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One of the primary causes of non-uniform snowfall deposition on the
ground in mountainous regions is the preferential deposition of snow, which
results from the interaction of near-surface winds with topography and snow
particles. However, producing high-resolution snowfall deposition patterns
can be computationally expensive due to the need to run full atmospheric
models. To address this, we developed two statistical downscaling schemes
that can efficiently downscale near-surface, low-resolution snowfall data to
fine-scale snow deposition accounting for the effect of preferential deposition
in mountainous regions. Our approach relies on a comprehensive, model
database generated using 3D wind fields from an atmospheric model and
a preferential deposition model on several thousand simulated topographies
covering a broad range in terrain characteristics. Both snowfall downscaling
schemes rely on fine-scale topographic scaling parameters and low-resolution
wind speed as input. While one scheme, referred to as the “wind scheme”, further
necessitates fine-scale vertical wind components, a second scheme, referred to
as the “aspect scheme”, does not require fine-scale temporal input. We achieve
this by additionally downscaling near-surface vertical wind speed solely using
topographic scaling parameters and low-resolution wind direction. We assess
the performance of our downscaling schemes using an independent subset of
themodel database on simulated topographies,model data on actual terrain, and
spatially measured new snow depth obtained through a photogrammetric drone
survey following a snowfall event on previously snow-free ground. While the
assessments show that our downscaling schemes perform well (relative errors
≤ ±3% with modeled and ≤ ±6% with measured snowfall deposition), they also
demonstrate comparable results to benchmark downscaling models. However,
our schemes notably outperform the benchmark models in representing fine-
scale patterns. Our downscaling schemes possess several key features, including
high computational efficiency, versatility enabled by the comprehensive model
database, and independence from fine-scale temporal input data (aspect
scheme), indicating their potential for widespread applicability. Therefore,
our downscaling schemes for near-surface snowfall and vertical wind speed
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can be beneficial for various applications at fine grid resolutions such as in
atmospheric and climate sciences, snow hydrology, glaciology, remote sensing,
and avalanche sciences.

KEYWORDS

downscaling, snowfall, preferential deposition, complex topography, Gaussian random
field (GRF), ARPS, vertical wind speed, UAS (unmanned aerial system)

1 Introduction

In mountainous regions, snowfall is subject to dynamic
alterations across spatial and temporal scales, leading to substantial
spatial variability in the accumulated snowon the ground.This poses
a significant challenge for applications that require accurate high-
resolution spatial snow depth distributions in mountainous terrain,
such as in avalanche forecasting (Schweizer et al., 2003; Bellaire
and Jamieson, 2013), avalanche hazard mapping (Harvey et al.,
2018; Bühler et al., 2022a), for glacier mass balances (Dadic et al.,
2010a; Farinotti et al., 2010; Mott et al., 2019), in large-scale
monitoring products based on remote sensing (Gascoin et al.,
2019), in water resource management or for snow-melt forecasts
(Bavay et al., 2009; Griessinger et al., 2019). As temperatures rise,
the probability of having precipitation falling as rain instead of
snow also rises. However, evidence strengthened that climate
change has resulted in a notable increase in heavy precipitation
events across many regions, with further intensification projected
in the future (IPCC, 2023). Furthermore, despite a predicted
decrease in snowfall fraction, midwinter mean and heavy
snowfall may experience slight snowfall increases in the future
(Frei et al., 2018). As such, the accurate representation of high-
resolution spatial snowfall patterns is becoming increasingly
relevant for establishing natural hazard protection measures. This
is particularly salient given that extreme precipitation events in
winter could potentially become more localized in the future
(Yang et al., 2023).

The interplay between snowfall, wind flow, and topography acts
on mountain-range, ridge and slope scale (Mott et al., 2018). At
the mountain-range scale, the accumulated snow on the ground
is mainly driven by orographic precipitation. One example is
the forced dynamical lifting of air masses, which rises from
elevation differences. Indeed, elevation has often been found
to be a main explanatory variable for spatial snow depth in
mountainous terrain (Seyfried and Wilcox, 1995; Grünewald and
Lehning, 2011; Lehning et al., 2011; Kirchner et al., 2014; Helbig
and van Herwijnen, 2017). At the much smaller spatial scale of
ridges and slopes, heterogeneous snowfall deposition acts across
ridges and slopes due to near-surface wind-topography-particle
interactions in the absence of snow redistribution and sublimation
(Föhn and Meister, 1983; Lehning et al., 2008). Lehning et al. (2008)
introduced this process as preferential snowfall deposition and
attributed it to increased wind speeds and updraft on the windward
side of ridges versus reduced wind speeds and downdraft on the
leeward side. In a case study usingWeatherResearch andForecasting
(WRF) large-eddy modelings, preferential snowfall deposition was
estimated in a 50 m horizontal grid to increase the accumulated
snow on the lee side ofmountains locally by up to 10% (Gerber et al.,
2019). These findings provide important insights into the complex

interplay between atmospheric conditions, topography, and
snow particles.

High-resolution three-dimensional (3D) topography-wind-
snow particle interactions have been extensively studied using
advanced atmospheric models at fine spatial scales of only a
few tens of meters (e.g., Mott and Lehning, 2010; Mott et al.,
2014; Gerber et al., 2017; Vionnet et al., 2017; Wang and Huang,
2017; Gerber et al., 2019). However, these high-resolution models
require huge computational power and detailed atmospheric input
information that is not accessible to many applications. Therefore,
low-order models or statistical and dynamical downscaling
approaches can be valuable in creating high-resolution snowfall
maps in mountainous terrain. A recent example of a dynamical
downscaling model is from Reynolds et al. (2023). They developed
a High-resolution variant of Gutmann et al. (2016)’s Intermediate
Complexity Atmospheric Research (ICAR) model, named HICAR,
which features changes to the advection scheme and the wind
solver. The new wind solver incorporates the effects of topography
on the 3D wind flow field by using empirical terrain parameters,
which allow HICAR to simulate complex topographic flow
features (Reynolds et al., 2023). By employing this approach,
3D characteristic snowfall patterns at the ridge-scale can be
replicated much faster than using a conventional atmospheric
model. However, since dynamical downscaling involves running
computationally intensive models, with the target to predict the
atmospheric state in 3D at increasingly higher resolutions (nesting
approach), statistical downscaling offers a computationally even
faster solution through simplified relationships between high
and low-resolution data and requires less input data. In order
to derive these simplified relationships, descriptor variables are
sought by analyzing high-resolution databases. The significance
of high-resolution snow maps in mountainous areas has led to
extensive research in statistically describing spatial snow depth
distribution. Empirical relationships have been established with
terrain parameters (e.g., Grünewald et al., 2013; Helbig et al.,
2015; Skaugen and Melvold, 2019; Helbig et al., 2021) or with
horizontal wind speed maps and terrain parameters such as
shelter or exposure to prevailing winds (e.g., Purves et al., 1998;
Winstral et al., 2002; Winstral and Marks, 2002). Several snow
cover shaping processes can be described simultaneously through
these statistical descriptions. Dadic et al. (2010b) introduced
a statistical approach to characterize only preferential snow
deposition on glaciers using both high-resolution vertical and
horizontal mean wind speed maps. This parameterization was
based on case studies conducted in a glacierized catchment, where
Dadic et al. (2010a) identified significant correlations between
measured high-resolution snow deposition maps and modelled
vertical and horizontal mean wind speed maps. Despite its
benefits, statistical downscaling can, however, have lower accuracy
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and known problems of extrapolation compared to dynamical
downscaling. This may originate from a limited descriptive
(observation) database or insufficient process descriptions,
which will ultimately restrict the applicability. In summary,
the choice of the most suitable approach depends on various
factors such as the intended application, available input data, and
computational resources.

