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Abstract. Climate data matching the scales at which organ-
isms experience climatic conditions are often missing. Yet,
such data on microclimatic conditions are required to bet-
ter understand climate change impacts on biodiversity and
ecosystem functioning. Here we combine a network of mi-
croclimate temperature measurements across different habi-
tats and vertical heights with a novel radiative transfer model
to map daily temperatures during the vegetation period at
10 m spatial resolution across Switzerland. Our results re-
veal strong horizontal and vertical variability in microcli-
mate temperature, particularly for maximum temperatures
at 5 cm above the ground and within the topsoil. Compared
to macroclimate conditions as measured by weather stations
outside forests, diurnal air and topsoil temperature ranges in-
side forests were reduced by up to 3.0 and 7.8 ◦C, respec-
tively, while below trees outside forests, e.g. in hedges and
below solitary trees, this buffering effect was 1.8 and 7.2 ◦C,
respectively. We also found that, in open grasslands, max-
imum temperatures at 5 cm above ground are, on average,
3.4 ◦C warmer than those of the macroclimate, suggesting
that, in such habitats, heat exposure close to the ground is of-
ten underestimated when using macroclimatic data. Spatial
interpolation was achieved by using a hybrid approach based
on linear mixed-effect models with input from detailed radi-
ation estimates from radiative transfer models that account
for topographic and vegetation shading, as well as other
predictor variables related to the macroclimate, topography,
and vegetation height. After accounting for macroclimate ef-
fects, microclimate patterns were primarily driven by radi-
ation, with particularly strong effects on maximum temper-

atures. Results from spatial block cross-validation revealed
predictive accuracies as measured by root mean squared er-
rors ranging from 1.18 to 3.43 ◦C, with minimum tempera-
tures being predicted more accurately overall than maximum
temperatures. The microclimate-mapping methodology pre-
sented here enables a biologically relevant perspective when
analysing climate–species interactions, which is expected to
lead to a better understanding of biotic and ecosystem re-
sponses to climate and land use change.

1 Introduction

Current understandings of climate and climate change im-
pacts on biodiversity and ecosystem functioning are often
based on macroclimate data available at spatial scales much
coarser than the microclimatic conditions experienced by or-
ganisms (Bramer et al., 2018; Potter et al., 2013). Most of
these macroclimate datasets are based on interpolations of
standardized weather station data, typically using tempera-
ture measurements taken outside of forests and above grass-
lands at ∼ 2 m above ground level. However, across land-
scapes, local topography and vegetation cover create het-
erogeneous microclimates through altering local radiation
regimes, air mixing, and evapotranspiration. Macroclimate
data are therefore limited in representing near-surface mi-
croclimate conditions close to or in the ground and under
vegetation canopies where most terrestrial organisms reside.
Given the importance of microclimates for the physiology
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of organisms, as well as for key ecosystem processes such as
carbon, nutrient, and water cycling, accurately predicting mi-
croclimates at high spatial and temporal resolutions is funda-
mental for understanding climate and climate change impacts
on biodiversity and ecosystem functioning (Jones, 2014; De
Frenne et al., 2021).

Variation in microclimate is driven by the topography, veg-
etation, soil, and the water balance, all of which modulate
near-surface temperatures in relation to the prevailing macro-
scale meteorological conditions (Geiger et al., 2009). Lo-
cal controls on microclimates include the buffering of for-
est understories against macroclimate temperature extremes
(De Frenne et al., 2019; Chen et al., 1999) and the high het-
erogeneity of surface microclimates in topographically com-
plex environments, such as mountains (Scherrer and Körner,
2010). For example, maximum temperatures and tempera-
ture extremes can be reduced in areas shaded by topogra-
phy and/or vegetation due to the reduction in incoming short-
wave solar radiation, an effect that can be increased by evap-
otranspirative cooling if water availability is not limited (De
Frenne et al., 2021). Minimum temperatures, on the other
hand, are modulated by factors such as heat retention by veg-
etation canopies through reduced outgoing longwave radia-
tion and reduced wind speeds, as well as cold air flow and
pooling in topographic depressions, particularly during the
night and calm atmospheric conditions (Dobrowski, 2011;
Geiger et al., 2009).

Fortunately, mapping of microclimates has recently been
facilitated by advanced microclimate measuring and mod-
elling techniques (Maclean et al., 2018; Zellweger et al.,
2019a; Maclean et al., 2021) and the compilation of large
databases of in situ microclimate measurements (Lembrechts
et al., 2020). These new data streams and technologies are
now being used to create large-scale microclimate datasets
and mapping products that will contribute to a better under-
standing of the climate-related distribution and functioning
of organisms (Lembrechts et al., 2019b; Suggitt et al., 2018;
Maclean and Early, 2023; Haesen et al., 2023a; Lembrechts
et al., 2022).

Mapping microclimate across landscapes has particularly
been assisted by remote sensing technologies such as light
detection and ranging (lidar) and digital photogrammetry,
which provide detailed information about the topography and
vegetation structure that can be used as input variables to
model near-surface temperatures (Jucker et al., 2018; Frey
et al., 2016; Duffy et al., 2021; Greiser et al., 2018; Maclean
et al., 2018). A key challenge in microclimate mapping is in-
corporating radiation transfer through vegetation canopies,
which has often been crudely represented via the use of
canopy cover and density proxies such as leaf area index
(LAI), canopy height, and/or canopy cover. These proxies
lack the directional component in relation to radiation trans-
fer and typically generalize the canopy away from the indi-
vidual tree-level structure, both of which impact the physi-
ology of organisms. Using these proxies can therefore lead

to errors in estimates of canopy transmissivity in heteroge-
neous forest canopies (Musselman et al., 2013), thereby in-
creasing uncertainties for analysing microclimate effects on
plant species composition (Zellweger et al., 2019b). Newer
mechanistic microclimate models are now able to account for
radiative transfer through canopies, as well as attenuation of
wind speed (Maclean and Klinges, 2021), and specific radia-
tive transfer models based on remotely sensed 3D vegetation
structure datasets accurately calculate canopy transmissivity
maps at metre- and even sub-metre-scale resolution by di-
rectly accounting for detailed and realistic canopy structure
in relation to the changing daily and seasonal solar position
(Musselman et al., 2013; Bode et al., 2014; Tymen et al.,
2017; Webster et al., 2020; Kükenbrink et al., 2021; Webster
et al., 2023). Together with the increasing availability of 3D
vegetation structure datasets at the tree level across large spa-
tial extents, these developments enable the incorporation of
detailed radiative transfer variables in microclimate-mapping
approaches.

