Sudden disappearance of yew (Taxus baccata) woodlands from eastern England coincides with a possible climate event around 4.2 ka ago

Tatiana Bebchuk a,*, Paul J. Krusic a, Joshua H. Pike a, Alma Piermattei b, Ronny Friedrich d, Lukas Wacker e, Alan Crivellaro c, Tito Arosio c, Alexander V. Kirdyanov a, Philip Gibbard 1, David Brown g, Jan Esper h, i, Frederick Reinig h, Ulf Büntgen a, i, j, k

a Department of Geography, University of Cambridge, CB2 3EN, Cambridge, United Kingdom
b Forest Biometrics Laboratory, Faculty of Forestry, Stefan cel Mare University of Suceava, 720229, Suceava, Romania
c Laboratory of Ion Beam Physics, ETHZ, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland
d Scott Polar Research Institute, University of Cambridge, CB2 1ER, Cambridge, United Kingdom
e Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
f Curt-Engelhorn-Centre Archaometry, 68159, Mannheim, Germany
g Forest Biometrics Laboratory, Faculty of Forestry, Stefan cel Mare University of Suceava, 720229, Suceava, Romania
h Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 60300, Brno, Czech Republic
i Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
j Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
k Laboratory of Ion Beam Physics, ETHZ, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland

ABSTRACT

Tree-ring chronologies form the backbone of high-resolution palaeoclimatology. However, their number declines drastically prior to medieval times, and only a few such records worldwide extend back to the mid-Holocene. Here, we present a collection of more than 400 subfossil yew (Taxus baccata L.) trees excavated from near sea-level peat-rich sediments in the Fenland region of eastern England. The well-preserved yew trunks are between two and eight metres long, often exhibit adventitious root layers, and contain up to 400 rings of highly irregular growth. Combined dendrochronological and radiocarbon dating resulted in two tree-ring width chronologies that comprise 36 and 32 trees, span 413 and 418 years, exhibit mean inter-series correlations (Rbar) of 0.50 and 0.51, and were provisionally dated to 5225 ± 4 and 4612 ± 6 years cal BP. Together with a total of 63 radiocarbon dates (14C), our subfossil tree-ring evidence suggests that yew establishment (or onset of preservation) began ~5250 years cal BP and resulted in extensive climax forests between 5200 and 4200 years cal BP. A first stage of yew decline ~4800–4600 years cal BP was possibly caused by oxygen deprivation from soil wetting, whereas yew disappearance ~4200 years cal BP is suggested to have been triggered by marine inundation as a consequence of rapid sea-level rise. Both phases of yew decline in eastern England coincide with marked reductions in subfossil oak and pine from peatbogs in Ireland, Germany and the Netherlands. Our results emphasise the potential to develop a dendrochronological network in coastal England for better understanding of larger-scale climate and environmental changes during the mid-Holocene, including the still debated 4.2 ka climate event. Moreover, we expect our subfossil yew chronologies to facilitate the dating of local archaeological remains, refine sea-level reconstructions around the British Isles, and contribute to the international radiocarbon calibration curve IntCal.

A R T I C L E I N F O

Handling Editor: Donatella Magri

Keywords:
Dendrochronology
Forest dynamics
Mid-Holocene
Palaeoecology
Radiocarbon dating
Sea-level changes
Subfossil wood
Tree rings

