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1  |  INTRODUC TION

The global distribution of forest biomes is well explained by few 
climatic variables (Holdridge, 1947; Suzuki et al., 2006) and tran-
sitions from one biome to the next are generally accompanied 
by an increase in species richness from the poles to the equator 
(Hillebrand, 2004). However, our understanding of how species dif-
fer in terms of adaptive strategies (e.g. survival, reproduction and 
resource acquisition) and their related functional traits along global 
abiotic gradients such as climate is still underdeveloped. Due to the 
importance of forests worldwide in providing essential ecosystem 
services (Gamfeldt et al., 2013), understanding the mechanisms that 

underpin forest community function and assemblage along environ-
mental gradients is needed to predict changes in their composition 
resulting from shifts in climate and land use.

Abiotic gradients should affect the trait composition of for-
est communities through complex interplays among tempera-
ture, precipitation and soil properties (Joswig et al., 2022; Maire 
et al., 2015; Ordoñez et al., 2009; Simpson et al., 2016). However, 
many large- scale studies have assessed trait–environment re-
lationships using univariate models (Bruelheide et al., 2018; 
Moles et al., 2014; Šímová et al., 2015; Swenson et al., 2012; 
Swenson & Enquist, 2007; Swenson & Weiser, 2010; Wieczynski 
et al., 2019), thereby assuming that one environmental variable 

Abstract
Aim: To determine the relationships between the functional trait composition of for-
est communities and environmental gradients across scales and biomes and the role 
of species relative abundances in these relationships.
Location: Global.
Time period: Recent.
Major taxa studied: Trees.
Methods: We integrated species abundance records from worldwide forest invento-
ries and associated functional traits (wood density, specific leaf area and seed mass) 
to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all 
forested continents. We computed community- weighted and unweighted means of 
trait values for each plot and related them to three broad environmental gradients and 
their interactions (energy availability, precipitation and soil properties) at two scales 
(global and biomes).
Results: Our models explained up to 60% of the variance in trait distribution. At global 
scale, the energy gradient had the strongest influence on traits. However, within- 
biome models revealed different relationships among biomes. Notably, the functional 
composition of tropical forests was more influenced by precipitation and soil proper-
ties than energy availability, whereas temperate forests showed the opposite pat-
tern. Depending on the trait studied, response to gradients was more variable and 
proportionally weaker in boreal forests. Community unweighted means were better 
predicted than weighted means for almost all models.
Main conclusions: Worldwide, trees require a large amount of energy (following lati-
tude) to produce dense wood and seeds, while leaves with large surface to weight 
ratios are concentrated in temperate forests. However, patterns of functional compo-
sition within- biome differ from global patterns due to biome specificities such as the 
presence of conifers or unique combinations of climatic and soil properties. We rec-
ommend assessing the sensitivity of tree functional traits to environmental changes 
in their geographic context. Furthermore, at a given site, the distribution of tree func-
tional traits appears to be driven more by species presence than species abundance.

K E Y W O R D S
biogeography, climate, environmental gradients, functional traits, seed mass, species 
abundance, specific leaf area, trees, wood density

Correspondence
Elise Bouchard, Department of Biological 
Sciences, Centre for Forest Research 
(CFR), Université du Québec à Montréal, 
141 Av. du Président- Kennedy, Montréal, 
QC H2X 1Y4, Canada.
Email: bouchard.elise.3@courrier.uqam.ca

Funding information
Natural Sciences and Engineering 
Research Council of Canada

Handling Editor: Arndt Hampe

 14668238, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13790 by Paul Scherrer Institut PSI, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:bouchard.elise.3@courrier.uqam.ca


    |  305BOUCHARD et al.

act independently from another, and that the environment con-
strains functional traits similarly everywhere. This could explain 
why global scale studies have led to mixed results (Moles, 2017) 
or broad conclusions that do not capture the unique combined ef-
fects of precipitation, temperature and soil properties occurring 
within- biomes (Wigley et al., 2016).

The relative importance of environmental gradients on forest 
functional composition should differ among biomes. For instance, we 
would expect a higher influence of temperature on traits in boreal for-
ests, where the average temperature is low and highly seasonal, com-
pared to tropical forests, where temperatures are warm year- round. In 
contrast, precipitation can be more limiting in tropical forests, which 
are subject to both the highest annual precipitation and precipitation 
seasonality on Earth. Energy availability could drive trait values in tem-
perate forests due to the large range of temperature and solar radia-
tion in this biome, and a weaker effect of precipitation and soils that are 
generally less variable and fertile respectively. While these are merely 
simplifications of biome specificities, including interactions among abi-
otic variables in models and comparative analysis at different scales 
(global vs. biomes) should account for the contrasting effects of envi-
ronmental gradients among and within biomes. These additions would 
provide a more comprehensive understanding of the global functional 
biogeography of trees beyond generalizations (e.g. latitudinal gradient, 
dominant effect of temperature) that do not necessarily capture varia-
tion at finer scales such as biomes and communities.

Trait–environment relationships are generally stronger when 
constituent species abundance is included (Ackerly et al., 2002; 
Cingolani et al., 2007; Fortunel et al., 2014), although the oppo-
site has been observed (Bjorkman et al., 2018; Dubuis et al., 2013; 
Pakeman et al., 2008). Indeed, based on the mass ratio hypothesis, 
relative abundance is a good proxy of plant fitness since dominant 
species are assumed to be the most adapted to an environment 
(Grime, 1998; Shipley et al., 2011). Yet, the availability of data es-
pecially at global scale can be a limitation to including species abun-
dances in analyses of tree trait–environment relationships (Keppel 
et al., 2021). Many studies that focused on trait–environment 
relationships at large spatial scales have relied on presence–ab-
sence data aggregated to a coarse spatial grain (Chave et al., 2009; 
Joswig et al., 2022; Maire et al., 2015; Moles et al., 2014; Ordoñez 
et al., 2009; Šímová et al., 2015; Swenson et al., 2012). The presence–
absence data employed in these studies provide no information on 
relative abundances of species in local communities. Therefore, the 
mass ratio hypothesis remains to be tested globally.