A further limitation to current microclimate analysis and
mapping is the lack of reliable in situ microclimate measure-
ments across a wide range of habitats. In places exposed to
sunlight, for example, many commonly used microclimate
temperature loggers – shielded or unshielded – record bi-
ased measurements due to radiative fluxes operating-on the
thermometer (Maclean et al., 2021). Fortunately, these biases
can now be minimized by using ultra fine-wire thermocou-
ples with a low thermal emissivity and highly reflective sur-
face, recording accurate estimates of air temperatures, even
in places exposed to sunlight or close to the ground (Maclean
et al., 2021). Deploying these measurement devices across
multiple habitat types that span wide ranges of variation in
vegetation structure and topography is thus required to arrive
at a reliable reference dataset that is representative of the en-
tire spectrum of microclimate conditions within environmen-
tally heterogeneous regions. This would, for example, allow
researchers to include the often ignored but specific thermal
conditions beneath trees outside forests, e.g. in hedges, pro-
viding important habitats and increasing habitat connectivity
in microclimate-mapping products (Vanneste et al., 2020).

Here we combine a state-of-the-art radiative transfer
model with a comprehensive microclimate measurement net-
work to infer and map daily microclimate temperatures at
three vertical heights and 10 m spatial resolution across the
whole of Switzerland. The resulting microclimate dataset is a
major step forward towards taking a realistic organism’s per-
spective when studying species–climate interactions and will
be relevant to many fields of biological and environmental
sciences, including fundamental and applied ecology, hydrol-
ogy, agriculture, and forestry (De Frenne et al., 2021; Bramer
et al., 2018).
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2 Materials and methods

2.1 Study area

This study was carried out in Switzerland, which covers
41 248 km2 of central Europe. Mountains cover ca. 70 % of
the country, and lowlands cover the remaining 30 %. One-
third of the land is forested, with a larger proportion in the
mountain areas. The forest composition consists of conif-
erous (42 %), mixed (34 %), and deciduous (24 %) forests
(Brändli et al., 2020); 4 % of the country (1813 km2) is cov-
ered by trees outside of forests, e.g. trees found in hedges or
solitary trees (Malkoç et al., 2021).

2.2 Temperature measurements inside and outside
forests

We implemented a nationwide network of microclimate tem-
perature sensors following a hierarchical stratified sampling
design. First, we identified eight regions to represent the
main macroclimate gradients in Switzerland (Fig. 1). These
regions align with the long-term Forest Ecosystem Research
(LWF) network, covering gradients ranging from the low-
lands with a temperate, relatively warm climate to higher and
cooler elevations receiving more precipitation to inner alpine
regions with a continental climate and regions in the southern
Alps with an insubric climate. In each region, we installed
temperature sensors in several plots, covering the regional
variation in forest structure and topography. Inside forests,
we identified locations with low to high topographic slope
angles and topographic positions, as well as locations with
different slope orientations, i.e. from north- to south-facing
slopes. In each of the forest locations, we sampled one plot
with high canopy cover and one plot with low canopy cover,
as visually estimated in the field. All forest plots were at least
50 m away from the nearest forest edge. Outside forests, we
sampled grasslands with different slope orientations, as well
as high and low relative topographic positions, i.e. ridges to
valley bottoms. Finally, in each region, we selected plots be-
low trees outside forests. In hedge-type habitats, i.e. linear
accumulations of woody vegetation, we placed the loggers
in the middle of each hedge. Below solitary trees, we placed
the loggers at half the distance between the tree trunk and
outer crown projection line. Due to regional plot availability
and suitability as determined by field visits, the number of
final plots per region varied, ranging from 6 to 17 (median of
15) plots per region. The total number of plots was 107, with
62 plots in forests, 22 below trees outside forests, and 23 in
open grasslands. In the Pfynwald and southern Ticino, only
forest plots were sampled. Our sample plots represented the
observed range of environmental conditions across the study
area well, as indicated by a comparison between sampled and
observed predictor variable space across the area used for
making predictions (Table B1 in the Appendix).

In each plot, microclimate temperatures were measured
at 1 and 5 cm above the ground surface, as well as be-
low the ground in the topsoil at 5 cm depth. These heights
were chosen because we expect a large degree of vertical
temperature variation between these heights, as indicated
by common temperature profiles (De Frenne et al., 2021)
and because these heights are representative of the strata
in which many organisms reside (e.g. herbaceous plants,
tree seedlings, ground arthropods, soil fungi, and bacteria).
We acknowledge that sampling entire vertical forest profiles
reaching the top tree canopy would be desired from an eco-
logical viewpoint, but we were not able to achieve this due to
logistic reasons. Above-ground air temperatures (both at 1 m
and 5 cm) were recorded hourly using Lascar Electronics EL-
USB-TC loggers with unshielded ultra-fine-wire thermocou-
ples (0.08 mm) taped to a 1 m tall fencing pole (Fig. 1d–e).
For sampling at 5 cm below the ground, we used standard
Lascar EL-USB-1 loggers placed into a buried, small, seal-
able plastic tube, also recording at an hourly resolution. Both
the thermocouples and standard Lascar logger types have a
measuring accuracy of 0.3 ◦C, as reported by Lascar Elec-
tronics. To check if the measurements of the unshielded ther-
mocouples were affected by direct sunlight we performed an
experimental sensitivity test, which revealed no significant
effect of direct sunlight (Appendix A). The measurement pe-
riod started on 8 June 2021 and ended on 31 October 2022,
with slightly varying starting dates per region as determined
by the site visits to install all loggers. The sampling duration
was thus long enough to include a wide range of weather con-
ditions, from wet and cold to hot and dry periods. All sites
were revisited every 2 to 3 months for maintenance and to re-
trieve the data. Together with careful checks and corrections
for obvious outliers and data artefacts introduced by device
malfunction or disturbance by animals, this maintenance en-
abled us to build up a mostly seamless time series of hourly
temperature data, with an overall loss of data of less than 5 %.
Each site was georeferenced using a Trimble® GeoExplorer
6000 with an accuracy after post-processing of ca. 1 m.

