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Abstract

Headwater streams often experience intermittent flow. Consequently, the flowing

drainage network expands and contracts and the flowing drainage density

(DD) varies over time. Monitoring the DD dynamics is essential to understand the

processes controlling it. However, our knowledge of the event-scale DD dynamics is

limited because high spatial and temporal resolution data on the DD remain sparse.

Therefore, our team monitored the DD dynamics and hydrologic variables in two

5-ha headwater catchments in the Swiss pre-Alps in the summer of 2021, through

mapping surveys of the flow state and a wireless streamwater level sensor network.

We combined the two data sources to calculate the DD at the event-time scale. Our

so-called CEASE method assumes that flow in a channel reach occurs above a set of

water level thresholds, and it determined the DDs with accuracies >94%. DD

responses to events differed for the two catchments, despite their proximity and sim-

ilar size. DD ranged from 2.7 to 32.2 km km�2 in the flatter catchment (average

slope: 15�). For this catchment, the discharge-DD relationship became steeper when

DD exceeded 20 km km�2 and DD increased substantially with relatively small

increases in discharge. For rainfall events during dry conditions, the discharge-DD

relationship showed counterclockwise hysteresis, likely due to initially high ground-

water discharge from the area near the catchment outlet; once rainfall stopped, DD

remained high during the streamflow recession due to rising groundwater levels

throughout the catchment. For events during wet conditions, the discharge and DD

responded synchronously. In the steeper catchment (average slope: 24�), the DD var-

ied only from 7.8 to 14.6 km km�2 and there was no hysteresis or threshold behav-

iour in the discharge-DD relationship, likely because multiple groundwater springs

maintained streamflow throughout the network during the monitoring period. These

results highlight the high variability in DD and its dynamics across small headwater

catchments.
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1 | INTRODUCTION

In many streams, flow is intermittent and occurs only temporarily dur-

ing or after rainfall or snowmelt events, resulting in an expansion of

the flowing drainage network (FDN). During dry conditions, flow

ceases in some channel sections, and upstream zones become discon-

nected from the stream network until they reconnect again during

wet periods (Costigan et al., 2016). Therefore, the drainage density

(DD; i.e., the total length of all flowing channels per catchment area) is

variable in time (Godsey & Kirchner, 2014; Gregory & Walling, 1968).

Non-perennial rivers and streams are not only globally more prev-

alent than perennial ones (Messager et al., 2021), but they are also

ecologically valuable (Acuña et al., 2014; Dodds et al., 2004) and pro-

vide multiple environmental services (Stubbington et al., 2020). They

often host high biodiversity (Meyer et al., 2007), serve as habitats to

endemic species (Stubbington et al., 2017), and as connectivity corri-

dors (Rinaldo et al., 2018). Expansion and contraction of the FDN are

vital to the persistence of aquatic species owing to the related

changes in local habitat suitability (e.g., Giezendanner et al., 2021;

Mari et al., 2014). The general viability of a focus species is deter-

mined by the maximum eigenvalue of a suitable landscape matrix

(Hanski & Ovaskainen, 2000), which depends on the extent of the

flowing network. Thus, the range of metapopulation capacities experi-

enced by a dynamically changing flowing channel network bears key

implications on our ability to predict the connection of hydrology and

ecology. Moreover, intermittent streams are zones of nutrient and

carbon processing (von Schiller et al., 2017). Thus, knowledge of DD

is necessary to upscale CO2 fluxes from streams (Hale &

Godsey, 2019; von Schiller et al., 2017). The spatiotemporal variations

of FDNs affect the hydrologic connectivity between streams and

landscapes (van Meerveld et al., 2020), which can have important

implications on stream biochemistry (von Schiller et al., 2017; Zimmer

et al., 2022), and water management (Bertassello et al., 2022;

Nikolaidis et al., 2013).

However, short-term FDN dynamics are not well documented.

Most of the existing field studies investigated FDNs through walking

surveys (Durighetto et al., 2020; Fritz et al., 2013; Godsey &

Kirchner, 2014; González-Ferreras & Barquín, 2017; Warix

et al., 2021), which is time-consuming and prone to subjectivity. Aerial

surveys, for example, by drones, are not applicable in forested catch-

ments or during precipitation events, and narrow streambeds are

undistinguishable on satellite images. As a result, most data on FDN

dynamics currently exist at high spatial but low temporal resolution.

To enhance the temporal resolution of FDN data, automatic sen-

sors can be used. Flow-presence sensors are useful to automatically

detect whether a channel bed is wet or dry (Jaeger & Olden, 2012;

Jensen et al., 2019; Kaplan et al., 2019; Zanetti et al., 2022). However,

they cannot distinguish between flowing and standing water, which

can result in large uncertainties in estimating the total FDN length.

The low-cost multi-sensor monitoring system of Assendelft and van

Meerveld (2019) contains a flow sensor and provides more reliable

data on the flowing, standing, and dry stream state. However, the high

installation and maintenance efforts, especially in mountainous

streams with high sediment transport rates, limit the number of sen-

sors that can be installed and maintained and, therefore, reduce the

spatial resolution of the data. Thus, sensors can provide data on FDN

dynamics at high temporal resolution, but the spatial resolution

remains low. Therefore, questions emerge of (1) how to combine sen-

sor and survey data to effectively capture the short-term variations in

FDN at the catchment scale, and (2) how much data are needed to

reliably monitor FDN variations.

Because of the difficulties in capturing short-term FDN dynamics

by field observations, some recent research efforts focused on devel-

oping modelling frameworks that simulate FDN expansion and con-

traction. Ward et al. (2018) and Mahoney et al. (2023) used

physically-based modelling approaches, whereas Senatore et al.

(2021) used topographic and geological data to model network

dynamics. Kaplan et al. (2019) used a random forest model to identify

the temporally changing factors that explain streamflow responses in

intermittent streams at the event scale, with predictors including pre-

cipitation, soil moisture, and temperature. Botter et al. (2021)

described the concept of hierarchal activation of drainage networks,

which were later used to develop a simple analytical model

(Durighetto & Botter, 2022) and a more complex stochastic model

(Durighetto, Bertassello, & Botter, 2022; Durighetto, Mariotto,

et al., 2022) of FDN dynamics. Recently, Aho et al. (2023) used

directed acyclic graphs to summarize and track non-perennial stream

characteristics as FDN expand and contract. However, all these FDN

modelling studies face challenges of limited FDN training data. They

have not yet been applied extensively in different catchment settings,

hindering inter-catchment comparisons and, as a result, limiting our

understanding of the variability of the processes controlling FDNs.

