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Abstract
1.	 Human intervention often alters the availability of habitat for biodiversity. The 

conservation of biodiversity therefore requires an optimized habitat manage-
ment. In forests, dead wood represents one of the most important habitats and in 
boreal and temperate regions around 25% of forest species depend on it (= sap-
roxylic species). Increasing the amount of dead wood in managed forests has thus 
become a policy objective, but there is no consensus on how to best distribute 
dead wood in space.

2.	 In a landscape experiment, we exposed freshly cut beech branches in bundles of 
different sizes (one, three, six and 12 branches) in the forest, representing newly 
created habitat patches to be colonized by saproxylic beetles. We investigated 
how species richness in a ‘single large’ branch bundle compares to that in ‘sev-
eral small’ bundles (SLOSS debate). We further tested the effects of dead wood 
availability (amount and isolation) in the surrounding landscape (20–200 m) and 
environmental factors (temperature and light availability) on species richness, 
abundance and community composition.

3.	 The species richness of the pooled small bundles (1 + 3 + 6 = 10 branches) was as 
high as that of the large bundle (12 branches), despite having a smaller total sur-
face, demonstrating the benefit of spatially dispersed habitat patches for total di-
versity. Also community composition differed and every bundle size yielded some 
unique species. Dead wood availability in the surrounding landscape had a minor 
effect in comparison. Our results further highlight the importance of microsite 
heterogeneity: species richness was related to light availability, and abundance 
and community composition were related to temperature.

4.	 Synthesis and applications: Larger amounts of dead wood harbour more saproxylic 
beetle species and the distribution of dead wood in patches of different sizes 
within the forest can promote the development of variable species communities. 
Combined, this results in a higher species diversity. In managed forests, where 
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1  |  INTRODUC TION

Habitat loss is one of the main drivers of declines in biodiversity 
(Brooks et  al.,  2002; Díaz et  al.,  2019; Wilcove et  al.,  1998). This 
loss of overall habitat is also associated with an increased frag-
mentation of the remaining habitat into smaller and more isolated 
patches. The size and distribution of habitat patches in the landscape 
could affect biodiversity independent of the total habitat amount 
with implications for biodiversity conservation (Fahrig, 2003, 2017; 
Hanski,  2015; Villard & Metzger,  2014). Conservation measures 
targeting biodiversity attempt to achieve the optimal distribution 
of habitat through its preservation or creation, for example, for op-
timizing biodiversity in sustainable forestry or agriculture systems 
(Bouget & Parmain,  2016; Mason & Zapponi,  2016; Tscharntke 
et al., 2012). In practice however, it remains difficult to disentangle 
distribution, patch sizes and total amount of habitat, as they are fre-
quently intercorrelated (Fahrig, 2017).

For optimizing the spatial distribution of habitat, different theo-
ries and concepts explaining the relationship between biodiversity 
patterns and the availability of habitat in the landscape have been 
proposed. A central theory linking the distribution of habitats to bio-
diversity is the theory of island biogeography from MacArthur and 
Wilson (1967), which was later applied to conservation (Whittaker & 
Fernández-Palacios, 2007). It states that species richness on an is-
land results from colonization and extinction processes and depends 
on its size and isolation. Like islands, fragmented terrestrial ecosys-
tems can vary in size and levels of isolation (Fahrig, 2013; Tscharntke 
et  al.,  2012). Hence, applied to conservation, the theory of island 
biogeography raises the question whether a larger continuous hab-
itat patch should be prioritized over many smaller patches, for ex-
ample, for the establishment of protected areas (Diamond,  1975; 
Ovaskainen,  2002; Rösch et  al.,  2015; Tjørve,  2010; Tscharntke 
et al., 2012). In particular, the ‘Single Large Or Several Small’ (SLOSS) 
debate argued whether species richness of a single large habitat 
patch is higher than the species richness of several small accumulated 
patches (Diamond, 1975; Fahrig, 2020). Fahrig et al. (2022) propose 
mechanisms regarding extinction–colonization dynamics and beta 
diversity as driving forces. Empirical studies often show that when 
the same amount of habitat is compared, the accumulated smaller 
patches harbour more species than few larger ones (Fahrig, 2020; 
Rösch et al., 2015). This effect is often explained by a higher habitat 
heterogeneity of more patches, resulting in a higher species rich-
ness (Hutchinson, 1959; Rosenzweig & Abramsky, 1993). Comparing 
habitat patch sizes independent of heterogeneity to determine most 

efficient strategies to manage habitat distribution therefore requires 
controlling for ecological variation between patches, which might be 
best achieved through experiments.

