
1 

The interaction between temperature and precipitation on the potential 1 

distribution range of Betula ermanii in the alpine treeline ecotone on the Changbai 2 

Mountain 3 

Yu Cong1, Yongfeng Gu1,2, Wen J. Wang1, Lei Wang1, Zhenshan Xue1, Yingyi Chen1, 4 

Yinghua Jin2*, Jiawei Xu1, Mai-He Li4,5,2, Hong S. He3, Ming Jiang1 5 

6 

1Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 7 

Changchun 130102, China 8 

2Key Laboratory of Geographical Processes and Ecological Security in Changbai 9 

Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal 10 

University, Changchun 130024, China 11 

3School of Natural Resources, University of Missouri, Columbia, MO 65211, USA 12 

4 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 13 

Birmensdorf, Switzerland 14 

5 School of Life Science, Hebei University, Baoding 071000, China 15 

16 

Correspondence to: Dr. Yinghua Jin 17 

E-mail: jinyh796@nenu.edu.cn18 

Jo
urn

al 
Pre-

pro
of

This document is the accepted manuscript version of the following article: 
Cong, Y., Gu, Y., Wang, W. J., Wang, L., Xue, Z., Chen, Y., … Jiang, M. (2024). 
The interaction between temperature and precipitation on the potential 
distribution range of Betula ermanii in the alpine treeline ecotone on the 
Changbai mountain. Forest Ecosystems, 100166.
https://doi.org/10.1016/j.fecs.2024.100166

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



2 
 

Abstract 19 

Alpine treeline ecotones are highly sensitive to climate warming. The low temperature-20 

determined alpine treeline is expected to shift upwards in response to global warming. 21 

However, little is known about how temperature interacts with other important factors 22 

to influence the distribution range of tree species within and beyond the alpine treeline 23 

ecotone. Hence, we used a GF-2 satellite image, along with bioclimatic and topographic 24 

variables, to develop an ensemble suitable habitat model based on the species 25 

distribution modeling algorithms in Biomod2. We investigated the distribution of 26 

suitable habitats for B. ermanii under three climate change scenarios (i.e., low (SSP126), 27 

moderate (SSP370) and extreme (SSP585) future emission trajectories) between two 28 

consecutive time periods (i.e., current–2055, and 2055–2085). By 2055, the potential 29 

distribution range of B. ermanii will expand under all three climate scenarios. The 30 

medium and high suitable areas will decline under SSP370 and SSP585 scenarios from 31 

2055 to 2085. Moreover, under the three climate scenarios, the uppermost altitudes of 32 

low suitable habitat will rise to 2,329 m a.s.l., while the altitudes of medium and high 33 

suitable habitats will fall to 2,201 and 2,051 m a.s.l. by 2085, respectively. Warming 34 

promotes the expansion of B. ermanii distribution range on the Changbai Mountain, 35 

and this expansion will be modified by precipitation as climate warming continues. This 36 

interaction between temperature and precipitation plays a significant role in shaping the 37 

potential distribution range of B. ermanii in the alpine treeline ecotone. This study 38 

reveals the link between environmental factors, habitat distribution, and species 39 

distribution in the alpine treeline ecotone, providing valuable insights into the impacts 40 
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of climate change on high-elevation vegetation, and contributing to mountain 41 

biodiversity conservation and sustainable development. 42 

 43 

Keywords: Biomod2, birch, climate change, climate scenarios, habitat suitability, 44 

range shift, treeline species 45 
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1. Introduction 46 

Climate change has had particularly severe consequences, leading to the loss of 47 

hundreds of native plant species (IPCC, 2022). Recent climate changes in mountainous 48 

regions have been more pronounced than in lowlands (Pepin et al., 2022). Alpine 49 

treeline ecotones are known to be particularly vulnerable and sensitive to climate 50 

warming (Körner, 2012). Numerous studies have observed that distributions of tree 51 

species in alpine treeline ecotones have shifted towards higher altitudes under climate 52 

change (Chhetri and Thai, 2019; Danby and Hik, 2007; Liang et al., 2016; Du et al., 53 

2018; Arekhi et al., 2018). However, stable or downward shifts of the alpine treeline 54 

have also been found in some regions (Xu et al., 2020; Chhetri and Cairns, 2015; 55 

Kullman, 2007). The distribution shifts of alpine treeline species have important 56 

implications for species existence and ecosystem service in mountains under global 57 

climate change. 58 

The distribution of plant species in alpine treeline ecotone is sensitive to climate 59 

changes, particularly increasing temperatures, which has a significant impact on the 60 

ecological structure and function of treeline ecotones (Wang et al., 2019). Temperature 61 

is widely recognized as the dominant driver of plant species density (Mi et al., 2022; 62 