Because FDNs reflect the underlying hydrological processes

(Shanafield et al., 2021), monitoring FDNs together with other hydro-

logical variables can lead to a better understanding of runoff processes.

Godsey and Kirchner (2014) proposed that the time and position of

flow occurrence along a drainage network reflects the balance between

water transport from the upstream reach and subsurface transmissivity.

Therefore, the FDN dynamics may offer important clues to the spatial

structure of the hyporheic zone and streamflow generation mecha-

nisms. For example, Warix et al. (2021) found that streams in a semi-

arid catchment dried out when contributions from shallow flow paths

were low and that there was a high surface flow persistency for

streams with seasonal stable groundwater inputs. Similarly, Zimmer and

McGlynn (2017a, 2017b) showed that catchment storage variations

affected streamwater-groundwater interactions and flow permanence
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in a 0.033 km2 catchment in the Piedmont region of North Carolina,

USA. The system alternated between a losing stream with rainfall-

induced onsets of flow and a gaining stream with continuous flow dur-

ing low- and high-catchment storage, respectively. Although there were

distinct groundwater flow paths during low and high catchment storage

states, the relationship between FDN length and stream discharge was

persistent (Zimmer & McGlynn, 2017c). These studies highlight the

benefit of analysing FDN dynamics together with other hydrological

variables to better understand hydrological processes in highly dynamic

headwater catchments.

In this study, we investigate DDs variations in two small pre-

Alpine headwater catchments at high spatial and temporal resolution.

Our work is structured around two sets of research questions that

focus on the methodological aspects of estimating DD variations

(question 1 and 2), and the hydrological processes that lead to DD

variations (question 3 and 4). Specifically, we want to know:

1. How can we combine surveys and continuous water level data to

determine DD variations at a high spatial and temporal resolution?

2. How much data do we need to properly estimate short-term DD

variations?

3. How variable are the DDs in our study catchments across time and

space?

4. How are short-term DD dynamics related to catchment water stor-

age and what can we learn from these relationships about stream-

flow generation in our study catchments?

2 | METHODOLOGY

2.1 | Study sites

2.1.1 | Location and topography

This study was carried out in two sub-catchments of the pre-Alpine

Erlenbach research catchment (Staehli et al., 2021; Figure 1): Langried

(Lan) and Chaspersböden (Cha). The Erlenbach catchment (Erl) has an

area of 0.7 km2 and ranges in elevation from 1080 to 1520 m a.s.l.

The outlets of the two sub-catchments are located 1.3 km from each

other. The Erl catchment has a westerly aspect and is locally steep.

The 0.048km2 Langried (Lan) sub-catchment ranges from 1292 to

1244 m a.s.l., has an average slope of 15�, and is representative of the

lower and flatter part of the Erl catchment. The 0.043 km2 Chaspers-

böden (Cha) catchment, ranges from 1552 to 1656 m a.s.l., has an

average slope of 24�, and represents the steeper spring zone of the

Erl catchment. The springs occur at the break in slope (average slope

below the springs of 15� vs. 27� for the hillslopes above the springs;

see Figure 1). The break in slope is likely caused by a fault zone and

change in the Flysch bedrock.

As a consequence, the channel network in Cha is concentrated in

the flatter part of the catchment, whereas in Lan the channel network

extends across the entire catchment. The width of the channel

reaches ranged from ca.10 cm at channel heads to 50 cm at catch-

ment outlets; most of the main channel reaches were ca. 20–30 wide.

F IGURE 1 Map of the study site and monitoring network. The insets show the location of the Erlenbach catchment and the pre-Alps in
Switzerland and the location of the Cha (orange) and Lan (b) in the Erlenbach catchment. The coordinate system is CH1903/LV03. The hillshade
map is based on the digital elevation model with a 0.5 m resolution (swissALTI3D, SwissTopo); border between Schlieren and Wägitaler Flisch
and Ragazer Flisch is based on Geological Map of Switzerland 1:500 000 (GK500; SwissTopo).
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The topographic wetness index (TWI; Beven & Kirkby, 1979), based

on the 0.5 m resolution digital elevation model (swissALTI3D; Swis-

sTopo - Federal Office of Topography swisstopo, 2019), is higher

(6–9) close to catchments outlets and along main streams than for the

remaining catchment areas (0–5).

2.1.2 | Climate

The average annual precipitation at 1210 m a.s.l. in the Erl catchment

is 2266 mm (water years 1969–2019; Staehli et al., 2021). Snowfall

represents a third of the total precipitation. A continuous snow cover

of up to 2 m thick can be present from December to April (von

Freyberg et al., 2022). The mean monthly temperature varies from

�1.9 to 15.9�C (von Freyberg et al., 2022). The 2021 summer study

period was relatively wet, especially in July. Total precipitation at the

rain gauge close to the Lan (Figure 1) in July 2021 was

548 mm month�1; between 2010 and 2020, it ranged from 77 to

530 mm month�1.

2.1.3 | Land-use, geology, and pedology

The Lan catchment is characterized by forests, grasslands and wet

meadows. The coniferous forests are dominated by Norway spruce

(Picea abies) and silver fir (Abies alba) (Staehli et al., 2021). The catch-

ment is located on Wägitaler and Schlieren Flysch bedrock. The wet

meadows in the Lan catchment are located on Holocene deposits

interspersed by Pleistocene moraine (till) deposits (Hantke

et al., 2022). In Lan, a few channels are artificial ditches.

The Cha catchment is mainly covered by grasslands and wet

meadows (lower part), with isolated groves of trees. The catchment is

used for cattle grazing in summer. The Cha catchment is underlain by

Ragazer Flysch (upper hillslope) and wet meadows on Holocene

deposits in the lower parts (Hantke et al., 2022). In Cha, there are no

artificial alterations to the drainage network. Shallow and low-

permeability gleysols throughout the Erl catchment lead to shallow

groundwater tables in large parts of the catchments for most of the

year (Rinderer et al., 2014).