In the following, we present a computationally efficient,
potentially widely applicable method that statistically downscales
low-resolution near-surface snowfall to high-resolution
preferentially deposited snowfall in mountainous terrain. Thus,
we focus on spatial snowfall deposition drivers through the wind
and topography, neglecting redistribution. In Section 2.1, we
describe how we first generated a large, diverse fine-scale snowfall
database using the snow transport module of Alpine3D (A3D)
driven by a large ensemble of atmospheric model ARPS (Advanced
Regional Prediction System) wind fields on simulated topographies
(Helbig et al., 2017). Several thousand model runs, under controlled
weather conditions, allowed us to generate a database for fine-
scale preferred snowfall deposition on a broad range of topographic
characteristics. Section 3 details how we derived high-resolution
downscaling factors for the low-resolution snowfall input by
merging physical-based understanding in the data-driven, statistical
analysis. In Section 3.2, we introduce two statistical downscaling
models that emulate fine-scale distributed snowfall on topography
using fine-scale terrain parameters and low-resolution near-surface
wind data as input. In one scheme, fine-scale vertical wind speed
is utilized. In the other scheme, we replace it with downscaled
vertical wind speed, which does not require fine-scale temporal
input. Besides evaluating the downscaling schemes with a model
test data set on simulated topographies (Section 4.1), we assess
performances with both model data and an acquired snowfall data
set derived from optical imagery recorded by an unmanned aerial
system (UAS) recorded optical imagery at Latschüelfurgga, Davos,
Switzerland (Section 4.2).

2 Data

In this section, we present our extensive spatial model database
for preferred snowfall deposition on simulated topographies. This
database enabled us to create statistical downscaling methods for
low-resolution near-surface snowfall. We further present a new
data set of snow depth measurements obtained through UAS
observations in a real mountainous setting and also describe
the fine-scale ARPS-A3D preferred snowfall deposition modelings
in the same environment. We assess the performance of our
downscaling schemes using both data sets on actual terrain
as well as with an independent subset of the model database
(test data set).

2.1 Model database for fine-scale preferred
snowfall deposition on simulated
topographies

Figure 1 shows our recipe to derive the fine-scale snowfall
database by (A) Generating simulated topographies, (B) Generating

3D wind fields and (C) Generating the snowfall database using
(A) and (B). The following three paragraphs describe each step in
more detail.

Simulated topographies were used instead of actual
topographies to encompass a wider range of terrain characteristics
(see Figure 1A). If actual topographies were used, the number
of terrain characteristics that could be described would be
limited, thereby restricting the richness of the underlying model
development data set. To generate simulated topographies,
specifically digital elevation models (DEMs) with varying terrain
elevations z, isotropic and stationaryGaussian randomfields (GRFs)
were employed. We chose GRF as simulated topography models
because Gaussian statistics were found to effectively describe the
geometrical aspects of realistic topographies across a wide range
of mountainous terrain (Helbig and Löwe, 2012). The prescribed
Gaussian covariance allowed the variation of the characteristic
height (standard deviation σz) and width (correlation length ξ)
of topographic features within the model domain for a fixed spatial
mean slope. We selected five spatial mean slope angles ζ (10°, 19°,
25°, 30°, and 36°). Nine σz,ξ-combinations were specified per ζ,
and each combination was implemented with 199 realizations,
resulting in an ensemble of about 8,955 simulated DEMs. Our
choice of topographic features enabled us to generate a diverse
ensemble of representative topographies in mountainous regions,
encompassing a wide range of realistic mean slopes and typical
geometries of topographic features (compare the values in Table 1
in Helbig and Löwe (2012) and in Helbig and Löwe (2014)).
Slope angles ζ were determined from the partial derivatives ∂xz
and ∂yz in orthogonal directions via tan2 ζ = (∂xz)2 + (∂yz)2. A
terrain parameter μ is associated with the mean square slope by
2μ2 = (∂xz)2 + (∂yz)2 = tan2 ζ. We note that μ is further related to
σz and ξ via μ = √2σz/ξ since our isotropic Gaussian covariance
implies a joint probability density for the partial derivatives that
factorize into two Gaussians with standard deviation μ (Löwe and
Helbig, 2012). The domain size L of the squared DEMs L x L was
fixed at 3 km, and the horizontal resolution, or grid cell size, was
set at Δx = Δy =30 m, resulting in 100 × 100 (N × N) sized DEMs.
For more technical details regarding the generation of simulated
topographies, please consult Helbig and Löwe (2012).

2.1.1 3D fine-scale wind fields on simulated
topographies

Theensemble of simulated topographieswas used to generate 3D
fine-scale wind fields in diverse mountainous terrain (Figure 1B).
These wind fields were computed using the 3D nonhydrostatic
and compressible atmospheric model ARPS (Xue et al., 2000;
2001). ARPS can emulate dominant wind-topography interactions,
including sheltering, ridge-acceleration, separation, channelling,
and recirculation (Raderschall et al., 2008), and reproduces
well measured wind field characteristics (Chow et al., 2006;
Raderschall et al., 2008; Zhou and Chow, 2011).

In this study, we used ARPS wind fields generated on simulated
topographies as described in Helbig et al. (2017) and additional
ARPS wind fields. To extend the ARPS wind data set, wemaintained
the controlled weather conditions as in Helbig et al. (2017),
focusing solely on the mechanic wind-topography interactions.
To achieve this, we suppressed thermally induced circulations by
neglecting radiation effects and by assuming neutral atmospheric
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FIGURE 1
Workflow for generating the spatial snowfall and vertical wind speed database: (A) illustrates the ensemble of simulated topographies, (B) provides
details on how to generate spatial 3D wind fields, and (C) demonstrates how (A) and (B) were combined to emulate preferential spatial deposition of
snowfall. Numbers in squares indicate the number of performed model runs per workflow step.

TABLE 1 Performance of downscaled snowfall with ARPS-A3Dmodeled snowfall (PA3D) and downscaled vertical wind speed with ARPSmodeled vertical wind
speedwARPS on the test data set generated on simulated topographies. Pwind

dsc and Paspectdsc represent downscaled snowfall using the wind and aspect scheme,
respectively.waspect

dsc represents downscaled vertical wind speed using the aspect scheme.

Test data Mean std NRMSE Relative error Bias Absolute bias r

P [mm] [mm] [%] [%] [mm] [mm]

PA3D 2.15 0.96 - - - - -

Pwind
dsc 2.16 0.96 0.7 −0.3 −0.01 0.05 >0.99

Paspect
dsc 2.17 0.91 2.6 −0.9 −0.02 0.19 0.95

w [m/s] [m/s] [%] [%] [m/s] [m/s]

wARPS −0.10 0.76 - - - - -

waspect
dsc −0.11 0.73 2.6 0.3 0.01 0.16 0.95

stability. We further prevented the development of turbulent
structures by running ARPS for a rather short integration time
of 30 s allowing the mean flow field to adapt to the local
topography (Mott et al., 2010).The constant aerodynamic roughness
length was set to 0.01 m across the entire model domain to
mimic a uniform snow-covered mountain surface (Manes et al.,
2008). We initialized ARPS with an inflow wind direction from

the west, a spatially homogeneous wind speed, and neutral
atmospheric stability. Using spatially homogeneous fine-scale input
is equivalent to applying a single coarse-scale (low-resolution)
input value. Three coarse-scale wind speed values were selected
to initiate ARPS, representing typical free-stream near-surface
wind conditions observed during snowfall events with preferential
deposition (e.g., Dadic et al., 2010a; Mott and Lehning, 2010;
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Groot Zwaaftink et al., 2011; Vionnet et al., 2017; Wang and Huang,
2017).

• with 3 m/s on all simulated topographies (8,955 topographies)
[data set as in Helbig et al. (2017)].
• with 5 m/s on topographies with ζ of 19° (1,791 topographies)

[data set as in Helbig et al. (2017)].
• with 1.5 m/s on topographies with ζ of 19° (1,791 topographies)

(data set extension).

