
Forest Ecosystems 11 (2024) 100166
Contents lists available at ScienceDirect

Forest Ecosystems

journal homepage: www.keaipublishing.com/cn/journals/forest-ecosystems
The interaction between temperature and precipitation on the potential
distribution range of Betula ermanii in the alpine treeline ecotone on the
Changbai Mountain

Yu Cong a, Yongfeng Gu a,b, Wen J. Wang a, Lei Wang a, Zhenshan Xue a, Yingyi Chen a,
Yinghua Jin b,*, Jiawei Xu a, Mai-He Li d,e,b, Hong S. He c, Ming Jiang a

a Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
b Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal
University, Changchun 130024, China
c School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
d Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
e School of Life Science, Hebei University, Baoding 071000, China
A R T I C L E I N F O

Keywords:
Biomod2
Birch
Climate change
Climate scenarios
Habitat suitability
Range shift
Treeline species
* Corresponding author.
E-mail address: jinyh796@nenu.edu.cn (Y. Jin).

https://doi.org/10.1016/j.fecs.2024.100166
Received 20 July 2023; Received in revised form 5
2197-5620/© 2024 The Authors. Publishing service
license (http://creativecommons.org/licenses/by-nc
A B S T R A C T

Alpine treeline ecotones are highly sensitive to climate warming. The low temperature-determined alpine treeline
is expected to shift upwards in response to global warming. However, little is known about how temperature
interacts with other important factors to influence the distribution range of tree species within and beyond the
alpine treeline ecotone. Hence, we used a GF-2 satellite image, along with bioclimatic and topographic variables,
to develop an ensemble suitable habitat model based on the species distribution modeling algorithms in Biomod2.
We investigated the distribution of suitable habitats for B. ermanii under three climate change scenarios (i.e., low
(SSP126), moderate (SSP370) and extreme (SSP585) future emission trajectories) between two consecutive time
periods (i.e., current–2055, and 2055–2085). By 2055, the potential distribution range of B. ermanii will expand
under all three climate scenarios. The medium and high suitable areas will decline under SSP370 and SSP585
scenarios from 2055 to 2085. Moreover, under the three climate scenarios, the uppermost altitudes of low suitable
habitat will rise to 2,329 m a.s.l., while the altitudes of medium and high suitable habitats will fall to 2,201 and
2,051 m a.s.l. by 2085, respectively. Warming promotes the expansion of B. ermanii distribution range in
Changbai Mountain, and this expansion will be modified by precipitation as climate warming continues. This
interaction between temperature and precipitation plays a significant role in shaping the potential distribution
range of B. ermanii in the alpine treeline ecotone. This study reveals the link between environmental factors,
habitat distribution, and species distribution in the alpine treeline ecotone, providing valuable insights into the
impacts of climate change on high-elevation vegetation, and contributing to mountain biodiversity conservation
and sustainable development.
1. Introduction

Climate change has had particularly severe consequences, leading to
the loss of hundreds of native plant species (IPCC, 2022). Recent climate
changes in mountainous regions have been more pronounced than in
lowlands (Pepin et al., 2022). Alpine treeline ecotones are known to be
particularly vulnerable and sensitive to climate warming (K€orner, 2012).
Numerous studies have observed that distributions of tree species in
alpine treeline ecotones have shifted towards higher altitudes under
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climate change (Chhetri and Thai, 2019; Danby and Hik, 2007; Liang
et al., 2016; Du et al., 2018; Arekhi et al., 2018). However, stable or
downward shifts of the alpine treeline have also been found in some
regions (Xu et al., 2020; Chhetri and Cairns, 2015; Kullman, 2007). The
distribution shifts of alpine treeline species have important implications
for species existence and ecosystem service in mountains under global
climate change.