1. Introduction

Tree-ring width (TRW) chronologies have provided annually resolved and absolutely dated information on temperature or hydroclimate variability over past centuries to millennia (Fritts, 1976). Although dendroclimatic evidence forms the backbone of high-resolution palaeoclimatology (Esper et al., 2016; Ljungqvist et al., 2020), the number of TRW chronologies that extend beyond medieval
times declines drastically (Biondi et al., 2023; Büntgen et al., 2022). Owing to a general decrease in the quality and quantity of relict (sub) fossil wood back in time (Tegel et al., 2022), there are currently only 17 published TRW chronologies worldwide that continuously cover the past 4000 years and were used for palaeoenvironmental interpretations (Table S1). From these 17 chronologies, 11 are based on dry-dead wood remains from mountainous environments: a 4154-year-long Huon pine chronology from Tasmania (Allen et al., 2014; Cook et al., 2000), a 5681-year-long Patagonian cypress chronology from Chile (Lara et al., 2020), two Qilian juniper chronologies of 4648 and 6691 years from the Tibetan Plateau (Yang et al., 2014, 2021), and seven bristlecone pine chronologies from Nevada and California, which vary between 4350 and 8683 years in length (Ferguson, 1969; Ferguson et al., 2002; Ferguson and Graybill, 1983; Graybill, 1996, 2002; Salzer, 2010; Salzer and Hughes, 2010a, 2010b). Over western Europe, TRW measurements of subfossil wood from peatbogs in Northern Ireland and England have produced a 7272-year-long Belfast oak chronology (Pilcher et al., 1984), and waterlogged Scots pine wood from lacustrine deposits have been used to develop two 7417 and 7639-year-long chronologies from Sweden (Grudd et al., 2002) and Finland (Helama et al., 2008), respectively. Alluvial deposits of large river systems provided sufficient wood for an 8768-year-long Siberian larch chronology from the Yamal Peninsula (Hantemirov et al., 2021), and a 10,085-year-long chronology was developed from subfossil stone pine, larch and spruce wood from high-elevation glacier forefields, lacustrine deposits, and peatbogs in the eastern Alps (Nicolussi et al., 2015). The world’s longest TRW chronology spans the past 12,460 years and was built from subfossil oak and pine wood collected in fluvial deposits across Germany (Friedrich et al., 2004). Further to these continuous TRW chronologies, subfossil wood remains from extensive peatlands in Sweden (Edvardsson et al., 2012a),

![Fig. 1. (A) Topographical map of the Fenland with piles of subfossil wood visited in 2020–2023. Circle sizes correspond with pile size, and colours indicate tree species. Pollen records shown as triangles (white if no Taxus pollen were identified, and orange otherwise), and marine index points used for sea-level reconstructions shown as blue squares, after Waller (1994). The A-B line indicates the position of the profile shown in Fig.6. (B) Topographical map of the United Kingdom with the approximate locations of mid-Holocene TRW chronologies (Baillie and Brown, 1988; Boswijk and Whitehouse, 2002). (C) Agricultural field in the Fenland. Note the dark holes, from which subfossil trunks were excavated in August 2022. (D) Pile of subfossil yew trunks at site W:F1, at north of Peterborough. Colours must be used in print.](image-url)
Denmark (Christensen, 2007), Germany (Ekclstein et al., 2009), Scotland (Moir, 2012), and England (Baillie and Brown, 1988) were essential for the development of TRW chronologies covering the fifth and fourth millennia before present (cf. Tegel et al., 2022 for a review on European dendroarchaeology and Edvardsson et al., 2016 for a review on peatbog dendrochronology).