In forest ecosystems, management for timber production dras-
tically alters the structure of forests and the availability of habitats 
therein (Müller et  al.,  2007). Forest management reduces quantity 
and quality of dead wood (Grove,  2002; Martikainen et  al.,  2000; 
Siitonen, 2001). Saproxylic species, which depend on dead wood, are 
among the most sensitive species groups affected by forestry (Brunet 
et al., 2010; Paillet et al., 2010), making them good indicators for en-
tire forest biodiversity (Lachat et  al.,  2012; Stokland et  al.,  2012). 
Fresh dead wood represents a new habitat patch to be colonized by 
species over time. An enhanced amount of dead wood increases spe-
cies richness, making it a critical key habitat for forest biodiversity 
(e.g. Bouget et al., 2012; Müller & Bütler, 2010). Seibold et al. (2017) 
further showed that local dead wood amount and dead wood in the 
surrounding landscape have independent positive effects on species 
richness. Yet, the mechanisms behind this increase in species richness 
go beyond the higher habitat and the thus increased resource avail-
ability. An increase in dead wood amount often leads to an increase 
in habitat heterogeneity and to better connectivity (Brin et al., 2009; 
Seibold et al., 2016). Conservation goals in (sustainable) forest man-
agement should thus require the enhancement of dead wood quan-
tities and an optimized distribution across the landscape (Imesch 
et al., 2015; MCPFE, 2003). While dispersal ability might not be a lim-
iting factor for many saproxylic species (Komonen & Müller, 2018), an 
even distribution to enhance connectivity of dead wood in the land-
scape can nevertheless be beneficial (Haeler et al., 2021).

Species communities in a habitat patch are influenced not only 
by habitat availability but also by environmental factors. Saproxylic 
species are known to be influenced by factors, such as tempera-
ture, light availability or moisture (Lachat et  al.,  2012; Siitonen 
et al., 2005; Sverdrup-Thygeson & Ims, 2002) and factors charac-
terizing the dead wood pieces, such as tree species, decay stage and 
diameter (e.g. Grove, 2002; Stokland et al., 2012). By controlling for 
certain variables, experimental settings allow for the reduction in 
interfering heterogeneity, which leads to a better understanding of 
specific patterns. The manipulation of dead wood in experiments is 
a common method for studying saproxylic species, especially sap-
roxylic beetles (see Seibold et al., 2015). Exposing dead wood to 
be colonized in an experimental setting and later reared in emer-
gence traps allows for directly linking the species communities to 
the habitat patch, something that cannot be reached as accurately 
with other common trapping methods, such as flight interception 

retained dead wood is often homogeneous in terms of size or tree species, in-
creasing heterogeneity by distributing dead wood in the forest could foster higher 
diversity of saproxylic species.

K E Y W O R D S
biodiversity, colonization, conservation, dead wood availability, forest management, habitat 
heterogeneity, saproxylic beetles, SLOSS
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traps (Gossner, Floren, et  al.,  2013; Müller et  al.,  2015; Seibold 
et  al.,  2018). By controlling quantity and quality of dead wood 
pieces exposed, it is possible to gain insights at the object level and 
to study the drivers of colonizing species.

Our study aims at understanding how the distribution of dead 
wood in the landscape affects the colonization of new habitat 
patches by saproxylic beetles. We used an experimental approach, 
where we assembled different sized branch bundles from freshly 
cut branches (European beech, Fagus sylvativa) to represent oth-
erwise homogeneous habitat patches. This allows us to focus on 
the effects of habitat patch size independent of habitat heteroge-
neity as a driving factor. The bundles were exposed for one sea-
son on forest plots situated along the two independent gradients 
of dead wood amount and isolation, describing dead wood avail-
ability in the surrounding landscape. Afterwards, branch bundles 
were reared in emergence traps. This experimental setting with 
standardized habitat patches allows us to answer the following 
questions:

1.	 Is species richness of saproxylic beetles higher or lower in a 
‘single large’ branch bundle or in ‘several small’ accumulated 
bundles?