2.2 | Field measurements

2.2.1 | Hydrometric measurements and data

We used air pressure and temperature compensated pressure trans-

ducers (CTD10, Meta, Pullman, USA) and pressure transmitters (26Y,

Keller AG, Winterthur, Switzerland) to continuously monitor stream

water levels at seven locations in Lan and six locations in Cha

(Figure 1). The pressure transmitters were placed in the middle of the

channel cross-sections. In Lan, water level data at 5-min resolution

are available from the 1st of June to the 27th of October 2021

(except for LGW3, which was added on the 9th of September 2021).

In Cha, water level data at a 5-min resolution are available from the

18th of June to the 27th of October 2021 (except for CB1, which was

added on the 1st of June 2021). In both catchments data gaps of up

to a few hours occurred sporadically due to data transmission errors

and measurement disturbances, for example, during water sample

collection.

Discharge time series were determined from water level measure-

ments behind V-notch weirs using the Kindsvater-Shen equation

(Kulin & Compton, 1975), which was checked using 32 and 26 bucket

measurements at a range of low to medium flow rates in Lan and Cha,

respectively. Water level and discharge data from the WSL gauging

station above the sedimentation basin for the Erl catchment (E1;

Figure 1) were provided by WSL's Mountain Hydrology and Mass

Movements research unit. Water levels were measured at this loca-

tion using pressure transducers and recorded by digital Philips and

Campbell dataloggers. The stage-discharge relationship was obtained

by salt-dilution measurements (Staehli et al., 2021).

Groundwater monitoring tubes (PVC; screened at an interval of

ca. 1 cm over the lowest 50 cm) were installed 5–11 m from the near-

est channel at depths of 1.19–1.44 m below the soil surface

(Figure 1). Soil moisture sensors (Terros 12, Meter Group, Pullman

USA) were installed at three different depths (10, 30, and 50 cm) near

the groundwater monitoring tubes. Precipitation was monitored at a

10 min resolution using tipping bucket rain gauge at 1502 m a.s.l. near

the Cha catchment (Figure 1; DL-TBRG-001, Decentlab, Switzerland).

Precipitation data at a 10 min resolution at 1210 m a.s.l. at the Erlen-

höhe climate station near Lan (Figure 1; Pluvio2 L400 RH, Ott Hydro-

met GmbH, Switzerland) were provided by WSL's Mountain

Hydrology and Mass Movements research unit.

2.2.2 | Channel mapping

First, we mapped the complete channel networks in the Lan and Cha

catchments. We define a channel as a depression or landscape feature

where directed surface flow occurs or where there are visible signs

that flow occurred in the past (e.g., flattened grass along the flowpath

after rainfall). The total length of all channels (both flowing and dry)

was 1939 m, and 742 m in Lan and Cha, respectively. Longer channels

were divided into shorter reaches (Figure S1 and Figure S2) and their

start and end points were defined based on the observed similarity in

the hydrologic conditions.

Between the 1st of June and the 27th of October 2021, we

mapped a total of 85 and 48 reaches during 15, and 14 surveys in Lan

and Cha, respectively. We timed the surveys to capture a wide range

of hydrologic conditions. During each survey, a person walked along

the entire drainage network and classified all channel reaches within a

sub-catchment as either ‘flowing’ when there was any directed sur-

face flow in the reach, or ‘not flowing’ when the flow was absent.

‘Flowing’ reaches were subdivided into flowing (>5.0 L min�1), weakly

flowing (2.0–5.0 L min�1), trickling (1.0–2.0 L min�1), or weakly trick-

ling (0.01–1.0 L min�1). ‘Not flowing’ reaches were further catego-

rized into ‘standing water’, ‘wet streambed’, or ‘dry streambed’.
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These seven categories helped in understanding the spatial variation

of the flow regime and achieving the reproducibility of the surveys.

Each survey was conducted within a few hours. Besides these regular

catchment-wide surveys, we recorded individual visual observations

of the channel states at selected reaches during equipment mainte-

nance. We used the TempAqua App iOS (Bujak-Ozga, 2023a) to

gather all georeferenced measurements, photos, and videos in the

field. In one ephemeral tributary (Figure 1), visual observations of

reach states were complemented with measurements from a flow

sensor (Assendelft & van Meerveld, 2019). Because this sensor only

registered flow larger than approximately 1 L min�1, we used only the

data when the sensor registered flow to assure congruence with

the surveys.

2.3 | Calculation of drainage density time series
with the CEASE method

2.3.1 | The CEASE method

We define the DD as the total length of all channel reaches with visi-

ble directed surface flow per unit of drainage area (Horton, 1932). To

determine the DD response to rainfall events in Lan and Cha, we com-

bined the high temporal resolution water level time series with the

high spatial resolution surveys. More specifically, we calculated

the 10-min DD time series as follows:

DD tð Þ¼ 1
A
�
Xn

i¼1
Si tð Þ �Li ð1Þ

Where DD(t) is drainage density at the time t, A is the catchment

area, Si(t) is a predicted binary of the state of channel reach i at time

t (0 for ‘dry’ or 1 for ‘flowing’), and Li is the length of the reach i. The

calculated DD(t), thus, does not differentiate between connected and

disconnected flowing channel reaches.

To predict Si(t), we developed a method that relates Si to the mea-

sured water levels. We refer to this method as the CEASE

(ConsEnsuAl State Estimation) method. The CEASE method conceptu-

ally follows the Random Forest Classifier (Ho, 1995) and is derived

from the idea that predictions made by many models together will

outperform individual constituent models.

Equation (2) shows the function Si(t) that returns a binary value,

1 when the state of the channel reach i is predicted as flowing or

0 when dry:

Si tð Þ¼ 0,
XJ

j¼1
Vij tð Þ< J

2
1, otherwise

8
<

: ð2Þ

where Vij(t) is a vote, that is, the state of the channel reach i predicted

using water level data from sensor j at the time t, and J is the total

number of sensors that are used to make the prediction. The vote Vij(t)

returns a binary value, following Equation (3):

Vij tð Þ¼
0, Wj tð Þ< Tij

1, otherwise

�
ð3Þ

where Wj(t) is the water level measured by sensor j at the time t, and

Tij is a classification threshold for channel reach i and sensor j. This

classification threshold was calculated (i.e., optimized) to achieve the

highest prediction accuracy.