We extended the wind database from Helbig et al. (2017) to
include wind fields with an initial coarse wind speed value of
1.5 m/s, employing the same topographies as those used for the
larger coarse-scale wind speed of 5 m/s. This extension allowed us
to identify scaling factors for fine-scale deposited snowfall across a
range of near-surface horizontalwind speed values.Weuse 3DARPS
wind fields to compute fine-scale preferentially deposited snowfall
using the snow transport module of the A3D model. However,
for the development of the downscaling schemes, we utilize near-
surface ARPS wind speeds from the first layer above the ground,
with an average depth of 2.95 m above the ground. The horizontal
wind speed vh is computed as vh = (u2 + v2)1/2, where u and v are
the directional components. Out of 12,537 initiated ARPS model
runs, 12,409 (99%) remained numerically stable. Based on the
analysis of ARPS near-surface wind fields from Helbig et al. (2017),
LeToumelin et al. (2023) found that topographies with higher spatial
mean slope angles lead to overall lower local wind speeds and wider
wind speed distributions due to increased momentum drag of the
steeper topographies. Local wind speed accelerations in the data
set were up to four times the initial wind speed of 3 m/s, while
deceleration reduced wind speed to nearly zero. Angular deviations
from the initial west inflow direction increased for topographies
with spatial mean slope, ranging locally from 0° to 82° (Figures 1,
2 in LeToumelin et al. (2023)). Besides local ridge acceleration
and deceleration on windward and leeward slope sides, the ARPS
wind flow on Gaussian topographies thus displayed characteristic
adjustments in response to the local terrain.

2.1.2 Snowfall database
We produced fine-scale fields of preferentially deposited

snowfall by using the snow transport module of the A3D model
(Lehning et al., 2006) driven with the 3D ARPS wind fields (see
Figure 1C). A3D is a surface process model in a modular structure
with the main module being the snow-cover module SNOWPACK
(Lehning et al., 1999; Bartelt and Lehning, 2002; Lehning et al.,
2002a; b). All modules are driven by MeteoIO, a meteorological
data pre-processing library for handling the input (Bavay and Egger,
2014). To focus solely on preferential snowfall, we only used the
suspension scheme within the snow transport module of A3D and
prevented any erosion, saltation, and drifting snow sublimation
from occurring (implemented as described in Doorschot and
Lehning, 2002; Lehning et al., 2008; Clifton and Lehning, 2008;
Groot Zwaaftink et al., 2011). Our model setup is similar to that
of Lehning et al. (2008); Mott and Lehning (2010); Mott et al.
(2010, 2014), who conducted A3D runs that excluded erosion
and saltation processes in the snow transport model. Their results
demonstrated the significant impact of preferential deposition on
snow distribution and further depicted measured spatial patterns

well. It is worth noting that drifting snow sublimation occurs only
during strong wind events and in regions with unsaturated air
(Groot Zwaaftink et al., 2013). In contrast, preferential deposition
does not require high wind speeds but does require saturated air.

To mimic conditions of saturated, cold air and avoid snow melt,
we initialized our modelings with −5°C air and ground surface
temperature, 100% relative humidity, no incoming shortwave
radiation and a fixed longwave radiation value. We used a longwave
radiation value of 280 W/m2, equivalent to the annual mean all-
sky longwave radiation recorded in Davos, Switzerland (1995–1998)
(Marty, 2001). The surface was snow-free at the start of each model
run. We calculated preferential snow deposition using A3D for
each ARPS wind field. However, we additionally initiated each wind
field with three different snowfall values (P), specifically 2, 5, and
8 mm. All A3D input variables are distributed uniformly across the
model domain. It is worth noting that the spatially homogeneous
distribution is akin to applying a single coarse-scale model input
value, which is why we denote this input with the subscript “coarse”,
such as Pcoarse. To ensure the validity of our A3D setup, we ran
the model for three hourly time steps, which confirmed that the
resulting snowfall distributions were identical. We therefore used
data from one time step for further analysis. To minimize biases
caused by conversion with a snow density formula, we refrained
from converting deposited snowfall precipitation to snow depth
within the A3D model. Modelled preferentially deposited snowfall
is therefore snow water equivalent (SWE).

To ensure the formation of mean wind flow features with
minimal boundary effects and avoid using unrealistic ARPS wind
speeds generated at the domain boundaries, we followed the
methodology of Helbig et al. (2017) by restricting our analysis of
the 100 × 100 model domain to an inner area of 69× 79 grid cells.
The resulting model domain had a mean length L of 2,220 m, with
smaller dimensions of Lx = 2070 m and Ly = 2,370 m, as opposed
to the larger 3 km × 3 km DEM domain. We further removed
local wind and snowfall data if (a) p < 0, (b) vh < 0.5 m/s, (c)
ζ ≥ 60° (steep slopes), or (d) less than three topographic features
were captured per domain (L/ξ < 3). The latter criterion ensures
that the relevant processes in a domain were well represented. We
excluded steep slopes from the analysis to prevent the propagation
of numerical inaccuracies originating from the ARPS wind fields
into the computation of preferentially deposited snowfall. These
inaccuracies arise in ARPS from utilizing the terrain-following
vertical coordinate system on steep slope angles where large grid
aspect ratios result at the surface and translate in the momentum
equations, as outlined by Lundquist et al. (2010). A3D was run
with 12,409 valid wind fields for each of the three coarse snowfall
input values, producing 12,240 valid snowfall fields per input (99%).
After post-processing, approximately 166 million individual valid
snowfall values (83%) remained for all three low-resolution wind
speed and snowfall values.

2.2 Measured, spatial continuous snow
depth data in eastern Switzerland

We collected snowfall data in a small alpine catchment above
Davos in the eastern Swiss Alps using a WingtraOne unmanned
aerial system (UAS), which uses the VTOL (vertical take-off and
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FIGURE 2
Overview of the Latsch region in eastern Switzerland, showing snow depth data derived from UAS and aggregated to a 25 m grid cell resolution
(colored area) as well as the positions of the AWS stations Wan6 and Wan7 (red points), and the modeled region (blue square). The national map is
sourced from Swisstopo (©swisstopo).

landing) and latest post processing kinematics (PPK) technology
and is equipped with a 42 megapixel Sony RX1R II camera.
Two UAS flights were performed at an average height of 216 m
above terrain and an overlap of 60% across- and 80% along
track: once in summer (17 September 2020) when there was
no snow, and again a day after the first significant snowfall (28
October 2020). We utilized 3,485 optical images to create digital
surface models (DSM) through photogrammetric processing. By
subtracting the summer DEM from the winter DSM, we derived
spatial new snow depth, as in Bühler et al. (2017); Eberhard et al.
(2021). The acquired area above Davos (referred to in the following
as “Latsch”) covers about 3.6 km2 at a 10 cm horizontal grid
cell resolution (Figure 2). The PPK positioning accuracy (x =
2.39 cm, y = 4.71 cm and z = 9.68 cm) was assessed at three
independently measured check points. We ignored snow depth
data less than 0 m or greater than 3 m and aggregated summer
and winter DEM’s from 10 cm grid cell resolution to a 25 m grid
resolution. The UAS acquisition took place on 28 October, around
noon, after a snowfall event that lasted from the morning of 26
October to noon on 27 October 2020 (data is available from
Bühler et al. (2022b)).

2.3 Modeled preferential snowfall
deposition in eastern Switzerland

We evaluate downscaled near-surface snowfall for the October
2020 event in the Latsch area with measured (Section 2.2) as well
as modeled preferred snowfall deposition. As model input, we

employed meteorological data from automatic weather stations
(AWS) in the area (Wan6 and Wan7 in Figure 2), as well as
model output from the COSMO (Consortium for Small-Scale
Modeling) numerical weather prediction model (MeteoSwiss).
AWS measured hourly values were derived from 10-min intervals
of data, including flat field snow depth measurements from
a SR50 sonic distance sensor at Wan7 and wind direction
measurements from a Young wind vane at Wan6. Hourly horizontal
near-surface wind speeds were obtained from the COSMO-1E
ensemble forecasting system (analysis) after applying bias correction
(Winstral et al., 2019) and averaging for the two coarse inflow
grid cell values. For the modeling purposes, we employed the
UAS-acquired summer DEM with a 25 m horizontal grid cell
resolution.