The Fenland in eastern England is a peat-rich coastal lowland region that is circa 3 to 2 m above sea-level (m a.s.l.). This basin was formed during the Late Wolstonian glaciation ~180–150 kyr BP (Gibbard et al., 2021) and extends from Cambridge in the south to Lincoln in the north, and from Peterborough in the west to King’s Lynn in the east (Fig. 1). During the Last Glacial Maximum (LGM; ~23–19 kyr BP; Hughes and Gibbard, 2015) the ice-free Fenland was briefly submerged by a proglacial palaeo-lake that formed at the margin of a glacier (Gibbard et al., 2018; West, 1993). Until ~8.2 kyr BP, the Fenland basin was connected with the European mainland by a land area called Doggerland (Gales, 1998) and then subsequently separated due to a sudden release of fresh water (Hijma and Cohen, 2010) and the Storegga slide tsunami (Weninger et al., 2008) that flooded Doggerland (Sturt et al., 2013). The evolution of Fenland topography during the Holocene was determined by competing rates of eustatic sea-level rise and sediment accumulation (Shennan et al., 2009; Waller, 1994). Further topographic modification likely emerged from the counteracting effects of isostatic rebound and crustal subsidence (Gibbard et al., 2018; Shennan and Horton, 2002). As the sea-level of the North Sea rose with varying rates in response to meltwater influxes, the groundwater table in the Fenland similarly fluctuated (Shennan et al., 2006, 2018). When submerged, silt, clay, and peat were accumulating (Brew et al., 2015; Waller and Kirby, 2021). When the rate of sedimentation exceeded the rate of sea-level rise, the coastline advanced seawards. However, this process was not homogeneous across the Fenland as meandering rivers and tides affected the distribution of land and water (Waller, 1994). By the 17th century CE, the Fenland was composed of 20-m thick waterlogged peat deposits, which were subsequently drained for farming (Smith et al., 2010). Although facilitating agriculture, the intensive drainage accelerated peat loss (Hutchinson, 1980), and the massive peat layer shrunk to an average thickness of 1.5 m (Holman, 2009). Annual ploughing of fields together with wind erosion continue to degenerate the Fenland peat layer, and farmers frequently find subfossil tree trunks in their fields (Coles and Hall, 1997; Godwin, 1978; Miller and Skerchley, 1878; Waller, 1994). While most of the excavated subfossil wood in the Fenland has been described as ‘bog oaks’ by farmers and subsequently used for dendrochronological research (Brown and Baillie, 1992), other species, including yew, have not yet been collected and analysed systematically. Although yew wood has not received much attention in dendrochronological research (there are only 12 published yew chronologies worldwide), there are a few studies on living yew trees from southern England (Hindson and Moir, 2023; Moir, 1999, 2004, 2021), which outline the species’ dendrochronological potential.

Here, we present a collection of more than 400 subfossil yew trees from the Fenland basin in eastern England. We describe the morphological characteristics of our wood samples and discuss the environmental context in which the trees have been excavated. We use a combination of dendrochronological and radiocarbon dating to develop provisionally dated floating TRW chronologies. The new subfossil yew record is compared against independent proxy evidence of sea-level changes and pollen compositions. Finally, we place our findings in the context of putative climate trends and extremes in the mid-Holocene.

2. Data and methods

Following an extensive survey of Fenland farms, we identified 17 of them (labelled according to the geographical direction and farm name) with extensive piles of excavated subfossil wood (Fig. 1A). Nine farms are in the western (W: BF, EF, F1, F2, JF, LB, MF, RM, RF), four in the northern (N: BB, DF, DS, LF), three in the southern (S: GF, GS, RP), and one in the eastern (E: HL) Fenland. We identified the wood species by macroscopic and microscopic observations (Ruffinatto and Crivellaro, 2019). A distinct colour difference between heartwood and sapwood, a lack of resin canals, and helical thickening of axial tracheids refer to yew (Taxus baccata L.) (Schweingruber, 1978), whereas ring-porosity, large rays, and dendritic appearance of latewood vessels refer to oak (Quercus spp.). We collected 5 cm thick disc samples from 415 subfossil yew trees from 13 sites (Table 1). The well-preserved yew trunks are between two and eight metres long, and up to 60 cm thick in diameter (Figs. 1D and 2). With 90%, most of the trunks still contained a flat-root bowl, and circa 10% of the trunks exhibited well-defined layers of adventitious roots, which is a dendro-physiological indicator for sedimentation (Strunk, 1997), that spread horizontally with up to 30 cm between the layers (Fig. 2).