The distribution of plant species in alpine treeline ecotone is sensitive
to climate changes, particularly increasing temperatures, which has a
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significant impact on the ecological structure and function of treeline
ecotones (Wang et al., 2019). Temperature is widely recognized as the
dominant driver of plant species density (Mi et al., 2022; Deng et al.,
2023) and treeline plant species upward shift (Shi et al., 2022). Warming
has improved tree growth, leading to the expansion of treeline species
into the adjacent tundra ecosystem (Kruse et al., 2023). For example, the
alpine treeline in Taurus Mountains moved approximately 22–45 m up-
wards in response to climate warming from 1970 to 2013 (Arekhi et al.,
2018). Furthermore, precipitation may also have an impact on the dis-
tribution of tree species in treeline ecotone (Hansson et al., 2023). Sigdel
et al. (2018) observed that the alpine treelines in the Himalayas shifted
upwards in response to climate warming, but the shift rates appeared to
be mediated by spring precipitation. Recent studies also found that the
growth of birch (Betula utilis) and alpine dwarf shrub Cassiope fastigiate in
the Himalayas has been persistently limited by precipitation at their
upper limits (Liang et al., 2014, 2015).

In addition to temperature and precipitation, local environmental
conditions such as topography and soils also affect the distribution of tree
species in the alpine treeline ecotone (Case and Duncan, 2014; Camarero
et al., 2017). For example, topography is an important factor affecting the
distribution of alpine plant species (Carmel and Kadmon, 1999). Previous
study showed that the rate of plant encroachment in alpine tundra of the
Changbai Mountain was higher at lower altitudes than at higher altitudes
(Wu et al., 2018). The plant communities in the forest-tundra ecotone
were found to vary with aspect and slope (Dearborn and Danby, 2017),
and the number of tree seedlings at Subarctic alpine treelines varied with
aspect (Kambo and Danby, 2018).

Previous studies have used a variety of methods to investigate treeline
shift in response to climate change, including field plot surveys (Kambo
and Danby, 2018), seedling recruitment (Frei et al., 2018), dendroeco-
logical techniques (Du et al., 2018), and remote sensing images (Chhetri
and Thai, 2019; Zong et al., 2014). For example, Du et al. (2018) used
state-of-the-art dendroecological approach to reconstruct long-term
changes in the alpine treeline on Changbai Mountain, and found that
the treeline species, Betula ermanii Cham., shifted upwards with climate
warming. Zong et al. (2014) used RS and GIS to identify the tree locations
and developed a logistic regression model using topographical variables
to determine the main controls on tree locations. They found that aspect,
wetness, and slope were the primary factors affecting tree locations on
the west-facing slope of Changbai Mountain.

Modeling approach provides a valuable method for projecting future
treeline dynamics and treeline movements (Tiwari et al., 2023). Species
distribution models (SDMs) are commonly used statistical models that
predict potential species distribution by integrating empirical data on
species occurrences or abundance with data on relevant environmental
factors (Anderson, 2017). Most previous studies have employed SDMs to
model the potential distribution of species in response to climate change
(Banerjee et al., 2019; Ahmad et al., 2020). However, few studies have
investigated the effects of topographic changes on model predictions.
The MaxEnt model combining bioclimatic and topographic variables
predicts a decrease in the distribution of Taiwania cryptomerioides in
China (Zhao et al., 2020), and a northward and westward shift of Hal-
oxylon in Central Asia with global warming (Li et al., 2019). It is widely
recognized that Biomod2 model is more reliable than using a single
model to predict species distribution (Thuiller et al., 2009; Breiner et al.,
2015). Biomod2 has been extensively applied to quantify geographical
patterns of species distribution under future climates, providing valuable
insights for future conservation efforts (Ren et al., 2016; Zhao et al.,
2021; Ray et al., 2021).

Those methods mentioned above, although with different focuses, are
all considered to be effective in analyzing fine- and large-scale move-
ments of treelines, but they have limitations in detecting temporal vari-
ations in treeline movements (Norberg et al., 2019). Therefore, it is
essential to select the most appropriate approach or model for a given
study (Beaumont et al., 2016). Globally, the temperature-sensitive alpine
treeline (Paulsen and K€orner, 2014) has already shifted upwards with
2