2.	 What are the effects of dead wood availability in the landscape 
and environmental factors on saproxylic beetles?

3.	 Does community composition differ between branch bundles of 
different sizes?

2  |  MATERIAL S AND METHODS

2.1  |  Study area and experimental design

The study was conducted in the Sihlwald forest reserve in Switzerland 
(47°15′20″ N, 8°33′00″ E), a 1100 ha large forest not managed for 
20 years, dominated by European beech (Fagus sylvatica) and Norway 
spruce (Picea abies; Brändli et al., 2020; Brang et al., 2011). The forest 
covers an elevation range of 467–915 m a.s.l. and is mainly northeast-
exposed. To minimize heterogeneity besides variables describing 
dead wood availability in the landscape, we used a stratified random 
sampling to select 62 plots from a network of forest inventory plots 
in mature stands with at least 50% deciduous trees along two dead 
wood gradients: dead wood amount and isolation in a 40 m radius (for 
details on plot selection see Haeler et al., 2021).

To study the importance of the size of the habitat patch, 
we installed different sized bundles consisting of standardized 
branches to reduce heterogeneity on every plot. The branches 
were cut from freshly felled beech trees, and we made bundles of 
one, three, six and 12 branches (Figure 1). The branches had a di-
ameter between three and six centimetres and a length of 80 cm. 
The exact diameter of the branches was measured to compute 
the total surface of each bundle (mean surface of branch bundles: 
one = 1494 ± 133 cm2, three = 3417 ± 294 cm2, six = 6511 ± 474 cm2, 
twelve = 13,249 ± 721 cm2, Figure 2).

On all plots we selected four trees, one in each cardinal direction 
from the plot centre (north, east, south and west) and randomly as-
signed one bundle of the four different sizes to each tree. We prefer-
ably selected beech trees with similar diameter at breast height but 
if none was available other deciduous trees were used. The bundles 
were fixed at a height of 130 cm facing south. Finally, the distance 
between the branch bundles was 23.6 ± 6.8 m on average ranging 
from 7.7 to 47.3 m in extreme cases, caused by the absence of fitting 
trees or inaccessible terrain. The bundles stayed in the forest from 
December 2016 to February 2018, that is, for the growing season 
2017. The fieldwork and collection of beetles were granted by the 
Office for Landscape and Nature (‘Amt für Landschaft und Natur’, 
ALN) of the Canton Zurich (reference number: FNS 16248/tb/ht).

After retrieving the bundles from the forest, the branches were 
reared in ex situ emergence traps (Figure 1) for one season (2018). 
The emergence traps were PP tubes with a diameter of 20 cm. In the 
back, the tubes were closed with a thick black fabric. In the front, the 
tubes had a plastic lid with a collecting bottle, which contained 70% 
alcohol. The bundles were randomly assigned to the tubes, and the 
12-branch bundle was split between two traps next to each other 
both containing six branches.

All species were identified and later assigned whether they 
are saproxylic based on an extended version of a list compiled by 
Schmidl and Bußler  (2004). In addition to analysing the saproxylic 
beetles classified in this way (presented in the manuscript), we also 
repeated the analyses for all beetles as they still used the branch 
bundles as habitat (see Appendix S1 in the Supporting Information, 
Tables S4–S7 and Figures S9–S14).

2.2  |  Dead wood in the landscape and 
environmental variables

To account for dead wood availability in the landscape, we calculated 
dead wood amount and isolation in concentric circles of 20–200 m 
(10 m steps) around each branch bundle based on a dead wood map 
created from LiDAR-data and complemented by digitizing lying dead 
wood from stereoscopic aerial imagery (Table S1). We calculated dead 
wood amount as the summed length of all mapped dead wood pieces 
within the each radius (20–200 m). Isolation was calculated as the 
median distance from the branch bundle to these dead wood pieces 
within the respective radius. For more details, see Haeler et al. (2021).

Additionally, we used temperature and light availability as en-
vironmental variables because they directly influence the charac-
teristics of dead wood and thus the colonizing communities. As a 
temperature variable, we took high summer temperatures (mean 
from May, June and July) derived from hourly measurements at each 
plot with a HOBO Pendant® temperature data logger (UA-001-08; 
Onset Computer Corporation, Bourne, USA). Light availability for 
each branch bundle was calculated as the direct shortwave radiation 
(SWR) under maximum potential (i.e. cloud-free sky) from synthetic 
hemispherical images created from LiDAR data using the software 
Lidar2HemiEval (Webster et al., 2020).
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    |  319HAELER et al.

F I G U R E  1  Left + middle: The four different branch bundle sizes that were installed at each plot: one, three, six and 12 branches. Each 
bundle can be seen as one habitat patch. Right: Emergence traps consisting of closed PP tubes with an alcohol filled collecting bottle 
attached in the front.