We followed the approach of prior studies that used ARPS-A3D
modeling to examine snow transport and deposition processes (e.g.,
Mott and Lehning, 2010; Groot Zwaaftink et al., 2011; 2013). Instead
of computing an ARPS wind field for every time step, these studies
illustrated that a few wind fields are sufficient for characterizing
the predominant mean flow characteristics in the area during an
event. Here, to model the entire snowfall event, we identified five
representative sub-snowfall events from the cumulative snowfall
distribution at Wan7, based on its quantiles. This reduced the
28 h event period to five time steps that encompassed the
dominant weather patterns of the entire event period. For each
sub-event period, we determined the mean near-surface wind
speed, most frequent wind direction, and sum of snowfall, which
were applied spatially homogeneously as input for ARPS (wind)
and the A3D snow transport module (snowfall) (Figure 3). We
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FIGURE 3
Coarse-scale meteorological input for each of the five sub-events of
the October 2020 snowfall event in the Latsch region (Figure 2): (A)
Wind speed (bias-corrected COSMO) and wind direction (Wan6), and
(B) Total snowfall (identified from measured snow depth changes at
Wan7).

further utilized the same spatially uniform meteorological inputs
for saturated, cold air to initialize the snow transport module
of A3D, applied the same setup for A3D and ARPS and post-
processing techniques, as used in the modelings on simulated
topographies.

We used a constant new snow density value of 110 kg/m3

for all conversions between snow depth and snowfall for
the event in the Latsch region. This value was obtained by
manually measuring the 24 h new snow amounts and SWE at
the nearby observer station at the SLF Weissfluhjoch field site
on the morning of October 27th. Wan7 recorded a total of
48.73 cm of new snow during the event period, which, when
converted using the snow density value, amounts to a total
snowfall of 53.6 mm SWE.

3 Methods

In the previous section, we presented our vast, diverse database
for fine-scale snowfall and all wind components that is suitable
for training statistical models using machine learning techniques.
In this section, we introduce our two downscaling schemes for
low-resolution snowfall, solely utilizing near-surface meteorology
and terrain characteristics. Instead of letting the computer identify
the relevant relationships in the data, we decided to integrate some
physical and empirical process understanding in a regression-based,
data-driven downscaling scheme approach. We therefore begin
this section, by identifying scaling factors for fine-scale deposited
snowfall and vertical wind speed. These fine-scale downscaling
factors capture the dominant unresolved processes in low-resolution

deposited snowfall within mountainous regions. Our variable
naming convention going forward is: Coarse-scale variables are
labeled with a “coarse” subscript, while fine-scale variables have
no scale indicator. Fine-scale variables originating from models
are labeled with their respective model name as a subscript:
modeled with ARPS (“ARPS”), with Alpine3D (“A3D”) or with a
downscaling model (“dsc”).

3.1 Identification of scaling factors

To identify the primary downscaling factors crucial for
accurately emulating fine-scale deposited snowfall in mountainous
regions, we analyzed the entire snowfall model database. In this
analysis, we considered previously discovered correlations with
vertical wind speed (Lehning et al., 2008; Dadic et al., 2010a) and
local terrain characteristics (Winstral et al., 2002, e.g.). Grouping
modeled deposited snowfall PA3D according to coarse snowfall
Pcoarse and plotting it as a function of normalized vertical wind speed
wARPS, reveals that deposited snowfall scales linearly with coarse
snowfall Pcoarse (compare Figures 4A–C). We confirm that snowfall
scales best with vertical wind speed. The negative correlation
between modeled deposited snowfall PA3D and vertical wind speed
wARPS (Figure 4) becomes strongerwith increasing coarse horizontal
wind speed vhcoarse, suggesting non-linear dependencies (compare
Figures 4D–F).Moreover, we observe an increased spatial variability
in deposited snowfall as wind speed increases, as evidenced by the
broader distributions for the extreme vertical wind speed quantiles
in Figure 4 and the broader distribution widths of deposited
snowfall with increasing vhcoarse in Figures 4D–F. The Pearson
correlation values r obtained were 0.7 for PA3D and Pcoarse, and −0.63
for PA3D and wARPS.

To achieve our objective of developing a versatile and broadly
applicable downscaling scheme, we further sought to identify static
fine-scale downscaling factors for the primary scaling variable
in preferential snowfall deposition: the vertical wind speed. We
found that a terrain aspect angle relative to coarse wind direction
together with the slope angle can well depict the typical behavior of
vertical wind speed in mountainous terrain, with positive vertical
wind speeds (updraft) on the windward side of mountains and
negative (downdraft) on the lee side. We determine the relative
aspect parameter of the terrain using the following steps (see Data
availability statement for a public script): First, we convert all
angles to the compass system, where 0° represents north and the
count goes clockwise. Second, we calculate the angular deviations
between the terrain aspect ψ and the coarse wind direction wdcoarse,
setting wdcoarse as new 0°. In simpler terms, we determine the
rotation angle needed to align the terrain aspect with the coarse
wind direction. We then convert the resulting values such that
they range from 0° to 180°, where 0°–90° correspond to windward
terrain slopes, and 90°–180° correspond to slopes on the lee side of
mountains. Finally, we obtained a relative terrain aspect parameter
(Δψ) by subtracting these angular deviations from 90°, resulting
in values ranging from −90° to 0° for slopes more on the lee
side and from >0° to 90° for more windward oriented slopes.
Thus, Δψ mimics the behavior of vertical wind speed as also
evidenced by its strong correlation (r = 0.8) with the modeled
vertical wind speed, wARPS. Correlation between wARPS and the
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FIGURE 4
Modeled values from the full data set (test+training): (top) and (middle) for snowfall PA3D and (bottom) for ARPS modeled vertical wind speed wARPS.
(top) for vhcoarse = 3 m/s and a coarse-scale snowfall Pcoarse = input value of (A) 2 mm, (B) 5 mm and (C) 8 mm. (middle) for Pcoarse = 2 mm, spatial mean
slope angles of 19° and a coarse-scale horizontal wind speed vhcoarse value of (D) 1.5 m/s, (E) 3 m/s and (F) 5 m/s (bottom) for Pcoarse = 2 mm, spatial
mean slopes of 19° and an ARPS modeled spatial mean horizontal wind speed vhARPS value being (G) < 1.7 m/s, (H) 1.7 ≥ vhARPS < 3.2 m/s and (I)
vhARPS > 3.2 m/s. Normalized snowfall data is binned according to w/vhcoarse quantiles with q25=−0.2, q50=0 and q75=0.1 and normalized vertical wind
speed according to quantiles of the relative aspect parameter Δψ with q25=−45° and q50=0, q75=45. The top and bottom edges of each violin represent
distances 1.5 times the interquartile range from the median. Outliers beyond these limits are not shown.

relative aspect parameter Δψ slightly decreases with increasing
vhARPS (compare Figures 4G–I). Correlation between wARPS and Δψ
decreases similarly, though slightly less, with increasing vhcoarse [not
shown]. PA3D and wARPS also scale weakly with μ (correlations of
0.15 and −0.19, respectively).

3.2 Downscaling schemes

Due to the observed linear relationship between deposited
snowfall and low-resolution input Pcoarse, we limited the data
used for model development to one Pcoarse of 2 mm, which
represents approximately one-third of the entire database. We
partitioned the model database randomly into 80% for training the

statistical downscalingmodels and 20% for testing, and repeated this
process 10 times.

We compute downscaled snowfall Pdsc by applying a locally
varying downscaling factor Xdsc to modify coarse-scale snowfall
Pcoarse in each fine-scale grid cell:

Pdsc = Pcoarse Xdsc. (1)

We developed two nonlinear statistical downscaling factors
by using the identified scaling factors for Pcoarse and w. The
underlying functions of both downscaling factors were motivated
by considering the observed behavior in our database, particularly
near limit values of scaling variables, and by drawing on insights
from previously reported process understanding. All downscaling
models were derived by fitting robust M-estimators using iterated
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reweighted least squares, which were implemented in the R v3.6.0
statistical programming language (R Core Team, 2019) and its
robustbase v0.93-6 package (Maechler et al., 2020).