Recent studies on the global distribution of plant functional traits 
tend to include a large number of functional traits (Joswig et al., 2022; 
Maynard et al., 2022) and moments (Wieczynski et al., 2019). This 
high level of information precludes describing thoroughly each indi-
vidual trait–environment relationship. Moreover, the lack of data for 
most of these traits limits our ability to study their global distribution 
at community levels. Here we focus on three key functional traits 
for which we aim to provide the most comprehensive explanation 
and visualization of their composition within global forest communi-
ties, while accounting for the simultaneous and interacting effects of 

environmental gradients. We describe, illustrate, and compare each 
trait–environment relationship, its effects, magnitude and impor-
tance across scales and biomes.

The selected traits are wood density (WD), seed mass (SM) and 
specific leaf area (SLA) because they are commonly measured and 
offer broad data coverage. They emerge strongly as predictors of dif-
ferent life history strategies (Chave et al., 2009; Westoby, 1998) and 
important axes of global plant form and function (Díaz et al., 2016). 
These functional traits can be used to reflect a gradient of acquis-
itive to conservative strategies among species. Resource conserva-
tive species tend to have higher WD and SM, lower SLA and are 
characterized by larger construction cost, greater longevity, but 
lower productivity of plant organs, relative to faster- growing acquis-
itive species. We explore separate and joint effects as well as the 
importance of trait–environment relationships using both weighted 
and unweighted trait means of forest communities across three abi-
otic gradients: energy availability (temperature and solar radiation), 
precipitation and soil properties, at biome (boreal, temperate and 
tropical) and global scales. To this end, we use an unprecedented 
data coverage that includes tree species abundance from between 
99,953 and 149,285 sample plots, depending on trait.

We address three specific questions: (1) How is the functional 
trait composition of forest communities constrained by abiotic en-
vironmental gradients worldwide? We expect energy, precipitation 
and soil properties to influence functional trait values conjointly, in-
cluding contrasting patterns among and within biomes that would 
be revealed through interactions between and within these environ-
mental gradients. (2) How important are environmental gradients 
and their interactions in explaining the distribution of functional 
traits of forest communities? We expect that, at global scale, en-
ergy availability would be the most important gradient in explaining 
trait distribution due to the significant changes of this gradient along 
latitude; but gradient importance within- biome models could differ 
substantially from global models. (3) Does accounting for species 
abundance strengthen these trait–environment relationships? Based 
on the mass ratio hypothesis, we would expect weighted trait values 
to be better predicted than unweighted values.

2  |  METHODS

2.1  |  Forest inventories

Our ground- sourced forest inventory data were compiled by the 
Global Forest Biodiversity Initiative (GFBI) from approximately 1.2 
million sample plots in more than 70 countries (see Liang et al., 2022 
for methodology, and data & code availability). Individual tree data 
consisted of standard tree- level measurements of 54,864,083 in-
dividual trees in 29,691 species and morpho- species. A worldwide 
species abundance matrix was produced from individual tree data. 
Species in this matrix were joined with functional traits using their 
taxonomic name (see Appendix S1 in Supporting information for tax-
onomic cleaning procedure). For plots with multiple measurements 
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over time, only the most recent measurement was used in the analy-
sis. Tree ferns and bamboos were removed from the analyses.

2.2  |  Functional traits

Functional trait values were extracted from the TRY database (Kattge 
et al., 2020) and completed via a literature review (Appendix 1). We 
cleaned data from all sources to remove duplicates, values beyond 
reported ranges (Pérez- Harguindeguy et al., 2016), and measure-
ments from seedlings in greenhouses and experiments evaluating 
stress response (Appendix S1). Depending on the functional trait, 
the total number of documented species varied between 3923 and 
7252 (Table 1). A mean per species per trait was computed and at-
tributed to the individuals of this species in the forest inventories. 
Then, community- weighted means (CWM) of traits in each plot were 
calculated using the number of stems per species as the weight. 
Community unweighted means (CM) were computed by giving the 
same weight to each species in the plot. We included only those plots 
with a minimum of 80% of constituent species with trait informa-
tion based on the number of stems following other studies (Garnier 
et al., 2004; Grime, 1998; Pakeman & Quested, 2007). In the final 
analysis, we retained between 99,953 and 149,285 plots, which cov-
ered all of Earth's major biomes (Table 1, Figure 1, Appendix S2).

2.3  |  Climatic and pedologic variables

Precipitation- , temperature-  and solar radiation- related variables 
were obtained through the WorldClim database as 30- year aver-
ages (1970 to 2000) at a resolution of 30 arcseconds (~1 km2 at the 
equator) (Fick & Hijmans, 2017). We compiled seven soil variables 
from the SoilGrids database for a depth of 0 to 30 cm at a resolu-
tion of 250 m (Hengl et al., 2017). These variables were selected to 
represent three broad environmental gradients: energy availability 
(including temperature and solar radiation), precipitation and soil 
properties (Table 2). Climatic and pedologic values were extracted 
using plot spatial coordinates.

2.4  |  Data analysis

We conducted multiple linear regressions with second- order polyno-
mials to account for the polynomial or linear relationships observed 

in raw data between traits and environmental variables. We built 
four models per trait with data fitted at different scales and biomes: 
global forests (all data), boreal forests, temperate forests and tropi-
cal forests. Biome- related results were obtained using biome- level 
models trained on data coming solely from the studied biome. Global 
patterns were assessed using the full dataset. Biomes were based on 
the World Wildlife Fund classification (Olson et al., 2001). Subtropical 
forests were grouped with tropical forests, whereas temperate forests 
of broad- leaves and/or conifers were included in the temperate biome 
along with Mediterranean forests. The complete list of terrestrial 
ecoregions included in larger biomes (boreal, temperate and tropical) 
is available in Appendix S3. All analyses were conducted in R statistical 
software, version 4.1.0 (R Core Team, 2020).

