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Abstract 

Green spaces and natural environments are essential for quality of life, as they influence 

health behaviours and outcomes positively. The quantification of “greenness” observable 

from the human perspective is of great interest, especially in urban environments where built-

up areas and infill are expanding. In this paper, we present a method based on airborne 

laser scanning (ALS) point clouds that makes it possible to simulate a space observed from 

the human perspective and to quantify the surrounding vegetation. The method can be 

applied over various spatial scales, in urban, suburban and rural regions. We employed this 

new method to analyse a set of specific locations in Switzerland that are important for 

people to recover from everyday stress. The greenness quantification can be used to 

compare the perceived restorative quality of landscape characteristics with physical 

landscape qualities. Our approach provides a viable methodological solution for spatial 

planning and large-scale socio-ecological studies on the influence of natural and green 

spaces on health and wellbeing, and we recommend that it be applied in the natural 

landscape and in urban areas. 
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1 Introduction  

Urban areas worldwide are experiencing continuous population growth (World Bank, 2022) 

and, consequently, continuous expansion of their extent and infill development. Green spaces 

and natural environments are essential for urban quality of life (Bell, 2010) as they affect health 

behaviours and outcomes positively (Bezold et al., 2018; James, Banay, Hart, & Laden, 2015; 

Wood, Hooper, Foster, & Bull, 2017). Switzerland has a predominantly urban population, with 

74% of inhabitants living in cities and conurbations in 2022 (World Bank, 2022). Thus, the 

quality of, and accessibility to, green and natural spaces in and near urban areas are of great 

interest in this country. Access to green spaces and vegetation, or its visibility, has a major 

impact on people’s wellbeing (Palliwoda & Priess, 2021). This is currently being investigated 
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in the interdisciplinary research project RESTORE (https://www.wsl.ch/de/projekte/noise-

and-greenspaces.html).  

Objective (quantitative) two- and three-dimensional measures of the biomass and canopy 

cover as well as of the structure and spatial patterns of vegetation can be obtained from spatial 

data. However, the quantification of “greenness” from the human perspective (i.e. how much 

vegetation is actually visible) using spatial data is not trivial and, to the best of our knowledge, 

studies on this topic (e.g., Kumakoshi, Chan, Koizumi, Li, & Yoshimura, 2020; Labib, Huck, 

& Lindley, 2021; Li et al., 2015; Yu et al., 2016) have not provided a widely accepted solution. 

Much research has involved measuring greenness using remote sensing data (e.g., Degerickx, 

Hermy & Somers, 2020; review by Shahtahmassebi et al., 2021). Satellite-based vegetation 

indices, such as the Normalized Difference Vegetation Index (NDVI), the Green-Red 

Vegetation Index (GRVI) and the Enhanced Vegetation Index (EVI), are widely used and 

represent the density and health of vegetation (Zeng et al., 2022). They are also used to map 

land use/land cover and can be used to calculate the percentage of a spatial area covered by 

various types of green space (e.g., parks, public gardens, sports fields, forests). These 2D data 

may provide information on general features of a certain area, but they give a simplified 

representation of vegetation and may miss details, such as “green” or “living” walls, or lawns 

and shrubs under tree canopies, which are crucial elements in a human’s field of view (Li et 

al., 2015; Yang, Zhao, Mcbride, & Gong, 2009). 

Many of these limitations can be overcome by airborne laser scanning (ALS) data, which are 

widely used in the domain of forestry. ALS data make it possible to describe the horizontal 

and vertical vegetation structure in 3D, to count single trees and measure their parameters 

(e.g., crown radius and height, trunk height), and even to perform crown-shape-based 

recognition of tree species (Goodbody et al., 2020; Pirotti, 2011). Descriptions of vegetation 

based on ALS point clouds incorporate metrics related to a spatial unit (pixel, voxel, 

surroundings of a particular location) or to a single tree (Roussel et al., 2020).  