past warming and will continue to shift upwards beyond its current po-
sition with current warming (Parmesan and Yohe, 2003; Li et al., 2006;
Harsch et al., 2009; Liang et al., 2011, 2016; Wielgolaski et al., 2017; Du
et al., 2018, 2021). To better understand the link between climate change
and distribution range expansion of trees in the alpine ecotone, we
studied the potential distribution of the treeline species B. ermanii in the
treeline ecotone under three climate change scenarios in Changbai
Mountain. We used a GF-2 satellite image, along with bioclimatic and
topographic variables, to develop an ensemble suitable habitat model
based on the species distribution modeling algorithms in Biomod2. We
hypothesize that: (i) the expansion and upward shift of B. ermanii in
Changbai Mountain are caused by air warming rather than other envi-
ronmental factors, and (ii) the effect of warming on those movements
(i.e., distribution expansion and upward shift) will be influenced by
regional precipitation patterns.

2. Materials and methods

2.1. Study area

The Changbai Mountain (41�4104900 to 42�2501800 N and 127�4205500

to 128�1604800 E) is a dormant volcano located in the northeastern China
at the border to North Korea (Du et al., 2018). The prevailing climate is
temperate continental, with annual precipitation ranging from 800 to 1,
800mm, and the annual mean growing season (lateMay–late September)
temperature from�7.3 to 4.9 �C (Du et al., 2018). There are four vertical
spectra of vegetation zones including mixed Korean pine broad-leaved
forests distributed from 740 to 1,100 m a.s.l., mountain coniferous for-
ests from 1,100 to 1,700 m a.s.l., deciduous broad-leaved B. ermanii
forests from 1,700 to 1,950 m a.s.l., and alpine tundra above 2,000 m
a.s.l. (Yu et al., 2014; Jin et al., 2021). B. ermanii is the dominant tree
species at the treeline ranging from 2,000 to 2,030 m a.s.l., where trees
with a height of >3 m and canopy cover of >20% (Cong et al., 2022; Du
et al., 2018). The distribution of B. ermanii is scattered above 2,030m and
can reach up to 2,200 m a.s.l. (Cong et al., 2018). The study area
(41�530–42�040 N, 127�570�128�130 E) is located in the B. ermanii forests
and tundra above 1,700 m a.s.l. Excluding Tianchi area in Changbai
Mountain, with a total area of 383.17 km2 (Fig. 1), which provided the
opportunity to study the spatial distribution of B. ermanii trees.

2.2. Species occurrences

The occurrence data of B. ermanii trees in Changbai Mountain was
obtained from a GF-2 satellite image with high resolution (0.8 m). The
cloud-free image was acquired at the leaf senescence period (September
23, 2017). The GF-2 satellite data were preprocessed with radiance
calibration, atmospheric correction, and image focus the ENVI5.3 (Jia
et al., 2019). The B. ermanii distribution was obtained in study area using
combined object-oriented classification and visual interpretation (Şerban
et al., 2021). The B. ermanii distribution space was divided in 50 m � 50
m grid cells and randomly create one occurrence per grid cell to reduce
sampling bias (Liu et al., 2019; Naudiyal et al., 2021). This procedure was
repeated 5 times to generate 5 presence datasets. With the ArcGIS 10.2
(ESRI, Redlands, CA, USA), a sighting point map was developed.

2.3. Environmental data

We initially selected 24 environmental factors that may influence the
distribution of B. ermanii to model the current species distribution pat-
terns. These included 19 bioclimatic variables describing current
(1979–2017) derived from monthly precipitation and monthly daily
maximum, minimum and mean temperatures from CHELSA (https://chel
sa-climate.org) with 30 arc sec spatial resolution (Karger et al., 2017) and
5 topographic attributes such as elevation, slope, aspect, topographic
wetness index (TWI) and topographic relief (TR) derived from high res-
olution digital elevation model (DEM) with ArcGIS 10.2 (Table 1). The
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Fig. 1. Geographical location of the study area in the northeastern China at the border to North Korea and altitude distribution, CMNR represents the Changbai
Mountain Nature Reserve.
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DEM was derived from the PRISM (panchromatic remote-sensing in-
strument for stereo mapping) sensor attached to the ALOS (advanced
land observing satellite). It had a spatial resolution of 5 m with a hori-
zontal and vertical accuracy of 5 m. Future scenarios were downscaled
GCMs (global climate model) data of 2055 (average for 2041–2070) and
2085 (average for 2071–2100) from CMIP6 under the shared socioeco-
nomic pathways (SSPs) SSP126, SSP370, SSP585 scenarios released by
IPCC Accessment Report 6 (AR6). These environmental parameters were
all preprocessed to a general spatial resolution of 50 m lat-
itude/longitude. The high resolution DEM was aggregated from 5 m to a
coarser resolution of 50 m and the monthly precipitation was resampled
to 50 m. The monthly daily maximum, minimum and mean temperatures
were downscaled to 50 m by multiple linear regression (MLR) (Kosto-
poulou et al., 2007) with elevation, slope, aspect.