For the analysis presented here we pooled all data col-
lected between June 2021 to October 2021 and April 2022
to October 2022, broadly representing the vegetation periods
observed across Switzerland. We further excluded all tem-
perature recordings that were made under snow cover, which
mainly affected the measurements 5 cm above ground and
5 cm below ground at high elevations. We did this because
snow blankets introduce spatial and temporal variability of
atmospheric decoupling in temperatures below or within a
snow blanket, and this variability cannot accurately be mod-
elled with our predictor variables.

To build the final time series dataset for the spatial mod-
elling we aggregated the hourly data to daily maximum
(Tmax micro), mean (Tmean micro), and minimum (Tmin micro)
temperature. Tmax micro was defined as the 24 h 95th per-
centile, and Tmin micro was defined as the 5th percentile.
Tmean micro is the arithmetic daily mean temperature (with
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n= 24). These three daily temperature statistics are the de-
pendent variables for the models used to predict nationwide
microclimate temperature maps as outlined below.

To analyse the differences between the microclimate and
macroclimate data, i.e. the microclimate variation not cap-
tured by macroclimate data, we computed the temperature
offsets (De Frenne et al., 2021) as the macroclimate temper-
ature minus the microclimate temperature (see section “Pre-
dictor variables” for details). Temperature offsets were thus
only used to quantify the observed difference between the
micro- and macroclimate, while the spatial modelling was
based on the actual microclimate temperatures measured.

2.3 Predictor variables

The development of our predictor variable set was guided
by the assumption that the variation in near-surface micro-
climate temperatures, as measured by our sensor network,
is strongly related to variation in macroclimate temperature,
followed by the effects of local-scale variation in topography,
vegetation structure, and associated radiation regimes.

To derive the macroclimate we used interpolated daily
maximum Tmax Macro, daily mean Tmean Macro, and daily min-
imum Tmin Macro data from meteorological stations as pro-
vided by MeteoSwiss at a 1 km2 nationwide grid (Frei,
2014). The underlying data for these macroclimate layers
were collected at 131 weather stations at 2 m height above
ground in open localities outside forests across the coun-
try. For model fitting, as well as for the final predictions,
we needed to downscale the 1 km2 macroclimate data to
our 10 m target resolution, which was guided by the reso-
lution of our other predictor variables, especially those de-
scribing the topography and vegetation height as described
below. To this end we applied a lapse rate correction to the
macroclimate layers, which is important in our mountainous
study area, where the pronounced altitudinal gradients and
related lapse rates cause large temperature differences within
an original 1 km2 grid cell. Daily lapse rates were calculated
for each Tmax macro, Tmean macro, and Tmin macro separately us-
ing a moving-window regression based on the respective
1 km2 temperature grid cell and the corresponding 1 km2 Me-
teoSwiss reference digital terrain model (DTM) with a mov-
ing 3× 3 window size. We thus estimated, for each window,
how much the temperature changes as a function of the re-
gional elevation gradient. The resulting regression estimate
is the daily lapse rate 0 (in ◦C m−1). Only grid cells with
regression results with an R2>0.85 were considered to en-
sure a reliable lapse rate value. Remaining-empty raster cells
were filled in a second step with the average lapse rate within
a moving window of 5× 5 cells. Based on visual inspection
of the resulting lapse rate maps, this combination of window
sizes resulted in the best achievable estimation of locally pre-
vailing lapse rate values. The result of this process was na-
tionwide 1 km2 resolution auxiliary maps of daily lapse rates

for each Tmax macro, Tmean macro, and Tmin macro. The process-
ing workflow is illustrated in Fig. G1 in Appendix G.

For the downscaling to the target resolution, the 1 km grids
of both the lapse rate and the 1 km2 MeteoSwiss Tmax macro,
Tmean macro, and Tmin macro rasters were first resampled to
10 m resolution with bilinear interpolation. Then, the 10 m
MeteoSwiss daily Tmax macro, Tmean macro, and Tmin macro maps
were corrected for sub-grid elevation variability using the
10 m lapse rate information as follows:

1z= zDTM − zMeteoSwiss, (1)
10Tmax macro cor = Tmax macro org+ z · Tmax macro, (2)
10Tmean macro cor = Tmean macro org+ z · Tmean macro, (3)
10Tmin macro cor = Tmin macro org+ z · Tmin macro, (4)

where 1z is the difference between each 10 m grid cell of
Swissalti3D DTM elevation zDTM (Swisstopo, 2020) and
the nearest 1km grid cell of the MeteoSwiss reference el-
evation for the temperature grids zMeteoSwiss. Tmax macro org,
Tmean macro org, and Tmin macro org are the resampled 10 m Me-
teoSwiss temperature rasters, and 0 refers to the respective
temperature lapse rates. The resulting lapse rate corrected
daily macroclimate air temperature maps at 10 m resolution;
i.e. Tmax macro cor, Tmean macro cor, and Tmin macro cor were used
as predictor variables for the modelling and mapping of mi-
croclimate temperatures as measured within our network of
microclimate temperature loggers (see the section “Microcli-
mate modelling” below).

We also tested for the effects of daily cloud cover by in-
corporating actual macroclimate global radiation as derived
from MeteoSwiss and found that daily cloud cover did not
improve the predictive performance of our models, possibly
because daily macroclimate temperatures already incorpo-
rate daily weather effects.

2.3.1 Radiative transfer model: shortwave
transmissivity, sky view fraction, and subcanopy
radiation

Small-scale variability in radiation within forests was repre-
sented by accounting for explicit tree-level forest structure
around each point. Variability in the diffuse shortwave and
longwave radiation components was represented using the
180◦ sky view fraction (Vf, also known as diffuse transmis-
sivity). Variability in the direct shortwave component was ac-
counted for by determining the proportion of the solar disc
obscured by vegetation or topography (also known as time-
varying direct-beam transmissivity, τdir), which varies both
in space and in time as the solar position changes in the sky.
Direct-beam transmissivity and sky view fraction were both
calculated using the model CanRad (Webster et al., 2023),
which uses synthetic 180◦ hemispherical images to repli-
cate the topography and vegetation as seen by the ground
or plant surface (Fig. 2). The radiation transfer model sim-
ulations represent only leaf-on conditions, which implies –
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Figure 1. Sampling design for microclimate-measuring network across Switzerland. (a) Distributions of the eight regions spanning a wide
macroclimatic gradient across the country. In each region, sites were identified to represent regional variation in vegetation structure and
topography (see text for details); (b) and (c) are the distribution of sites in the regions of Neunkirch and Beatenberg, respectively (© swis-
stopo). (d) Installation of microclimate sensors, with an ultra-fine-wire thermocouple measuring the temperature 5 cm above the ground, as
shown in (e).

contrarily to direct-beam transmissivity – that sky view frac-
tion varies spatially but is temporally static. To resolve the
fine-scale temporal variability of direct-beam transmissivity
we calculated it at 2 min intervals and then averaged it to
hourly time steps. CanRad was run at the point scale at 20 m
intervals across the entire domain, totalling 87 795 419 points
and 265 320 time steps across the annual solar cycle.