Quantifying greenness from the human perspective (i.e. the amount of vegetation observable 

in one’s surroundings) involves either analysis of photographs taken from a fixed location, or 

geospatial modelling. The first approach involves the calculation of the proportion of 

vegetation pixels in photographs and panoramic images taken from street level (Yang et al., 

2009). Some research has aided photography-based analysis by relating it to spatial data, in 

particular ALS (Chen, Xu, & Gao, 2015) or satellite imagery from Google Earth (Jiang et al., 

2017). Even though the authors of these studies emphasized the good performance of their 

methods, the photography-based approach has several weaknesses. 2D images do not provide 

information about the distance to the vegetation or its density, which are important aspects of 

the visual significance of observed objects (Aben, Pellikka & Travis, 2018; Nutsford, Reitsma, 

Pearson & Kingham, 2015). Additionally, 2D images exaggerate the proportion of greenness 

towards the zenith (at larger vertical angles). Moreover, even when street-view imagery 

databases are included (e.g., Google or Baidu), the methods are spatially limited by the 

availability of photos (usually to streetscapes with vehicular access) and thus are not suitable 

for analysing large regions. The greatest drawback is that identifying vegetation in street-level 

https://www.wsl.ch/de/projekte/noise-and-greenspaces.html
https://www.wsl.ch/de/projekte/noise-and-greenspaces.html
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photographs and satellite imagery can be labour-intensive, as it has to be carried out manually 

using an image editing software. 

The second approach, geospatial modelling, makes use of viewshed analysis based on digital 

terrain models (DTMs), digital surface models (DSMs), and vegetation distribution maps to 

simulate observations from a particular on-ground location (Aben, Signer, Heiskanen, Pellikka 

& Travis, 2021; Cimburova & Blumentrath, 2022; Labib et al., 2021). Some studies also 

incorporate 3D models of buildings as sight barriers, or to simulate the view from a particular 

floor-level in a building (Labib et al., 2021; Yu et al., 2016). The limitations of this approach 

result from the fact that DSMs and land-cover maps represent the vegetation simplified to its 

extent or canopy cover, while people see trees as 3D objects on the ground. Additionally, 3D 

building models are usually only available for large cities or city centres, and thus cannot be 

applied in regional or national studies.  

The 3D quantification of vegetation across large regions and multiple sites has recently been 

addressed in the domain of visual ecology, which explores how visual information influences 

the spatial behaviour of animals. Using 3D point clouds from terrestrial laser scanning, 

Lecigne, Eitel and Rachlow (2020) successfully acquired very detailed information on the 3D 

structure of surrounding vegetation, and quantified the visible surroundings from single and 

multiple viewpoints. The data, however, must be collected separately at each individual 

location; the technology is therefore not suitable for large-scale studies. 

The existing approaches for describing how people perceive the vegetation at a specific place 

are inadequate. The aim of this study is to contribute to filling this research gap. As part of the 

RESTORE project, we have developed a holistic concept and remote sensing, based on GIS 

and remote sensing, to describe green and natural places where people spend time to relieve 

stress caused by traffic noise. 

The overall concept follows a three-level top–down approach. Each level relates to a different 

scale and amount of detail, as well as to the extent of the environment under consideration. 

At the highest level with the largest spatial extent, a bird’s eye view provides information on 

land use, land cover, topography, viewshed, presence of natural and anthropogenic landscape 

features, accessibility, and noise levels, among other factors. The middle level focuses on a 

smaller spatial extent and provides more detailed insight into the 3D structure of the 

surrounding vegetation. The aim of the third, most detailed, level is to reconstruct the way a 

person sees their immediate environment. This level focuses on vegetation and considers 

obstructions of one landscape item by another. The present work deals exclusively with this 

third level of detail. 

The aim of the study was to develop a reliable and computationally efficient method to 

quantify vegetation as seen from the human perspective which would be applicable over local, 

regional and country-wide scales, in particular in urban and suburban regions. To address the 

potentials and limitations noted above, we developed a solution based on ALS data. Namely, 

we used dense ALS point clouds to simulate a space observed from a particular on-ground 

location (Aben et al., 2018; Hamraz, Contreras, & Zhang, 2017). We completed all the data 
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processing and analysis in ArcGIS (v.10.8.1, ESRI) and the statistical software R (v.4.2.0; R 

Core Team, 2022), specifically the lidR package (v.4.0. 1; Roussel et al., 2020). lidR 

involves conventional ALS processing tools (e.g., ground classification, terrain interpolation, 

height normalization, construction of digital canopy models), and extraction of ALS metrics 

derived from the vertical elevation or intensity of the points. lidR also offers a highly flexible 

programming environment to implement innovative processing approaches (Roussel et al., 

2020). 