In order to remove variables of high redundancy, we used Pearson's
correlation to examine the cross-correlation and removed highly corre-
lated variables (r > |0.90|). Out of 24 variables, only 8 were selected as
evaluator variables (Table 1). The temperature and precipitation change
rate (TPR) between two consecutive time periods was calculated by the
following equation:
Table 1
Environmental variables used for Biomod2 in this study.

Variables Description Unit

Bio05 Max temperature of warmest month �C
Bio18 Precipitation of warmest quarter mm
Bio19 Precipitation of coldest quarter mm
Aspect Direction normal to the slope projected onto the horizontal plane –

Elevation Height above sea level m
Slope Relative degree of steepness �

TWI
Topographic wetness index ln

� α
tan β

�
(Beven and Kirkby, 1979)

–

TR Topographic relief MaxRegional altitude �MinRegional altitude (Niu and
Harris, 1996)

–
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TPR%¼
Tgsti �Tgst0

Tgst0
� Pgsti

�Pgst0
Pgst0 � 100%
Tgsti �Tgst0

Tgst0

where Tgs is the growing-season temperature (�C), Pgs is the growing-
season precipitation (mm), ti and t0 respesent the future time period
and current climatic conditions, respectively.

In the future, it would be projected that the change rates of growing-
season temperature (Tgs) would be greater than the change rates of
growing-season precipitation (Pgs) between two consecutive time periods
(i.e., current–2055, and 2055–2085) under three climate scenarios
(Fig. 6g–l). From the current to 2055, the variations in the rate of tem-
perature and precipitation changes under SSP126 was larger than those
under SSP370 and SSP585 (Fig. 6g–i). However, under the 2085 sce-
nario, the variations in the rate of temperature and precipitation changes
appeared to increase with the future increasing greenhouse gas emissions
scenarios than compared to 2055 scenario (Fig. 6j–l).
2.4. Species distribution models

To take into account the strengths and weaknesses of individual
models, it may be safer to use an ensemble model (Shabani et al., 2016).
The current and future habitat suitability of B. ermanii was predicted
using the “biomod2” platform (Thuiller et al., 2009) in R (R Core Team,
2016) based on ten models belonging to different classes adopted: three
regression models (generalized linear model, GLM; multivariate adaptive
regression splines, MARS; and generalized additive models, GAM), five
machine-learning models (artificial neural network, ANN; maximum
entropy, MaxEnt; random forest, RF; and generalized boosting model,
GBM; classification tree analysis, CTA), one classification model (flexible
discriminant analysis, FDA) and a range envelope (surface range enve-
lope, SRE).

We randomly selected 5,000 pseudo-absences and the process
repeated five times. The models were trained using pseudo-absences
falling from 100 to 1,000 m away from the presence to improve model
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performance (Mainali et al., 2015). For each model, 80% data were used
for calibrating model and the remaining 20% for validating the model
(Liu et al., 2019). The performance of each model was evaluated through
repeated 10 times data-splitting approach. The relative operating char-
acteristic (ROC) (Lusted, 1984) and the true skill statistic (TSS) (Allouche
et al., 2006) were used to calibrate and validate the robustness of eval-
uation for the models. The output values for ROC or TSS closer to 1
represent better models performance in prediction (Zhong et al., 2022).
We retained these models with the following requirements: The TSS
>0.65 (Alabia et al., 2016), ROC >0.75 (Rathore et al., 2019) and de-
viation comparing the B. ermanii distribution of current predicted and the
B. ermanii distribution of current observed. We derived the averaged
predictions of these models weighted by their TSS scores.
Table 2
The performances (Mean � SD) of ten species distribution models (SDM) for
Betula ermanii. Relative operating characteristic (ROC) and true skill statistic
(TSS) values are given.