After visual inspection, short samples with less than 50 rings and decayed samples were excluded, and 223 discs were further prepared to a highly polished surface with up to 800-grit grain size sandpapers. TRW was measured at 0.001 mm precision using a Velmix™ measuring system and MeasureJ2X software (Voorhis and Krusic, 2006) along 2–5 straight radii, avoiding extreme widening and narrowing of the rings. TRW measurements were visually and statistically cross-dated in TSAPWin, CEndero, and COFECHA (Holmes, 1983; Rinn, 1996; Stokes, 1996). A new network-based (Phillips et al., 2015) visualisation technique was developed and applied to further facilitate cross-dating of our subfossil samples (Fig. S1). This method not only helps to detect trees that were growing simultaneously, but also highlights clusters of TRW series that cross-date well amongst themselves but fall into different time periods. Due to the irregular growth of yew (Thomas and Polwart, 2003), all TRW radii and all possible combinations of averaged TRW radii were considered independently for cross-dating. Furthermore, some TRW measurement series were trimmed in their beginning and/or at their end by up to 20% of their total lengths to further increase the common signal in the mean record. For chronology development, each tree was represented by an average of 1–5 TRW measurement series, detrended with a Friedman’s super smooth function set to alpha equals 5 using ARSTAN (Cook et al., 2017), and plotted with the dpdR package (Bunn, 2008) in R Studio. Floating yew TRW chronologies were compared with two absolutely dated oak and pine TRW chronologies from eastern England (Baillie and Brown, 1988; Boswijk and Whitehouse, 2002).

Radiocarbon (14C) dating was performed to provisionally date the dendro material (Pearson et al., 2022; Stuiver et al., 1998), and we therefore selected 50 yew discs that contained over 150 rings each, were not rotten or stained, exhibited relatively wide rings, and represented the spatial distribution of our sampling sites. All 14C measurements were performed by high precision ‘MiniCarbonDAtingSystem’ (MICADAS) 14C Accelerator Mass Spectrometers (AMS) in Mannheim (Germany) and Zurich (Switzerland). Since both AMS facilities require only 20 mg of organic material (Synal et al., 2007), we were able to process the cellulose from individual tree rings via the base-acid-base-acid method (Némc et al., 2010), followed by bleaching and graphitising (Wacker et al., 2010). Single tree rings from 38 discs were dated in Germany, and blocks of 10–30 rings from 12 discs were dated in Switzerland. In addition, 12 discs out of a total of 50 were sampled twice, once from near the centre of the discs and once from near the outer edge of the disc, with a known number of rings between, to improve final wiggle-matching (Brook Ramsey et al., 2001) against the Northern Hemisphere calibration curve IntCal09 (Reimer et al., 2009). A duplicate sample from one disc was sent to both laboratories for cross-validation. All 63 14C dates were statistically resolved in the OxCal v.4.4 software (Brook Ramsey, 1995, 2021).

The tree-ring data were compared with two other types of palaeoenvironmental proxy archives; Taxus pollen records from the Fenland (Waller, 1994), and marine index points used for the reconstruction of sea-level changes in the North Sea (Brew et al., 2000; Shennan et al., 2018; Waller, 1994) (Fig. 1). Since the published radiocarbon dates of
these records were originally calibrated using older radiocarbon calibration curves, causing issues for comparisons, we have recalibrated all 14C dates using the Bayesian models in OxCal v4.4.4 (Bronk Ramsey, 2009, 2021) and the IntCal20 calibration curve (Reimer et al., 2020). Following the protocols outlined in Lowe et al. (2019) and Lincoln et al. (2020) two types of the Bayesian models were employed, P_{Sequence} and U_{Sequence} models (Table S2), to remodel the previously published radiocarbon dates.

3. Results

All the yew samples from across the Fenland, except those from a southern site S:RP, represent specimens of mature woodlands. Most of our yew discs contain 150–250 rings. The youngest (at S:RP) and oldest (at W:LB) samples contain 44 and 408 rings, respectively (Fig. 3). The number of rings per trunk at S:RP ($n = 32$) ranges between 44 and 126, with a mean segment length (MSL) of 74. In contrast, sites in the western Fenland W:F1 ($n = 66$), W:F2 ($n = 20$), W:MF and W:LB ($n = 59$) only contain trees older than 70 years, and their MSLs range between 179 and 222 years. At every site, there are 1–4 individual trunks that exceed MSL by 2.5 standard deviations. The average growth rate (AGR) of the trees from the neighbouring sites (W:F1 and W:F2, and W:MF and W:LB) is equal, and overall AGR decreases from 0.84 in S:RP to 0.57 in W:LB (Fig. 3).