2 Data and Methods 

 2.1 Data 

The main data sources used were ALS point clouds. Additionally, high-detail topographic data 

and DTM were utilized. The ALS data were acquired in the framework of a national campaign 

(SwissSurface3D) between 2017 and 2020, during the leaf-off season (early spring or late 

autumn), with an overall point density of ca. 15–20 points/m2. The non-normalized ALS point 

clouds are available as LAS files (ASPRS LAS 1.2 Standard; ASPRS, 2008) and provide X, Y 

and Z point coordinates, as well as additional attributes such as point intensity, classification 

and return number.  

The vector topographic data come from swissTLM3D, the most extensive and accurate large-

scale 3D vector dataset of Switzerland (Swisstopo, 2022). The dataset describes the position, 

shape and many other attributes of almost 20 million natural and artificial landscape features 

across Switzerland. It comprises eight main categories (which are further divided into sub-

categories): roads and tracks, public transport, buildings, areas with special use, land cover, 

hydrography, single point objects, and names (mountains, areas, towns etc.). 

The corresponding DTM swissALTI3D provided by swisstopo is based on ALS data. It has 

an overall point density of 0.5 points per m2 (Artuso et al., 2003), and a resolution of 2m, 

which was resampled to 1m.  

 2.2 Study area and sample locations 

To develop the method, various sample locations across Switzerland were considered. These 

locations stemmed from an online survey focusing on destressing, where participants were 

asked to map the outdoor places in their everyday environment where they last went for 

restoration (restorative locations, RLs). The surroundings of the RLs were then described in 

terms of patterns and types of vegetation, including trees, shrubs and herbaceous vegetation, 

as well as open water areas and anthropogenic features, such as roads and paths.  
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2.3 Vegetation quantification from the human perspective 

To reconstruct the human perspective of the surrounding space, it was assumed that a person 

sees their surroundings as a kind of virtual sphere with all the features (trees, buildings, ground 

surface etc.) and the sky projected onto it. The sphere was first divided into 180 latitudinal 

bands, each with a span of 1⁰. Further, each band was divided into equal-area cells, from 360 

cells at the observer’s eye level to 1 cell at the zenith (Malkin, 2016). This avoided exaggeration 

of features (e.g., greenness) towards the zenith (Figure 1).  

A circular 100m-wide buffer zone (referred to as a “plot” below) was created around each RL. 

The ALS sub-point clouds for each plot were extracted and stored in individual files. 

Subsequently, the human view in each location was reconstructed in four steps. 

 The observer’s horizontal (X, Y) location was determined as the centre of a plot; the 

vertical coordinate (Z) corresponded to the ground elevation plus the observer’s height 

above the ground (2m). 

 The plot point cloud was transformed from an orthogonal projection to an observer-

centred projection, so that each point’s coordinates were defined by the vertical angle 

(theta [θ], measured from -90⁰ pointing vertically downwards to +90⁰ at the zenith, with 

eye level at 0⁰), the azimuth (fi [φ], measured clockwise starting from 0 in the north), 

and the distance to the point (r) (Figure 1). 

 The surrounding virtual sphere was created and all the points in the cloud were 

projected on to it. Each cell of the sphere was assigned two values: (1) the distance from 

the observer to the nearest point (object); (2) the point’s classification (vegetation, 

building and ground). The remaining cells were classified as sky or ground, when 

occurring above or below the horizon, respectively. A third attribute was the number 

of vegetation points visible from each cell. 

 The derived attributes were used to calculate 80 sphere visibility metrics in three groups. 

They described: (1) the proportions of the sphere classified as ground, vegetation, 

building, water and sky, and the proportion of all above-ground cells; (2) the horizontal 

distribution of distance and the vertical distributions of the angles of the cells by 

classification, expressed by quantiles in 0.1 steps; and (3) the vegetation composition 

and density, expressed as the number, width and density of vegetation clumps. Initially, 

the counts of vegetation points in each horizontal direction were calculated based on 

the point cloud to assess vegetation presence or absence in each cell; the cells were 

attributed with values of 1 or 0, for presence or absence respectively. Then, sequences 

of at least 10 cells with repeating values of 1 were identified. These were considered 

vegetation clumps. Corrections were introduced for the northern azimuth, to merge 

vegetation detected at azimuths of 1⁰ and 360⁰. The width (the difference between the 

ending and starting azimuth), count of vegetation points, and density of vegetation 

points (the ratio of the count of vegetation points to the angular width of the clump) 

were calculated for each vegetation clump. Finally, the number of vegetation clumps 
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and the summarized (mean and standard deviation) characteristics of the individual 

clumps were calculated for each observer location. 