In Figure 2, we schematically present the calculation of the classi-

fication threshold Tij and the CEASE method. The input data consists

of water level time series collected at multiple locations (step 1 in

Figure 2, and section 2.2) and visual observations of channel states

along the network from surveys (step 2 in Figure 2 and section 2.2).

Firstly, we combined the visual observations of a channel reach i at

times t with the water level measured by a sensor at that time

(±5 min) (step 3.1 in Figure 2). Secondly, we determined the thresh-

olds Tij (step 3.2 in Figure 2) above which the stream reach was flow-

ing and below which it was not. Thus, we classified the state of

channel reach i as ‘flowing’ when the water level registered by sensor

j exceeded the threshold Tij and as ‘no flow’ otherwise (step 3.3 in

Figure 2, Equation 3). Technically this was done by implementing the

receiver operating characteristic (ROC) curve algorithm. Hereby, we

determined the number of correctly classified states for all possible

threshold values and choose the threshold that results in the best per-

formance. If multiple thresholds had a similar performance, then the

average value was chosen. We repeated this classification for each

sensor and then compared the J predictions of the state of reach i and

chose the state that was predicted by the majority of the sensors

(i.e., consensus) as the final prediction of the channel state for reach

i for that timestep (step 3.4 in Figure 2, Equation 2). In the rare cases

that a draw occurred, we excluded the sensor with the most uncertain

threshold estimate from the analysis. The threshold estimation for

reach i was considered most uncertain when the difference between

Tij and the closest water level measured by sensor j during ‘flow’, or
‘no-flow’ observations was larger than for all other sensors

(Figure 2, 3.2).

We repeated these steps for each channel reach i (step 4 in

Figure 2), and thus created a time series of ‘flow’—‘no flow’ for each
reach in the catchment. The DD time series for the entire catchment

was then obtained from the total length of all ‘flowing’ reaches

(Equation 1). The flow persistency of a reach was calculated based on

the 10-min CEASE method estimates as a percentage of the time that

the reach was flowing. We did all calculations in R software (R Core

Team, 2022).

2.3.2 | Method performance

The performance of the CEASE method was assessed based on the

accuracy, sensitivity, and specificity. Accuracy represents the number

of correctly identified reach states (flowing, not flowing) divided by

the total number of assessments. Sensitivity was defined as the num-

ber of correctly identified flowing reach states divided by the number

of all identified flowing reach states. Finally, specificity represents the
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number of correctly identified not-flowing reach states divided by

the number of all identified not-flowing reach states.

2.3.3 | Identification of the optimal data set to
determine the flow state

We used cross-validation to identify the most informative data set to

determine the DD time series and to gain further insights into the per-

formance of the CEASE method when different input datasets are

used. We divided our data into an input (training) dataset for the

calculation of Tij and a dataset for method performance evaluation

(validation).

To evaluate the importance of the different water level monitor-

ing locations for the determination of the DD, we varied the type (sur-

face water or groundwater) and the number of monitoring sites (all

available surface water sensors or outlet only) used as input for the

calculation of the Tij thresholds. This resulted in four different tests

for which we used all available visual observations (1451 and 740 flow

state observations for Lan and Cha, respectively).

To assess the number of surveys required to robustly determine

the DD in combination with the high temporal resolution water level

F IGURE 2 Schematic explanation of the CEASE method to derive the drainage density (DD) from high-resolution water level time series at a
few points across the catchment (1) and repeated high spatial resolution surveys of the flow state throughout the catchment (2). For each channel
reach (example highlighted in purple in (3)) the mapped time series of flow (F) and no-flow (N) is compared to the measured water levels at a
water level monitoring location to determine the water level threshold above which flow occurs (3.2). Based on this threshold the water level
time series is converted to a flow/no-flow time series for the reach (3.3). This comparison is repeated for all water level monitoring locations (3.1–
3.3), regardless of their distance to the reach. Finally, for each time step the flow or no-flow estimates from the sensors are compared and the
majority (i.e., consensus) is used to determine the flow state of the reach (3.4). These steps (3.1–3.4) are repeated for all reaches (4) to obtain
maps of flow or no-flow for every reach (6) and the DD for each time step (5).
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data, we performed a leave-p-out cross-validation, where we used

only selected surveys together with all available surface water and

groundwater level (GWL) data from the sensors as input. In each test,

we left a p number of surveys, ranging from one to N-1, out of the

input dataset and repeated the test N times. Here, N is the total num-

ber of surveys available for a catchment (i.e., 15 for Lan and 14 for

Cha). For each test, we selected the surveys randomly, without repeti-

tion. The validation dataset consisted of all surveys not used as input,

that is, N-p.

To evaluate the role of hydrological conditions during the surveys

on the performance of the CEASE method, we performed three tests

representing the dry, wet, and entire range of hydrological conditions.

For each of the three tests, we selected three surveys representative

of the respective conditions, specifically, surveys with the largest,

smallest, and variable (max, min, and median value) DD. The validation

dataset consisted of all (N-3) other surveys.

For comparison, we performed an additional evaluation for the

best-case scenario using all water level sensor data from all surface

water and GWL monitoring locations, as well as all survey data for

input and validation. Moreover, we calculated the performance met-

rics for the best-case scenario without the measurements at the

catchment outlet because we used these results to evaluate the rela-

tion between DD and discharge (see sections 3.2 and 3.3).

2.4 | Event definition

Based on the discharge and precipitation time series, we distinguished

27 rainfall events during the monitoring period (Figure S8). We

defined the beginning of a rainfall event as the onset of precipitation

that resulted in a substantial increase (>150%) in discharge, and the

end of an event as the time that discharge returned to its pre-event

level or the start of the next event. We defined the antecedent wet-

ness conditions as those when both discharge and GWLs were low.

Specifically, we classified events as those with dry antecedent condi-

tions when the average discharge at L1 was <4.5 L min�1 in the

2 days prior to the event. This threshold was selected because it also

includes all events occurring after longer periods with low GWLs

(i.e., average water level <�142 cm at location E2 in the 2 days prior

to the event).

3 | RESULTS

3.1 | Conditions and DD dynamics during the
monitoring period

There were two distinct hydrological periods during the 5-month

study period: wet conditions with frequent intense rainfall events

from June to mid-August 2021, and drier conditions with less fre-

quent and lower intensity rainfall after mid-August 2021 (Figure 3). In

the first period, the GWLs remained high. In the drier period, GWLs

decreased more between rainfall events (Figure 3 and Figure S3), due

to the lower and less frequent precipitation and higher

evapotranspiration.

