every

s, t ∈ [0, T ], v = (v1, . . . , vd), x = (x1, . . . , xd) ∈ R
d , x ∈ R

d , y, y ∈ R, A ∈ B(Rd)

that νx (A) = ∫
A∩D δ(x) dx, g(x) = (2π)−d/2

[∏d
i=1|si |−1/2

]
exp

(−∑d
i=1

(xi−ui )
2

2si

)
, μ(x) =

(0, . . . , 0), σ(x)v = (m1v1, . . . ,mdvd), f (t, x, x, y, y) = y(a(x) − ya(x)[δ(x)]−1), and

H(t, s, x, v) = x + μ(x)(t − s) + σ(x)v = x + (m1v1, . . . ,mdvd) (206)

(cf. (139) and (150)). The solution u : [0, T ] × R
d → R of the PDE in (174) then satisfies

that for every t ∈ [0, T ], x = (x1, . . . , xd) ∈ R
d it holds that

u(0, x) = (2π)−d/2

[
d∏

i=1

|si |−1/2

]

exp

(

−
d∑

i=1

(xi−ui )
2

2si

)

(207)

and

(
∂
∂t u

)
(t, x) = u(t, x)

(

a(x) −
∫

D
u(t, x) a(x) dx

)

+
d∑

i=1

1
2 |mi |2

(
∂2

∂x2i
u

)

(t, x). (208)

For Table 4, we approximate for each choice of d ∈ {1, 2, 5, 10} and T ∈ {1/5, 1/2, 1} the
value u(T , (0, . . . , 0)) by computing 5 independent realizations of V

1,0
N (�N

MN
, (0, . . . , 0)).

We report in Table 4 approximations of the mean and the standard deviation of this random
variable as well as approximations of the relative L1-approximation error and the uncorrected
sample standard deviation of the approximation error (see the discussion below Frame-
work 5.1 for more details). For the latter two statistics, the reference value u(T , (0, . . . , 0))
has been calculated using Lemma 5.2 above which provides an explicit representation of the
exact solution of the PDE in (208).

In Table 5 we report statistics on the capability of the approximation method in Frame-
work 3.1 to approximate the solution of the PDE in (208) on an entire subset of the domain.
More specifically, for Table 5, we approximate for each choice of d ∈ {1, 2, 5, 10} and
T ∈ {1/10, 1/5, 1/2} the function [−1, 1]d � x �→ u(T , x) ∈ R by computing 5 independent
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Table 4 Numerical simulations for the approximation method in Framework 3.1 in the case of the replicator-
mutator PDEs in (208) in Sect. 5.4 where we approximate the value of u(T , (0, . . . , 0)), assuming for
every n,m, j ∈ N, x ∈ R

d that D = R
d , ξn,m, j = 0, γm = 10−3, Mn = 1000, and δ(x) =

(2π)−d/2t−d exp
(−‖x‖2

2t2
)

d T N Mean of
the approx.
method

Standard deviation
of the approx.
method

Reference
value

Relative
L1-approx.
error

Standard
deviation
of the error

Average
runtime in
seconds

1 1/5 10 1.7497161 0.0009179 1.7582066 0.0048291 0.0005220 31.815

2 1/5 10 3.0576093 0.0069599 3.0912904 0.0108955 0.0022514 32.886

5 1/5 10 16.3761745 0.0078223 16.8015567 0.0253180 0.0004656 32.821

10 1/5 10 268.3223816 0.0628488 282.2923073 0.0494874 0.0002226 32.542

1 1/2 10 1.6998393 0.0029625 1.7222757 0.0130272 0.0017201 32.425

2 1/2 10 2.8902346 0.0072711 2.9662336 0.0256214 0.0024513 33.448

5 1/2 10 14.2120520 0.0376394 15.1535149 0.0621284 0.0024839 32.820

10 1/2 10 201.3921326 0.2044270 229.6290127 0.1229674 0.0008902 32.745

1 1 10 1.6310535 0.0079685 1.6692252 0.0228679 0.0047738 32.464

2 1 10 2.6409563 0.0039165 2.7863129 0.0521681 0.0014056 33.519

5 1 10 11.3346539 0.0359433 12.9590963 0.1253515 0.0027736 33.046

10 1 10 128.0593475 0.5314444 167.9381766 0.2374614 0.0031645 33.062

Table 5 Numerical simulations for the approximation method in Framework 3.1 in the case of the replicator-
mutator PDEs in (208) in Sect. 5.4 where we approximate the function [−1, 1]d � x �→ u(T , x) ∈ R,
assuming for every n,m, j ∈ N, x ∈ R

d that D = [−1, 1]d , ξn,m, j = 0, γm = 10−21[0,1000](m) +
10−31[1001,2000](m), Mn = 2000, and δ(x) = 2−d

d T N L2-approx. error Std. dev. error avg. runtime (s)