F I G U R E  2  Left + middle: Boxplots for species richness and abundance (saproxylic species) for every branch bundle size (blue—one 
branch, dark green—three branches, light green—six branches and yellow—12 branches). Dark violet boxplots represent numbers for the 
pooled bundle with 10 branches (1 + 3 + 6 branches). The abundance plot was cut off at 1400 and is not showing one value with 2982 
individuals (12 branches). Right: Boxplots for total surface (in cm2) for every branch bundle size. Significant differences between groups were 
tested with an ANOVA and a post hoc Tukey's test (indicated by letters).
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2.3  |  Single Large Or Several Small

For the comparison between species richness and abundance in sev-
eral small bundles compared with one large bundle (12 branches), 
we combined the small bundles (one, three and six branches) of 
each plot to a ‘pooled bundle’ consisting of 10 branches. We tested 
whether species richness and abundance differed between several 
small bundles pooled together compared with one large bundle 
using an ANOVA and a post hoc Tukey's test.

Furthermore, we calculated cumulative species–area curves 
(Quinn & Harrison, 1988) once by adding branch bundles from the 
smallest to the largest (based on the surface of the bundles) and 
once by adding them from largest to smallest. This shows whether a 
certain accumulated surface harbours more species when composed 
of a few large bundles or of a higher number of smaller bundles.

2.4  |  Effects of dead wood in the landscape and 
environmental factors

For investigating the drivers of species richness and abundance in the 
branch bundles, we used generalized linear mixed models (GLMMs) 
with a Poisson distribution for species richness and a negative bino-
mial distribution for abundance (function glmmTMB from the package 
‘glmmTMB’, Brooks et al., 2022). We used plot number as a random 
effect to account for heterogeneity besides our focal explaining vari-
ables, which comprised the following: total surface of branch bundle 
(log-transformed), dead wood amount and isolation (in 20–200 m, 10 m 
steps), summer temperature and light availability. The models were 
calculated separately for each radius from 20 to 200 m in 10 m steps 
with the respective values for dead wood amount and isolation. See 
Appendix  S1 (Table  S1, Figures  S1–S5) for details on the variables, 
models and residual analyses, which were performed with the package 
‘DHARMa’ (Hartig, 2019). All statistical analyses were performed using 
R Version 4.1.1 (R Core Team, 2021). In the manuscript, we present 
the results for the 40 m radius with which the plot selection was done, 
results from all scales are reported in Appendix S1 (Tables S2 and S3).

2.5  |  Analysis of community composition

To assess whether community composition differed between branch 
bundles of different sizes, we used a principal coordinate analysis 
(PCoA) as an unconstrained ordination (function pcoa, package ‘ape’; 
Paradis et al., 2019). We calculated the Soerensen Index, which is 
based on presence–absence data, and the Bray–Curtis Index, which 
includes abundance data (beta.pair and beta.pair.abund, package 
‘betapart’; Baselga et al., 2017) to use with the PCoA. We further 
tested with distance-based redundancy analysis (dbRDA) (func-
tion capscale, package ‘vegan’; Oksanen et al., 2018) if differences 
in community composition are related to the surface of the branch 
bundle, dead wood amount and isolation (in a 40 m radius), tempera-
ture and light availability.

3  |  RESULTS

In total, we found 66 beetle species (23,511 individuals) of which 43 
were classified as saproxylic (20,873 individuals). This represents a 
small proportion of the overall species pool from the study site, as 
we found 775 species (327 saproxylic species) with flight intercep-
tion traps on the same plots (Haeler et al., 2021). The analyses for 
saproxylic species and all species yielded qualitatively similar results 
and we present the results considering saproxylic species here (see 
Appendix S1 for all species).

3.1  |  Single large or several Small

Species richness and abundance of saproxylic beetles generally in-
creased with branch bundle size, and we found 16 (one branch), 20 
(three branches), 28 (six branches) and 33 (12 branches) species. The 
pooled bundles of 10 branches (1 + 3 + 6 branches) showed the same 
total species richness (33 species) and a similar mean (mean = 4.7 ± 1.9) 
as the large bundle of 12 branches (mean = 5.3 ± 1.6), despite hav-
ing a significantly lower total surface (Figure 2). Ten branches had a 
mean surface of 11,419 ± 545 cm2 compared with 12 branches with 
a mean surface of 13,249 ± 721 cm2.