Deng et al., 2023) and treeline upward shift (Shi et al., 2022). Warming has improved 63 

tree growth, leading to the expansion of treeline species into the adjacent tundra 64 

ecosystem (Kruse et al., 2023). For example, the alpine treeline in Taurus Mountains 65 

moved approximately 22–45 m upwards in response to climate warming from 1970 to 66 

2013 (Arekhi et al., 2018). Furthermore, precipitation may also have an impact on the 67 
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distribution of tree species in treeline ecotone (Hansson et al., 2023). Sigdel et al. (2018) 68 

observed that the alpine treelines in the Himalayas shifted upwards in response to 69 

climate warming, but the shift rates appeared to be mediated by spring precipitation. 70 

Recent studies also found that the growth of birch (Betula utilis) and alpine dwarf shrub 71 

Cassiope fastigiate in the Himalayas has been persistently limited by precipitation at 72 

their upper limits (Liang et al., 2014, 2015).  73 

In addition to temperature and precipitation, local environmental conditions such as 74 

topography and soils also affect the distribution of tree species in the alpine treeline 75 

ecotone (Case and Duncan, 2014; Camarero et al., 2017). For example, topography is 76 

an important factor affecting the distribution of alpine plant species (Carmel and 77 

Kadmon, 1999). Previous study showed that the rate of plant encroachment in alpine 78 

tundra of the Changbai Mountains was higher at lower altitudes than at higher altitudes 79 

(Wu et al., 2018). The plant communities in the forest-tundra ecotone were found to 80 

vary with aspect and slope (Dearborn and Danby, 2017), and the number of tree 81 

seedlings at Subarctic alpine treelines varied with aspect (Kambo and Danby, 2018). 82 

Previous studies have used a variety of methods to investigate treeline shift in 83 

response to climate change, including field plot surveys (Kambo and Danby, 2018), 84 

seedling recruitment (Frei et al., 2018), dendroecological techniques (Du et al., 2018), 85 

and remote sensing images (Chhetri and Thai, 2019; Zong et al., 2014). For example, 86 

Du et al. (2018) used state-of-the-art dendroecological approach to reconstruct long-87 

term changes in the alpine treeline on Changbai Mountain, and found that the treeline 88 

species, Betula ermanii Cham., shifted upwards with climate warming. Zong et al. 89 
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(2014) used RS and GIS to identify the tree locations and developed a logistic 90 

regression model using topographical variables to determine the main controls on tree 91 

locations. They found that aspect, wetness, and slope were the primary factors affecting 92 

tree locations on the west-facing slope of Changbai Mountain.  93 

Modeling approach provides a valuable method for projecting future treeline 94 

dynamics and treeline movements (Tiwari et al., 2023). Species distribution models 95 

(SDMs) are commonly used statistical models that predict potential species distribution 96 

by integrating empirical data on species occurrences or abundance with data on relevant 97 

environmental factors (Anderson, 2017). Most previous studies have employed SDMs 98 

to model the potential distribution of species in response to climate change (Banerjee 99 

et al., 2019; Ahmad et al., 2020). However, few studies have investigated the effects of 100 

topographic changes on model predictions. The Maxent model combining bioclimatic 101 

and topographic variables predicts a decrease in the distribution of Taiwania 102 

cryptomerioides in China (Zhao et al., 2020), and a northward and westward shift of 103 

Haloxylon in Central Asia with global warming (Li et al., 2019). It is widely recognized 104 

that Biomod2 model is more reliable than using a single model to predict species 105 

distribution (Thuiller et al., 2009; Breiner et al., 2015). Biomod2 has been extensively 106 

applied to quantify geographical patterns of species distribution under future climates, 107 

providing valuable insights for future conservation efforts (Ren et al., 2016; Zhao et al., 108 

2021; Ray et al., 2021).  109 

Those methods mentioned above, although with different focuses, are all considered 110 

to be effective in analyzing fine- and large-scale movements of treelines, but they have 111 
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limitations in detecting temporal variations in treeline movements (Norberg et al., 2019). 112 

Therefore, it is essential to select the most appropriate approach or model for a given 113 

study (Beaumont et al., 2016). Globally, the temperature-sensitive alpine treeline 114 

(Paulsen and Körner, 2014) has already shifted upwards with past warming and will 115 

continue to shift upwards beyond its current position with current warming (Parmesan 116 

and Yohe, 2003; Li et al., 2006; Harsch et al., 2009; Liang et al., 2011, 2016; 117 