3.2.1 Wind scheme
First, we introduce a “wind scheme”, in which Xdsc is a function

of local vertical wind speed w and local slope parameter μ:

Pwind
dsc = Pcoarse X

wind
dsc (w,μ) . (2)

Xwind
dsc (w,μ) in Eq. 2 is:

Xwind
dsc (w,μ) = erfc(aw (w+ |w| ))b (1− cw+ dw3) (1+ e μf) , (3)

with the complementary error function erfc(), w in m/s and
constant parameters a = 0.4825 (±2e− 04), b = 0.03418 (±2e− 05),
c = 0.592003 (±1e− 06), d = 0.004452 (±1e− 06), e = 0.24714
(±1e− 05) and f = 2.24223 (±7e− 05). The 95% confidence intervals
for the fit parameters are provided in parentheses.

3.2.2 Aspect scheme
Second, we introduce an “aspect scheme”, in which Xdsc is now

a function of downscaled vertical wind speed waspect
dsc and local

slope parameter μ:

Paspect
dsc = Pcoarse X

aspect
dsc (w

aspect
dsc ,μ) . (4)

For Xaspect
dsc (w

aspect
dsc ,μ), we use Eq. 3 but replace w with waspect

dsc to
maintain the same downscaling factor as in the wind scheme,
i.e., Xaspect

dsc (w
aspect
dsc ,μ) = X

wind
dsc (w

aspect
dsc ,μ). As fine-scale near-surface

vertical wind speed w is frequently not available, we developed a
downscaling scheme forw. To achieve this, we followed the approach
used here for downscaling snowfall (Eq. 1) but used fine-scale ARPS
modeled wind speed from the training database, specifically at the
PA3D locations. Downscaled vertical wind speed wdsc is computed
by modifying the spatial mean of local horizontal wind speeds
vh with a locally varying downscaling factor Ydsc. We modify vh,
rather than vhcoarse, to account for the wind drag over unresolved
complex topography.This adjustment can be thought of as including
the influence of the surrounding terrain before implementing local
modifications. We introduce a vertical wind speed downscaling
“aspect scheme”, where Ydsc is a function of the local relative terrain
aspect parameter Δψ (terrain aspect ψ relative to coarse-scale wind
direction wdcoarse) and local slope parameter μ:

waspect
dsc = vh Y

aspect
dsc (Δψ,μ) . (5)

Yaspect
dsc (Δψ,μ) is:

Yaspect
dsc (Δψ,μ) = [a

′ − b′ (Δψ) + c′ erf(d′ (Δψ))] (e′ + μf′) , (6)

with constant parameters are a’ = −0.087122 (±5e− 06), b’
= 0.4788 (±9e− 04), c’ = 2.068 (±2e− 03), d’ = 0.6298 (±3e− 04),
e’ = −0.046577 (±5e− 06) and f ’ = 0.72451 (±2e− 05). The 95%
confidence intervals for the fit parameters are again provided in
parentheses.

If local vh is unavailable to calculate the spatial mean of
horizonal wind speeds vh, a subgrid parameterization for vh can
be used. A subgrid parameterization for horizontal wind speed
(vhsgp) approximates the unresolved topographic drag for coarse

resolution horizontal wind speed vhcoarse (e.g., Beljaars et al., 2004;
Rontu, 2006; Jimenez and Dudhia, 2012; Helbig et al., 2017). The
subgrid parameterization from Helbig et al. (2017) scales a vhcoarse
with a subgrid topographic scaling factor Xtopo

sgp , which depends on
the characteristic width of topographic features ξ per model domain
size L and mean squared slope μ in the coarse grid cell. Xtopo

sgp was
developed using largely the same ARPS wind data as used in the
present study, resulting in:

vhsgp = vh = vhcoarse X
topo
sgp (L/ξ,μ) . (7)

For Xtopo
sgp , Helbig et al. (2017) used the subgrid sky view factor, i.e.,

Xtopo
sgp = Fsky,sbg(L/ξ,μ), which can be parameterized as in Helbig

and Löwe (2014). We can thus approximate vh with vhsgp (Eq. 7)
when computingwaspect

dsc (Eq. 5), which additionally enables snowfall
downscaling via Eq. 4 without relying on fine-scale horizontal wind
speed data. With this, our downscaling schemes exhibit a modular
character, providing flexibility for enhancing or replacing individual
model components.

3.3 Performance measures

We use various performance measures to evaluate the
downscaling schemes against modelings or measurements. These
include relative error measures such as bias error (modeled-
downscaled), relative error (bias/coarse input value), and Pearson
correlation coefficient r to assess correlation. We also calculate
absolute error measures, including the normalized root-mean-
square error (NRMSE) (normalized by the data range) and absolute
bias.

4 Results

4.1 Performance on model test data set

We begin the assessment of our downscaling schemes by
evaluating the performances using themodel test data set, whichwas
generated on simulated topographies.

4.1.1 Downscaled snowfall on simulated
topographies

Modeled and downscaled snowfall show good agreement on our
test data set (Table 1), with similar means and standard deviations.
Relative and absolute errors for thewind scheme are below 1%,while
for the aspect scheme they are lower than 3%. Overall, the wind
scheme performs slightly better than the aspect scheme.

To further scrutinize the model performances, we computed
relative errors for groups of normalized vertical wind speed
(wARPS/vhcoarse) and slope angle, which were determined based on
the 0.25, 0.5, and 0.75 quantiles (q25, q50, q75) of the corresponding
distribution. Relative errors in downscaled snowfall increase at the
largest and lowest vertical wind speeds (Figure 5), with increasing
slope angles (Supplementary Figure S3) and with coarse horizontal
wind speed [not shown]. These findings align with observing the
largest relative errors occurring for the largest positive and negative
vertical wind speeds (Figure 5). As steep slopes tend to have the
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FIGURE 5
Relative errors between ARPS-A3D modeled and downscaled snowfall for our test data set as a function of normalized ARPS modeled vertical wind
speeds wARPS/vhcoarse quantiles with q25=−0.2, q50=0 and q75=0.1. (A): P

wind
dsc (wind scheme) and (B): Paspect

dsc (aspect scheme).

FIGURE 6
Relative errors between ARPS modeled (wARPS) and downscaled (waspect

dsc ) vertical wind speed for our test data set as a function of (A) normalized ARPS
modeled vertical wind speeds wARPS/vhcoarse quantiles with q25=−0.2, q50=0 and q75=0.1 and (B) slope angle quantiles with q25=11°, q50=17° and q75=25°.

largest up- and downdrafts, especially on windward or leeward-
facing slopes, the largest relative errors are concentrated on such
steep terrain.

While both downscaling schemes have an overall similar error
distribution across the entire vertical wind speed distribution,
relative errors of the aspect scheme are clearly larger and more
scattered, especially for the largest and lowest vertical wind speeds.
Similarly, relative errors of the aspect scheme are larger and more
scattered across the entire slope angle distribution. However, the

interquartile range of all relative errors for both schemes is mostly
lower than 10%, with median relative errors lower than 5% for
the entire vertical wind speed as well as slope angle distribution
(Figure 5, Supplementary Figure S3).

4.1.2 Downscaled vertical wind speed on
simulated topographies

Modeled and downscaled vertical wind speed show very good
agreement on our test data set (Table 1). The means and standard
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FIGURE 7
Spatial images for the Latsch region site: (A) DEM, (B) HSUAS (measured), (C) HSA3D (modeled), (D) HSwind

dsc (downscaled), (E) HSaspectdsc (downscaled) and (F)
HSwinstral

dsc (downscaled). Modeled and downscaled snowfall was converted to HS using observed, spatially constant snow density. Note that spatial data
here is presented without post-processing (Section 2.1.2), but excludes data (shown in white) where HS < 0, as discussed in Section 5.