The comparison of the cumulative species–area curves adding the 
species from the smallest to the largest bundle and vice versa shows 
no continuous pattern between the curves (Figure 3). However, up 
until one-third of the cumulated surface the small-to-large curve 

F I G U R E  3  Cumulative number of saproxylic beetle species 
increases with cumulative surface of branch bundles. Change along 
x-axis: dotted line (blue to yellow)—adding branch bundles from 
small to large, solid line (yellow to blue)—adding branch bundles 
from large to small. Blue—one branch, dark green—three branches, 
light green—six branches, yellow—12 branches.
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(blue to yellow) is above the large-to-small curve (yellow to blue). 
Also the species accumulation curves for each branch bundle size 
show that bundles with one and three branches have a fast increase 
in species numbers, but they are expected to reach a plateau rela-
tively soon (Figures S7 and S8, left). While the species accumulation 
curve of the pooled bundle is only slightly above that of the bundle 
with 12 branches, it reaches a similar total species number with less 
branch surface (Figures S7 and S8, right).

3.2  |  Effects of dead wood in the landscape and 
environmental factors

Beside bundle surface as the main driver of species richness and 
abundance of saproxylic beetles, dead wood availability in the sur-
roundings played a minor role (Table 1, Tables S2 and S3). On scales 
up to 200 m, we found no relationship with dead wood amount, but 
isolation showed a negative relationship with abundance on several 
larger spatial scales (Table S3). Abundance was further positively re-
lated to temperature and species richness to light availability.

3.3  |  Community composition

Species communities of the smaller bundles (one and three 
branches) were not completely nested in those of larger bundles (six 
and 12 branches). The large branch bundles with 12 branches had 
the highest number of unique species (10 species) compared with 
the other branch bundle sizes, which had two (one branch), two 
(three branches) and four (six branches) unique species (Venn dia-
gram Figure S6). When combining the smaller branch bundles to the 
pooled bundle, 10 unique species were found, which did not occur 
in the large bundle. The principal coordinate analysis (PCoA) based 
on the Soerensen Index (presence–absence) revealed differences in 
community composition between the different branch bundle sizes 
(Figure 4, left). Branch bundles with one and three branches differed 
in their community composition compared with six and 12 branches, 

which did not differ from each other. This separation between one 
and three compared with six and 12 branches was highlighted by 
the PCoA based on Bray–Curtis dissimilarities, which includes abun-
dance data (Figure 4, right).

The capscale analysis revealed that differences in community 
composition were related to the surface of the branch bundles, 
but not to dead wood availability in the surroundings (Table  2). 
Differences in community composition were further related to 
temperature in analyses considering both presence–absence and 
abundances.

4  |  DISCUSSION

Using a landscape experiment, we manipulated the size of habitat 
patches for saproxylic beetles by exposing branch bundles for 1 year 
in the forest. By pooling the beetles sampled from the three small bun-
dles, we found the same species numbers compared with the largest 
bundle, even though the total bundle surface was smaller. This indi-
cates that compared with a ‘single large’ habitat patch, ‘several small’ 
ones have the potential to harbour a higher diversity (SLOSS debate, 
e.g. Diamond,  1975; Fahrig,  2020; Fahrig et  al.,  2022). Due to the 
standardization of the habitat patches in this study (i.e. the exposed 
dead wood), this suggests an important role of microsite heterogene-
ity introduced through their distribution in the landscape. While dead 
wood in the SLOSS debate can be assessed on larger spatial scales 
(Mason & Zapponi, 2016; Sverdrup-Thygeson et al., 2014) to address 
the distribution of forest reserves with higher dead wood amounts 
(Bouget & Parmain, 2016), their establishment might not be feasible in 
all cases. The retention of dead wood in managed forest, on the con-
trary, is a measure that can easily be implemented by forest owners/
managers. In the context of (sustainable) forest management, our find-
ings can thus help design conservation measures on how dead wood 
should best be distributed in the forest.

Concentrating on the distribution within the forest, our results 
show that the same dead wood surface consisting of many small bun-
dles rather than few large bundles can harbour more species (Figure 2). 

TA B L E  1  Results table of the glmer for species richness (left) and abundance (right) of saproxylic beetles. A grey background indicates 
variables with a p-value <0.05. Results for all scales are shown in Tables S2 and S3, results for all species are shown in Tables S4–S6.