Wielgolaski et al., 2017; Du et al. 2018, 2021). To better understand the link between 118 

climate change and distribution range expansion of trees in the alpine ecotone, 119 

we studied the potential distribution of the treeline species B. ermanii in the treeline 120 

ecotone under three climate change scenarios on Changbai Mountain. We used a GF-2 121 

satellite image, along with bioclimatic and topographic variables, to develop an 122 

ensemble suitable habitat model based on the species distribution modeling algorithms 123 

in Biomod2. We hypothesize that: (ⅰ) the expansion and upward shift of B. ermanii on 124 

the Changbai Mountain are caused by air warming rather than other environmental 125 

factors, and (ⅱ) the effect of warming on those movements (i.e. distribution expansion 126 

and upward shift) will be influenced by regional precipitation patterns. 127 

 128 

2. Materials and methods 129 

2.1 Study area  130 

The Changbai Mountains (41°41′49″ to 42°25′18″N and 127°42′55″ to 128°16′48″E) 131 

is a dormant volcano located in the northeastern China at the border to North Korea (Du 132 

et al. 2018). The prevailing climate is temperate continental, with annual precipitation 133 
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ranging from 800 to 1,800 mm, and the annual mean growing season (late May–late 134 

September) temperature from –7.3 to 4.9 ℃ (Du et al., 2018). There are four vertical 135 

spectra of vegetation zones including mixed Korean pine broad-leaved forests 136 

distributed from 740 to 1,100 m a.s.l., mountain coniferous forests from 1,100 to1,700 137 

m a.s.l., deciduous broad-leaved B. ermanii forests from 1,700 to 1,950 m a.s.l., and 138 

alpine tundra above 2,000 m a.s.l. (Yu et al., 2014; Jin et al., 2021). B. ermanii is the 139 

dominant tree species at the treeline ranging from 2,000 to 2,030 m a.s.l., where trees 140 

with a height of >3 m and canopy cover of >20% (Cong et al., 2022; Du et al., 2018). 141 

The distribution of B. ermanii is scattered above 2,030 m and can reach up to 2,200 m 142 

a.s.l. (Cong et al., 2018). The study area (41°53'N–42°04'N, 127º57'E–128º13'E) is 143 

located in the B. ermanii forests and tundra above 1,700 m a.s.l. excluding Tianchi at 144 

the Changbai Mountains, with a total area of 383.17 km2 (Fig. 1), which provided the 145 

opportunity to study the spatial distribution of B. ermanii trees. 146 

 147 

2.2 Species occurrences 148 

The occurrence data of B. ermanii trees at the Changbai Mountains was obtained from 149 

a GF-2 satellite image with high resolution (0.8 m). The cloud-free image was acquired 150 

at the leaf senescence period (23th September 2017). The GF-2 satellite data were 151 

preprocessed with radiance calibration, atmospheric correction, and image focus the 152 

ENVI5.3 (Jia et al., 2019). The B. ermanii distribution was obtained in study area using 153 

combined object-oriented classification and visual interpretation (Șerban et al., 2021). 154 

The B. ermanii distribution space was divided in 50 m × 50 m grid cells and randomly 155 
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create one occurrence per grid cell to reduce sampling bias (Liu et al., 2019; Naudiyal 156 

et al., 2021). This procedure was repeated 5 times to generate 5 presence datasets. With 157 

the ArcGIS 10.2 (ESRI, Redlands, CA, USA), a sighting point map was developed. 158 

 159 

2.3 Environmental data 160 

We initially selected 24 environmental factors that may influence the distribution of B. 161 

ermanii to model the current species distribution patterns. These included 19 162 

bioclimatic variables describing current (1979–2017) derived from monthly 163 

precipitation and monthly daily maximum, minimum and mean temperatures from 164 

CHELSA (https://chelsa-climate.org) with 30s spatial resolution (Karger et al., 2017) 165 

and 5 topographic attributes such as elevation, slope, aspect, topographic wetness index 166 

(TWI) and topographic relief (TR) derived from high resolution digital elevation model 167 

(DEM) with ArcGIS 10.2 (Table 1). The DEM was derived from the PRISM 168 

(panchromatic remote-sensing instrument for stereo mapping) sensor attached to the 169 

ALOS (advanced land observing) satellite. It had a spatial resolution of 5 m with a 170 

horizontal and vertical accuracy of 5 m. Future scenarios were downscaled GCMs 171 

(global climate model) data of 2055 (average for 2041–2070) and 2085 (average for 172 