FIGURE 8
Two cross sections for measured, modeled and downscaled deposited snow depth HS through the Latsch region (see Figure 7A): (A) Along the red
solid line and (B) Along the red dashed line. MeteoIO/Winstral is the benchmark downscaling scheme. The gray dashed lines mark the event total
snowfall, i.e., the sum of coarse-scale snowfall input. The gray vertical lines indicate the ridges where we have estimated contributions of preferential
snowfall deposition; corresponding cross-ridge distances are delineated by the dotted lines (see Section 5)

deviations are very similar, with relative and absolute errors
below 3%. The overall performance of downscaled vertical wind
speed is very similar to that of the aspect scheme for snowfall
(see Table 1).

We again analyzed model performances in more detail by
computing relative errors for groups of normalized vertical wind
speed (wARPS/vhcoarse) and slope angle derived from the 0.25,

0.5, and 0.75 quantiles of the corresponding distribution. Relative
errors for downscaled vertical wind speed increase for the largest
and lowest vertical wind speeds (Figure 6A) and with increasing
slope angles (Figure 6B). We observe similar distributions of
the relative errors for downscaled vertical wind speed to that
observed for downscaled snowfall, especially with the aspect
scheme for snowfall. The interquartile range of all relative errors
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TABLE 2 Performancemeasures are assessed for a specific subarea of the real topography, as illustrated in Figure 7A, and for vertical wind speed, as depicted in
Figure 11: (1) Total deposited HS: Downscaled deposited snow depth using the wind, aspect and the benchmark downscaling scheme (HSwind

dsc , HSaspectdsc , HSwinstral
dsc ).

Evaluations are withmeasured snow depth HSUASand in parentheses with ARPS-A3Dmodeled snow depth HSA3D. (2) Pooled Pdata: Pooled Pdata from
all 5 snowfall events. Evaluations are with ARPS-A3Dmodeled snowfall (PA3D). (3) Pooledwdata: Pooledwdata from all 5 events.waspect

dsc andwDEVINE
dsc represent

downscaled vertical wind speed using the aspect and the benchmark downscaling scheme, respectively. Evaluations are with ARPSmodeled vertical wind
speedwARPS.

Real data Mean std NRMSE Relative error Bias Absolute bias r

Total deposited HS [cm] [cm] [%] [%] [cm] [cm]

HSUAS 51.6 11.6 - - - - -

HSA3D 53.3 9.9 16.7 −3.5 −1.7 9.4 0.39

HSwind
dsc 54.7 11.6 17.4 (5.3) −6.4 (−2.9) −3.1 (−1.4) 9.5 (2.4) 0.44 (0.94)

HSaspect
dsc 52.6 10.1 15.4 (6.6) −2.2 (1.4) −1.1 (0.7) 8.6 (3.7) 0.48 (0.86)

HSwinstral
dsc 50.5 11.5 18.0 (10.2) 2.1 (5.7) −1.0 (2.8) 10.0 (6.2) 0.37 (0.75)

Pooled Pdata [mm] [mm] [%] [%] [mm] [mm]

PA3D 11.7 11.8 - - - - -

Pwind
dsc 12.0 12.4 2.8 −2.1 −0.3 0.6 >0.99

Paspect
dsc 11.6 11.6 3.3 0.6 0.1 0.9 0.99

Pwinstral
dsc 11.1 11.3 5.0 4.4 0.6 1.5 0.98

Pooled wdata [m/s] [m/s] [%] [%] [m/s] [m/s]

wARPS −0.10 0.63 - - - - -

waspect
dsc −0.04 0.48 4.7 −3.6 −0.05 0.20 0.87

wDEVINE
dsc −0.01 0.78 9.3 −4.6 −0.09 0.29 0.60

is again lower than 10%, and the median errors are lower
than 5% for the entire vertical wind speed and slope angle
distribution (Figure 6).

4.2 Performance on real topography in
eastern Switzerland

Following the presentation of performances on simulated
topographies, this section showcases assessments conducted on an
actual topography in eastern Switzerland.We assess the performance
of all downscaling schemes using model data and, for the snowfall
downscaling schemes, actual measurements of new snow depth.
We further evaluate the performances with previous downscaling
methods, which serve as a benchmark for our schemes. We chose
a commonly used statistical method for downscaling snowfall that
utilizes the Sx parameter (Winstral et al., 2002) with maximum
search distance of 300 m as suggested in (Schirmer et al., 2011).
We adopt the implementation used in MeteoIO (Bavay and Egger,
2014), a meteorological data preprocessing library. We use a deep
learning approach called “DEVINE” (LeToumelin et al., 2023) for
vertical wind speed.

4.2.1 Downscaled snowfall on real topography
Comparing measured snow depth with modeled and

downscaled snow depth, we observe overall similar magnitudes
and no significant biases. The closest agreement is among modeled
and all downscaled snow depths. Despite this, the benchmark
downscaling scheme clearly produces less detailed spatial deposition
patterns (Figure 7), a result which has been previously reported
(Schirmer et al., 2011).

However, there were some local differences between the
measurements and modeled and all downscaled patterns (marked
by 1–3 in Figure 7B). These can be attributed to (1) avalanche
deposits (seen on images from automatic camera nearby;
Supplementary Figure S1) where measurements show more snow
at the bottom of the slopes and less snow in the starting zones,
(2) lower elevation terrain where less snow was measured than
modeled possibly due to rapid snow settlement and snowmelt (local
energy balance impacts) on the day of the UAS flight (maximum
AWS measured air temperature of 7° at Wan6 on 28 October), and
(3) north/northeast-facing slopes that remain shaded and where
measurements show more snow as there was still snow from a
previous snowfall (confirmed by images from automatic camera;
Supplementary Figure S2). Our model chain and the downscaling
schemes obviously do not account for these intricate processes.
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FIGURE 9
Comparison of measured, modeled, and downscaled deposited snow
depth statistics for the Latsch region site (black outline in Figure 7A).
The plot displays the median values (indicated by a blue line within the
violin) and density distributions (violin shape). The top and bottom
edges of each violin represent distances 1.7 times the interquartile
range from the median. Outliers beyond these limits are not shown.
MeteoIO/Winstral is the benchmark downscaling scheme.

Along two cross sections through the Latsch region (red lines in
Figure 7A), all downscaling schemes exhibit the closest agreement
with the modeled snow deposition, demonstrating NRMSE and
relative errors ranging between 7% and 15%, and −3% and 5%,
respectively. The measurements differ considerably from both
the model and downscaling schemes, with larger NRMSE and
relative errors ranging between 25% and 31%, and −12% and
−4%, respectively (Figure 8). One cross section (solid line) passes
through north/northeast-facing slopes (area “3”, Figure 7A) and
an avalanche deposition zone (area “1”), where measured snow
depth is greater than modeled and downscaled snow (Figure 8A at
0–400 m and 400–700 m). The second cross section (dashed line)
passes through areas with slightly lower terrain elevations (area
“2”), where we believe that local energy balance processes caused
warmer ground and hence lower snow depth than the amount
model and downscaling schemes predict (Figure 8B at 200–500 m
and 700–1,200 m). The benchmark downscaling scheme locally
produces lower snow deposition compared to the other downscaling
models along the transects. This is reflected in differences in the
relative error of 5.1% as opposed to 0.1% and −2.5%, particularly
noticeable on windward and leeward sides of slopes (e.g., Figure 8A
at 1,200–1,400 m and in (B) at 300–600 m and 1,200–1,500 m).
This may be attributed to the smoother deposition patterns of the
benchmark scheme.