Radiocarbon dating helped anchor the material in time and revealed that yew was present in the Fenland between 5300 and 4000 years cal BP (Fig. 5A, Table S3). The temporal distribution of 14C dates is site-specific (Fig. 5A): the samples from W:LB ($n = 14$), W:MF ($n = 7$) and S:RP ($n = 4$) fall between 5200 and 4900 years cal BP, whereas samples from W:F1 ($n = 11$) and W:F2 ($n = 3$) cover the period 4500-4200 years cal BP, and only five samples, two of which are from E:HL, bridge the gap between 4900 and 4500 years cal BP. Most of the 14C samples fall on plateaux in the IntCal20 calibration curve (Fig. S2), resulting in dating uncertainties of ±10 to ±101 years, on average ±57 years. Wiggle-matching two samples from the same disc reduced the uncertainty to ±36 years on average. The reduction of temporal uncertainty was higher

Table 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Site</th>
<th>Coordinates N</th>
<th>Coordinates E</th>
<th>Oak trunks</th>
<th>Yew trunks</th>
<th>Collected yew trunks</th>
</tr>
</thead>
<tbody>
<tr>
<td>W:BF</td>
<td>Burges & Sons Farm</td>
<td>52.50452</td>
<td>−0.12783</td>
<td>0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>W:EF</td>
<td>Elm Farm</td>
<td>52.76364</td>
<td>−0.33066</td>
<td>20</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>W:F1</td>
<td>South Fen</td>
<td>52.78649</td>
<td>−0.31209</td>
<td>10</td>
<td>400</td>
<td>209</td>
</tr>
<tr>
<td>W:F2</td>
<td>South Fen</td>
<td>52.78649</td>
<td>−0.31209</td>
<td>0</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>W:JF</td>
<td>Johnatan’s Farm</td>
<td>52.46735</td>
<td>−0.1993</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W:LB</td>
<td>Leverton Brothers Farm</td>
<td>52.79597</td>
<td>−0.31916</td>
<td>0</td>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>W:MF</td>
<td>Mason Farm</td>
<td>52.77411</td>
<td>−0.34286</td>
<td>0</td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>W:RF</td>
<td>Ramsey Height Farm</td>
<td>52.45486</td>
<td>−0.14305</td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>W:RM</td>
<td>Ramsey Mike</td>
<td>52.46056</td>
<td>−0.17778</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N:BF</td>
<td>Bardsey Bridge</td>
<td>52.20792</td>
<td>−0.3419</td>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N:DF</td>
<td>Dyson Farming</td>
<td>53.1875</td>
<td>−0.33358</td>
<td>100</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>N:DS</td>
<td>Deaton & Sons</td>
<td>53.20575</td>
<td>−0.35542</td>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N:LF</td>
<td>Lock Farm</td>
<td>53.21667</td>
<td>−0.35315</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S:GF</td>
<td>Glover Farm</td>
<td>52.41774</td>
<td>0.433259</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>S:GS</td>
<td>G5 Fresh</td>
<td>52.3557</td>
<td>0.299665</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S:RP</td>
<td>Road pile</td>
<td>52.42444</td>
<td>0.431455</td>
<td>5</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>E:HL</td>
<td>Hamish Low</td>
<td>52.53647</td>
<td>0.457179</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 2. (A) Yew trunk exhibiting three layers of adventitious roots with ~10 cm in between. The blue plains highlight horizontal spreading of the roots. (B) Subfossil yew disc including cracks, originating from the pith, black stain along the cracks, compression wood near the centre, and epicormic buds (knots). (C) Tree rings of a yew disc with high number of locally absent rings. Note that counting the rings along the red radius R1 gives 42 rings between the dotted rings, while along the blue radius R2, there are 29 rings only.
when the number of rings (i.e. years) between the samples from an inner and an outer parts of a disc was large (Fig. S3), albeit it depends on the precision and configuration of the radiocarbon calibration curve. For example, a distance of 138 rings enabled us to reduce the uncertainty from ± 85 to ± 41 years, whereas a distance of 45 years improved the uncertainty from ± 47 to ± 38 years.