2071–2100) from CMIP6 under the shared socioeconomic pathways (SSPs) SSP126, 173 

SSP370, SSP585 scenarios released by IPCC Accessment Report 6 (AR6). These 174 

environmental parameters were all preprocessed to a general spatial resolution of 50 m 175 

latitude/longitude. The high resolution DEM was aggregated from 5 m to a coarser 176 

resolution of 50 m and the monthly precipitation was resampled to 50 m. The monthly 177 
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daily maximum, minimum and mean temperatures were downscaled to 50 m by 178 

multiple linear regression (MLR) (Kostopoulou et al., 2007) with elevation, slope, 179 

aspect.  180 

In order to remove variables of high redundancy, we used Pearson’s correlation to 181 

examine the cross-correlation and removed highly correlated variables (r > |0.90|). Out 182 

of 24 variables, only 8 were selected as evaluator variables (Table 1). The temperature 183 

and precipitation change rate (TPR) between two consecutive time periods was 184 

calculated by the following equation: 185 

TPR% =

𝑇gs𝑡𝑖
− 𝑇gs𝑡0

𝑇gs𝑡0

−
𝑃gs𝑡𝑖

− 𝑃gs𝑡0

𝑃gs𝑡0

𝑇gs𝑡𝑖
− 𝑇gs𝑡0

𝑇gs𝑡0

× 100% 186 

where Tgs is the growing-season temperature (℃), Pgs is the growing-season 187 

precipitation (mm), ti and t0 respesent the future time period and current climatic 188 

conditions, respectively. 189 

In the future, it would be projected that the change rates of growing-season 190 

temperature (Tgs ) would be greater than the change rate of growing-season precipitation 191 

(Pgs) between two consecutive time periods (i.e., current–2055, and 2055–2085) under 192 

three climate scenarios (Figs. 6g–l). From the current to 2055, the variations in the rate 193 

of temperature and precipitation changes under SSP126 was larger than those under 194 

SSP370 and SSP585 (Figs. 6g–i). However, under the 2085 scenario, the variations in 195 

the rate of temperature and precipitation changes appeared to increase with the future 196 

increasing greenhouse gas emissions scenarios than compared to 2055 scenario (Figs. 197 
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6j–l). 198 

 199 

2.4 Species distribution models 200 

To take into account the strengths and weaknesses of individual models, it may be safer 201 

to use an ensemble model (Shabani et al., 2016). The current and future habitat 202 

suitability of B. ermanii was predicted using the “biomod2” platform (Thuiller et al., 203 

2009) in R (R Core Team, 2016) based on ten models belonging to different classes 204 

adopted: three regression models (generalized linear model, GLM; multivariate 205 

adaptive regression splines, MARS; and generalized additive models, GAM), five 206 

machine-learning models (artificial neural network, ANN; maximum entropy maxent; 207 

random forest, RF; and generalized boosting model, GBM; classification tree analysis, 208 

CTA) , one classification model (flexible discriminant analysis, FDA) and a range 209 

envelope (surface range envelope, SRE).  210 

We randomly selected 5,000 pseudo-absences and the process repeated five times. 211 

The models were trained using pseudo-absences falling from 100 to 1,000 m away from 212 

the presence to improve model performance (Mainali et al., 2015). For each model, 80% 213 

data were used for calibrating model and the remaining 20% for validating the model 214 

(Liu et al., 2019). The performance of each model was evaluated through repeated 10 215 

times data‐splitting approach. The relative operating characteristic (ROC) (Lusted, 216 

1984) and the true skill statistic (TSS) (Allouche et al., 2006) were used to calibrate and 217 

validate the robustness of evaluation for the models. The output values for ROC or TSS 218 

closer to 1 represent better models performance in prediction (Zhong et al., 2022). We 219 
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retained these models with the following requirements: The TSS > 0.65 (Alabia et al., 220 

2016), ROC > 0.75 (Rathore et al., 2019) and deviation comparing the B. ermanii 221 

distribution of current predicted and the B. ermanii distribution of current observed. We 222 

derived the averaged predictions of these models weighted by their TSS scores. 223 

 224 

2.5 Data analysis 225 

We used Biomod2 with eight variables and extracted occurrence data of B. ermanii in 226 

2017 to project tree species distribution in 2055 and 2085 under SSP126, SSP370 and 227 