The surveys covered a wide range of flow conditions (Figure 4).

Only a minor part of the channel network in the two catchments

remained non-flowing during all surveys (Figure 3c); the smallest sur-

veyed DD was 2.7 and 7.8 km km�2 for Lan and Cha, respectively;

the largest possible DDs were 40.0 and 15.2 km km�2 for Lan and

Cha, respectively. The DD dynamics differed considerably for the two

catchments (Figure 3c): in the wet period, DD in Lan reacted dynami-

cally to rainfall events, shifting between minimal and maximum DD

values within 15 min. In contrast, the absolute DD variations in Cha

were much smaller because the DD was mostly at or close to its maxi-

mum value. In the dry period, DDs increased dynamically after rainfall

events in both catchments, again at time scales of around 15 min.

However, the maximum DDs occurred less frequently in Lan and Cha.

3.2 | Evaluation of the CEASE method

When the CEASE method was used with all water level data, all calcu-

lated performance metrics were high (>80%; Table 1). The simulated

DDs obtained with this best-case scenario agree well with the map-

ping surveys (average of DDs calculated between mapping survey

start and end) for both Lan (R2 = 0.96, p < 0.01) and Cha

(R2 = 0.75, p < 0.01).

When the data from only one sensor data set was used in the

CEASE method, the differences in the method performance metrics

were negligible. The largest effects occurred for the specificity for

Cha, which ranged from 79% (only surface water level data from the

Cha outlet) to 90% (only GWL data). All other performance metrics

were higher than 94%, regardless of the sensor dataset that was used

as input for the CEASE method.

When three or fewer surveys were used, the performance metrics

were substantially lower on average and had a higher standard devia-

tion for Lan. When at least six surveys were used as input, the perfor-

mance metrics were relatively stable, averaging around 90%, 85%, and

92% for accuracy, sensitivity, and specificity, respectively (Figure 5a,c,

e). For Cha, the average specificity and accuracy were also lower and

had a higher standard deviation when three or fewer surveys were

used; they became stable when at least five surveys were used

(Figure 5b,d). The standard deviation of the accuracy was small stan-

dard deviation (<10%) for Cha but for the specificity it was higher

(>20%). Sensitivity stayed above 90% for all tests (Figure 5f).

When only the three surveys during dry conditions were used the

accuracy of the simulated DDs was lower than when three surveys

during varying conditions were used as input data by 25% and 5% for

Lan and Cha, respectively (Table 1). The lower accuracy was associ-

ated with a lower sensitivity; specificity remained above 82% for both

catchments. When only the three wettest surveys were used as input,

both the accuracy and specificity decreased substantially, whereas

sensitivity was above 96% for both catchments.
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3.3 | Relationship between DD and specific
discharge

The relation between the 10-min data of the simulated DD and the

specific runoff is very different for the two catchments (Figure 6). In

Lan, the slope of the DD-q relationship is steep until DD is around

15 km km�2, and then flattens for mid-range discharge values and a

DD between 15 and 20 km km�2. At high flows of around

20 Ls�1 km�2 and DDs higher than around 20 km km�2, the relation-

ship becomes steep again until the maximum DD is reached. In con-

trast, the range of the DD-q relationship for Cha is much smaller and

its slope is similar to that for the high-flow conditions in Lan

(Figure 6).

To identify which parts of the catchments contribute to stream-

flow, we investigated the spatial patterns in flow persistency and

related them to the DD-q plot (Figure 7). The Lan main stream has a

flow persistency of 100% (i.e., was always flowing), whereas the least

incised (<10 cm) reaches below the channel heads and artificial ditches

have the lowest flow persistencies (Figure 7a). The steep DD-q rela-

tionship in Lan when the DD was <15 km km�2 can be explained by

the stream network expanding along the main tributaries that have a

flow persistency >70%. For some of these tributaries, the downstream

reaches were sometimes activated later than the upstream ones. For

1

10

100

1000

0 25 50 75 100
Percent of time equal or exceded (%)

q�
�L

�s
−1

�k
m

−2
�

CB1 1.06−27.10 CB1 surveys L1 1.06−27.10 L1 surveys

F IGURE 4 Flow duration curves for discharge measured at L1
(the outlet of Lan catchment) and CB1 (Cha catchment) in yellow, and
blue, respectively. Dots in darker colours mark the discharge at the
times of the mapping surveys. Dots in lighter colours mark the
discharge measured throughout the study period.

F IGURE 3 Time series of
precipitation measured close to
Lan (a), specific discharge (Lan in
blue and Cha in orange) (b),
drainage density DD (surveys:
symbols, CEASE method: lines)
(c), and groundwater level at
location LGW1 (d) during the
study period. The drainage

density was calculated with the
CEASE method, using all stream
and groundwater level sensor
data (except for the catchment
outlets) and all visual
observations of the channel
states. For readability of the
figure only the groundwater level
at LGW1 is shown; the
groundwater levels measured at
all locations are shown in
Figure S3.
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DD between 15 and 20 km km�2, the stream network expanded into

tributaries with more incised stream channels and into the upper parts

of the main tributaries, both having flow persistencies between 25%

and 70%. The DD-q relationship steepens again for DD >20 km km�2

when shallow-incised channels near the channel heads and ditches

began to flow (persistencies ≤25%, Figure 7a).

In Cha, the main-stream and tributaries with a flow persistency of

100% accounted for 49% of the total drainage network length

(Figure 7b). The moderately incised, smaller uphill tributaries had flow

persistencies between 50% and 70%. In only 7% of the network,

mainly located downstream of the two southern channel heads, flow

occurred for ≤30% of the time (Figure 7).

TABLE 1 Accuracy, sensitivity, and specificity (in %) for the drainage density for the Lan and Cha catchments calculated with the CEASE
method with different input data. GW, SW, and E1 stand for all groundwater level sensors, all surface water level sensors, and the water level at
the Erlenbach outlet, respectively.