Two yew floating chronologies, SW and W for the south-western and western Fenland, respectively, were developed and anchored in time (Table 3, Figs. 4 and 5B). The SW chronology includes 32 trees from the sites W:F1, W:F2, W:LB, W:MF, and S:RP, has a mean inter-series correlation of 0.5 and spans 413 years. Six trees with a total of 9 14C dates place the SW chronology between 5225 and 4813 ± 4 years cal BP. The W chronology includes 36 trees from the sites W:F1 and W:F2, has a mean inter-series correlation of 0.51 and spans 418 years. Ten trees with a total of 13 14C dates place the W chronology between 4612 and 4195 ± 6 years cal BP. As a result, the chronologies cover a millennium with a temporal gap of 200 years between 4813 and 4612 years cal BP. The attempt to cross-date both floating yew chronologies against absolutely dated oak and pine chronologies remained statistically uncertain.

After recalibration of the 14C dates of non-dendrochronological palaeoenvironmental proxy archives resulted in high temporal uncertainties. After recalibration of the *Taxus baccata* pollen records, the uncertainties range between ± 41 and ± 751 years with an average of ± 154 years (Fig. 5C). In Fig. 5C, the duration of *Taxus* is shown as an orange line between the dating of the *Taxus* pollen found in a core, together with the uncertainties associated with these dates. The youngest pollen grains tend to have higher dating uncertainties due to a lack of carbonaceous material above them that was radiocarbon dated. Recalibration of the 14C dates of the Fenland marine index points resulted in a temporal uncertainty between ± 59 and ± 186 years with an average of ± 119 years. In Fig. 5D, the temporal uncertainty of each point is shown, and the overall trend of a sea-level rise, with short fluctuations, is highlighted.

Table 2

<table>
<thead>
<tr>
<th>Wood characteristics</th>
<th>Percentage of the discs exhibiting the feature (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star-shaped cracks</td>
<td>85</td>
</tr>
<tr>
<td>Compression wood at the juvenile stage only</td>
<td>10</td>
</tr>
<tr>
<td>Constant compression wood (oval-shape disc)</td>
<td>40</td>
</tr>
<tr>
<td>Epicormic buds</td>
<td>20</td>
</tr>
<tr>
<td>Local widening of the rings</td>
<td>35</td>
</tr>
<tr>
<td>Locally absent rings</td>
<td>≈ 60</td>
</tr>
</tbody>
</table>

Fig. 3.

Age distribution of the yew discs at five sites with the largest number of subfossil yew wood. Trees are grouped by sites and sorted by the number of rings exhibited on the discs. The scatter plots show the relation between segment length (SL, years) and average growth rate (AGR, mm) per site, after Esper et al. (2003).

4. Discussion

Despite the general high quality of subfossil yew wood, TRW measuring and cross-dating are complicated by the morphological characteristics of the discs and irregular pattern of yew ring formation (Table 2). Cracks with black-stained edges and epicormic buds obstruct the visibility of the rings. Locally extreme widening and narrowing of the rings results in high intra-annual variability of the ring widths. Hence, the inter-annual TRW variability is better captured when measuring TRWs along straight lines rather than along a meandering (or segmented) radius in order to avoid areas of narrow rings or decay. A large number of locally absent rings (up to 40 per disc) further complicates cross-dating.

The 14C dates play a vital role as they independently validate cross-dating results, ensuring that the cross-dated trees have grown simultaneously. Although IntCal20 resolution in the period of yew growth is 5–20 years (Reimer et al., 2020), wiggle-matching radiocarbon dates enabled placing the tree-ring data in time with sufficient precision to enable refinement of other palaeoenvironmental proxies and reconstruction of the climatic and environmental changes.
Our yew tree-ring data exhibit low inter-series correlations of 0.45–0.55 indicating that a potential climate signal, if present in the chronologies, is limited in strength. This is likely due to the yews not growing in an environment with pronounced temperature or hydroclimate limitations, which consequently limits our ability to infer from these chronologies climate changes at high resolution. However, our yew records do provide high-resolution dating of changes in the environment that affect tree growth rates, presence and absence, and shifts in preservation conditions.