SSP585 scenarios. The model output results were categorized into three classes 228 

representing habitat suitability: low (25~50%), medium (50~75%) and high (>75%) 229 

probability of occurrence. Values below 25% were excluded as we indicated habitats 230 

that were deemed non-suitable habitat based on the logistic threshold (Chakraborty et 231 

al., 2016). To quantify the contributions of different variables in determining the 232 

distribution of B. ermanii, we used random forest model to obtain the relative 233 

importance. We analysed effects of time and climate change on changes in tree species 234 

distribution and their maximum altitudes. We calculated the relative differences in the 235 

distribution of B. ermanii between the current climate scenario and climate change 236 

scenarios during two consecutive time periods: current–2055 and 2055–2085. We also 237 

calculated the variations in the rate of temperature and precipitation changes between 238 

two consecutive time periods.  239 

 240 

3. Results 241 
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3.1 Model validation 242 

The current potential distribution of B. ermanii in the study area was found to be 130.22 243 

km², almost twice the size of the observed distribution (Fig. 2a–c). However, the 244 

distribution of medium and high suitable habitats more closely matched the current 245 

observed distribution of B. ermanii in the Changbai Mountains (Fig. 2a–b). Among the 246 

three suitable habitats, the proportion of low suitable habitat area in our study area was 247 

the highest at 17.43%, followed by high suitable habitat (8.70%) and medium suitable 248 

habitat (7.85%) (Fig. 2c).  249 

The performance of ten species distribution model (SDM) algorithms for predicting 250 

the potential distribution of B. ermanii under current climate conditions showed 251 

significant differences, as determined by the Kruskal-Wallis H test (P < 0.001) (Table 252 

2). Among these models, machine-learning models including GBM, RF, CTA, and 253 

Maxent, demonstrated higher accuracy in modeling the suitable habitat of B. ermanii, 254 

with ROC mean scores ranging from 0.90 to 0.95 and TSS mean scores between 0.66 255 

and 0.84. Notably, the potential distribution of B. ermanii predicted by these four 256 

models under current climate conditions closely matched the current observed 257 

distribution of B. ermanii (Fig. S1). Therefore, we utilized the Biomod2 platform with 258 

the GBM, CTA, RF, and Maxent modeling methods to simulate B. ermanii distribution. 259 

 260 

3.2 Importance of variables 261 

Our analysis revealed that bioclimatic predictors had a greater impact on B. ermanii 262 

distribution compared to topographic variables (Fig. 3). Specifically, precipitation of 263 
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the warmest quarter (Bio18, 27.96%), precipitation of the coldest quarter (Bio19, 264 

17.40%), and maximum temperature of the warmest month (Bio05, 12.45%) made the 265 

greatest contributions to the distribution model for B. ermanii relative to other variables. 266 

These variables accounted for a significant proportion of the model, with cumulative 267 

contributions reaching as high as 62.4%. However, the contribution of topographic 268 

variables to the distribution of B. ermanii was relatively limited. Elevation and aspect 269 

were the most significant factors, together accounting for 22.3% of the variation in B. 270 

ermanii distribution among the topographic variables. In contrast, topographic relief, 271 

slope and topographic wetness index played minor roles contributing less than 10%. 272 

 273 

3.3 Changes in future potential distributions 274 

It was observed that all three suitable habitat areas would increase under future climate 275 

scenarios in both 2055 and 2085 compared with the current scenario (Fig. 4a–h). 276 

Moreover, the potential distribution percentage of B. ermanii in 2055 increased by 30%, 277 

35%, 9%, respectively, under the three climate scenarios (SSP126, SSP370, SSP585) 278 

(Fig. 4d). Compared with the two future periods, by 2085, the distribution of B. ermanii 279 

in both medium and high suitable areas expanded under SSP126 scenario, but these 280 

areas showed a trend of retreat under the SSP370 and SSP585 scenarios (Fig. 4d and 281 

h). Both time periods and scenarios, and their interaction had significant effects on the 282 

maximum altitudes of B. ermanii distribution (Fig. 5a–c). Moreover, the maximum 283 

altitudes varied significantly with time periods and classes (habitat suitability) and their 284 

interaction (Table 3). Among three scenarios, the maximum altitudes of three suitable 285 
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habitats under SSP370 were highest except for the high suitable habitat in 2085 (Fig. 286 

5a–c). Furthermore, the maximum altitudes of three suitable habitats under SSP585 287 

scenarios in both 2055 and 2085 would decrease significantly compared to the SSP126 288 

scenarios (Fig. 5a–c). In future, the maximum altitudes for suitable habitats are 289 

expected to range between 2,245 m and 2,388 m for low suitable habitat, 2,133 m and 290 