Scenario Best-case Different sensors Different surveys

Sensors used All All but outlet GW SW Outlet E1 All All All

Surveys used All All All All All All Wet Varying Dry

Accuracy Lan 96.2 95.8 95.7 95.5 94.8 94.1 76.2 87.6 62.7

Cha 93.6 94.5 96.4 92.6 92.7 95.8 82.1 84.3 79.8

Sensitivity Lan 95.6 95.6 94.5 95.0 95.1 94.2 96.2 76.5 31.4

Cha 96.7 96.8 98.0 95.3 95.8 97.7 98.7 84.7 77.2

Specificity Lan 96.7 96.0 96.6 95.8 94.6 94.1 62.9 96.7 97.2

Cha 80.6 84.8 89.7 80.6 79.1 87.8 24.1 82.7 96.3

F IGURE 5 Performance
metrics, accuracy (a, b), sensitivity
(c, d), and specificity (e, f) of the
CEASE method for the estimated
channel states in Lan (left) and
Cha (right) when a different
number of surveys were used as
the input (leave-p-out cross-
validation). The black line
represents the average value for a
given number of surveys. Shaded
areas represent one standard
deviation. For Cha, the test with
one survey is not shown because
gaps in the water level data
caused the performance metrics
to be incomparable.
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3.4 | Dynamics of DD and hydrological variables
during rainfall-runoff events

The simulated 10-min DD time series allows us to study the processes

that govern the FDN dynamics during rainfall events. As an example,

five rainfall events in Lan are shown in Figure 8. For the events on the

22nd and 24th of June, after dry antecedent conditions, the DD-q

relationships exhibited a counter-clockwise hysteresis, although spe-

cific discharge and DD peaked at the same time (Figure 8d). For

events following wetter antecedent conditions (i.e., the events on the

3rd and 6th of July), there is almost no visible hysteresis (Figure 8d).

Furthermore, the DD-q relationships during the hydrograph reces-

sions were less steep for the events after dry conditions than for the

events with wet antecedent conditions.

When comparing DD and GWL, which is used here as a proxy for

subsurface water storage, we see clockwise hysteresis for the events

following dry antecedent conditions (e.g., on June 24th; Figure 8e and

S4), except that there was no clear hysteresis for the driest conditions

(22nd of June). Instead, groundwater level increased during both the

rising limb and recession phase of this event. DD peaked earlier and

decreased faster than the GWL. DD and GWL responded simulta-

neously for events for which the GWL at the start of the event was

within 35 cm from the surface (e.g., for the events on July 3rd, 6th,

and 10th). For all events, there was a noticeable change in the slope in

the DD-GWL relationship when the GWL rose to within 20 cm of the

surface. The relation between DD and soil moisture was very similar

to that of DD and GWL (Figures S6 and S4).

In the Cha catchment, the maximum DD was reached very quickly

after the start of each rainfall event (Figure 5, Figures S7 and S9). We

thus did not observe repetitive rainfall-driven expansion-contraction

patterns in Cha (Figure S9) and found a counter-clockwise hysteresis

in the DD-q relationship only for two events in the drier period (16th

of September and 21st of October; Figure S9).

4 | DISCUSSION

4.1 | Evaluation of the CEASE method

The CEASE method combines high temporal-resolution data from sen-

sors and high spatial-resolution data from surveys to obtain continu-

ous DD time series and flow presence maps. Our analyses show that

the CEASE method provides reliable estimates of the short-term

changes in DD in both catchments if the survey data represents the

range of hydrological conditions of the period of interest (Table 1).

The negligible differences in method performance metrics for all tests

using different sensor data (Table 1) indicate that at least for the two

study catchments, the number and location of sensors have a minor

effect on the CEASE method performance. Using only one sensor at

the catchment outlet, or the outlet of the larger Erl catchment was

already informative (accuracies from 93% to 96%). This is likely due to

the synchronicity in the streamflow at the different stream locations

(e.g., the R2 between the discharge measured at the outlet of Erl

(E1) and the outlet of Lan and Cha was 0.85 and 0.74, respectively).

Previous research reported a high similarity in the discharge regimes

between the Alp river and its upstream torrents, one of which is the

Erlenbach (Staehli et al., 2021). This finding has important implications

as it allows us to reduce the efforts to monitor intermittent streams in

these types of catchments. It also allows us to only use water level

data from the catchment outlet with the maps of the flowing stream

network to derive estimates of the DD. This makes it possible to esti-

mate the variations in the DD based on the historic discharge time

series if the stream network has not changed considerably over time,

(e.g., due to sediment transport), there have been no changes in the

relation between GWLs in the catchment and streamflow (e.g., due to

groundwater pumping), or changes in the dominant runoff processes

(e.g., due to land use change).

As expected, using only five or fewer surveys in the CEASE

method resulted in lower accuracy and sensitivity for both catchments

(Figure 5). This highlights the importance of the survey data to recon-

struct the short-term DD dynamics. However, for the test performed

for three surveys during varying conditions (Table 1), the performance

y =3.75 x0.35   R2 =0.68   p <0.01

y =6.07 x0.49   R2 =0.65   p <0.01

1
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F IGURE 6 The relationship between drainage density (DD) and
specific discharge in Lan (blue) and Cha (red). The darker colours
represent the data from the surveys, the lighter colours the 10-min
resolution results from the CEASE method when all data were used as
input. Regression lines were fitted to the data from the surveys for
illustrative purposes; R2 values and best-fit equation are shown in the
graph. The frequency distributions of the specific discharge and
simulated DD are shown outside the axes.
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metrics were high, suggesting that the method can reliably predict the

flow presence if surveys are available for a range of conditions, espe-

cially for the Lan catchment. The fact that the test with only dry-

condition surveys resulted in biased predictions is not surprising given

the hierarchical expansion of the FDN (Botter et al., 2021). Because

reaches with low local persistency will only be activated during very

wet conditions, a reliable ‘flow'/'no-flow’ water level threshold Tij can

only be found if the surveys capture a correspondingly wide range in

hydro-climatic conditions.