At all points, terrain shading was included by using 5 and
25 m DTMs (Swisstopo, 2020). The 5 m DTM was included
up to a 300 m radius from each point to represent local terrain
variability around each model point. The coarser 25 m DTM
was used up to a 10 km radius from each point to calculate
the topographic horizon line, accounting for terrain shading
from nearby mountains.

For the above radiative transfer modelling we used the
module C2R (CanopyHeightModel2Radiation) within Can-
Rad, which achieves a realistic representation of the over-
head canopy structure based on a canopy height model
(CHM) to determine the geometric arrangement of vegeta-
tion surrounding a point, with information on forest type
and subsequent leaf area of the individual tree crowns. The
CHM was available at 1 m resolution based on lidar datasets
ranging from 1 to 30 points m−2 acquired across Switzer-
land from 2012–2021, with one region (i.e. Pfynwald) hav-
ing older data from 2003. The high spatial resolution of the
CHM across the model domain ensured that the effects of in-
dividual trees on ground surface shading were explicitly in-
corporated. Forest type information was provided by the na-
tionwide forest mix rate dataset from Waser et al. (2017) to
discriminate between deciduous and evergreen forest types,
and the Swiss forest ecoregions dataset (FOEN, 2022) was

used to distinguish between needleleaf or broadleaf forest
types. For a more thorough description of the radiative trans-
fer modelling, see Webster et al. (2023).

The hourly estimates of direct-beam transmissivity were
aggregated to daily values by averaging the values each day
between the hours of 09:00 and 16:00 CET. The assump-
tion here was that the daily maximum microclimate temper-
ature is mostly dependent on solar radiation within this time
interval. These daily aggregates were averaged to monthly
averages thereafter and resampled from 20 to 10 m resolu-
tion using bilinear interpolation. Finally, we multiplied these
monthly average transmissivity values with monthly aver-
ages of daily clear-sky direct shortwave irradiation as esti-
mated by (Zimmermann and Roberts, 2001), yielding what
hereafter is referred to as the direct radiation proxy. Note
that this proxy represents both the spatial and the seasonal
variation in subcanopy direct shortwave radiation.

As an additional predictor variable, we also extracted veg-
etation height at 10 m resolution from the above-mentioned
CHM.

2.3.2 Topographic position and wetness index

We used the swissalti3D DTM with a 10 m resolution to
derive indices of topographic position (TPI) and wetness
(TWI). TPI and TWI serve as indicators for cold-air flow
and pooling, as well as exposure to wind, thus affecting near-
surface temperatures (Ashcroft and Gollan, 2013; Daly et al.,
2008). TPI, or relative elevation, is defined as the normalized
difference between the elevation of a focal cell and the av-
erage elevation within a minimum radius (here zero) and a
maximum radius (here 120 m). TWI describes the lateral wa-
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Figure 2. Top: nationwide input datasets used in CanRad to calculate synthetic hemispherical images – elevation (left), canopy height
(middle), forest type mix rate, and locations of outputs shown in bottom panels (right). Bottom left: examples of hemispherical photographs
and corresponding synthetic images at the same locations. (a) Below shrubs, (b) deciduous broadleaf forest, (c) northern alpine evergreen
coniferous forest, (d) southern alpine evergreen coniferous forest. In the synthetic images the yellow line corresponds to the solar track on
22 June. Sky view fraction is then calculated as the ratio based on a non-linear weighting of the blue+ yellow area relative to the total area.
Bottom right: example of model estimates of sky view fraction (e) and average transmissivity for June (f) over a 4 km2 region in the central
Alps, as indicated by the black square in top-right forest mix rate map. Aerial image (g) and canopy height (h) shown for context. Note that
photographs in a–d have not been corrected for lens distortion compared to synthetic images which have an equiangular lens projection.

ter flow and was calculated as follows:

TWI = ln
a

tan b
, (5)

where a is the upslope catchment area, and tanb is the local
slope in radians (Freeman, 1991).

2.3.3 Soil moisture and rain

Soil moisture has been shown to affect near surface temper-
atures, for example by lowering the buffering magnitude of
forest floor temperatures compared to outside forest temper-
ature under dry conditions (von Arx et al., 2013). To account
for the potential effects of soil moisture and precipitation
on our measured microclimate temperatures we calculated

a predictor variable termed rain sum using daily precipita-
tion data from MeteoSwiss on a 1 km grid. To calculate this
variable for each day (i.e. at a daily resolution) we summed
up the precipitation over the preceding 30 d, giving a linearly
decreasing weight to values further in the past.

2.4 Microclimate modelling

We statistically related the plot-level measurements, i.e. the
daily Tmax micro, Tmean micro, and Tmin micro measurements at
different vertical heights, to the predictor variables (Table 1)
and used the resulting model equations to predict national
maps of daily microclimate over the entire gridded domain.
The sample sizes for the 1 m, 5 cm, and topsoil datasets were
n= 33′390, n= 30′781, and n= 27′662, respectively. As
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Table 1. Predictor variables used for modelling, with the range of values representing the variable ranges across our microclimate sampling
plots.