Variable

Species richness (Poisson) Abundance (negative binomial)

Estimate SE z-value p-value Estimate SE z-value p-value

Conditional model

Log10(Surface of branch bundle) 1.981 0.131 15.134 <0.001 3.043 0.374 8.138 <0.001

Dead wood amount (40 m radius) −0.598 0.540 −1.107 0.268 −1.931 1.513 −1.276 0.202

Isolation (40 m radius) 0.072 0.040 1.790 0.074 0.099 0.126 0.784 0.433

Temperature −0.030 0.041 −0.723 0.470 0.335 0.168 1.989 0.047

Light availability 0.092 0.040 2.291 0.022 0.224 0.161 1.392 0.164

Log10(Surface of branch bundle) * Dead wood amount 0.161 0.139 1.154 0.248 0.558 0.390 1.431 0.153

Dispersion model

Log10(Surface of branch bundle) (fixed dispersion parameter) 1.957 0.364 5.372 <0.001
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Yet, this effect might diminish after a certain amount is reached 
(Figure 3). More saproxylic beetle species in combined smaller dead 
wood patches were explained by Seibold et al. (2016, 2017) through 
dead wood diversity regarding size and tree species, as habitat diver-
sity and species diversity are strongly correlated (Hutchinson, 1959; 
Rosenzweig & Abramsky, 1993; Tews et al., 2004). Our experiment 
was designed to focus on the quantity of habitat by minimizing its 
heterogeneity, which was achieved by creating the different sized 
bundles from single standardized fresh cut branches. Still, we ob-
served higher dissimilarities in community composition between 
small bundles compared with large ones (Figure 4), which could be ex-
plained by different environmental conditions across several smaller 
patches promoting habitat heterogeneity and consequently leading 
to more species (Fahrig, 2020; Rösch et al., 2015).

Microsite-heterogeneity is generally difficult to evaluate, but 
our results suggest it could play a key role in providing appropriate 
ecological conditions to different species. Especially, as small dif-
ferences in the environment (e.g. sun exposure or wind conditions) 

can lead to variable conditions between dead wood pieces (Seibold 
et al., 2016; Stokland et al., 2012; Vogel et al., 2020) and even within 
a single piece (Lettenmaier et al., 2022). In our results, this is partly 
reflected in the relationship between light availability and species 
richness and the relationships between temperature and abundance 
as well as community composition. The three smaller bundles further 
experienced a wider range of environmental conditions as they were 
spatially distributed (even though they were on average only 20 m 
apart), which was not the case for the large bundle. Additionally, spa-
tially distributed bundles might have a higher chance to be initially 
found by a wider range of species, which could stimulate two pro-
cesses affecting their colonization history. On one hand, colonized 
branch bundles might get unattractive for several other species due 
to competition for the resource and possibly caused by emitted 
pheromones (Brin & Bouget, 2018; Wende et al., 2017). On the other 
hand, initial species ‘prepare the way’ for associated beetles species, 
or species that depend on certain wood-decaying fungi, transmit-
ted by the first colonizers (Heilmann-Clausen & Christensen, 2004; 

F I G U R E  4  Results of PCoA for saproxylic beetle species. Left: presence–absence data (Soerensen). Right: abundance-data (Bray–
Curtis). Every point represents one branch bundle (blue—one branch, dark green—three branches, light green—six branches and yellow—12 
branches). The lines connect every bundle with the centroid of the respective branch bundle size.

Variable

Presence-absence 
(Soerensen)

Abundance 
(Bray–Curtis)

F-value p-value F-value p-value

Surface of branch bundle 6.669 0.001 5.393 0.001

Dead wood amount (40 m radius) 0.812 0.633 0.983 0.461

Isolation in (40 m radius) 0.798 0.668 0.811 0.680

Temperature 3.572 0.001 2.793 0.004

Light availability 1.243 0.242 0.870 0.595

TA B L E  2  Results from the capscale 
analyses showing the relationship 
between community composition 
of saproxylic beetles and explaining 
variables. A grey background indicates 
significance p < 0.05.
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Seibold et al., 2019). Populations in smaller habitat patches are also 
more susceptible to ecological drift (Gilbert & Levine, 2017; Riva & 
Fahrig, 2023). The importance of microsite-heterogeneity and col-
onization history hence increases over time as differences of the 
microhabitats get more pronounced during the development of the 
dead wood resulting in diverse species communities.