To control for multicollinearity, we conducted variable selection 
based on standardized generalized variance inflation factors (GVIF) 
implemented in the ‘car’ package (Fox & Weisberg, 2019). Predictors 
were removed until no more variables would exceed a threshold of 
GVIF = 2 in the model, which is equivalent to a variance inflation factor 
(VIF) threshold of 4. When selecting variables, we prioritized keep-
ing at least two variables per gradient, since we were interested in 
the combined effects of all gradients. Seed mass was transformed by 
a natural logarithm because this trait is inherently multiplicative and 
spans orders of magnitude (Kerkhoff & Enquist, 2009). All assump-
tions related to regression models were respected (normality, homo-
geneity of variance, linearity and independence) except for normality 
in seed mass models. Therefore, seed mass models were bootstrapped 
using 10,000 iterations to compute confidence intervals (percentile) 
to ensure that deviations from normality would not underestimate 
error terms. We tested two- way interactions within gradients (three 
intra- gradient interactions) and two- way interactions between gradi-
ents (three inter- gradient interactions) (Appendix S4 for more details 
on data analysis).

Initial variable selection was performed for each trait at both global 
and biome scales. In some cases, models could differ in the inclusion of 
specific variables within each gradient. To ease interpretation and com-
parability between models, we also examined models using identical 
variables between global and biome scale models (although polynomi-
als could differ). We found similar predictions of community means for 
each trait between the biome-  and global- scale models (Appendix S5). 
For ease of interpretation, here we opted to display the models that in-
clude the same variables. All selected variables and interactions appear 
at the left of the panels in Figure 3. Variable importance was assessed 
using dominance analysis with the ‘dominanceanalysis’ package (Bustos 
Navarrete & Coutinho Soares, 2020). To ensure that the uneven plot 

TA B L E  1  Documented species per trait and number of plots per trait and biome.

Functional traits

Taxonomy Number of plots

Species Angiosperm Gymnosperm Families Global Boreal Temperate Tropical

Wood density 7252 7045 213 194 149,285 8783 138,081 2393

Specific leaf area 4930 4794 136 205 131,979 4870 125,677 1416

Seed mass 3923 3687 239 203 99,953 4831 94,058 1050
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    |  307BOUCHARD et al.

F I G U R E  1  Geographical distribution of plots for wood density (total number of plots: 149,285), specific leaf area (total number of plots: 
131,979) and seed mass (total number of plots: 99,953). While most of the plots illustrated on this map are used for all three functional traits, 
there are small differences in single- trait distributions due to the requirement that trait values needed to be available for 80% of the stems in 
a plot (see methods). Specific trait distribution maps are available in Appendix S2. Map projection = WGS 1984 Equal Earth (world).

Variable Abbreviation Units Range Mean

Functional traits

Wood density WD mg/mm3 0.15 to 1.24 0.55

Specific leaf area SLA m2/kg 1.3 to 169.8 16.4

Seed mass SM mg 0.01 to 576,800 860

Environmental variables

Energy gradient

Mean annual temperature MAT °C −7.7 to 27.8 12.2

Temperature seasonality TS °C *100 27 to 1734 842

Annual mean solar radiation SR kJ/m2*day 7296 to 21,786 14,369

Precipitation gradient

Annual precipitation AP mm 68 to 4712 1175

Precipitation seasonality PS 5.5 to 120.2 26

Soil properties gradient

Percentage in clay CLAY % 0 to 58.3 18

Percentage in sand SAND % 0 to 96.4 43.6

Available water storage 
capacity

AWC v% 5.8 to 51.4 44.5

Cation exchange capacity CEC cmol+/kg 1.75 to 192.92 19.12

Percentage of organic 
carbon

OC ‰ (g/kg) 4.2 to 372.6 40.8

pH measured in a soil–water 
solution

pH pH*10 37 to 81 53

Bulk density BULK kg/m3 606.5 to 1696.2 1320.4

TA B L E  2  Variables names, 
abbreviations, units, ranges and means.
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distribution would not compromise the regression slopes, we tested the 
models for spatial autocorrelation among residuals using variograms built 
with the ‘gstat’ package (Pebesma, 2004; Pebesma & Heuvelink, 2016) 
and k- fold cross validation (Ploton et al., 2020) using the‘blockCV’ pack-
age in R (Valavi et al., 2019). The resulting figures showed no pattern of 
spatial autocorrelation across all models (Appendices S6 and S7). We 
ran selected models using weighted or unweighted community means 
as response variable. To determine the effect of abundance weighting 
on the strength of the relationships between forest communities' mean 
traits and environmental gradients, we compared model fits using ad-
justed R2 and normalized root mean square error (nRMSE). We refrained 
from presenting any inferential statistics in the main text due to the 
high level of observations resulting in most coefficients being signif-
icant. Instead, we interpret results based on effect size and variance 
partitioning. However, regression coefficients and associated errors are 
presented in Appendix S4 for all models.

Finally, we built estimated biogeographic distribution maps of 
each trait to illustrate global scale patterns along with their associ-
ated uncertainty maps (Appendix S8). We derived estimates of global 
climate and soil properties from the same databases as our training 
data (WorldClim and SoilGrids) in forested areas identified through the 
Global Forest Change database (Hansen et al., 2013) since our training 
dataset was limited to forests. We then used biome- scale models to 
estimate the trait values for each grid cell, because they feature more 
detailed changes within biomes than maps fitted using global models. 
Grid cells that had climate and soil properties values outside the range 
of our observed values were omitted from mapping.