SDM ROC � SD TSS � SD

GLM 0.911 � 0.008 0.637 � 0.019
GBM 0.946 ± 0.007 0.747 ± 0.027
GAM 0.918 � 0.008 0.659 � 0.029
CTA 0.908 ± 0.008 0.760 ± 0.030
ANN 0.793 � 0.091 0.510 � 0.129
SRE 0.722 � 0.014 0.444 � 0.029
FDA 0.858 � 0.053 0.568 � 0.109
MARS 0.918 � 0.008 0.663 � 0.026
RF 0.973 ± 0.005 0.840 ± 0.023
MaxEnt 0.921 ± 0.009 0.667 ± 0.029

Notes: generalized linear model (GLM), generalized boosting model (GBM),
generalized additive models (GAM), classification tree analysis (CTA), artificial
neural network (ANN), surface range envelope (SRE), flexible discriminant
analysis (FDA), multivariate adaptive regression splines (MARS), random forest
(RF), maximum entropy (MaxEnt).
2.5. Data analysis

We used Biomod2 with eight variables and extracted occurrence data
of B. ermanii in 2017 to project tree species distribution in 2055 and 2085
under SSP126, SSP370 and SSP585 scenarios. The model output results
were categorized into three classes representing habitat suitability: low
(25%–50%), medium (50%–75%) and high (>75%) probability of
occurrence. Values below 25% were excluded as we indicated habitats
that were deemed non-suitable habitat based on the logistic threshold
(Chakraborty et al., 2016). To quantify the contributions of different
variables in determining the distribution of B. ermanii, we used random
forest model to obtain the relative importance. We analysed effects of
time and climate change on changes in tree species distribution and their
maximum altitudes. We calculated the relative differences in the distri-
bution of B. ermanii between the current climate scenario and climate
change scenarios during two consecutive time periods: current–2055 and
2055–2085. We also calculated the variations in the rate of temperature
and precipitation changes between two consecutive time periods.

3. Results

3.1. Model validation

The current potential distribution of B. ermanii in the study area was
found to be 130.22 km2, almost twice the size of the observed distribu-
tion (Fig. 2a–c). However, the distribution of medium and high suitable
habitats more closely matched the current observed distribution of
B. ermanii in Changbai Mountain (Fig. 2a and b). Among the three suit-
able habitats, the proportion of low suitable habitat area in our study area
was the highest at 17.43%, followed by high suitable habitat (8.70%) and
Fig. 2. Relative importance of environment variables for the distribution of Betula
derived from the random forest model.
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medium suitable habitat (7.85%) (Fig. 2c).
The performance of ten species distribution model (SDM) algorithms

for predicting the potential distribution of B. ermanii under current
climate conditions showed significant differences, as determined by the
Kruskal-Wallis H test (p < 0.001) (Table 2). Among these models,
machine-learning models including GBM, RF, CTA, and MaxEnt,
demonstrated higher accuracy in modeling the suitable habitat of
B. ermanii, with ROC mean scores ranging from 0.90 to 0.95 and TSS
mean scores between 0.66 and 0.84. Notably, the potential distribution
of B. ermanii predicted by these four models under current climate con-
ditions closely matched the current observed distribution of B. ermanii
(Fig. S1). Therefore, we utilized the Biomod2 platform with the GBM,
CTA, RF, and MaxEnt modeling methods to simulate B. ermanii
distribution.