Compared with the impact of the size and the distribution of the 
branch bundles, the availability of dead wood in the surroundings 
up to 200 m played a minor role. We never found a relationship with 
dead wood amount, but on some larger scales, a negative relationship 
between abundance and isolation was observed. That this did not re-
flect on species richness might be explained by the fact that the ma-
jority of saproxylic beetles are perceived as good dispersers (Janssen 
et al., 2016; Komonen & Müller, 2018; Ranius, 2006). Especially, dead 
wood is a dynamic habitat scattered across the landscape and saprox-
ylic species constantly have to look for new suitable habitat that meets 
their ecological requirements (Jonsson et al., 2005). Furthermore, the 
first decay stages last shorter than later stages as the chemistry in the 
decaying wood changes quickly at the beginning (Stokland et al., 2012), 
leading to a high mobility of early colonizers. The results of the forest 
inventory show that the largest share of the overall volume of dead 
wood can be found in early decay stages. This is not surprising as the 
Sihlwald was managed intensively until a few decades ago. Still, the 
higher variability regarding tree species and decay stages (i.e. partly 
different habitats compared with the fresh branches used in this ex-
periment) is not fully included in the variables calculated from the dead 
wood map. This, and that mainly the mobile early colonizers were at-
tracted by the branch bundles, possibly explains the missing relation-
ship of species richness with dead wood in the landscape. For species 
with lower dispersal abilities than early colonizers (e.g., certain red-
list-species) habitat availability in the direct surroundings might be of 
higher importance (Brunet & Isacsson, 2009; Ranius & Fahrig, 2006).

5  |  CONCLUSIONS

Our study, which based on data from a semi-controlled landscape ex-
periment, demonstrates that a higher dead wood surface leads to an 
increase of species richness. However, in forest management, where 
enhancing dead wood availability is desirable, the question remains: 
When a certain amount of dead wood is available, how should it best 
be distributed in the landscape? The heterogeneity of (developing) 
habitats and species communities appears to be higher in several dis-
tributed small patches than in a single large patch, even if the ‘starting 
point’ was dead wood of the same dimensions and same tree species. 
It is important to emphasize that we did not compare several dead 
wood pieces with a small diameter to one piece with a large diam-
eter, which can harbour very different species communities and can-
not be replaced by cumulated dead wood of small diameters (Brin & 
Bouget, 2011; Grove, 2002; Heilmann-Clausen & Christensen, 2004). 
Large dead wood is an important habitat for saproxylic communities, 
but hardly available in managed forests (Gossner, Lachat, et al., 2013; 
Grove,  2002; Siitonen et  al.,  2000) and heterogeneity should be 

increased by providing dead wood of all diameter classes. Yet, dead 
wood remaining after logging activities is often quite homogeneous 
regarding both species and diameter. Ensuring that these logging resi-
dues are spread over the landscape in different-sized and -composed 
patches and are not kept in one place increases habitat heterogene-
ity. This is probably caused by small differences in environmental 
conditions (e.g. sun exposure, temperature) and/or various coloniza-
tion histories, supporting the development of a more diverse species 
community. A spread out distribution of dead wood further leads to 
a higher habitat connectivity, which had been shown to be impor-
tant for different saproxylic species groups (e.g. Haeler et al., 2021). 
Nevertheless, the spatial distribution cannot make up for low dead 
wood amounts and should mainly be considered as an additional sup-
porting measure alongside dead wood enrichment.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Residual plots for species richness-model (saproxylic 
species) from the plot.DHARMa() function. Left: QQ-plot to detect 
overall deviations from the expected distribution. Right: plot of the 
residuals against the predicted value.
Figure S2. Result from function testDispersion() comparing the 
dispersion of simulated residuals to observed residuals.
Figure S3. Residual plots for abundance-model (saproxylic species) 
from the plot.DHARMa() function. Left: QQ-plot to detect overall 
deviations from the expected distribution. Right: plot of the residuals 
against the predicted value.
Figure S4. Residual plots for species richness-model (all species) 
from the plot.DHARMa() function. Left: QQ-plot to detect overall 
deviations from the expected distribution. Right: plot of the residuals 
against the predicted value.
Figure S5. Residual plots for abundance-model (all species) from the 
plot.DHARMa() function. Left: QQ-plot to detect overall deviations 
from the expected distribution. Right: plot of the residuals against 
the predicted value.
Figure S6. Venn diagram of branch bundle sizes, showing numbers of 
shared and exclusive species (saproxylic species).
Figure S7. Species accumulation curves for saproxylic species 
(solid lines) along the cumulated dead wood surface of the bundles 
for each branch bundle size. Left: blue = 1 branch, dark green = 3 
branches, light green = 6 branches, yellow = 12 branches. Right: dark 