1 1/10 10 0.0048685 0.0014896 56.143

2 1/10 10 0.0128065 0.0052835 58.438

5 1/10 10 0.0288090 0.0024520 57.517

10 1/10 10 0.0094485 0.0087283 57.756

1 1/5 10 0.0062907 0.0056264 57.715

2 1/5 10 0.0105398 0.0021021 59.511

5 1/5 10 0.0377786 0.0090177 58.430

10 1/5 10 0.0124844 0.0054922 58.513

1 1/2 10 0.0088032 0.0025974 58.530

2 1/2 10 0.0165290 0.0048038 61.922

5 1/2 10 0.0564803 0.0122768 61.148

10 1/2 10 0.0449148 0.0467653 61.746

realizations of [−1, 1]d � x �→ V
1,0
N (�N

MN
, x) ∈ R. We report in Table 4 an estimate of the

L2-approximation error

E

[(∫
[−1,1]d |V1,0

N (�N
MN

, x) − u(T , x)|2 dx)1/2
]

(209)
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Fig. 3 Plot of a machine learning-based approximation of the solution of the replicator-mutator PDE in
(208) in the case d = 5, T = 1/2, and D = R

d . The left-hand side shows a plot of [−1/4, 1/4] � x �→
V
1,0
n (�n

Mn
(ω), (x, 0, . . . , 0)) ∈ R for n ∈ {0, 1, 2, 3} and one realization ω ∈ � where the functions

R
d � x �→ V

1,0
n (�n

Mn
(ω), x) ∈ R for n ∈ {0, 1, 2, 3}, ω ∈ � were computed via Framework 5.1 as an

approximation of the solution of the PDE in (208) with d = 5, T = 1/2, and D = [−1/2, 1/2]d where we
take M1 = M2 = · · · = MN = 2000, γ1 = γ2 = · · · = γ2000 = 1/200, and δ = 1

R
d and where we take

ξn,m, j : � → R
d , n,m, j ∈ N, to be independent U[−1/2,1/2]d -distributed random variables. The right-hand

side of Fig. 3 shows a plot of [−1/4, 1/4] � x �→ u(t, (x, 0, . . . , 0)) ∈ R for t ∈ {0, 0.05, 0.1, 0.15} where u
is the exact solution of the PDE in (208) with d = 5, T = 1/2, and D = R

d

and of the standard deviation
(

E

[((∫
[−1,1]d |V1,0

N (�N
MN

, x) − u(T , x)|2 dx)1/2 − E

[(∫
[−1,1]d |V1,0

N (�N
MN

, x) − u(T , x)|2 dx)1/2
])2])1/2

(210)

of the error. The integrals appearing in (209) and (210) have been computed by means of
a standard Monte Carlo approximation using the exact solution of the PDE as provided by
Lemma 5.2 above.

Figure 3 provides a graphical illustration of an approximation to a solution of the PDEs
in (208) computed by means of the the method in Framework 5.1 compared to the exact
solution. More specifically, in Fig. 3 we use the machine learning-based method in Frame-
work 5.1 to approximate the solution u : [0, T ] × R

d → R of the PDE in (208) above
with d = 5, T = 1/2, and D = R

d . The right-hand side of Fig. 3 shows a plot of
[−1/4, 1/4] � x �→ u(t, (x, 0, . . . , 0)) ∈ R for t ∈ {0, 0.05, 0.1, 0.15} where u is the
exact solution of the PDE in (208) with d = 5, T = 1/2, and D = R

d computed via
(188) in Lemma 5.2 below. The left-hand side of Fig. 3 shows a plot of [−1/4, 1/4] � x �→
V
1,0
n (�n

Mn
(ω), (x, 0, . . . , 0)) ∈ R for n ∈ {0, 1, 2, 3} and one realization ω ∈ � where the

functions R
d � x �→ V

1,0
n (�n

Mn
(ω), x) ∈ R for n ∈ {0, 1, 2, 3}, ω ∈ � were computed via

Framework 5.1 as an approximation of the solution of the PDE in (208) with d = 5, T = 1/2,
and D = [−1/2, 1/2]d . For the approximation, we take M1 = M2 = · · · = MN = 2000,
γ1 = γ2 = · · · = γ2000 = 1/200, and δ = 1

R
d and we take ξn,m, j : � → R

d , n,m, j ∈ N, to
be independent U[−1/2,1/2]d -distributed random variables. Note that the solution of the PDE in
(208) in the caseD = [−R, R]d with R ∈ (0,∞) sufficiently large is a good approximation
of the solution u : [0, T ] × R

d → R of the PDE in (208) in the case D = R
d since we have
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that for every t ∈ [0, T ] the value u(t, x) of the solution u of the PDE in (208) in the case
D = R

d sufficiently quickly tends to 0 as ‖x‖ tends to ∞.