Our tree-ring data reveal that the yew trees colonised the southern (S:RP) and western (W:LB, MF) parts of the Fenland at ~5250 years cal BP (Fig. 5A and B). This timing coincides with the earliest pollen evidence of Taxus in the Fenland (Fig. 5C), which was found at Peacock’s Farm (Waller, 1994) and dated to 5200 ± 100 years cal BP after recalibrating with IntCal20 (Reimer et al., 2020). Furthermore, the onset of the yew tree-ring data matches the hypothesis that yew expansion in England followed the elm decline after ~5300 years cal BP (Batchelor et al., 2020; Bennett, 1988; Mitchell, 1990; Parker et al., 2002; Peglar and Birks, 1993; Waller, 1994; Waller and Early, 2015). In the south, (S:RP) yew disappeared by ~5000 years cal BP, whereas in the western sites (W:LB, MF) yew formed climax pure woodlands with individual trees over 400 years old till ~4800 years cal BP. Between 4800 and 4600 years cal BP, little evidence of yew is derived only from the eastern (E:HL) part of the Fenland. These temporal yew declines at ~4700 years cal BP are also demarcated in the pollen records at Hobhole A, Lade Bank, Hobbs Lot March, and Ouse Hadenham (Waller, 1994) (Fig. 5C). The second period of abundant yew growth began around 4600 years cal BP. Yew trees colonised western (W:BF, F1, F2, RF) sites ~4550 years cal BP, and northern (N:BB, DF, DS) part of the Fenland was colonised ~4450 years cal BP. At all localities, yew disappeared around 4200 years cal BP. Such an abrupt shift in species abundance could be the result of either a decline of yew trees or changes in preservation conditions. In the pollen records (Waller, 1994), the decline of Taxus is not abrupt but spread out over time (Fig. 5C). However, we acknowledge there are issues with the dating resolution of these pollen records, many of which have used linear interpolation to extend their chronologies resulting in uncertainties of up to ±750 years. Irrespective of their dating uncertainties, these pollen records provide independent evidence for the yew disappearance in the Fenland.

The spatial distribution (Fig. 1A) and morphological characteristics (Table 2) of the subfossil yew wood indicate the conditions of yew growth, death and subsequent preservation (depicted in Fig. 6). All 17 sites with subfossil wood were located near the borders of the Fenland basin close to its surrounding upland, and no yew wood has been found in the central Fenland. This suggests that wood preservation was taking place along the edges of the basin, and possibly that yews and oaks were growing close to the source of freshwater and further from marine inundated areas. As sea-level of the North Sea rose, the areas close to the sea were submerged under salt water and the areas further inland were flooded with freshwater. Under prolonged fresh waterlogging, peat accumulated, and yews produced adventitious roots to reduce oxygen deprivation and improve the tree’s stability. Yew saplings survived on wet peat as around 10% of all yew samples exhibit extreme reaction wood near the pith, suggesting soil instability during juvenile growth. Despite these physiological adaptation mechanisms, even for peatbog trees, extreme water table heights can be a limiting factor (Eckstein et al., 2009; Edvardsson et al., 2012b; Leuschner et al., 2002; Sass-Klaassen and Hanraets, 2006; Turney et al., 2005). We therefore argue that yew experienced a temporal decline from ~4800 till ~4600 years cal BP as a result of a rising groundwater table that was a consequence of either general wetter climate conditions or the rise of relative sea-level (RSL). The latter would impact the basin directly in the north, and indirectly through the basin’s drainage system. The sudden disappearance of yew woodlands ~4200 years cal BP, after which the species did not recover in the Fenland till present times (or at least neither wood nor pollen was preserved), suggests that more severe damage was done. We propose that a rapid sea-level rise, resulting in marine inundation, contributed to the ultimate yew loss due to the species’ intolerance to salt water and salt aerosols (Thomas and Polwart, 2003). Shennan et al. (2018) date the largest extent of marine inundation to ~4500–4200 ± 120 years cal BP, when the entire Fenland basin was submerged. Recalibrated data of marine index reveal an increased rate of sea-level rise at 4250 ± 112 years cal BP and a consequent peak of RSL at 4200 ± 112 years cal BP.