3.2. Importance of variables

Our analysis revealed that bioclimatic predictors had a greater impact
on B. ermanii distribution compared to topographic variables (Fig. 3).
Specifically, precipitation of the warmest quarter (Bio18, 27.96%), pre-
cipitation of the coldest quarter (Bio19, 17.40%), and maximum tem-
perature of the warmest month (Bio05, 12.45%) made the greatest
contributions to the distribution model for B. ermanii relative to other
variables. These variables accounted for a significant proportion of the
ermanii in Changbai Mountain. The importance is based on the sum of weight



Fig. 3. Current observed (a) and current predicted (b) distribution for B. ermanii
in Changbai Mountain, current observed areas and predicted suitable areas (c)
for B. ermanii are categorized divided into low, medium, and high suitable
habitats. The percentages represent the proportion of each suitable habitat area
in the study area (the area above 1,700 m a.s.l. In Changbai Mountain excluding
Tianchi area, with a total area of 383.17 km2).
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model, with cumulative contributions reaching as high as 62.4%. How-
ever, the contribution of topographic variables to the distribution of
B. ermanii was relatively limited. Elevation and aspect were the most
significant factors, together accounting for 22.3% of the variation in
B. ermanii distribution among the topographic variables. In contrast,
topographic relief, slope and topographic wetness index played minor
roles contributing less than 10%.
Fig. 4. Future species distribution of B. ermanii under climate change scenarios SSP
represent the proportion of each suitable habitat area (low, medium, and high) in t
SSP585 in 2055 (d) and 2085 (h).
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3.3. Changes in future potential distributions

It was observed that all three suitable habitat areas would increase
under future climate scenarios in both 2055 and 2085 compared with the
current scenario (Fig. 4a–h). Moreover, the potential distribution per-
centage of B. ermanii in 2055 increased by 30%, 35%, 9%, respectively,
under the three climate scenarios (SSP126, SSP370, SSP585) (Fig. 4d).
Compared with the two future periods, by 2085, the distribution of
B. ermanii in both medium and high suitable areas expanded under
SSP126 scenario, but these areas showed a trend of retreat under the
SSP370 and SSP585 scenarios (Fig. 4d and h). Both time periods and
scenarios, and their interaction had significant effects on the maximum
altitudes of B. ermanii distribution (Fig. 5a–c). Moreover, the maximum
altitudes varied significantly with time periods and classes (habitat
suitability) and their interaction (Table 3). Among three scenarios, the
maximum altitudes of three suitable habitats under SSP370 were highest
except for the high suitable habitat in 2085 (Fig. 5a–c). Furthermore, the
maximum altitudes of three suitable habitats under SSP585 scenarios in
both 2055 and 2085 would decrease significantly compared to the
SSP126 scenarios (Fig. 5a–c). In future, the maximum altitudes for suit-
able habitats are expected to range between 2,245 and 2,388 m for low
suitable habitat, 2,133 and 2,366 m for medium suitable habitat and
2,013 and 2,236 m for high suitable habitat, respectively (Fig. 5a–c).
Additionally, the maximum altitudes of low suitable habitats in 2085
would be higher than in 2055 under three future scenarios (Fig. 5a), but
the opposite patterns were observed for the maximum altitudes of me-
dium and high suitable habitats (Fig. 5c).

Compared to the current scenario, the occurrence probability of
B. ermanii would significantly increase at high altitudes under SSP126
and SSP370-2055 climate scenarios, but decreased on the north and
south sides of the Changbai Mountain under SSP585-2055 climate sce-
nario (Fig. 6a–c). Conversely, under the 2085 scenario, the increased
habitats were at low elevations, but large amounts of habitats decreased
under three climate scenarios compared to 2055 (Fig. 6d–f). Addition-
ally, the regions where the probability of B. ermanii occurrence were
126, SSP370 and SSP585 in 2055 (a, b, c) and 2085 (e, f, g). The percentages
he study area under current and climate change scenarios SSP126, SSP370 and



Fig. 5. Maximum altitudes (Mean � SD) of B. ermanii distribution under current and climate change scenarios SSP126, SSP370 and SSP 585 in low (a), medium (b),
and high (c) suitable habitats in 2055 and 2085, respectively. Different lowercase letters indicate significant differences (p < 0.05) among current and climate change
scenarios SSP126, SSP370 and SSP585, as determined by Tukey's HSD test. **indicates significant differences (p < 0.01) of time periods, scenarios, and their in-
teractions on the maximum altitude of B. ermanii, tested with two-way nested ANOVA.