In general, our scenario analysis shows that surveys during dry

and wet conditions are very informative for establishing Tij thresholds

in reaches with high and low flow persistency, respectively. Therefore,

we recommend doing surveys during the widest possible range of

hydrological conditions to capture most flow states, especially in

reaches with very high and very low flow persistency. The consider-

able difference between the specificity for Lan and Cha for all scenar-

ios (Table 1) suggests that the method tended to overestimate the DD

for Cha. This is likely caused by the fact that the summer of 2021 was

relatively wet. As a result, many reaches in Cha kept flowing through-

out the monitoring period (Figure 7b), leading to an underrepresenta-

tion of the ‘no-flow’ stream state in our dataset, and a less robust

estimation of flow states in Cha. In Lan, 57% of all channel reaches

had a flow persistency <50% (Figure 7a), whereas this was the case

for only 7% of the reaches in Cha (Figure 7b). Thus, the chances for

mapping these reaches as ‘not flowing’ in Cha during dry conditions

were very small, contributing to a less certain threshold Tij, and the

larger decrease in sensitivity for Lan (�65%) than in Cha (�20%) com-

pared to the best-case scenario.

The CEASE method is based on the threshold behaviour of flow

activation, similar to the work of Durighetto and Botter (2022). The exis-

tence of repetitive patterns of contraction and expansion for

the 27 rainfall events (Figure 8 and Figure S5) suggests that the catch-

ments indeed behave in a predictive way, which potentially allows for

the application of the analytical model based on flow persistency of

Durighetto and Botter (2022). Unlike the analytical model of Durighetto

and Botter (2022), the CEASE method can incorporate data from differ-

ent water level sensors, which can help to avoid bias related to the use

of data from one location (Table 1) and to explore the potential different

behaviour during the rising and falling limb of the hydrograph

(i.e., hysteresis). The CEASE method is purely empirical and does not use

information on upslope contributiong areas or other topographic infor-

mation to estabilish “flow”/“no-flow” thresholds. This is an advantage

when the stream network dynamics are not well related to topography,

but rather to geology or human impacts, such as artificial ditches.
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(b)F IGURE 7 Maps of the
persistency of flow in Lan (a) and
Cha (b) together with the
relationship between drainage
density and specific discharge in
Lan (c) and Cha (d). The channel
reaches on the maps (a, b) are
colour-coded by the flow
persistency, that is, percent of the

time each reach was flowing during
the study period based on the
10-min resolution CEASE method
estimates. The points on the lower
panels (c, d) present the hourly
data for the entire study period
and are colour-coded by the lowest
flow persistency (based on panels
a, b) from all the channels that
were flowing at a given point
in time.
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The CEASE method can easily be applied to other headwater

catchments because it uses only standard hydrometric measure-

ments. The method can be applied to selected parts of the catch-

ment and flow state observations can be made on different days,

opening the possibility to apply the method to larger catchments

(that cannot be surveyed on 1 day) if enough water level monitor-

ing locations are available to account for the spatial heterogeneity

in precipitation and flow responses. Besides that, the method is

insensitive to gaps in the water level time series because it com-

bines data from multiple sensors for each timestep. A major limita-

tion of the CEASE method is its requirement for flow presence

observations during a range of hydro-climatic conditions. However,

our study shows that even if the number of field surveys is reduced

to six, the method performance metrics are still high and stable.

Although the CEASE method cannot predict DD in un-mapped

catchments, it can potentially be used to obtain high-resolution DD

time series for catchments for which survey data and high-

resolution water level or discharge data are available if the stream

network and the relation between groundwater and streamflow

have not changed considerably over time (e.g., Godsey &

Kirchner, 2014; Jensen et al., 2017; Lovill et al., 2018; Whiting &

Godsey, 2016).
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F IGURE 8 Time series of precipitation (a), specific discharge (b) the simulated DD (c) in Lan during five selected rainfall events, and the
relationship between DD and specific discharge (d) and the groundwater level at location LGW1 (e). The data are colour-coded by rainfall events,
with dots and stars indicating the rising limb and recession phase, respectively; data points during peak discharge are shown in black; non-event

data are shown in grey.
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4.2 | Differences in DD dynamics between the
two catchments

The DDs in both Lan and Cha were in line with those reported in pre-

vious studies in the neighbouring Studibach catchment (DD up to

29 km km�2; van Meerveld et al., 2019). They were a few times higher

than the DD values reported by Prancevic and Kirchner (2019) for

surveys in other catchments, likely because in Erl the climatic condi-

tions are wet and soils are not very permeable.

Despite their proximity, the short-term DD dynamics in the two

catchments differed. The DD was more stable over time in Cha, which

was already apparent from the field surveys (Figure 3). The variations

in DD were much larger for Lan than Cha, even when we scaled the

FDN to the total length of all the channels (Figure 4). The differences

in DD variations can be explained by the subsurface properties and

related topography of the two catchments. Most of the Lan catch-

ment has gentle slopes (Figure 1) but only a relatively small part of the

Lan catchment near the outlet has a relatively high (6–9) TWI

(Beven & Kirkby, 1979). In the neighbouring Studibach catchment,

groundwater tables and dynamics were related to TWI (Rinderer

et al., 2017). Thus, the groundwater table near the Lan outlet was

likely very shallow, leading to a flow persistency close to or equal to

100% for most of the streams in this area (Figure 7). A similar zone

with high TWI values and, thus, water tables are found in the north-

west part of the Cha catchment (e.g., Figure S3, location CBGW1), but

the streams in this area account for a much larger portion of the total

drainage network. The other parts of the Cha catchment are much

steeper and do not have a well-developed drainage network, causing

an underrepresentation of reaches with low- or mid-range persis-

tency. There are no geomorphic channels in the southeast part of the

Cha catchment. This likely reflects deeper infiltration than in

the northwest part of the catchment and the deeper groundwater

tables (e.g., Figure S3, location CBGW2). In the central part of the

catchment where the hillslopes become less steep, there are multiple

springs. These springs were active throughout the monitoring period

contributing to the low variability in DD in Cha.

The presence of artificial ditches contributes to the large and vari-

able DD in Lan as well. Previous research (Datry et al., 2023;

Hammond et al., 2021) has shown that flow ceases earlier in catch-

ments with anthropogenic modifications of the drainage network. As

expected, all ditches in Lan had a low flow persistency. In Cha, all

stream channels formed naturally where the surface flow pathways

are concentrated enough to erode the material. Instead, in Lan addi-

tional ditches were created to drain areas where the flow is slower

and flow paths are more diverging. As a result, they flow only during

or after rainfall events.