3  |  RESULTS

3.1  |  Species abundance

Eleven of twelve models performed better with community un-
weighted means than with community- weighted means based on 
nRMSE (Appendix S9) and adjusted R2. The absolute increases in 
explained variance for the global models were 11%, 10% and 3% for 
WD, SLA and SM respectively. Further analyses were conducted 
using community unweighted means.

3.2  |  Effect of environmental gradients on traits

For all trait values, boreal forests had the lowest medians and nar-
rowest ranges (Figure 2). Trait expression varied more in tropical and 
temperate forests, with higher medians of WD in tropical forests and 
higher medians of SM and SLA in temperate forests. At global scale, 
SM showed the strongest relationships with environmental gradients 
(adjusted R2 = 60%), followed by WD (adjusted R2 = 46%) and SLA 
(adjusted R2 = 45%). The explained variance of the biome models was 
24% (WD), 26% (SLA) and 31% (SM) in boreal forests; 38% (WD), 45% 
(SLA) and 46% (SM) in temperate forests; and 38% (WD), 49% (SLA) 
and 26% (SM) in tropical forests (Figure 3).

We produced global prediction maps fitted with our biome- level 
models to simultaneously visualize the effect of all variables and their 
interactions (Figure 4). These maps revealed that SLA is the only trait 
reaching the most acquisitive strategies (high values, that is, leaves with 
large surface to weight ratios) in temperate forests (Figure 4). In con-
trast, both WD and SM generally followed a latitudinal gradient from 
acquisitive strategies (light wood and seeds) in boreal forests to con-
servative strategies (dense wood and heavy seeds) in tropical forests.

The effect of mean annual temperature on SM and WD was gen-
erally positive or unimodal, increasing to an optimum and decreasing 
thereafter. An exception in tropical forests is that SM decreased slightly 
along mean annual temperature. Relationships between SLA and solar 
radiation varied across biomes (Figure 5). Effects of temperature sea-
sonality on traits depended on the biome (Figure 5). Higher temperature 
seasonality favoured conservative strategies in some instances (SLA in 
tropical forests and SM in temperate forests) or acquisitive strategies in 
others (WD and SM in boreal forests, WD in tropical forests and SLA 
in temperate forests). More nuanced responses by traits to increasing 
temperature seasonality occurred, with a unimodal response including 
either an optimum or a minimum (SM in tropical forests, WD in temper-
ate forests) or no clear association (SLA in boreal forests).

Higher annual precipitation favoured conservative strategies 
of SM in boreal and tropical forests but did not affect temperate 
forests (Figure 5). Responses of WD to annual precipitation were 
variable across biomes (Figure 5). As precipitation increased, SLA 
increased in temperate forests but decreased slightly or remained 
stable in tropical and boreal forests. The lack of response from SM 
to precipitation seasonality was consistent across biomes, whereas 
WD and SLA generally decreased with precipitation seasonality.

The effect of soil properties on SLA was very consistent: soils 
with more favourable structures (low sand content and high bulk 
density) favoured acquisitive strategies. Results for SM were 
also consistent and indicated weak effect of cation exchange ca-
pacity (CEC) and soil pH. Wood density was slightly influenced 
by sand content across biomes. However, higher WD may be fa-
voured by increasing CEC in tropical forests relative to temper-
ate forests, whereas CEC had no notable effect in boreal forests 
(Figure 5).

These direct effects were modulated by interactions. The high 
number of variables and interactions prevented us from presenting 
all direct and interacting effects (but see appendices S10- S12). We 
selected the most notable ones to display in Figures 5 and 6.

3.3  |  Importance of environmental gradients 
on traits

Globally, the energy gradient dominated the explained variance 
for WD and SM, with precipitation explaining the smallest amount 
of variance. Specific leaf area was more evenly influenced by 
the three gradients, although the energy gradient still explained 
most of the variance (Figure 2). Interactions between and among 
gradients strongly influenced trait distributions: the cumulative 
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    |  309BOUCHARD et al.

F I G U R E  3  Results of variance partitioning from dominance analysis. Bar colours represent different models (boreal, tropical, temperate, 
global), whereas pictograms on the y axis emphasize the gradient to which the variables belong (energy availability, soil properties, 
precipitation or an interaction between gradients). Interactions are symbolized by an asterisk * between the variable abbreviations. The total 
explained variance of a model (adjusted R2) is displayed in the label box and equals the cumulative weight of all bars from a same model.

F I G U R E  2  Density plots of community unweighted means (CM) per trait and biome. The dashed lines display the median of the 
distribution.
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310  |    BOUCHARD et al.

explained variance due to interactions in global- scale models were 
18% (WD), 11% (SLA) and 29% (SM). Within biomes, the cumu-
lative explained variance due to interactions were 7% (WD), 8% 
(SLA) and 10% (SM) in boreal forests; 17% (WD), 10% (SLA) and 

22% (SM) in temperate forests; and 16% (WD), 24% (SLA) and 12% 
(SM) in tropical forests.

Boreal forest functional trait responses varied under the influ-
ence of environmental gradients. Wood density was best predicted 

F I G U R E  4  Biogeographical representations of the explained distribution of functional traits of trees. The colour palette represents a 
gradient from acquisitive strategies (red- yellow) to conservative strategies (green- blue). Map projection, WGS 1984 Equal Earth (world).
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by energy and precipitation with less influence from soils. Seed mass 
was also primarily influenced by energy, followed by soil properties 
and precipitation. For SLA, soil properties dominated the explained 
variance along with energy, while precipitation had less influence. 
For temperate forests, energy had a dominant effect on all traits 
with precipitation having the least influence (WD and SM) or af-
fected equally by soils and precipitation (SLA). In tropical forests, 
WD was best explained by precipitation and soil properties with en-
ergy the least important gradient. Specific leaf area was strongly in-
fluenced by soils and energy, with precipitation still explaining much 
of the variance. Seed mass was almost equally influenced by energy 
and precipitation with less influence from soil properties.