The mid-Holocene yew decline has also been reported from pollen records across western coastal Europe. In Belgium, Deforce and
Bastiaens (2007) found yew declined around 3500 BP; whilst in England, Wheeler (1992) dates the species decline at 3600 BP, Batchelor et al. (2020) at 4000 and Bennett (1988) at 4200 BP. Moreover, sudden reductions in the population of dendrochronologically dated pines and oaks that also colonised peatlands, occurred between 4250 and 4120 calendar years BP in eastern England (Baillie and Brown, 1988), Ireland (Turney et al., 2005), the Netherlands (Leuschner et al., 2002), and Germany (Eckstein et al., 2010, 2011; Leuschner et al., 2000).

The yew decline in the Fenland coincides with the so-called “4.2ka-event” (Bond Event 3; Bond et al., 2001) (Fig. 5). This event is attributed to the abrupt global climate changes at 4200–3900 years BP (Walker et al., 2014). Despite the fact that the causes of this event remain unclear (Toth and Aronson, 2019), it has become adopted as the formally defined boundary between the Middle Holocene and Late Holocene Subseries (Walker et al., 2019). In the North Atlantic, Mayewski et al. (2004) found that westerly winds were exceptionally strong during 4.2 ka, and Sorrel et al. (2012) identified a period 4.2–4.0 ka BP as the Second Holocene storm period based on the data from the North Sea. Both strong westerlies, increasing humidity and high storms would intensify yew mortality primarily through rapid sea-level rise.

5. Conclusion

This study presents two 400-year-long subfossil yew TRW...
chronologies that span between 5225 and 4813 ± 4 and between 4612 and 4195 ± 6 years cal BP. Our study highlights the rapid expansion (~5200), temporal decline (~4700) and final disappearance (~4200) of Taxus in the Fenland, and sheds new light on the possible impact of the putative 4.2 ka climate event on NW Europe. Our new yew TRW chronologies can facilitate the dating of archaeological remnants and once absolutely dated, can be used for improving the resolution of the international radiocarbon calibration curve IntCal (Reimer et al., 2020). To enable climate interpretation and to critically assess if the disappearance of yew woodlands in eastern England was caused by marine inundation, annually resolved stable isotope analyses are needed. Our study also recognises the fragility of this proxy archive, which may vanish in the years to come once the subfossil material is exhumed and exposed to air.

Author contribution

Tatiana Bebchuk: Conceptualization, Methodology, Software, Formal analysis, fieldwork, TRW measurements, Visualisation, writing an original draft and editing it; Paul J. Krusic and Joshua H. Pike: Software, Formal analysis, fieldwork, editing final draft; Alma Piermattei: Formal analysis, fieldwork, editing final draft, Ronny Friedrich: radiocarbon dating; Lukas Wacker: radiocarbon dating; Alan Crivellaro, Tito Arosio and Alexander V. Kirdyanov: fieldwork, editing final draft; Philip Gibbard: Conceptualization, editing final draft; David Brown: Resources, editing final draft; Jan Esper and Frederick Reinig: editing final draft; Ulf Büntgen: Conceptualization, Methodology, fieldwork, writing an original draft and editing it, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.
Acknowledgements

TB was funded by the Hill Foundation Cambridge Trust. TA is supported by SNSF P500PN.210716. We would like to thank Hermione Wright for the assistance in measuring TRW, Victor Souza for the idea to use network principals in the cross-dating procedure, and Hamish Low and the various landowners who granted access to collect the tree-ring samples.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.quascirev.2023.108414.

References