2,366 m for medium suitable habitat and 2,013 m and 2,236 m for high suitable habitat, 291 

respectively (Fig. 5a–c). Additionally, the maximum altitudes of low suitable habitats 292 

in 2085 would be higher than in 2055 under three future scenarios (Fig. 5a), but the 293 

opposite patterns were observed for the maximum altitudes of medium and high suitable 294 

habitats (Fig. 5c). 295 

Compared to the current scenario, the occurrence probability of B. ermanii would 296 

significantly increase at high altitudes under SSP126 and SSP370-2055 climate 297 

scenarios, but decreased on the north and south sides of the Changbai Mountains under 298 

SSP585-2055 climate scenario (Fig. 6a–c). Conversely, under the 2085 scenario, the 299 

increased habitats were at low elevations, but large amounts of habitats decreased under 300 

three climate scenarios compared to 2055 (Fig. 6d–f). Additionally, the regions where 301 

the probability of B. ermanii occurrence were expected to decrease mainly located in 302 

non-suitable and low suitable habitats. 303 

 304 

4. Discussion 305 

Our results showed significant differences in the performance of ten SDMs algorithms 306 

for potential distribution of B. ermanii under current climate conditions. This was 307 
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consistent with Iverson and McKenzie’s (2013) findings that, although climate 308 

modeling played an important role in understanding the impacts of climate change on 309 

plants, the performance of different climate models varied significantly, as noted by 310 

Cheaib et al. (2012). Moreover, we found that the machine-learning models (i.e., GBM, 311 

RF, CTA and Maxent) were the best individual models with higher ROC and TSS values, 312 

which was consistent with previous researches (An et al., 2018; Garris et al., 2015; 313 

Morera et al., 2021; Valavi et al., 2022). Therefore, we utilized the Biomod2 platform 314 

with these four models to predict the potential distribution of B. ermanii. Our model 315 

indicated that the current predicted distribution of B. ermanii was primarily aggregated 316 

on the northern and western slopes of the Changbai Mountains (Fig. 2a–b), which 317 

corresponded to the observed reality, but appeared larger than the current observed (Fig. 318 

2c). The medium and high suitable habitats, however, aligned with the observed 319 

distribution, thus we considered these as the most suitable for B. ermanii. 320 

Overall, the model results showed that the possibility of B. ermanii distribution 321 

increased under low and medium greenhouse gas emissions scenarios (SSP126, 322 

SSP370), but decreased significantly under the high greenhouse gas emissions scenario 323 

(SSP585) (Fig. 4a–h). This finding consisted with the previous study by Hu et al. (2015) 324 

who found that the Platycladus orientalis distribution would increase under RCP2.6 but 325 

appeared to decrease under RCP8.5. Additionally, the maximum altitudes of medium 326 

and high suitable habitats for B. ermanii in the current scenario were 2,072 m and 2,020 327 

m, respectively, which was in agreement with the reported upper elevational limit of B. 328 

ermanii’s in Changbai Mountains (Du et al., 2018). However, slight upward shifts in 329 
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the maximum altitudes of B. ermanii had been observed in both medium and high 330 

suitable habitats under three future climate scenarios except for SSP585-2085 331 

compared with the current scenario (Fig. 5a–c). This trend was consistent with previous 332 

study (Du et al. 2018), which indicated that an upward shift in the upper limits of B. 333 

ermanii in response to recent warming. Furthermore, previous research affirmed that 334 

the timberline of B. ermanii is located at about 2,200 m on the northern slope of 335 

Changbai Mountains from 1400 a B.P. to 920 a B.P. (Guo et al., 2012). This supports 336 

that B. ermanii on the Changbai Mountains will continue to shift upward with future 337 

warming. 338 

Temperature is an important driving factor for increasing tree growth and recruitment 339 

in recent decades. Warming can improve the plant physiology and ecophysiology, 340 

thereby facilitating tree recruitment. Numerous studies have shown that species' spatial 341 

distributions expanded to high altitudes significantly in response to climate warming 342 

(Chen et al., 2011; Li et al., 2019; Sun et al., 2020). For example, recent warming had 343 

driven the upward migration of B. ermanii in the Changbai Mountains (Du et al., 2018). 344 

Similarly, the occurrence probabilities of six allelopathic flowering plants from North 345 

America increased under climate change scenarios (Wang et al., 2022). Thus, 346 

temperature is a key factor limiting tree growth, especially for alpine treeline tree 347 

species (Liang et al., 2016; Gou et al. 2012). However, previous studies showed that the 348 

suitable habitat areas would slightly decrease with climate warming, indicating that 349 

continuous rise in temperature could may even have a negative impact on plant growth 350 