4  |  DISCUSSION

4.1  |  Global patterns

On a global scale, the studied functional traits responded strongly to 
macroenvironmental gradients, with about half the variance among 
traits explained. This strong signal demonstrates that local commu-
nities of tree species respond to large- scale fluctuations in climate 
and soil properties, contradicting results from Bruelheide et al. (2018) 
who studied univariate trait–environment relationships in vegetation 

plots at large scale. This difference may arise from the inclusion of si-
multaneous effects of multiple environmental variables in our study 
since environmental variables act jointly in filtering tree strategies. 
Also, trees as long- lived organisms may be more responsive to macro 
environmental gradients compared to other plant life forms. Plants 
with shorter life spans operate at smaller temporal scales and could 
be more sensitive to local climate and biotic conditions (Levin, 1992).

Our prediction maps revealed that WD and SM generally fol-
lowed a latitudinal gradient, whereas SLA did not, although we did 
not test directly for latitude but rather for associated variables (en-
ergy availability). Traits related to organ size are believed to respond 
to latitude due to their dependence on available energy (Joswig 
et al., 2022; Moles et al., 2006), which was validated for SM in our 
study. On the other hand, SLA is considered an economic trait and 
should respond mostly to latitude- independent soil and climate 
variables (Joswig et al., 2022), which is consistent with our results. 
Wood density is considered an intermediate trait (Díaz et al., 2016; 
Joswig et al., 2022) that clusters more closely with economic traits 
(Joswig et al., 2022). However, WD displayed a latitudinal gradient in 
our prediction maps, indicating that trees rely on available energy to 
produce dense wood, even though this trait is not directly linked to 
tree size but mostly to plant performance (Chave et al., 2009).

Globally, the effects of energy availability on traits distribution 
were unimodal, suggesting the existence of optimums for tree organ 

F I G U R E  5  Effect plots of environmental variables on community unweighted means (CM) of traits. Lines and colours represent different 
scales and biomes. Bands around lines represent 95% confidence intervals.
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312  |    BOUCHARD et al.

functioning. Specific leaf area reached the most acquisitive strategies 
at intermediate values of solar radiation (around 13,000 kJ m−2 day−1). 
Conservative strategies of WD and SM reached an optimum at mean 
annual temperatures around 15°C, consistent with results of Maynard 
et al. (2022). However, tropical forests did exhibit the highest values of 
WD and SM. The decline observed after these temperature optimums 
seems to reflect a transition away from energy to other limiting fac-
tors in tropical forests (soils properties and precipitation) rather than a 
theoretical optimum of temperature after which traits values are con-
strained by further increases in energy availability.

Energy availability had the strongest influence on functional 
traits on a global scale. Indeed, mean annual temperature and solar 
radiation are the variables that best align with latitude. Precipitation 
and soil properties show greater heterogeneity along latitudes com-
pared to energy, so it is plausible that their effect is more easily de-
tectable at biome scales, as reflected in our data. This might explain 
why precipitation and soil effects on traits distribution are seldom 
strongly detected at global scale compared to temperature patterns 

(De Frenne et al., 2013; Maire et al., 2015; Maynard et al., 2022; 
Moles et al., 2014; Wieczynski et al., 2019). In sum, few trait–en-
vironment relationships were consistent across scales and biomes, 
confirming the necessity to investigate the biogeography of traits at 
the biome level.

4.2  |  Effects of environmental gradients on forest 
functional composition

4.2.1  |  Wood density

Wood density is an important component of tree longevity, mechan-
ical strength, hydraulic safety, and growth rate (Chave et al., 2009). 
The lowest median and narrowest range of WD were found in bo-
real forests, reflecting the dominance of conifers. Their wood is 
mostly composed of tracheids, which allows a greater resistance to 
frost- induced cavitation than the vessels of broad- leaf species at 

F I G U R E  6  Predicted graphs of interactions among climatic and soil variables in relation to community unweighted mean (CM) of traits 
for different scales or biomes. Bands around lines represent 95% confidence intervals. The categories of explanatory variables (low, mid, 
high) denote the 10th, 50th and 90th percentile of their distribution. AP, annual precipitation (mm); MAT, mean annual temperature (°C); PS, 
precipitation seasonality; SAND, sand content (%); TS, temperature seasonality (°C*100).
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    |  313BOUCHARD et al.

similar WD (Hacke et al., 2001). Temperature seasonality was the 
most limiting factor in the boreal biome: shorter growing seasons 
came with lower wood densities. In contrast, we observed a decline 
in the importance of temperature seasonality relative to mean an-
nual temperature in temperate forests compared to boreal forests, 
possibly reflecting a threshold in the influence of seasonality on 
broad leaf species presence. Broad leaf species may out- compete 
conifers where there are fewer than about two months of frost per 
year (Crawford, 1989) leading to higher community WD. Temperate 
species invest more in their wood as mean annual temperature in-
creases. However, this positive relationship between WD and tem-
perature reached an optimum, and subsequent increases in mean 
annual temperature in tropical forests had much less impact than in 
other biomes relative to soil properties and precipitation gradients. 
In the tropical biome, temperature seasonality became slightly more 
important than mean temperatures again, with lower wood den-
sity values towards subtropical forests, as also observed by Pinho 
et al. (2021).

Worldwide, sand content impacted consistently wood den-
sity in forest communities, with a small shift of similar magnitude 
(±0.01 mg/mm3 per 20% change in sand content). In the northern bi-
omes (boreal and temperate forests), trees tended to develop denser 
woods on finer soil texture (lower sand content). Many areas of 
these forests, characterized by coarser soils, host coniferous species 
(mostly pines) explaining the trend towards lighter woods. On the 
contrary, WD slightly increased with sand content in tropical forests, 
confirming patterns observed in Amazonia (Fortunel et al., 2014; 
Ter Steege et al., 2006; Vleminckx et al., 2021) and African trop-
ical forests (Réjou- Méchain et al., 2021) where broadleaf species 
tend to adopt conservative resource- use strategies in poorer soil 
habitats. In addition to soil texture, cation exchange capacity was 
highly influential in explaining variation of WD in tropical forests, 
independently and in interaction with sand content and annual pre-
cipitation. Tropical forests are characterized by infertile and acidic 
soils (Kricher, 2017) explaining why soil properties might be more of 
a constraint towards conservative strategies in this biome.