violet = 10 branches (pooled bundle), yellow = 12 branches. Points 
represent the actually found species number of each bundle size. 
Dashed lines show predictions from function iNext how the species 
numbers could develop by adding more branches/surface.
Figure S8. Same accumulation curves as Figure S7 but including 
confidence intervals (95%) from the predictions calculated with the 
function iNext. Species accumulation curves for saproxylic species 
(solid lines) along the cumulated dead wood surface of the bundles 
for each branch bundle size. Left: blue = 1 branch, dark green = 3 
branches, light green = 6 branches, yellow = 12 branches. Right: dark 
violet = 10 branches (pooled bundle), yellow = 12 branches. Points 
represent the actually found species number of each bundle size. 
Dashed lines show predictions from function iNext how the species 
numbers could develop by adding more branches/surface.
Figure S9. Left + middle: Boxplots for species richness and abundance 
(all species) for every branch bundle size (blue = one branch, dark 
green = three branches, light green = six branches and yellow = twelve 
branches). Dark violet boxplots represent numbers for the pooled 
bundle with ten branches (1 + 3 + 6 branches). The abundance plot was 
cut off at 1400 and is not showing one value with 2987 individuals 
(twelve branches). Right: Boxplots for total surface (in cm2) for every 
branch bundle size. Significant differences between groups were 
tested with an ANOVA and a post-hoc Tukey-test (indicated by letters).
Figure S10. Cumulative number of all beetle species increases 
with cumulative surface. Change along x-axis: dotted line (blue to 
yellow) = adding branch bundles from small to large, solid line (yellow 
to blue) = adding branch bundles from large to small. Blue = one 
branch, dark green = three branches, light green = six branches, 
yellow = twelve branches.
Figure S11. Venn diagram of branch bundle sizes, showing numbers 
of shared and exclusive species (all species).
Figure S12. Results of PCoA for all beetle species. Left: presence-
absence data (Soerensen). Right: abundance-data (Bray–Curtis). 
Every point represents one branch bundle (blue = one branch, dark 
green = three branches, light green = six branches and yellow = twelve 
branches). The lines connect every bundle with the centroid of the 
respective branch bundle size.
Figure S13. Species accumulation curves for all species (solid lines) 
along the cumulated dead wood surface of the bundles for each 
branch bundle size. Left: blue = 1 branch, dark green = 3 branches, 
light green = 6 branches, yellow = 12 branches. Right: dark violet = 10 
branches (pooled bundle), yellow = 12 branches. Points represent 
the actually found species number of each bundle size. Dashed lines 
show predictions from function iNext how the species numbers 
could develop by adding more branches/surface.
Figure S14. Same accumulation curves as Figure S13 but including 
confidence intervals (95%) from the predictions calculated with 
the function iNext. Species accumulation curves for all species 
(solid lines) along the cumulated dead wood surface of the bundles 
for each branch bundle size Left: blue = 1 branch, dark green = 3 
branches, light green = 6 branches, yellow = 12 branches. Right: dark 
violet = 10 branches (pooled bundle), yellow = 12 branches. Points 
represent the actually found species number of each bundle size. 
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Dashed lines show predictions from function iNext how the species 
numbers could develop by adding more branches/surface.
Table S1. Description of the variables used in the models.
Table S2. Result table for saproxylic species of the glmer for species 
richness on scales from 20 to 200 m. A grey background indicates 
variables with a p-value < 0.05. Results for all species are shown in 
Table S5.
Table  S3. Result table for saproxylic species of the glmer for 
abundance on scales from 20 to 200 m. A grey background indicates 
variables with a p-value < 0.05. Results for all species are shown in 
Table S6.
Table S4. Result table for all species of the glmer for species richness 
(left) and abundance (right). A grey background indicates variables 
with a p-value < 0.05.
Table S5. Result table for all species of the glmer for species richness 
on scales from 20 to 200 m. A grey background indicates variables 
with a p-value < 0.05.

Table S6. Result table for all species of the glmer for abundance on 
scales from 20 to 200 m. A grey background indicates variables with 
a p-value < 0.05.
Table  S7. Results from the capscale analyses showing the 
relationship between community composition and explaining 
variables for all beetles. A grey background indicates significance 
p < 0.05.
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