MLP approximations.

For Table 6, we use the approximation method presented in Framework 4.1 to compute
approximations of the PDEs in (208) by applying Example 4.5 with m1 = m2 = · · · =
md = 1

10 , s1 = s2 = · · · = sd = 1
20 , and u1 = u2 = · · · = ud = 0. We compute 5

independent realizations of U (0)
5,5,0,∞(0, (0, . . . , 0)) as approximations of the value at (0, x)

of the solution u of the PDE in (166) in Example 4.5 above (note that this is the value
at (T , x) ∈ [0, T ] × R

d of the solution u of the PDE in (208) above; cf., e.g., Beck et
al. [101, Remark 3.3]). Based on these realizations, we report in Table 6 approximations
of the mean and the standard deviation of the random variable U (0)

5,5,0,∞(0, (0, . . . , 0)) as

well as approximations of the relative L1-approximation error and the uncorrected sample
standard deviation of the approximation error. For the latter two statistics, the reference value
has been calculated using Lemma 5.2 above which provides an explicit representation of the
exact solution of the PDE in (208) above (and hence of the exact solution of the PDE in (166)
in Example 4.5 above).

Comparison of the two methods.

In Fig. 4 below we compare the performance of the machine learning-based approximation
method in Framework 5.1 to the MLP approximation method in Framework 4.1 when com-
puting approximations to the solution of the PDE in (208) with d = 5, D = [−1, 1]d , and
T = 0.2. A straightforward runtime comparison between these two methods is difficult, as
the machine learning-based method is highly parallelizable, with our simulations running to
a large part on the GPU, whereas the MLP approximation method cannot be parallelized as
easily and in our simulations is performed entirely on the CPU. As a consequence, compar-
isons of the runtimes to a large degree reflect the relative performance of the GPU compared
to the CPU of the test system. In Fig. 4 we instead use the number of evaluations of one-
dimensional standard normal random variables as a proxy for the complexity and we plot
this measure against the relative L1-approximation error of the approximation method. For
the MLP approximation method, we obtained the four different measurements by computing
5 realizations each of U (0)

n,n,0,∞(0, (0, . . . , 0)) for n ∈ {2, 3, 4, 5}. For the machine learning-
based approximation method in Framework 5.1, we similarly obtained the four different
measurements by computing 5 realizations each of V

1,0
N (�N

MN
, (0, . . . , 0)) varying the num-

ber of time steps (with N ∈ {1, 2, 3, 4}), the number of neurons in each of the two hidden
layers (with the number of neurons in each hidden layer chosen from {10, 20, 30, 40}), and
the batch sizes (with ∀ k ∈ N : Jk = J1 ∈ {101, 102, 103, 104}).

5.5 Allen–Cahn PDEs with conservation of mass

In this subsection we use the machine learning-based approximation method in Frame-
work 5.1 to approximately calculate the solutions of certain Allen–Cahn PDEs with cubic
nonlinearity, conservation of mass, and no-flux boundary conditions (cf., e.g., Rubinstein
and Sternberg [10]).

Assume Framework 5.1, let ε ∈ (0,∞) satisfy ε = 1
10 , assume d ∈ {1, 2, 5, 10}, D =

[−1/2, 1/2]d , T ∈ {1/5, 1/2, 1}, N = 10, K1 = K2 = · · · = KN = 5, and M1 = M2 = · · · =
MN = 500, assume ξn,m, j , n,m, j ∈ N, are independent UD-distributed random variables,
assume for every m ∈ N that γm = 10−2, and assume for every s, t ∈ [0, T ], x, x ∈ D,
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Fig. 4 Comparison of the
machine learning-based method
in Framework 3.1 and the MLP
approximation method in
Framework 2.10 when computing
approximations to the solution of
the PDE in (208) with d = 5,
D = [−1, 1]d , and T = 0.2

y, y ∈ R, v ∈ R
d , A ∈ B(D) that νx (A) = ∫

A dx, g(x) = exp(− 1
4‖x‖2),μ(x) = (0, . . . , 0),

σ(x)v = εv, f (t, x, x, y, y) = y − y3 − (
y − y3

)
, and

H(t, s, x, v) = R(x, x + μ(x)(t − s) + σ(x)v) = R(x, x + εv) (211)