Variable name Description Range (mean) Unit

Macroclimate temperature Daily maximum near-surface (2 m) lapse-rate-corrected
air temperature (Tmax macro cor) as derived from MeteoSwiss

−5.6–37.0 (17.8) ◦C

Daily mean near-surface (2 m) lapse-rate-corrected air temperature
(Tmean macro cor) as derived from MeteoSwiss

−7.6–28.6 (13.4) ◦C

Daily minimum near-surface (2 m) lapse-rate-corrected
air temperature (Tmin macro cor) as derived from MeteoSwiss

−13.4–23.1 (8.6) ◦C

Direct radiation proxy Proxy for average daily direct clear-sky shortwave irradiation on the
ground and beneath vegetation canopies

0–29 410 (8600) kJ m−2 d−1

Sky view fraction Proportion of sky visible taking an upward perspective on the
ground and beneath vegetation canopies

2–98 (41.5) %

Vegetation height Vegetation height derived from canopy height model 0–35.1 (13.3) m

Rain sum Weighted sum of daily precipitation amount over preceding 30 d 2.6–320.1 (62.9) mm

Topographic position Relative topographic position describing the plot elevation in re-
lationship to the surrounding elevations. Valley bottoms have low
values; elevated locations, such as ridges, have high values

−1.0–0.97 (−0.04) Index

Topographic wetness Topographic wetness index representing the lateral water flow 1.1–9.6 (3.2) Index

Northness Cosine of topographic aspect. Northness is a continuous variable
describing the topographic exposition ranging from completely
north exposed to completely south exposed

−1–1 (−0.1) Index

Slope Topographic slope 0.3–41.7 (17.9) Degrees

mentioned above, please note that our dependent variables
were the actual microclimate temperature measurements and
not the temperature offsets. We tested three modelling ap-
proaches to analyse the predictive performance of our pre-
dictor variables.

First, we fitted linear mixed-effect models with our predic-
tor variables as fixed effects and region as a random intercept
term to account for the non-independence among replicates
from the same region using restricted maximum likelihood in
the lmer function from the lme4 package in R (Bates et al.,
2015). All variables were standardized, i.e. rescaled to have
a mean of zero and a standard deviation of 1, to increase the
interpretability of relative-effect sizes among the predictor
variables. For Tmax micro and Tmean micro we included the in-
teraction term between the macroclimate temperature and the
direct radiation proxy at ground level and below canopy as
it has been shown that the maximum temperature-buffering
capacity of tree canopies can increase with warmer temper-
atures (De Frenne et al., 2019). Tmin micro was modelled as
a function of sky view fraction instead of direct radiation to
account for the negative net longwave radiation during the
night as a presumed main driver of Tmin micro.

The second approach was a random forest regression
model, using the randomForest package in R (Liaw and

Wiener, 2002). Two variables were randomly sampled as
candidates at each split, with a total number of 500 trees
following conventions. We used this machine learning al-
gorithm because it automatically considers variable interac-
tions and non-linear relationships between dependent and in-
dependent variables. These features may lead to increased
predictive accuracy because such interactions and non-linear
relationships may indeed be present in our data as it has been
shown that the effects of vegetation structure and topography
on near-surface temperatures may be non-linear (Zellweger
et al., 2019c).

To further test for non-linear responses, we also used gen-
eral additive mixed-effect models (GAMMs) as our third
modelling approach, applying the gamm function in the
mgcv package in R (Wood, 2017). We again added region as
a random term and used REML as the smoothing parameter
estimation method for the model.

To evaluate the predictive performance of our models we
applied a spatial block cross-validation approach and com-
puted the R2 values and root mean squared errors (RMSEs)
(Roberts et al., 2017). We therefore iteratively used data from
seven out of the eight regions for model fitting and predicted
the data from the left-out eighth region to compare the pre-
dicted with the observed values.
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As indicated in the Results section, we used the linear
mixed-effect models to produce daily microclimate maps
across Switzerland at 10 m resolution covering the period
between 1 April and 31 October for all the years be-
tween 2012 to 2021. We calculated these maps for daily
Tmax micro, Tmean micro, and Tmin micro, each at 1 m and 5 cm
above ground, as well as in the topsoil 5 cm below ground.
As noted, these data are representative for snow-free con-
ditions during the vegetation period and leaf-on conditions.
The 10-year period has been chosen in acknowledgement
of the fact that changes in tree cover and density do occur,
where most of our lidar data used for the radiation modelling
were acquired during the years 2012–2021. Because we have
sampled microclimate data in neither urban areas nor settle-
ments nor in non-vegetated areas, such as scree or glacial
habitats, we masked those areas out from our microclimate
maps using the land-cover-mapping product Vector25 (Swis-
stopo, 2022).

3 Results

3.1 Temperature offsets in different habitats

The temperature offsets describe the differences between the
microclimate and macroclimate data and thus indicate micro-
climate variation not captured in macroclimate data. Our na-
tionwide sampling in different habitats revealed strong hori-
zontal and vertical variability in temperatures during the veg-
etation period, with a particularly high degree of variation in
daily maximum near surface and topsoil temperature mea-
sured at 5 cm above ground (5th and 95th percentiles: −4.6
and 8.2 ◦C) and 5 cm below ground (5th and 95th percentiles:
−10.3 and 2.2 ◦C), respectively (Fig. 3). Daily temperature
extremes as measured by Tmax micro and Tmin micro were con-
siderably reduced in the topsoil and in forests, as indicated by
negative offset values for Tmax micro and positive offset values
of Tmin micro.

In forests, the daily Tmax micro were cooler than the daily
Tmax macro outside forests, with mean offset values of −1.3
and −1.1 ◦C for air temperature at 1 m and 5 cm above
ground, respectively, and −5.2 ◦C in the topsoil (Table C1).
Daily Tmin micro were generally warmer, with average offset
values of 1.8, 1.7, and 2.6 ◦C at 1 m and 5 cm above ground
and in the topsoil, respectively. In forests, the resulting abso-
lute differences between Tmax and Tmin offsets, i.e. the total
temperature buffering effect, were thus 3.0, 2.9, and 7.8 ◦C,
respectively.

Below trees outside forests we also found reduced daily
extreme temperatures as compared to Tmax macro, but the mag-
nitude of the temperature-buffering effect was lower than in
forests. Daily Tmax micro were, on average, lower by −0.7,
−0.2, and −4.9 ◦C at 1 m and 5 cm above ground and in
the topsoil, respectively, while daily Tmin micro were, on av-
erage, higher by 1.1, 0.9, and 2.3 ◦C. The resulting total

temperature-buffering effect below trees outside forests was
thus 1.8, 1.1, and 7.2 ◦C, respectively.