We now focus our analysis on the subarea within the black
outline in Figure 7A to evaluate preferential snowfall deposition
patterns. All spatial means and standard deviations closely match
measured snow data (Table 2). While medians from all downscaling
schemes clearly agree best with the model, only the distributions
from the wind and aspect scheme closely resemble the model
(Figure 9). In contrast, the distribution from the benchmark scheme
is broader and less balanced around the median, consistent with
observed smoother spatial patterns (Figures 7, 8). Measured snow

deposition has the lowest median and skews toward lower values,
resulting in overall larger errors with the model and all downscaling
schemes (Table 2). Some of these discrepancies may be attributed
to using a single uniform snow density for converting snowfall
to new snow depth, which does not account for spatio-temporal
variations in snow density during a 28-h event. To address this, we
evaluated performance against modeled snow deposition, leading to
consistent reductions in relative and absolute errors for the wind
and aspect scheme, and partial improvements for the benchmark
scheme (values in parentheses in Table 2). Next, we compared the
performance of the downscaling schemes on real and simulated
topographies by pooling snowfall data from all five events. This
analysis revealed that the wind and aspect schemes performed
only slightly worse on real topography compared to simulated
topographies (maximum4% larger errors; see Table 2 vs. 1).This and
that someof the five sub-event snowfall amounts in the Latsch region
were larger than in the model database on simulated topographies,
confirm that the downscaling schemes work well, even for larger
snowfall values.

Relative errors, for groups of normalized vertical wind speed
(wARPS/vhcoarse) derived from q25, q50 and q75 of the distribution,
increase from wind to aspect to benchmark schemes, as shown
in Figure 10. Although relative errors of wind and aspect scheme
are larger in the real environment, they are still in similar
orders of magnitude compared to those on simulated topographies
(Figures 10A, B versus Figure 5), which is reassuring. Interestingly,
the aspect scheme has the most balanced relative errors around zero
across all wind speeds, resulting in the lowest overall relative error
and bias compared to the wind and benchmark scheme (Table 2).
Relative errors increase only slightly at the largest and lowest wind
speeds, which was more pronounced for the test data set.

4.2.2 Downscaled vertical wind speed on real
topography

Downscaled and ARPS-modeled vertical wind speeds show
similar magnitudes and spatial patterns in the Latsch region
(Figure 11). However, downscaled vertical wind speeds from the
benchmark scheme, DEVINE, (LeToumelin et al., 2023), produce
smoother spatial patterns (Figure 11C). Comparing modeled and
downscaled vertical wind speeds along a cross-section through
the area (red line in Figure 11A) confirms these observations. The
benchmark scheme displays a smoother pattern and differs more
from modeled values in the up/downdrafts across the largest ridge
of the cross-section (800–1,050 m in Figure 12).

Relative errors for both downscaling schemes increase for lower
vertical wind speeds in the groups of normalized vertical wind speed
(wARPS/vhcoarse) derived from q25, q50, and q75 of the distribution
(Figure 13). Though the aspect scheme exhibits sign reversal for
upwind w (windward), and the benchmark scheme does not, both
schemes show unbalanced relative errors around zero. However, the
aspect scheme slightly outperforms the benchmark scheme for the
entire vertical wind speed distribution, resulting in lower overall
relative and absolute errors (< 5%) compared to the benchmark
scheme (≤9%) (Table 2). Despite the larger relative errors for
the aspect scheme in a real environment than on the simulated
topographies (Figures 13 versus 6A), the overall errors are only 2%
higher (Tables 1, 2), which is reassuring.
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FIGURE 10
Relative errors between ARPS-A3D modeled and downscaled snowfall (for the five sub-events pooled) for the subarea of the Latsch region site (see
Figure 7A) as a function of normalized ARPS modeled vertical wind speeds wARPS/vhcoarse quantiles with q25=−0.2, q50=−0.1 and q75=0.1. (A): P

wind
dsc (wind

scheme), (B): Paspect
dsc (aspect scheme) and (C) Pwinstral

dsc (MeteoIO/Winstral as benchmark scheme).

FIGURE 11
Spatial images for a subarea of the Latsch region site for the vertical wind speed w evaluations: (A) DEM, (B) wARPS (modeled), (C) wDEVINE

dsc (downscaled)
and (D) waspect

dsc (downscaled). DEVINE is the benchmark downscaling scheme. All w are for the second sub-snowfall event generated with vhcoarse of
1.3 m/s and wdcoarse of 235° (see Figure 3). Note, that for all w evaluations in the Latsch region, only terrain with slope angles ≥60° was removed (shown
in white).

5 Discussion

To evaluate the aspect scheme performances for snowfall and
vertical wind speed, we used the spatial mean horizontal wind
speed from ARPS (vhARPS) instead of the subgrid parameterization

for vh as proposed in Eq. 7, to focus solely on the aspect scheme
performances. However, utilizing a subgrid parameterization
for vh completes the aspect downscaling schemes for vertical
wind speed (Eqs 5, 6) and snowfall (Eq. 4) by providing a
downscaling approach that does not rely on fine-scale wind
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FIGURE 12
Cross section for modeled and downscaled vertical wind speed
through the Latsch region site along the solid red line shown in
Figure 11A. DEVINE is the benchmark downscaling scheme. All w are
for the second sub-snowfall event generated with vhcoarse of 1.3 m/s
and wdcoarse of 235°.

data. This makes the aspect schemes ideal for applications where
fine-scale wind data is typically unavailable, such as hazard
mapping, glacier mass balance calculations, or wind resource
assessments.

Obtaining high-quality spatial snowfall data sets in
mountainous regions is challenging due to several limiting criteria
that must be met before, during, and after the snowstorm. These
include a prior snow-free ground, intermediate wind conditions for
preferential deposition, and quick accessibility to the region after
the storm to avoid snow settling, drifting snow, and avalanches
altering the deposited snow distribution. Many of these criteria
were met; erosion, saltation, and drifting snow sublimation had
negligible or none contributions during and after the event. Despite
having to balance some of the other criteria like pre-existing
snow on north-facing slopes and avalanches, we assembled an
independent spatial snowfall data set that allowed us to show that
our downscaling schemes replicate preferentially deposited snow on
a real topography.

Our downscaling schemes for snowfall are designed to capture
preferential deposition. Thus, they can not accurately represent
the very fine-scale distribution of new snow depth driven by snow
redistribution processes (via wind or avalanches). Furthermore,
distinct differences in local meteorological conditions during
a snowfall cannot be captured (see Figure 7B or Figure 8B).
In contrast, the downscaling schemes effectively provide
spatial snowfall input for fine-scale (modeling) applications in
mountainous regions.

To quantify the contribution of preferential snowfall deposition
on spatial variations in snow depth, we employed the methodology
fromGerber et al. (2019) to estimate the increase in leeward snowfall
deposition due to preferential deposition. They calculated this effect
on the lee side of an eastern Swiss mountain ridge, finding it to be
approximately 10% when comparing the largest leeward deposition
to the mean snow accumulation across the ridge. Applying this
method to A3D-modeled snowfall deposition across four ridges
with cross-ridge distances as shown in Figure 8 (gray bars and

dotted lines) yielded values ranging from 15% to 18%. Notably,
to ensure comparability, we used mean leeward deposition instead
of the maximum, given our finer model grid cell resolution (25 m
versus 50 m), which could lead to steeper local topographic features
and thus more localized topography-flow-particle interactions.
As our model suggests a somewhat greater contribution of
preferential snowfall deposition compared to the 10% reported
in Gerber et al. (2019), we discuss potential explanations: 1)
Complex topography-preferential deposition interactions: Prior
studies (e.g., Lehning et al., 2008; Mott et al., 2010; Mott et al.,
2014; Vionnet et al., 2017; Wang and Huang, 2017; Comola et al.,
2019) highlight the intricate relationship between topography and
preferential deposition. In our extensive model database, covering
diverse topographic characteristics, we identified scaling factors
causing significant local variations in spatial snowfall deposition.
This variability, supported by a 45% coefficient of variation (spatial
standard deviation to spatial mean ratio, see Table 1), could explain
disparities with Gerber et al. (2019). Notably, our mountain ridges
feature smaller elevation differences (60–150 m) compared to the
ridge in Gerber et al. (2019) (about 700 m). 2) Atmospheric stability
effects: Wang and Huang (2017) and Comola et al. (2019) point
out that snowfall deposition patterns are further influenced by
atmospheric stability, which affects local wind flows. We employed
neutral atmospheric stability for simulating 3D ARPS wind fields
to compute preferential snowfall deposition with A3D, while the
events simulated by Gerber et al. (2019) were characterized by a
weakly stable atmosphere. Our choice may have led to higher local
preferential snowfall deposition on the lee sides due to reduced
flow blocking under neutral stability. This aligns with the concept
that preferential deposition increases on the leeward slope with
intensified flow advection, as pointed out by Wang and Huang
(2017) and confirmed by LES model experiments in Comola et al.
(2019). In summary, our preferential snowfall deposition patterns,
featuringmaxima on the lee side of themountain, are consistentwith
LES modeling results on a Gaussian hill using inertialess particles,
effectively representing inertial dendritic crystals, as demonstrated
by Comola et al. (2019).