4.3 | Inferences about streamflow-generation
processes

The short-term q-DD relationship in Lan was not well explained by

the power-law relation that was initially proposed by Godsey and

Kirchner (2014). Instead, we find a more complex DD-q relationship

(Figure 8) than what would have been expected from seasonal survey

data (Figure 6; Prancevic & Kirchner, 2019). The S-shaped q-DD rela-

tionship in Lan can be explained by two main factors: (1) FDN being

fragmented during drier (DDs <15 km km�2, discharge <2 L s�1 km�2)

and connected during wetter conditions (DDs >15 km km�2, dis-

charge >2 L s�1 km�2); (2) multiple shallow (<10 cm incised) channels

and artificial ditches with a low specific discharge, that are activated

only when conditions are very wet (discharge >11 L s�1 km�2), caus-

ing the steep q-DD relationship. This is consistent with a previous

analysis of flow regimes for 540 catchments in the United States that

revealed that in catchments with anthropogenic influences flow

ceases earlier and the duration of the dry-down period is shorter

(Hammond et al., 2021). Furthermore, the slope of the q-DD relation-

ship during the recession for Lan depended on the antecedent wet-

ness conditions (Figure 8 and Figure S5). During wet conditions, the

DD stays at its full extent longer likely because the rising GWLs main-

tain water flow in the channels. However, when the catchment starts

to dry and GWL drops, the DD decreases rapidly due to the deactiva-

tion of flow in the less incised streams and the ditches.

Figure 8 indicates furthermore that the antecedent wetness con-

ditions can play an important role in the timing of FDN expansion dur-

ing rainfall events, which is consistent with the findings of Jensen

et al. (2019). The first rainfall events after dry periods are character-

ized by a slower increase in DD, but once the catchment is wet, the

responses are synchronous. Jensen et al. (2019) also reported hystere-

sis for the wet portion of the channel network during dry antecedent

conditions, and a lack of hysteresis when conditions were wet. They

linked it to an insufficient increase in the deep groundwater table to

maintain flow in the channels after an event. However, contrary

to their results, the hysteresis loop for the study catchments was

counterclockwise after dry periods. This is likely caused by several

processes. At the beginning of the event, most flowing channels occur

in the lowest part of the catchment, which is characterized by shallow

GWLs (Figure 7a). Direct rainfall runoff in wet channels, as well as a

rapid increase of GWL due to infiltrating rainwater (cf., Rinderer

et al., 2016) causes a quick streamflow response. Because the reaches

in this part of the catchment are already flowing (as indicated by their

high flow persistency; Figure 7a), discharge increases faster than

DD. The lower DD on the rising hydrograph limb can also be caused

by the higher infiltration and seepage losses along the dry reaches

(Batlle-Aguilar & Cook, 2012; Niswonger et al., 2008). Transient infil-

tration rates along the dry channels at the event onset can be up to

three orders of magnitude higher than during steady-state conditions

(Blasch et al., 2006). With ongoing rainfall, the infiltration rates

decrease (Batlle-Aguilar & Cook, 2012; Blasch et al., 2006), causing

more reaches of the channel network to connect. With continued

increases in the GWL, surface flow emerges in the upstream tribu-

taries, causing a rapid increase in DD. At the end of a rainfall event,

streamflow at the outlet recedes faster than DD. The rising GWL and

continued seepage at the channel heads maintain a high DD, even

though the groundwater discharge is small and decreasing, resulting in

less streamflow at the outlet.
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For rainfall events following wet antecedent conditions, DD and

discharge respond synchronously (i.e., no hysteresis) in Lan. With wet-

ter conditions, the infiltration rates into the dry streambeds are lower

(Batlle-Aguilar & Cook, 2012; Blasch et al., 2006), catchment subsur-

face storage is higher, and the maximum subsurface transport capacity

is exceeded faster. Therefore, streamflow emerges earlier in multiple

reaches with a low flow persistency. Moreover, we observed a rapid

increase in DD with wetter conditions when the GWL rose to within

20 cm below the surface and streamflow was initiated in multiple

shallow-incised channels and artificial ditches (Figures 7 and 8). The

Gleysols of the study sites (Schleppi et al., 1998) are characterized by

low drainable porosity and low hydraulic conductivity. When the

GWL rise into the higher permeability topsoil (i.e., within 20 cm),

water is quickly transported to the stream, leading to both a larger

increase in discharge and DD.

In Cha, the q-DD relationship was less complex than in Lan and,

except at high flows, could be described by a single power-law curve.

Hysteresis was observed only for one event following dry antecedent

conditions (Figure S9). In comparison to other years, June and July

2021 were very wet. It is possible, that the DD dynamics in Cha are

more complex during drier years. Five out of 15 channel heads in the

central part of the catchment (Figure 7b) are groundwater springs that

were active throughout the monitoring period, resulting in a relatively

high DD with low variability. Most of the DD variations were caused

by two channels located above the groundwater springs in the

steeper, southeast part of the catchment. These channels have a

lower TWI, and deeper GWL (Figure S3). The area without a channel

network in Cha is much larger than in Lan, and thus, deep infiltration

and delayed groundwater discharge are likely to dominate in a large

part of Cha.

5 | CONCLUSIONS

The CEASE method combines high temporal resolution water level data

with high spatial resolution mapping surveys of the flow state for the

entire stream network to determine the variation in the flowing stream

DD during rainfall events. For the two studied headwater catchments,

it is best to use at least six field surveys during varying hydrological

conditions to adequately represent the reaches with high and low flow

persistency. The number and location of the water level sensors had

only a small effect on the performance of the method and even the use

of just the time series from the sensor at the catchment outlet yielded

high-accuracy results. The method can be applied in different catch-

ments contributing to the availability of data on short-term FDNs.

The more variable DD in Lan than Cha can be explained by the

differences in subsurface properties and related topography. The rela-

tion between DD and specific discharge did not strictly follow a

power-law relationship; the shape of the relation could be explained

by the topography of the different parts of the catchment and the

reaches that started to flow at different catchment wetness condi-

tions. Furthermore, the event scale DD-specific discharge relation

was hysteretic when the antecedent conditions were dry. The

relation between DD and the GWL, similarly, depended on the ante-

cedent conditions. The observations agree with previous studies that

found a relation between flow persistency and topographic metrics,

such as elevation, slope, and TWI (e.g., Warix et al., 2021). Future

studies should investigate FDNs and their short-term dynamics, as

well as the performance of the CEASE method, in catchments with

different characteristics.
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