Table 3
Effects of time periods, classes (habitat suitability), and their interactions on the
maximum altitude of B. ermanii, tested with two-way nested ANOVA. F and p
values are given.

Factors Df Maximum altitude

F p

Time periods 1 255.94 ＜0.001
Classes 2 6,975.19 ＜0.001
Time periods � Classes 2 267.04 ＜0.001
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expected to decrease mainly located in non-suitable and low suitable
habitats.

4. Discussion

Our results showed significant differences in the performance of ten
SDMs algorithms for potential distribution of B. ermanii under current
climate conditions. This was consistent with Iverson and McKenzie's
(2013) findings that, although climate modeling played an important
role in understanding the impacts of climate change on plants, the per-
formance of different climate models varied significantly, as noted by
Cheaib et al. (2012). Moreover, we found that the machine-learning
models (i.e., GBM, RF, CTA and MaxEnt) were the best individual
models with higher ROC and TSS values, which was consistent with
previous researches (An et al., 2018; Garris et al., 2015; Morera et al.,
2021; Valavi et al., 2022). Therefore, we utilized the Biomod2 platform
with these four models to predict the potential distribution of B. ermanii.
Our model indicated that the current predicted distribution of B. ermanii
was primarily aggregated on the northern and western slopes of the
Changbai Mountain (Fig. 2a and b), which corresponded to the observed
reality, but appeared larger than the current observed (Fig. 2c). The
medium and high suitable habitats, however, aligned with the observed
distribution, thus we considered these as the most suitable for B. ermanii.

Overall, the model results showed that the possibility of B. ermanii
distribution increased under low and medium greenhouse gas emissions
scenarios (SSP126, SSP370), but decreased significantly under the high
greenhouse gas emissions scenario (SSP585) (Fig. 4a–h). This finding
consisted with the previous study by Hu et al. (2015) who found that the
Platycladus orientalis distribution would increase under RCP2.6 but
appeared to decrease under RCP8.5. Additionally, the maximum alti-
tudes of medium and high suitable habitats for B. ermanii in the current
scenario were 2,072 and 2,020 m, respectively, which was in agreement
6

with the reported upper elevational limit of B. ermanii's in Changbai
Mountain (Du et al., 2018). However, slight upward shifts in the
maximum altitudes of B. ermanii had been observed in both medium and
high suitable habitats under three future climate scenarios except for
SSP585-2085 compared with the current scenario (Fig. 5a–c). This trend
was consistent with previous study (Du et al., 2018), which indicated that
an upward shift in the upper limits of B. ermanii in response to recent
warming. Furthermore, previous research affirmed that the timberline of
B. ermanii is located at about 2,200 m on the northern slope of Changbai
Mountain from 1400 a B.P. to 920 a B.P. (Guo et al., 2012). This supports
that B. ermanii in Changbai Mountain will continue to shift upward with
future warming.

Temperature is an important driving factor for increasing tree growth
and recruitment in recent decades. Warming can improve the plant
physiology and ecophysiology, thereby facilitating tree recruitment.
Numerous studies have shown that species' spatial distributions
expanded to high altitudes significantly in response to climate warming
(Chen et al., 2011; Li et al., 2019; Sun et al., 2020). For example, recent
warming had driven the upward migration of B. ermanii in Changbai
Mountain (Du et al., 2018). Similarly, the occurrence probabilities of six
allelopathic flowering plants from North America increased under
climate change scenarios (Wang et al., 2022). Thus, temperature is a key
factor limiting tree growth, especially for alpine treeline tree species
(Liang et al., 2016; Gou et al., 2012). However, previous studies showed
that the suitable habitat areas would slightly decrease with climate
warming, indicating that continuous rise in temperature could may even
have a negative impact on plant growth (Hu et al., 2015; Naudiyal et al.,
2021). Consistently, our predictions showed that the occurrence proba-
bilities of B. ermanii tended to increase in the majority of the study area
under three climate scenarios by 2055 compared to current scenario
(Fig. 6a–c), but may decrease under future climate scenarios from 2055
to 2085 (Fig. 6d–f). Our analysis also revealed that an increase in tem-
perature will result in more suitable habitats (Fig. 6g–i). However, a
decline in suitable habitats can be attributed to an inadequate increase in
precipitation compared to rising temperatures (Fig. 6j–l).