Statistical downscaling is a valuable tool for a computationally
efficient generation of detailed snow and wind data. However,
the accuracy depends on the quality of the statistical algorithms,
finding the dominant scaling factors, and the quality of the training
data for deriving the relationships. We developed a conventional
statistical, regression-basedmethod and incorporated some physical
and empirical process understanding. Nevertheless, our approach
performed similar to or even better than benchmark schemes,
particularly in describing fine-scale patterns (see Figures 7, 8; and
Figures 11, 12). Promising alternatives to our approach are physics-
based machine and deep learning approaches (Vadyala et al., 2022).
To ensure reliable and transferable relationships, we created a
diverse training data set by running an atmospheric model
and a preferential deposition model on simulated topographies
under controlled atmospheric conditions. This approach avoids
introducing issues like data sparsity and biases, and allows for a
systematic search for scaling factors. While our training dataset
covers preferentially deposited snowfall across diverse topographies,
we simulated snowfall for a single atmospheric state—saturated,
cold air, a common condition during winter snowfall events.
Consequently, the predictability of our downscaling schemes
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FIGURE 13
Relative errors between ARPS modeled and downscaled vertical wind speed for the Latsch region site shown in Figure 11A as a function of normalized
ARPS modeled vertical wind speeds wARPS/vhcoarse quantiles with q25=−0.3, q50=−0.1 and q75=0.2. (A): w

aspect
dsc (downscaled) and (B) wDEVINE

dsc (downscaled
with benchmark scheme DEVINE).

under different conditions remains uncertain, and systematic
investigations into how preferential deposition changes under
different atmospheric conditions are currently lacking. In general,
a modeled training database can only be as good as the underlying
model physics. Both applied models have shown good performance
in mountainous terrain and compared to observations (e.g.,
Raderschall et al., 2008; Mott et al., 2010; Mott and Lehning, 2010).
However, some model limitations exist and are discussed in the
following.

In our model database, we identified grid cells showing
negative snowfall deposition (1.7%).These negative values may have
resulted from inaccuracies in the mass balance of the wind flow
fields and/or the snow transport module of A3D. Mass balance
inaccuracies in wind flow fields could be due to the ARPS model
setup (such as boundary conditions) or numerically unstable flow
fields, as we observed in model domains L with a rather large
characteristic width of topographic features ξ (low L/ξ ratio)
such that the flow only insufficiently adapted to the topography
(Helbig et al., 2017). Handling terrain-following coordinates over
fine-scale topography can also introduce spatial discretization
uncertainties that increase with slope angles (Lundquist et al.,
2010). On the other hand, the suspension scheme in the snow
transport module may have introduced mass balance inaccuracies
if the solution did not converge fast enough. Overall, mass
balance inaccuracies in our model database may have resulted in
erroneous absolute snowfall values. We therefore refrained from
applying a normalization correction in our snowfall downscaling
schemes. While such a correction may ensure the conservation
of the total snowfall in the model domain, it might also
exacerbate inaccuracies in absolute snowfall values. We assessed
the modeled mass balance by comparing the spatial sums of
total modeled snowfall to input (∑iPA3D,i/∑iPcoarse,i). The model

overestimated the input mass balance by 8% for the test data set
on simulated topographies and by 11% on the actual topography.
This overestimation may have contributed to the larger modeled
deposited snow depth compared to the measured values on the
actual topography (Figure 9). However, uncertainties also arise
from applying a spatio-temporal constant snow density when
converting snowfall to snow depth as well as that the measured
new snow depth distribution was also altered by other snow
processes than preferential snowfall deposition. It is thus difficult
to assess the exact reasons for the differences between measured
new snow depth and modeled deposited snowfall (Table 2).
However, it is reassuring, that the model and both our snowfall
downscaling schemes emulate fine-scale measured deposition
patterns similar than a benchmark downscaling scheme for snowfall
(Figure 7).

6 Summary and conclusion

In this study, we developed two computationally efficient
statistical downscaling schemes that emulate high-resolution
preferential snowfall deposition in mountainous terrain. We trained
both schemes using a comprehensive model data set of deposited
snowfall and near-surface wind on simulated topographies under
controlled atmospheric conditions. To generate fine-scale 3D wind
fields, we utilized the atmospheric model ARPS, which we then used
to drive the snow transport module of the Alpine3D surface process
model to derive the fine-scale snowfall data set. Both downscaling
schemes rely on low-resolution, near-surface snowfall and wind
speed as well as high-resolution terrain parameters as input. The
“wind scheme” requires an additional input of high-resolution
vertical wind speeds, while the “aspect scheme” can functionwithout
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any fine-scale temporal input by also relying on low-resolution
wind directions.

Both downscaling schemes performed well compared to the
model test data set on simulated topographies, with relative errors
of less than −1%. An evaluation with a snow depth data set
measured in eastern Switzerland revealed similar magnitudes and
spatial patterns for both schemes, except in areas where other
processes came into play, such as in avalanche deposition zones,
in regions with existing snow cover, or where the ground was
warmer (see discussion and Figure 7). In contrast, the benchmark
downscaling scheme, which was the MeteoIO implementation
(Bavay and Egger, 2014) based on the statistical method utilizing
the Sx parameter (Winstral and Marks, 2002), produced much less
fine-scale spatial snowfall deposition patterns. To avoid the need
for high-resolution time-dependent input in the aspect snowfall
scheme, we further developed a downscaling scheme for vertical
wind speed that performed well on our test data set with absolute
and relative errors of less than±3%. In comparison to the benchmark
downscaling model DEVINE, which is a deep learning model
for all wind components (LeToumelin et al., 2023), our aspect
downscaling scheme for vertical wind speed emulated ARPS-
modeled vertical wind speed on a real topography similar but with
improved fine-scale patterns.The overall good performance on both
real and simulated topographies, as well as with measurements
and benchmark downscaling models, confirms the effectiveness of
this approach. In fact, by developing a statistical approach on a
process-based, fine-scale model database and integrating physical
understanding, we created relevant key features for the downscaling
schemes, including high computational efficiency, versatility, and the
ability to cope without fine-scale temporal input data, all of which
favor their broad applicability. Emerging physics-based machine
or deep learning approaches provide promising alternatives in the
future (Vadyala et al., 2022).

Although preferential deposition for snowfall is only one process
in shaping the spatial snow depth distribution in mountainous
terrain, it generates significant spatial variation dictated by the
interaction of local terrain features with wind and snow particles
during a snowfall event. These patterns of preferential snowfall
deposition offer valuable insights into fine-scale snow distributions,
which are essential for applications in snow hydrology, glaciology,
avalanche sciences, atmospheric and climate sciences, as well as
remote sensing. Particularly our aspect downscaling schemes have
the potential to generate fine-scale snowfall and fine-scale vertical
wind speed fields efficiently without requiring expensive fine-scale
modelings. This capability could be especially useful for long-term
analyses or large-scale studies in mountainous terrain, such as in
modeling snow distributions for glacier or ice mass balances (e.g.,
Oerlemans et al., 2009), in satellite snow data-acquisitions (e.g.,
Gascoin et al., 2019), in wind resource assessments, in extreme
snowfall projections (Quante et al., 2021), for climate impact or
dust deposition studies (Di Mauro et al., 2019). The latter could
be particularly interesting given recent Saharan dust outbreaks
that covered large mountainous regions in Europe, which were
well-documented (Meinander et al., 2022; Dumont et al., 2023;
Helbig, 2023).
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