Unlike in forests and trees outside forests, temperature off-
sets for maximum air temperatures at 5 cm in grasslands were
found to be positive, i.e. 3.4 ◦C, indicating that near-surface
Tmax micro in open habitats are often underestimated when us-
ing macroclimate data. Moreover, topsoil Tmin micro in open
grasslands were warmer than the macroclimate by 3.5 ◦C on
average. Across all habitat types we found that the degree of
variation in offset values, particularly Tmax micro offset values,
was greater at 5 cm above ground than at 1 m or in the top-
soil, suggesting a high spatial variability in near-surface air
temperatures across and within the different habitat types.

3.2 Model performance

The predictive performance of our models ranged between
R2 values of 0.54 and 0.95 and root mean squared errors
(RMSEs) of 1.2 and 3.4 ◦C (Table 2, Fig. 4). Microclimate
temperatures at 1 m height were predicted with the highest
accuracy, followed by temperatures at 5 cm and in the topsoil.
Tmin micro at 5 cm and in the topsoil were predicted consider-
ably more accurately than the respective Tmax micro values.
We also found large ranges in predicted temperature offsets,
with generally wider ranges for Tmax micro than for Tmin micro.
The widest range of offsets were found for topsoil Tmax micro,
followed by Tmax micro at 5 cm and 1 m.

The observed patterns in model performance and pre-
dicted offset value ranges were broadly similar across the
three tested modelling approaches, but it is noteworthy that
random forests, as well as GAMMs, predicted considerably
larger offset ranges (Table D1). Yet, when evaluated based
on block cross-validation, linear mixed-effect models had the
highest overall predictive skill. We thus used the linear mixed
effects models to evaluate individual predictor variable ef-
fects and to calculate the final microclimate maps.

We also compared the predictive performance of our mi-
croclimate models against a model using macroclimate pre-
dictor variables only. This analysis confirmed the expectation
that, given the broad macroclimatic gradients in our study
and the period analysed (i.e. April–October), most of the
variance is explained by the macroclimate (Appendix E).

3.3 Predictor variable effects

In line with the expectation that microclimate patterns
broadly follow macroclimate dynamics we found that macro-
climate variables had the strongest effects on the microcli-
mate, as indicated by the highest standardized variable es-
timates (Fig. 5). Yet, most of the predictor variables related
to radiation, vegetation, and topography significantly modu-
lated the local variation of microclimate.

We found that Tmean micro and Tmax micro were strongly re-
lated to direct radiation, with particularly large effects on
Tmax micro at 5 cm above ground and in the topsoil 5 cm be-
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Figure 3. Offsets between macroclimate and in situ measured microclimate temperature during April to October per habitat type and overall
data points. The offsets were calculated by subtracting the microclimate temperature from the lapse-rate-corrected macroclimate temperature
(Tmacro− Tmicro). Negative offset values thus indicate cooler microclimates compared to the macroclimate and vice versa.

Table 2. Predictive performance of linear mixed-effect models, quantified using block cross-validation. We also report the predicted offset
ranges, i.e. minimum to maximum, and mean in brackets, calculated as the difference between the predicted microclimate and the macrocli-
mate.

Temperature 1 m above ground Temperature 5 cm above ground Temperature in topsoil 5 cm below ground

R2 RMSE Predicted offset range R2 RMSE Predicted offset range R2 RMSE Predicted offset range

Tmax micro 0.92 1.7 −3.0–1.4 (−0.6) 0.73 3.4 −5.6–7.0 (0.4) 0.54 3.1 −15.4–8.0 (−4.0)
Tmean micro 0.95 1.2 −2.4–1.9 (−0.1) 0.9 1.6 −3.3–3.6 (−0.4) 0.75 2.0 −7.5–9.1 (−0.9)
Tmin micro 0.92 1.5 −0.8–3.4 (1.5) 0.88 1.8 −1.3–4.3 (1.2) 0.78 1.9 −1.5–9.5 (2.9)

low ground. The interaction effects between the macrocli-
mate and direct radiation were relatively weak but signifi-
cant. Specifically, the effect of direct radiation increased with
increasing Tmax macro for Tmax micro at 1 m and 5 cm, but the
opposite was true for Tmean micro. Sky view fraction strongly
modulated Tmin micro, with negative effects on Tmin micro at
1 m and 5 cm, and positive effects on topsoil Tmin micro. Veg-
etation height had the largest effects on Tmax, cooling down
Tmax micro as vegetation height increased across all three mea-
surement heights. Higher water availability as estimated by
the rain sum of the preceding 30 d generally had a small but
significant cooling effect on microclimate temperatures at
1 m and 5 cm and a warming effect on topsoil temperatures.
From all topography variables tested, topographic wetness
and northness had the largest effects, predominantly cooling
temperatures across all three heights at higher levels of topo-
graphic wetness and northness. In general, radiation and the

vegetation height affected microclimate temperatures more
strongly than variables related to water content and topogra-
phy.

3.4 Microclimate maps

Our microclimate maps show pronounced differences com-
pared to currently available macroclimate layers (Fig. 6).
Spatial variation in microclimates is particularly evident be-
tween forest and non-forest areas, and microclimate effects
of trees outside of forests, e.g. in hedges or similar linear
tree habitats, become visible. The strongest vertical tempera-
ture differences emerge between topsoil and near-surface air
temperatures. All daily maps of Tmin micro, Tmean micro, and
Tmax micro for all three vertical heights have also been ag-
gregated to monthly averages, which are publicly available
(see “Code and data availability” section). The broad cover-
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Figure 4. Predicted versus observed plots showing predictions from linear mixed-effects model. The sample density is indicated by the
colour scale, with yellow showing highest sample densities; the red line represents the 1 : 1 relationship.

age in our model calibration data in terms of environmental
variation led to hardly any predictions outside the model cal-
ibration data (Table B1), minimizing potential uncertainties
related to extrapolation.

4 Discussion

Our measured microclimate temperatures within an environ-
mentally heterogeneous region revealed strong vertical and
horizontal variation in near-surface temperatures. This mi-
croclimate variation can be mapped with high accuracy at
a national scale, thus overcoming a prevalent limitation of
macroclimate temperature maps that do not represent small-
scale temperature variation. For example, our microclimate-
mapping approach reveals the distribution of locations that
experience substantially reduced daily temperature extremes,
such as along-forest density gradients. The temperature-
buffering effect was particularly pronounced for tempera-
tures in the topsoil 5 cm below ground and air temperatures
5 cm above ground and less so for air temperatures 1 m above
ground, a finding that aligns well with expected vertical tem-

perature profiles in forests (De Frenne et al., 2021). The abil-
ity to map this temperature-buffering effect along a vertical
temperature gradient is expected to provide crucial informa-
tion to better understand microclimate–species interactions
and their implications for biodiversity and ecosystem func-
tioning (De Frenne et al., 2021; Lembrechts et al., 2019a).