We found that the precipitation gradient had minimal effect 
on WD at global scale, as also reported by others (Costa- Saura 
et al., 2016; de la Riva et al., 2018; Šímová et al., 2015; Wiemann 
& Williamson, 2002; Zhang et al., 2013). Despite the main effects 
being unimportant, the interaction between precipitation and tem-
perature was notable. Higher WD was associated with more arid 
environments as expected because of greater resistance to drought- 
induced cavitation associated with high WD in broad- leaf species 
(Greenwood et al., 2017; O'Brien et al., 2017). Precipitation was the 
most influential gradient driving the distribution of WD in tropical 
forests. Wood was denser at higher temperatures when annual 
precipitation was low, which can indicate an arid climate. However, 
WD seemed to be higher in tropical forests that are either drier or 
wetter throughout the year, than in habitats that are periodically 
arid with high seasonal changes in precipitation regimes. This effect 
may be due to other protection mechanisms to drought cavitation 
in seasonal tropical forests, such as leaf shedding during the dry 

season. These interactions between annual means and seasonality 
could explain the mixed results reported in the literature, with re-
ports of higher values of WD in areas with high rainfall (Ordoñez 
et al., 2009; Swenson et al., 2012; Swenson & Weiser, 2010; Zhang 
et al., 2011), in arid environments (Cornwell & Ackerly, 2009; Preston 
et al., 2006; Swenson & Enquist, 2007) or at average precipitation 
regimes (Wiemann & Williamson, 2002). In boreal forests, higher 
precipitation allowed for more conservative strategies, which may 
be associated with a lower risk of forest fires. This reduced risk of 
fire gives more opportunity for establishment of late successional 
species which typically have high WD.

The WD of trees was associated with survival strategies that 
are increasingly conservative and diversified as we moved from 
boreal to tropical forests (Stahl et al., 2014), probably due to fewer 
constraints from temperature and its seasonality, and increas-
ing biotic pressure leading to more divergent strategies (Swenson 
& Enquist, 2007; Terborgh, 1973) and higher constraints on wood 
mechanical strength (Kricher, 2017). Regardless of biome or scale, 
our results were consistent with the role of WD related to hydraulic 
safety in trees (Chave et al., 2009; Swenson & Enquist, 2007). Lower 
values were found where the growing season is short and tempera-
ture is low (the presence of conifers and frost- cavitation avoidance), 
and higher values where the climate is drier (drought cavitation 
avoidance).

4.2.2  |  Specific leaf area

Specific leaf area is the amount of biomass invested in building a 
given light- intercepting leaf area (Wright et al., 2004). Our results 
for SLA are consistent with a dominant role of resource invest-
ment in governing this trait, since we observed a more balanced 
importance of environmental gradients linked to resources avail-
ability (light, precipitation and soil properties) than in the other 
functional traits. Specific leaf area is the only trait for which solar 
radiation was selected over mean annual temperature, confirming 
the strong links between light availability and this functional trait 
(Wilson et al., 1999). Specific leaf area is expected to decrease 
with higher irradiance following a non- linear relationship (Poorter 
et al., 2009). Instead, our large- scale analysis showed a unimodal 
relationship with an optimum (acquisitive strategies) found at aver-
age solar radiation in temperate forests. This is likely due to light- 
independent stresses that limit leaf productivity in other biomes. 
Evergreen species are known to have lower SLA in trees than de-
ciduous species (Villar & Merino, 2001). Indeed, trees in both bo-
real and tropical forests likely invest more heavily in their leaves 
than their temperate counterparts since they both include ever-
green species with leaves highly adapted to survive winter (boreal 
forests) or are subjected to herbivory that require higher levels of 
investment in defence (tropical forests; Sedio et al., 2018). On the 
other hand, in many areas temperate forests are characterized by 
seasonal leaf shedding, which is highly influential in the dynam-
ics of leaf development and longevity. The acquisitive strategies 
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of leaves observed in this biome are likely adapted to their short 
residence time, which is confirmed by a pronounced importance of 
temperature seasonality over solar radiation in temperate forests 
relative to boreal and tropical forests.

Specific leaf area increased (acquisitive strategies) with annual 
precipitation and decreased with precipitation seasonality, which 
tends to confirm the conservative strategies of this trait reported 
for xeric environments (Cornwell & Ackerly, 2009; Costa- Saura 
et al., 2016; Wright et al., 2005) as an adaptation to withstand 
drought (Greenwood et al., 2017; O'Brien et al., 2017). The negative 
effect of precipitation seasonality was generalized across biomes, 
whereas annual precipitation had smaller effects on SLA in tropi-
cal and boreal forests than in temperate and global forests, provid-
ing further evidence that these biomes are possibly constrained by 
freezing and herbivore defence respectively.

Specific leaf area tended to exhibit more acquisitive strategies 
on soil with a favourable structure (i.e. higher bulk densities and 
lower sand content), especially when precipitation inputs were sta-
ble throughout the year. This trend is consistent across the three 
biomes, but most prominent in tropical forests where soil variables 
explained more variance in SLA than energy variables. This finding 
is consistent with the hypothesis that SLA responds strongly to soil 
variables when soil fertility is low, such as in tropical rainforests 
(Fortunel et al., 2014; Vleminckx et al., 2021; Wright et al., 2004).