(Hu et al., 2015; Naudiyal et al., 2021). Consistently, our predictions showed that the 351 
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occurrence probabilities of B. ermanii tended to increase in the majority of the study 352 

area under three climate scenarios by 2055 compared to current scenario (Fig. 6a–c), 353 

but may decrease under future climate scenarios from 2055 to 2085 (Fig. 6d–f). Our 354 

analysis also revealed that an increase in temperature will result in more suitable 355 

habitats (Fig. 6g–i). However, a decline in suitable habitats can be attributed to an 356 

inadequate increase in precipitation compared to rising temperatures (Fig. 6j–l).  357 

Warmer temperatures at treeline ecotones could potentially result in a deficit of soil 358 

moisture due to elevated evapotranspiration (Trujillo et al., 2012). Our study's findings 359 

indicated that precipitation and temperature were the key factors in the spatial 360 

distribution of B. ermanii (Fig. 3). Furthermore, the occurrence probability of B. 361 

ermanii reduction increased with decreasing precipitation (Fig. S2), aligning with 362 

observations by Reich et al. (2018), who found that positive effects of climate warming 363 

on tree growth in southern boreal forests may become negative when transitioning from 364 

rainy to modestly dry periods during the growing season. Another study showed that 365 

radial growth of Erman's birch was significantly affected by precipitation in Changbai 366 

Mountains (Yu et al., 2007). Similarly, water deficits in August reduced growth of tree 367 

species of an altitudinal ecotone on Mount Norikura, central Japan, regardless of their 368 

upper or lower distribution limits (Takahashi et al., 2003). In contrast, Wang et al. (2018) 369 

found B. ermanii populations were more sensitive to air temperature variations than to 370 

changes in precipitation. These suggest that long-term tree species distribution was 371 

primarily constrained by temperature, highlighting the need to consider the influence 372 

of precipitation when assessing the impacts of climate warming on tree species 373 
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distribution. 374 

A number of other factors not considered in this study may contribute to uncertainty 375 

in our projections. We only simulated the effects of climate change and topographic 376 

variables on the future distribution of treeline trees. We identified temperature and 377 

precipitation as the primary climatic factors affecting tree species, without considering 378 

nitrogen deposition and CO2 fertilization, which can also significantly impact tree 379 

species distributions. In addition, the climate variables were initially at a spatial 380 

resolution of 1 km, however, they have been downscaled to 50 m and validated with 381 

growing season temperature between 2015 and 2017 from Wang et al. (2019), achieving 382 

an RMSE of 0.94 and an R2 of 0.90. Coarser climate resolution data (i.e., 30 arc sec ∼1 383 

km) has been applied in previous studies to well predict future vegetation distribution 384 

at regional scales (Guo et al., 2018; Queirós et al., 2020). Moreover, it has been 385 

suggested that, at regional scales, the use of coarse spatial resolution data in SDMs can 386 

enhance models accuracy and preserve details (Pineda and Lobo, 2012). Despite such 387 

limitation, there are good reasons to believe that our approach effectively assesses how 388 

climate change and topographic variables interact to affect tree species distributions. 389 

Bimod2 has been shown in previous studies to well capture forest distribution and stand 390 

dynamics (Ren et al., 2016; Chakraborty et al., 2021; Queirós et al., 2020). 391 

 392 

5. Conclusion 393 

This study reveals the link between environmental factors including temperature and 394 

precipitation, habitat distribution, and species distribution in the alpine treeline ecotone. 395 
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Consistent with our 1st hypothesis, we find that climate warming promotes the 396 

expansion and upward shift of the distribution B. ermanii in the alpine ecotone of the 397 

Changbai Mountain, but these warming effects are influenced by precipitation, which 398 

is consistent with our 2nd hypothesis. Such climate change-induced expansion of the 399 

distribution range of treeline trees will inevitably lead to changes in species composition, 400 

community structure and biodiversity, and further affect ecosystem service within and 401 

beyond the alpine treeline ecotone on high mountains. Therefore, the present study 402 

provides valuable insights into the impacts of climate change on high-mountain 403 

vegetation, contributing to mountain biodiversity conservation and sustainable 404 

development. 405 
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Tables 742 

Table 1 Environmental variables used for Biomod2 in this study. 743 

 744 

Table 2 The performances (Mean ± SD) of ten species distribution models (SDM) for 745 