Trees and shrubs have a strong impact on near-surface and
topsoil temperatures, mainly via their effects on the radiation
regime but also via their effects on wind speed and evapo-
transpiration (Geiger et al., 2009). We found a particularly
strong positive effect of direct shortwave radiation on micro-
climate Tmax at 5 cm above ground and in the topsoil, imply-
ing that incoming radiation is the main controlling variable
of ground-level microclimates once the macroclimate is ac-
counted for. In line with the expectation that daily Tmin are
higher under dense canopies because of longwave enhance-
ment (Webster et al., 2016), we found a negative effect of
sky view fraction on both above ground Tmin at both 5 cm
and 1 m above ground. Topsoil Tmin, however, was positively
affected by sky view fraction, potentially due to a higher de-
gree of topsoil warming outside forests. These results imply
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Figure 5. Standardized model coefficient estimates from linear mixed-effect models for daily microclimate temperatures at different vertical
heights, i.e. at 1 and 5 cm above ground and 5 cm below ground. The estimates on the x axis indicate the standardized effect sizes and
direction of each variable. Standard errors are indicated by error bars; however, due to the large sample size, the error bars are small and
invisible. Small transparent dots indicate non-significant (p>0.05) relationships.

that including high-resolution 3D remote sensing data of for-
est structure and derived radiation estimates significantly in-
crease our capability to describe microclimatic variation.

Promising avenues for future microclimate modelling thus
include the incorporation of temporarily dynamic data about
forest cover and structure. Our detailed assessments of ra-
diation effects on microclimatic variation relied on the ap-
plication of a high-resolution radiative transfer model to
estimate controls on radiation below the canopy consider-
ing the position and crown architecture of each tree in the
landscape (Webster et al., 2023). Integrating this model into
our microclimate-mapping approach constitutes an important
novelty as it not only furthers more conventional approaches
to estimate vegetation effects on radiation, e.g. via the use of
light availability proxies such as canopy height, cover, or leaf
area index (LAI), but also provides a pathway to quantify the
effect of different natural and management-related forest dy-
namics on near-surface and topsoil temperatures. Such analy-
ses now become feasible as the canopy structure information
input into the radiative transfer model can be manipulated to
represent past or future forest structure, where a subsequent
model update would reveal the microclimatic impact quan-
titatively. Similar avenues are also provided by mechanis-
tic microclimate models that incorporate physical processes
more explicitly (e.g. Maclean and Klinges, 2021). These

analyses are particularly relevant because it is increasingly
evident that land use effects, e.g. from forest management
practices but also from increased forest disturbances (e.g.
due to droughts, bark beetles, wind storms) can have strong
immediate effects on microclimate temperatures (Senf and
Seidl, 2021), invoking microclimate temperature changes
that are ecologically more relevant for explaining biodiver-
sity dynamics than macroclimate change (Zellweger et al.,
2020; Christiansen et al., 2022). Such approaches thus al-
lows for including both past and future woody vegetation dy-
namics into the microclimate modelling, thus addressing an
important methodological gap in microclimate science (De
Frenne et al., 2021).

Another avenue for future microclimate modelling con-
sists of comparing the relative strengths of statistical ver-
sus mechanistic models that are built based on physical pro-
cesses. It would be interesting to incorporate the outputs of
our radiative transfer model (e.g. sky view fraction and the
proxy for direct radiation) into commonly used mechanistic
models, e.g. NicheMapR (Kearney and Porter, 2017; Kear-
ney et al., 2020) or microclimc (Maclean and Klinges, 2021),
and to assess how well each approach performs in predicting
microclimate time series given the different emphases on sta-
tistical and physical depiction. Performing this analysis at a
high temporal resolution (e.g. hourly) would simultaneously
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Figure 6. Microclimate maps for Switzerland. (a) Nation-wide map of daily maximum microclimate temperature in summer; (b) 4× 4 km
hill-shaded sample region with forest cover shown in light green – the location of the region is indicated by a blue rectangle in (a). Across
the sample region we illustrate our microclimate maps in comparison with the macroclimate data, with the maps in (c) representing the
conditions on a frost day in spring and the maps in (d) showing the conditions on a warm summer day. (e) Shows a smaller area (coloured
rectangles in c and d), illustrating the small-scale temperatures during a frost day in April 2021 and a warm summer day in July 2018. Source
for macroclimate maps in (c) and (d): MeteoSwiss.

allow us to assess how much the aggregation of our direct
radiation proxy to daily vs. hourly values affects the added
value of our detailed radiative transfer modelling.

We further found that microclimate temperatures were
considerably reduced at locations with increased topograph-
ical wetness and northness, with relatively large effects on
Tmax. These effects are expected to be related to gener-
ally cooler conditions in north-exposed places, as well as in

places with large lateral, topographically derived water flow,
e.g. via higher soil water content and cold-air flow. We fur-
ther found that increases in rain sum, i.e. our variable indica-
tive of soil moisture, resulted in lower Tmax at 5 cm above
ground, confirming previous findings that soil moisture af-
fects near-surface microclimates (von Arx et al., 2013). How-
ever, our results also show that the overall effect of the rain
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sum on topsoil and near-surface temperature was relatively
weak.

The primary outputs of this work are maps of daily micro-
climatic temperatures during the vegetation seasons of the
years 2012–2021. These maps improve some key scale limi-
tations inherent in currently available macroclimate datasets;
i.e. they improve on spatial scale by modelling microclimates
at 10 m resolution while maintaining a daily temporal res-
olution, and they represent microclimates at three vertical
heights – 1 m and 5 cm above ground and 5 cm within the
topsoil – thus also improving upon vertical resolution. These
improvements have a range of implications for future assess-
ments of climate–species interactions and our understand-
ing of climate change impacts on biodiversity. Species tem-
perature preferences, microclimate heterogeneity, and micro-
climate refugia, for example, can now be mapped in much
greater detail, which is expected to improve the accuracy
of the analysis and forecasting of species distributions and
range dynamics (Lembrechts et al., 2019b; Maclean and
Early, 2023; Haesen et al., 2023b). The high resolution of
our data also enables a more precise estimation of threshold-
dependent temperature variables, such as degree days or frost
frequencies, which is expected to improve models and ap-
proaches that depend on such variables, e.g. models of popu-
lation dynamics or site suitability assessments for regenerat-
ing target tree species. In sum, these maps enable a more real-
istic, organism-centred perspective when analysing climate–
species interactions and are thus relevant to both fundamental
and applied ecology, as well as agriculture and forestry in the
face of climate change.