Surprisingly, almost all models of SLA had high predictive power 
(45% to 49% R2

adj) and large effect size, with the possible exception 
of boreal forests (26% R2

adj). Typically, evidence of relationships 
between SLA and abiotic factors such as soil fertility, temperature 
and precipitation is extremely weak or inconsistent across studies 
(Moles, 2017). It is possible that SLA responds more strongly in 
trees than in other plant life forms; thus, when all plants are pooled, 
the signal may be weaker or lost as previously observed (Bruelheide 
et al., 2018; Gong & Gao, 2019). Our results validated that in stress-
ful environments where plant growth is limited whether by cold, 
drought or soil properties, tree species tend to invest in tougher, 
longer lived leaves, maximizing reserves rather than resource acqui-
sition, at the expense of growth (Grime, 1977; Poorter et al., 2009).

4.2.3  |  Seed mass

Seed mass is related to the reproductive effort in plants, through 
its negative relationships with seed production, dormancy, persis-
tence in the soil and positive relationships with seedling size and 
survival (Moles, 2017). It has been suggested that temperature and 
precipitation may be important drivers of the latitudinal gradient in 
SM (Lord et al., 1997). At global scale, we observed a strong effect 
of both mean temperature and its seasonality on SM, but very little 
effect of precipitation. Others have also associated this latitudinal 
gradient with broad vegetation types (Moles et al., 2007). The light-
est seeds were indeed found in boreal forests with a low range of 
values and the dominance of wind dispersal strategies. The heavi-
est seeds occurred in tropical forests, as previously observed (Lord 

et al., 1997; Moles et al., 2007), with community means fifteen times 
heavier than in temperate forests, but interestingly the median was 
lower due to the broad range of seed strategies (e.g. wind vs. animal 
dispersal) encountered in this biome (Malhado et al., 2015).

Seed mass was the most consistent trait across scale and bi-
omes and responded best to the energy gradient. The literature 
attributing heavier seeds to the warmest temperatures is vast 
(Malhado et al., 2015; Moles et al., 2014; Šímová et al., 2015; 
Simpson et al., 2016; Swenson et al., 2012; Swenson & Weiser, 2010; 
Wieczynski et al., 2019). Our global and temperate models validated 
a positive relationship of SM with mean annual temperature but 
only to a certain point, after which it declined. This decrease at very 
warm temperatures seems surprising, but analysis in tropical forests 
showed that the direction of this relationship in this biome depends 
on precipitation regimes and mean annual temperature alone ex-
plained little of the variance relative to temperature seasonality. In 
fact, at both temperature extremes (cold in boreal forest and warm 
in tropical forests), the variation of temperature across seasons was 
more limiting on reproduction strategies than mean annual tempera-
ture alone. Trees tended to invest in heavier seeds in boreal forests 
if temperature across seasons was more even, probably due to more 
energy available to invest in reproduction with longer growing sea-
sons. Whereas in tropical forests, the impact of mean annual tem-
perature was pronounced only if it fluctuated significantly over the 
year (as in subtropical forests). Seeds were generally heavier in these 
seasonal forests, possibly because there are less diverse strategies 
than in warmer tropical forests, and their mass decreased along mean 
annual temperature up to 17°C. In warmer tropical zones (>18°C of 
mean annual temperature), SM increased slightly with temperature.

The importance and the effect of soil pH were minimal, indi-
cating that throughout the world similar values of seed masses are 
found under different pH values, as previously observed in temper-
ate forests (Simpson et al., 2016). Selected soil variables had weak 
importance, or minimal effects in all biomes. In light of these results, 
it is challenging to identify trends in the effect of soil properties on 
SM, confirming the mixed results (Moles, 2017) or the complex in-
terplays between soil fertility and this trait (Simpson et al., 2016) 
reported in literature.

The global effect of precipitation on SM was weak, which contra-
dicts results of studies at broad geographic scales in which precipita-
tion was tested against traits alone, without the possible interactions 
with other drivers (Moles et al., 2014; Swenson et al., 2012; Swenson 
& Weiser, 2010). Nevertheless, models fitted at biome scale revealed 
that in boreal and tropical forests the effect of annual precipitation 
on SM was positive. Tropical forests contrasted with other biomes 
by being strongly influenced by precipitation regimes. Seed mass 
increased with annual precipitation and this relationship was mod-
ulated by precipitation seasonality. When annual precipitation was 
low, the presence of a dry season favoured higher seed mass, proba-
bly because many trees in seasonal tropical forests drop their seeds 
at the onset of the rainy season. Therefore, the seeds are not subject 
to as much water stress as those in tropical forests that are drier 
year- round. The hypothesis of higher seed mass in arid environments 
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(Baker, 1972; Pakeman et al., 2008) was not supported by our data 
at any level. Low water input seems to limit conservative strategies 
of SM in trees. We would expect tree species to exhibit lower SM 
when subjected to harsh environmental conditions, because plants 
growing in stressful conditions tend to assign a lower proportion of 
annual carbon to reproduction (Grime, 1977). Our results validated 
this trend for energy and water limitations, but not for soil fertility.

4.3  |  Importance of environmental gradients on 
forest functional composition

In boreal forests, energy availability was influential for all traits but 
sometimes was equal to soil properties (SLA) or followed closely by 
precipitation (WD). Therefore, the dominant effect of temperature was 
not as pronounced as expected. Some traits may be more influenced by 
environmental conditions that act during the growing season (precipi-
tation and soils), rather than the dormant season (cold temperature). In 
summary, strategies of boreal trees did not respond as strongly as those 
in the other biomes to shifts in environmental gradients, suggesting 
that they might be proportionally less affected by changes along these 
gradients. On the other hand, a limited range of trait values may restrict 
their ability to cope with these changes. The trait composition of boreal 
forest communities could also be constrained by a disturbance gradi-
ent, such as large- scale insect epidemics (Gauthier et al., 2015) that was 
not considered in this study, relative to temperate and tropical forests 
that are both characterized by smaller scale disturbance patterns.