For reference purposes, the sub-point clouds extracted earlier were normalized to obtain 

ground-related elevations; vegetation metrics traditionally used in research and practice 

(especially in the domains of forestry and ecology) were calculated, namely: maximum (zmax), 

mean (zmean), and standard deviation (zsd) of the height.  

 

Figure 1: Illustration of the surrounding virtual sphere divided into equal-area cells. The observer is placed 

at the centre of the sphere, and the location of each cell is determined by two coordinates: vertical 

angle (θ) and azimuth (φ). 

2.4 Performance assessment 

The characteristics calculated for each site were assessed qualitatively for their plausibility and 
informational value by creating descriptive statistics and diagrams from the data of the spheres 
–for example, histograms of the horizontal and vertical depth distributions, or scatterplots of 
the distributions of the distances between the observer and non-obscured vegetation points. 
Orthophotos and topographic data were used to identify the land cover and objects present 
within the plot. Shaded relief maps and DTM provided information on the topographic 
context of each site. The spatial data, along with the simulations of RL-centred views of the 
3D sub-point clouds, supported an investigation of the metrics obtained.  

3 Results 

The detailed performance of the method is demonstrated using the examples of two restorative 
locations: one in the forest (p20), and the other on arable land close to the forest edge (p53) 
(see Figure 2). These two landscape types and their combination were mentioned most 
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frequently (70%) as restorative sites by the survey participants. Other locations included 
riverbanks, lakeshores, open meadows and mountains. 

 

Figure 2: Location of the two exemplary restorative locations 

3.1 Metric values and guide to interpretation 

Of the metrics describing the elements of vegetation visible in the sphere, ten were particularly 
useful. They are listed and explained in Table 1.  

Table 1: Metrics of particular importance for describing the vegetation from the human perspective. 

Variable Explanation Interpretation 

PSVeg Proportion of (all) sphere 
cells classified as 
vegetation 

An indicator of how green the location looks from 
the observer’s perspective; the higher the value, 
the more vegetation that can be seen; similar to 
the Greenness Visibility Index of Yang et al. 
(2009) 

PSSky Proportion of (all) sphere 
cells classified as sky 

An indicator of the view’s openness; the higher 
the value, the more sky that can be seen.  

ThQVeg Quantiles of the vertical 
viewing angle for all 
sphere cells classified as 
vegetation 

The quantiles provide information on the vertical 
distribution of vegetation from the observer’s 
perspective; high values of 0.9 or 1.0 quantiles 
indicate closed canopy cover over the observer 
(i.e., they are located under a tree). 
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ThQSky Quantiles of the vertical 
viewing angle for all 
sphere cells classified as 
sky 

The quantiles provide information on the vertical 
distribution of the sky from the observer’s 
perspective; low values of 0.0 or 0.1 quantiles 
indicate that the sky can be seen at lower 
elevations and may suggest that few of the 
surrounding features or little of the topography 
obscure the view. 

PhiQVeg Quantiles of the 
horizontal viewing angle 
for all sphere cells 
classified as vegetation 

The quantiles provide information on the 
horizontal distribution of vegetation from the 
observer’s perspective, e.g. clumping of 
vegetation. 

PhiQSky Quantiles of the 
horizontal viewing angle 
for all sphere cells 
classified as sky 

The quantiles provide information on the 
horizontal distribution of the sky from the 
observer’s perspective, i.e. the direction in 
which much of the (limited amount of) sky is 
visible. 

DQVeg Quantiles of distance for 
all sphere cells 
classified as vegetation 

The quantiles provide information on the 
horizontal distribution of vegetation from the 
observer’s perspective; the 0.0 quantile 
indicates how far the observer is from the 
closest vegetation object. 

CLN Number of vegetation 
clumps detected 

A measure of visible vegetation groups. Even 
trees or shrubs growing at various distances from 
the observer may create a “green patch” for the 
observer.  