Betula ermanii. Relative operating characteristic (ROC) and true skill statistic (TSS) 746 

values are given. 747 

SDM ROC ± SD TSS ± SD 

GLM 0.911 ± 0.008 0.637 ± 0.019 

GBM 0.946 ± 0.007 0.747 ± 0.027 

GAM 0.918 ± 0.008 0.659 ± 0.029 

CTA 0.908 ± 0.008 0.76 ± 0.030 

ANN 0.793 ± 0.091 0.51 ± 0.129 

SRE 0.722 ± 0.014 0.444 ± 0.029 

FDA 0.858 ± 0.053 0.568 ± 0.109 

MARS 0.918 ± 0.008 0.663 ± 0.026 

RF 0.973 ± 0.005 0.84 ± 0.023 

Maxent 0.921 ± 0.009 0.667 ± 0.029 

Notes: generalized linear model (GLM), generalized boosting model (GBM), generalized additive 748 

models (GAM), classification tree analysis (CTA), artificial neural network (ANN), surface range 749 

envelope (SRE), flexible discriminant analysis (FDA), multivariate adaptive regression splines 750 

(MARS), random forest (RF), maximum entropy (Maxent).  751 

 752 

Table 3 Effects of time periods, classes (habitat suitability), and their interactions on 753 

the maximum altitude of B. ermanii, tested with two-way nested ANOVA. F and p 754 

values are given.  755 

Factors Df maximum altitude 

F p 

Time periods 1 255.94 ＜0.001 

Classes 2 6,975.19 ＜0.001 

Time periods × Classes 2 267.04 ＜0.001 

756 

Variables Description Unit 

Bio05 Max temperature of warmest month °C 

Bio18 Precipitation of warmest quarter mm 

Bio19 Precipitation of coldest quarter mm 

Aspect 
Direction normal to the slope projected onto the horizontal 

plane 
- 

Elevation Height above sea level m 

Slope Relative degree of steepness ° 

TWI 
Topographic wetness index ln(

𝛼

tan 𝛽
) (Beven and Kirkby, 

1979) 
- 

TR 
Topographic relief MaxRegional altitude −MinRegional altitude 

(Niu and Harris, 1996) 
- 
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Figure captions 757 

Fig. 1 Geographical location of the study area in the northeastern China at the border 758 

to North Korea and altitude distribution, CMNR represents the Changbai Mountains 759 

Nature Reserve. 760 

 761 

Fig. 2 Relative importance of environment variables for the distribution of Betula 762 

ermanii at the Changbai Mountains. The importance is based on the sum of weight 763 

derived from the random forest model. 764 

 765 

Fig. 3 Current observed (a) and current predicted (b) distribution for B. ermanii in 766 

Changbai Mountains, current observed areas and predicted suitable areas (c) for B. 767 

ermanii are categorized divided into low, medium, and high suitable habitats. The 768 

percentages represent the proportion of each suitable habitat area in the study area (the 769 

area above 1,700 m a.s.l. in the Changbai Mountains excluding Tianchi, with a total 770 

area of 383.17 km2). 771 

 772 

Fig. 4  Future species distribution of B. ermanii under climate change scenarios 773 

SSP126, SSP370 and SSP585 in 2055 (a, b, c) and 2085 (d, e, f). The percentages 774 

represent the proportion of each suitable habitat area (low, medium, and high) in the 775 

study area under current and climate change scenarios SSP126, SSP370 and SSP585 in 776 

2055 (g) and 2085 (h). 777 

 778 

Fig. 5 Maximum altitudes (Mean ± SD) of B. ermanii distribution under current and 779 
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climate change scenarios SSP126, SSP370 and SSP 585 in low (a), medium (b), and 780 

high (c) suitable habitats in 2055 and 2085, respectively. Different lowercase letters 781 

indicate significant differences (p < 0.05) among current and climate change scenarios 782 

SSP126, SSP370 and SSP585, as determined by Tukey’s HSD test. **indicates 783 

significant differences (p < 0.01) of time periods, scenarios, and their interactions on 784 

the maximum altitude of B. ermanii, tested with two-way nested ANOVA. 785 

 786 

Fig. 6 Dynamics changes in the distribution of B. ermanii between the current and 787 

climate change scenarios SSP126, SSP370 and SSP585 between two consecutive time 788 

periods: 2055–current (a, b, c) and 2085–2055 (d, e, f). Variations in the rate of 789 

temperature and precipitation changes between two consecutive time periods: 2055–790 

current (g, h, i) and 2085–2055 (j, k, l). Color gradients represent the variables broken 791 

into their respective percentile classes for the magnitude of the distributional and 792 

environmental changes between scenarios. 793 Jo
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