Trait variation in temperate forests was generally well explained by 
environmental gradients. Functional traits are known to differ greatly 
between broadleaves and conifers (Stahl et al., 2013). The alternation 
of pure or mixed coniferous and broad- leaf forests found in this biome 
may explain this result through substantial transitions in functional 
traits values. Temperate forests were the only biome for which a single 
gradient emerged as the most important across traits. We observed 
the expected strong influence of energy availability due to the large 
range of temperature and solar radiation encountered along with a 
weaker effect of precipitation and soils that are generally more stable 
and fertile in this biome. This finding suggests that temperate forests 
could be particularly sensitive to shifts in temperature.

Tropical forests reflected a different picture, with all traits re-
sponding strongly to precipitation regime. Moreover, SLA and WD 
both showed the expected smaller effect of energy availability in the 
Neotropics compared to other biomes, with a stronger influence of 
precipitation and soil properties. Therefore, with changes in climate al-
tered precipitation regimes and feedbacks on soils might be important 
limiting factors on forest functional composition in tropical forests.

4.4  |  Species abundance

Weighting trait means by individual species abundances did not 
improve the strength of the trait- environment relationships, sug-
gesting that only information on species presence at any given 

location is needed to investigate the distribution of functional 
traits of trees at broad scale. While surprising, this finding re-
curs in previous research conducted over smaller areas (Bjorkman 
et al., 2018; Dubuis et al., 2013; Pakeman et al., 2008), although it 
is rarely discussed. We have attempted to fill this gap by putting 
forward a hypothesis that merits further development. Dominant 
species are assumed to be at the optimum of their ecological 
niche and growing under favourable environmental conditions. 
Therefore, it is unlikely that a small change in the environment 
at the core of their distribution would cause a huge shift in their 
abundance and the functional composition of the forest, com-
pared to rare species that are already growing under stressful con-
ditions and may be displaced by other species with contrasting life 
strategies. Consistent with this hypothesis, the effect of the envi-
ronment on tree functional traits was stronger at the edge of spe-
cies distribution range (where a species is rare) than at the core in 
North America (Stahl et al., 2014). This indicates that the turnover 
in rare species might be coupled with shifts in functional composi-
tion. Community unweighted means, by giving more importance 
to the trait values of rare species, possibly increase the strength 
of the relationships between forest community trait composition 
and the environment.

4.5  |  Limitations

Forest inventory protocols and sample plot sizes are not consistent 
across countries (Liang et al., 2022), which may lead to bias in the vari-
ance of projected data. As well, data coverage is uneven with tropical 
forests under and temperate forests overrepresented in both invento-
ries and functional trait measurements. Increased sampling effort and 
funding to establish permanent sample plots in poorly documented 
areas are needed to rectify this discrepancy (Nesha et al., 2022). We 
acknowledge that additional variation in forest functional composi-
tion may be present due to genetic variation and phenotypic plasticity 
within species (Fridley et al., 2007; Fridley & Grime, 2010), espe-
cially in species- poor communities dominated by conifers (Anderegg 
et al., 2018; Siefert et al., 2015). This greater share of intraspecific 
variability may explain why our models in conifer- dominated boreal 
forests had generally less explanatory power (24%–31%) than in other 
biomes (26%–49%). The resolution of climatic (1 km2) and edaphic 
variables (~250 m) prevented us from resolving very fine- grained vari-
ability at the scale of the local tree communities. Moreover, using aver-
ages for climatic conditions precluded getting data for the exact years 
of plots measurements and detecting possible effects of extreme cli-
matic events (Waldock et al., 2018).

5  |  CONCLUSION AND OUTLOOK

This study highlights several major trends in the distribution of tree 
functional traits. Wood density follows a latitudinal gradient aligned 
mostly with temperature, but other limiting factors (precipitation 
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and soil properties) take a more important role within boreal and 
tropical forests. The links between wood density and precipitation 
regimes confirm the role of this trait in tree hydraulic safety globally. 
Our results demonstrate for the first time that worldwide, specific 
leaf area is more evenly influenced by major environmental gradi-
ents than traits linked to size, supporting the theory that this trait 
is involved in resource management. We show that its most acquisi-
tive values are found in temperate forests, where leaf shedding is a 
ubiquitous process. Reproduction strategies are highly dependent 
on energy availability across the globe. Trees require large amount 
of energy to invest in their seeds, and to a lesser extent water, inde-
pendent of soil properties.

In summary, forest community strategies are more conserva-
tive in stressful environments, but the limiting constraints that de-
fine these stressful environments, and thus the sensitivity of traits 
to environmental gradients, vary from biome to biome. This raises 
the question of the scale of study used to assess the response of 
community functional composition to global change. Tropical forests 
are a notable example, with greater importance on forest functional 
composition of gradients that are not captured by latitude, such 
as precipitation and soil properties, and whose effect can be con-
founded on a large scale. Future global studies should ensure that 
the heterogeneity of gradients and large vegetation groups across 
spatial scales are well captured.

Our results show that even at local community level, tree func-
tions respond to broad environmental gradients. Further studies 
could investigate why the inclusion of species dominance does not 
improve these relationships compared to the mere presence of spe-
cies in local forest communities. Furthermore, the importance of 
interactions among and between energy, soil properties and precip-
itation gradients indicates that the interplay of climate and soil is 
essential to understanding the distribution of trees' life strategies. 
Moving forward, models including interactions are essential to fully 
elucidate trait- environment relationships.

The large scope of this study, analysing over 148 trait–environ-
ment relationships, enabled us to test, illustrate and standardize re-
sults from the vast literature on trees' functional trait distribution, 
heterogeneous across different spatial scales and methodologies. 
These relationships can be used to guide future research into the 
sensitivity of forest communities to global change and how to inte-
grate multiple aspects of the environment into large- scale modelling.
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