The width of a clump and the number of points 
within a clump provide information on the 
abundance or scarcity of vegetation within the 
clump. 

mean_ CLW Mean width of vegetation 
clumps 

mean_ 
CLNP 

Mean number of points 
within the vegetation 
clumps 

3.2 Example locations with different characteristics 

The following paragraphs include descriptions of the two RLs and their surroundings, based 
on the measures derived from the method (Table 2) and the interpretation of the graphs 
(Figures 3 and 4). 

Table 2: Selected ALS-based and sphere-based metrics for the exemplary RLs. Definitions of the 

variables (PSVeg etc.) are given in Table 1.  

 PSVeg PSSky CLN mean_ 

CLW 

       

Forest 56.3 31.6 1 360        

Agricultural 
land 

5.4 32.7 2 64        

Quantile 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Vegetation distribution by distance (DQVeg) 

Forest 2.7 18.4 22.8 25.6 28.6 31.8 35.7 40.9 47.4 58.4 99.9 
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Agricultural 
land 

47.6 51.9 54.7 58.2 68.1 73.3 75.5 78.8 81.7 86.9 100.0 

Vegetation distribution by azimuthal angle 

Forest 0 27 66 113 157 195 231 260 292 330 360 

Agricultural 
land 

0 35 70 105 143 179 216 252 288 324 360 

Vegetation distribution by vertical angle 

Forest 1 30 42 51 59 66 73 80 87 98 140 

Agricultural 
land 

66 73 76 78 80 82 84 85 87 89 97 

Sky distribution by azimuthal angle 

Forest 0.0 53.8 92.0 124.0 152.7 180.7 209.1 239.2 270.8 306.3 360.0 

Agricultural 
land 

0.0 35.7 76.2 117.8 157.3 192.8 227.2 260.5 293.7 326.9 360.0 

Sky distribution by vertical angle 

Forest 91 110 116 122 128 133 138 144 151 160 180 

Agricultural 
land 

99 112 117 122 127 132 137 143 150 159 180 

3.3 Forest (p20) 

The first RL is located in closed-canopy forest. According to the sphere-based results (Table 
2), 56.3% of the cells were classified as vegetation, 31.6% as sky, and 8.1% as ground. Half of 
the visible vegetation occurred between 2.7m and 31.8m (DQ_0.0Veg and DQ_0.5Veg) from 

the observer. In the vertical dimension, half of the visible vegetation occurred below 24⁰ and 

values reached 89⁰, which means that the ground was covered with vegetation and the canopy 
was closed above the observer’s head. The vegetation clump identified as having a width of 

360⁰ signals that the location was completely surrounded by vegetation. 

The histogram in Figure 3D shows that the visible ground was located closer to the observer 
than the visible vegetation, mostly no more than about 30m away. The visible vegetation was 
distributed throughout the 100m zone, but distances of about 25m were the most frequent.  

As shown in Figure 3E, the ground was visible below eye level in the north (azimuthal angle 

around 0⁰), and at eye level (0⁰) in the south (azimuthal angle around 180⁰). This means that 
the terrain descended towards the north and remained on a similar elevation to the observer, 
which can also be interpreted from Figure 3C. Consequently, the vegetation was visible above 
ground level, at lower vertical angles to the north and higher vertical angles to the south. This 
can also be seen in Figure 3F, which presents all vegetation points in the cloud within the plot, 
coloured by vertical angle, in an overhead view. Most of the points in the north are assigned 
negative vertical angles, while more positive values are found in the south. At vertical angles 

close to 0⁰, some vegetation located far away from the observer can be seen, which is not the 
case at large vertical angles (Figure 3E). Figure 3G shows that the vegetation is densest in the 
north and sparser in the south. 
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3.4 Agricultural land with forest patches (p53) 

The second RL is dominated by agricultural land, with small patches of forest and shrubs 
encroaching from the north and west, on mostly flat terrain, the eastern part of which slopes 
gently down towards the east (Figures 4A, 4B, 4C). In the sphere-based results (Table 2), 5.4% 
of the cells were classified as vegetation, 32.7% as sky, and 13.3% as ground. Visible vegetation 
did not completely surround the RL but appeared in two clumps of average width equal to 

64⁰. The nearest visible vegetation was 47.6m from the observer (DQ_0.0Veg), and the closer 
distances were dominated by ground (Figure 4D). As the histogram of the distance-to-visible-
vegetation shows, the two vegetation clumps detected were located around 50–60m and 70–
100m from the observer (Figure 4D). A single vegetation feature (too small to be detected as 

a clump) occurred at the azimuth of approximately 135⁰, on the gentle slope below the 
observer’s eye level (Figure 4E).  