Warmer temperatures at treeline ecotones could potentially result in a
deficit of soil moisture due to elevated evapotranspiration (Trujillo et al.,
2012). Our study's findings indicated that precipitation and temperature
were the key factors in the spatial distribution of B. ermanii (Fig. 3).
Furthermore, the occurrence probability of B. ermanii reduction
increased with decreasing precipitation (Fig. S2), aligning with obser-
vations by Reich et al. (2018), who found that positive effects of climate
warming on tree growth in southern boreal forests may become negative
when transitioning from rainy to modestly dry periods during the



Fig. 6. Dynamics changes in the distribution of B. ermanii between the current and climate change scenarios SSP126, SSP370 and SSP585 between two consecutive
time periods: 2055–current (a, b, c) and 2085–2055 (d, e, f). Variations in the rate of temperature and precipitation changes between two consecutive time periods:
2055–current (g, h, i) and 2085–2055 (j, k, l). Color gradients represent the variables broken into their respective percentile classes for the magnitude of the
distributional and environmental changes between scenarios. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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growing season. Another study showed that radial growth of Erman's
birch was significantly affected by precipitation in Changbai Mountain
(Yu et al., 2007). Similarly, water deficits in August reduced growth of
tree species of an altitudinal ecotone on Mount Norikura, central Japan,
regardless of their upper or lower distribution limits (Takahashi et al.,
2003). In contrast, Wang et al. (2018) found B. ermanii populations were
more sensitive to air temperature variations than to changes in precipi-
tation. These suggest that long-term tree species distribution was pri-
marily constrained by temperature, highlighting the need to consider the
influence of precipitation when assessing the impacts of climate warming
on tree species distribution.
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A number of other factors not considered in this study may contribute
to uncertainty in our projections. We only simulated the effects of climate
change and topographic variables on the future distribution of treeline
trees. We identified temperature and precipitation as the primary cli-
matic factors affecting tree species, without considering nitrogen depo-
sition and CO2 fertilization, which can also significantly impact tree
species distributions. In addition, the climate variables were initially at a
spatial resolution of 1 km, however, they have been downscaled to 50 m
and validated with growing season temperature between 2015 and 2017
from Wang et al. (2019), achieving an RMSE of 0.94 and an R2 of 0.90.
Coarser climate resolution data (i.e., 30 arc sec ~1 km) has been applied
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in previous studies to well predict future vegetation distribution at
regional scales (Guo et al., 2018; Queir�os et al., 2020). Moreover, it has
been suggested that, at regional scales, the use of coarse spatial resolution
data in SDMs can enhance models accuracy and preserve details (Pineda
and Lobo, 2012). Despite such limitation, there are good reasons to
believe that our approach effectively assesses how climate change and
topographic variables interact to affect tree species distributions. Bimod2
has been shown in previous studies to well capture forest distribution and
stand dynamics (Ren et al., 2016; Chakraborty et al., 2021; Queir�os et al.,
2020).

5. Conclusion

This study reveals the link between environmental factors including
temperature and precipitation, habitat distribution, and species distri-
bution in the alpine treeline ecotone. Consistent with our 1st hypothesis,
we find that climate warming promotes the expansion and upward shift
of the distribution B. ermanii in the alpine ecotone of the Changbai
Mountain, but these warming effects are influenced by precipitation,
which is consistent with our 2nd hypothesis. Such climate change-
induced expansion of the distribution range of treeline trees will inevi-
tably lead to changes in species composition, community structure and
biodiversity, and further affect ecosystem service within and beyond the
alpine treeline ecotone on high mountains. Therefore, the present study
provides valuable insights into the impacts of climate change on high-
mountain vegetation, contributing to mountain biodiversity conserva-
tion and sustainable development.
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