(cf. (139) and (150)). The solution u : [0, T ] × D → R of the PDE in (174) then satisfies
that for every t ∈ (0, T ], x ∈ ∂D it holds that 〈n(x), (∇xu)(t, x)〉 = 0 and that for every
t ∈ [0, T ], x ∈ D it holds that u(0, x) = exp(− 1

4‖x‖2) and
(

∂
∂t u

)
(t, x) = ε2

2 (�xu)(t, x)+u(t, x)−[u(t, x)]3−
∫

[−1/2,1/2]d
u(t, x)−[u(t, x)]3 dx. (212)

For each choice of d ∈ {1, 2, 5, 10} and T ∈ {1/5, 1/2, 1} we approximate the unknown value
u(T , (0, . . . , 0)) by computing 5 independent realizations of V

1,0
N (�N

MN
, (0, . . . , 0)). We

report in Table 7 approximations of the mean and the standard deviation of this random vari-
able as well as approximations of the relative L1-approximation error and the uncorrected
sample standard deviation of the approximation error (see the discussion below Frame-
work 5.1 for more details). For the latter two statistics, the reference value which is used as
an approximation for the unknown value u(T , (0, . . . , 0)) of the exact solution of the PDE
in (212) is computed via the MLP approximation method for non-local nonlinear PDEs in
Framework 4.1 as described in Example 4.6 (cf. Beck et al. [101, Remark 3.3]). More pre-
cisely, we apply Example 4.6 with d ∈ {1, 2, 5, 10}, T ∈ {1/5, 1/2, 1}, D = [−1/2, 1/2]d
in the notation of Example 4.6 and we use the mean of 5 independent realizations of
U (0)
5,5,0,∞(0, (0, . . . , 0)) as the reference value.

5.6 Influence of hyperparameters

For both the machine learning-based approximation method and the MLP approximation
method proposed above, several hyperparameters need to be chosen. More precisely, for the
machine learning-based approximation method described in Framework 3.1, we need, e.g.,
to decide on the number of discrete time steps used in the approximation (denoted by N ∈ N

in Framework 3.1 above), the numbers of samples used in the Monte Carlo approximation
of the nonlocal term (denoted by (Kn)n∈N ⊆ N in Framework 3.1 above), the optimization
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Fig. 5 Influence of various hyperparameters on the performance of the machine learning-based approximation
method

algorithmused (represented by the functions�n
m : R

�×R
d → R

�,n ∈ {1, 2, . . . , N },m ∈ N,
in Framework 3.1 above), the batch sizes used in the optimization algorithm (denoted by
(Jm)m∈N ⊆ N in Framework 3.1 above), and the architecture of the employed neural networks
(i.e., in the case of fully connected feedforward neural networks, the number of hidden
layers and the number of neurons in each hidden layer). For the MLP approximation method
introduced in Framework 4.1 above, we need, e.g., to decide on the numbers of samples used
in the Monte Carlo approximation of the nonlocal term (denoted by (Kn,l,m)n,l,m∈N0 ⊆ N in
Framework 4.1 above) and which iteration to use as an approximation of the unknown PDE
solution (i.e., for which n, M ∈ N0 to compute U (0)

n,M,r1,r2
(t, x) in (159) in Framework 4.1

above).
In Figs. 5 and 6 we examine the influence of some of these choices on the accuracy and

runtime of the proposed approximation methods when computing approximate solutions to
the replicator-mutator PDEs in (208) where d = 5, where D = [−1, 1]d , and where for
every x ∈ R

d it holds that δ(x) = 2−d . More specifically, in Fig. 5 we show the effect on
the L1-approximation error and on the runtime of the machine learning-based approximation
method in Framework 5.1 when varying, respectively (from left to right and top to bottom),
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Fig. 6 Influence of various
hyperparameters on the
performance of the MLP
approximation method

the number of samples used in theMonte Carlo approximation of the nonlocal term, the batch
size, the number of time steps, the number of neurons in each of the hidden layers, and the
number of hidden layers. In Fig. 6 we show the effect on the L1-approximation error and on
the runtime of the MLP approximation method in Framework 4.1 (cf. Example 4.5) when
varying, respectively (from left to right), the number of samples used to compute the Monte
Carlo approximation of the nonlocal term and the number of iteration steps.
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