In the vertical dimension, half of the visible vegetation occurred below 8⁰, and values reached 

24⁰, which means there was a large proportion of sky visible around and above the observer. 
As shown in Figure 4E, almost all ground was visible at and below the observer’s eye level; 

only towards the east did the ground gently slope away (azimuthal angle around 90⁰), which 
can also be interpreted from Figure 4C. Accordingly, the vegetation was visible above the 
ground level (and the observer’s eye level). This can also be seen in Figure 4F, where most of 
the vegetation points are assigned positive values, though noticeably lower ones than in the 
case of the forest RL (p20). Figure 4G shows similar numbers of vegetation points within the 
two clumps detected and confirms the small size of the single vegetation feature in the south-
east. 

Explanation for Figures 3 and 4. 
Row 1: Exemplary restorative locations (RLs) shown on: an orthophoto map (A), a vegetation 
height model (B), and a coloured and shaded relief map (C). Row 2: Sphere-cell-based statistics: 
distribution of distances for all sphere cells classified as ground or vegetation (D); horizontal 
and vertical distributions of sphere cells classified as ground or vegetation, coloured by 
distance from the observer (E). Row 3: overhead view of sphere cells classified as vegetation, 
coloured by vertical angle theta (F); distribution of all vegetation points in the cloud by 
azimuthal angle (G). 
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Figure 3: Forest (p20) 
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Figure 4: Agricultural land with forest patches (p53) 
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4 Discussion and conclusion 

Using 3D remote sensing data and additional spatial data, we developed a method for 
quantifying visible vegetation located nearby from a human perspective. The method is highly 
automated and can be applied in a dense grid on a small scale, as well as over large areas. Based 
on ALS point clouds, we simulated a space viewed from a specific location and characterized 
the surrounding nearby vegetation in detail. We applied this new method to a number of 
specific green and natural places that are important for people to recover from noise-related 
stress in everyday life. 

Our method combines highly automated and efficient algorithms which enable detailed 
analysis from many different observation points. We developed a guide for interpreting the 
variables calculated, with illustrative examples, to minimize the expert knowledge and manual 
operations required. The great strength of this method is its transferability to other sites. 
Wherever ALS point clouds with a point density similar to that in our study or higher are 
available, vegetation structures can be quantified from a human perspective. Unlike well-
known photo-based methods (Kumakoshi et al., 2020; Li et al., 2015; Yang et al., 2009), our 
approach is not limited to street views and can be applied over a wide area. The virtual sphere 
mimics the photo-based approach while preserving the 3D vegetation structure (Chen et al., 
2015). The visual importance of the terrain and features (Nutsford et al., 2015) is captured by 
calculating the vertical angle and both the distance to, and the density of, vegetation. Finally, 
the over-weighting of features towards the zenith is avoided. 

Another great advantage of the method is its versatility, as it can be applied in both natural 
and urban environments. It considers occlusions by terrain and buildings and thus identifies 
the vegetation that is actually visible. In small-scale urban areas, it additionally provides 
information on the horizontal and vertical distributions of nearby buildings and visible sky, 
which have a significant influence on the restorative effect (Kent & Schiavon, 2020). 
Furthermore, the size of the buffer around the sites being studied (which depends on the 
definition of “what is close”) can be adapted to the needs of specific situations. 

This method can provide valuable information in urban areas where green spaces have a special 
importance for local people and for spatial planning. An illustrative application of the method 
is the RESTORE project, where we will compare the visible share of green quantified in this 
way with survey results on the perceived restorative quality of specific landscapes. This will 
allow the identification of those landscape characteristics of green spaces that have high 
restorative quality. The method can be applied at different spatial scales, provides 
methodological support for spatial planning, and is particularly suitable for large-scale socio-
ecological studies on the influence of the “view into the green” on health and wellbeing. 
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