Appendix A: Logger sensitivity analysis

Ultra-fine-wire thermocouples have been shown to accu-
rately measure microclimate air temperatures and have out-
performed shielded standard logger types in measuring air
temperatures in locations exposed to direct sunlight or close
to the ground, of which our sampling design contained many
(Maclean et al., 2021). To test the potential effects of direct
solar radiation on the thermocouples measurements we per-
formed a shielding experiment. This experiment consisted
of a paired design, where we placed two shielded and two
unshielded thermocouples in each of the three representa-
tive environments for the field sampling (open, trees out-
side forest, and forest). The shields consisted of a lid of
aluminium foil such that the thermocouple was just shaded
but not isolated from wind (Fig. F1). The experiment was
carried out during sunny conditions over 3 weeks in sum-
mer 2022. The analysis revealed overall RMSEs of 0.35 and
0.18 ◦C for daily maximum and mean temperatures between
the shielded and unshielded thermocouples, both values be-
ing close to the measurement accuracy of 0.3 ◦C. We also
did not find a significant difference between the three envi-
ronments tested. This sensitivity analysis confirmed previous
findings (Maclean et al., 2021) and shows that the effect of
direct solar radiation on the thermocouples is negligible in
our study setup.
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Appendix B

Table B1. Comparison of sampled predictor variable range and the observed predictor variable range across the entire area in relation to
which predictions were made. Sampled range describes the predictor variables extracted at sampling plot locations; predicted range refers to
the 1st and 99th percentiles of a random subset (n= 10′000) of observed values across the predicted microclimate maps. Note that we did
not include the macroclimate and rainsum variables in this table because they are dynamic variables with a daily resolution in our models,
yet, as our sampled regions cover the observed macroclimate temperature and rainfall patterns across Switzerland well, we are confident that
the sampled range matches the predicted range.

Variable name Sampled range (mean) Predicted range (mean) Unit

Direct radiation proxy 0–29410 (8600) 0–29540 (18 570) kJ m−2 d−1

Sky view fraction 2–98 (41.5) 4–99 (62.7) %
Vegetation height 0–35.1 (13.3) 0–37.5 (7.4) m
Topographic position −1.0–0.97 (−0.04) −1.7–1.7 (0.0) Index
Topographic wetness 1.1–9.6 (3.2) 0.5–10.5 (3.3) Index
Northness −1–1 (-0.1) −1–1 (0.0) Index
Slope 0.3–41.7 (17.9) 0.3–59.3 (20.8) Degrees

Appendix C

Table C1. Descriptive statistics for temperature offsets (◦C). The values indicate the range (and mean between brackets) calculated by
deducting the microclimate temperature from the lapse-rate-corrected macroclimate temperature. Negative offset values thus indicate cooler
microclimates compared to the macroclimate and vice versa. All means were significantly (p<0.01) different from zero.

Tmax 1 m Tmax 5 cm Tmax soil Tmean 1 m Tmean 5 cm Tmean soil Tmin 1 m Tmin 5 cm Tmin soil

Forest −14.0–11.4 (−1.3) −14.7–26.2 (−1.1) −16.5–8.7 (−5.2) −6.5–6.4 (−0.2) −7.1–5.1 (−0.4) −10.4–7.4 (−1.5) −6.0–10.9 (1.8) −9.4–10.1 (1.7) −5.7–11.6 (2.6)
Trees outside −13.9–6.7 (−0.7) −11.7–27.8 (−0.2) −15.5–6.9 (−4.9) −7.5–6.3 (−0.3) −7.9–16.0 (−0.6) −11.6–7.6 (−1.3) −5.4–7.1 (1.1) −8.8–11.1 (0.9) −6.4–11.1 (2.3)
forests
Open −15.2–8.3 (−0.1) −17.0–20.7 (3.4) −18.3–17.8 (−0.9) −8.6–5.3 (−0.2) −12.2–6.8 (−1.0) 13.3–8.7 (0.6) −6.1–7.1 (1.0) −11.7–8.0 (−0.5) −6.9–12.6 (3.5)
Overall −15.2–11.4 (−0.9) −17.0–27.8 (0.1) −18.3–17.8 (−4.2) −8.6–6.4 (−0.2) −12.2–16.0 (−0.6) −13.3–8.7 (−1.0) −6.1–10.9 (1.5) −11.7–11.1 (1.1) −6.9–12.6 (2.7)

Appendix D

Table D1. Predictive performance of microclimate models as quantified using block cross-validation. We also report the predicted offset
ranges (minimum to maximum, with mean in brackets), calculated as the difference between the predicted microclimate and the macrocli-
mate.

Model Linear mixed-effect model Random forest GAMM

R2 RMSE Predicted offset range R2 RMSE Predicted offset range R2 RMSE Predicted offset range

Temperature 1 m Tmax micro 0.92 1.7 −3.0–1.4 (−0.6) 0.90 2.2 −14.1–15.2 (−1.1) 0.87 2.4 −4.7–10.3 (−0.3)
above ground Tmean micro 0.95 1.2 −2.4–1.9 (−0.1) 0.92 1.8 −12.3–12.2 (−0.4) 0.93 1.4 −3.0–3.9 (0.6)

Tmin micro 0.92 1.5 −0.8–3.4 (1.5) 0.89 1.9 −8.5–13.2 (1.2) 0.88 1.8 −3.3–9.8 (1.6)

Temperature 5 cm Tmax micro 0.73 3.4 −5.6–7.0 (0.4) 0.72 3.6 −14.9–14.6 (−0.1) 0.53 5.2 −8.4–17.3 (1.4)
above ground Tmean micro 0.9 1.6 −3.3–3.6 (−0.4) 0.86 2.0 −13.9–12.5 (−0.8) 0.83 2.1 −8.3–7.5 (−0.6)

Tmin micro 0.88 1.8 −1.3–4.3 (1.2) 0.81 2.4 −10.2–14.8 (0.8) 0.32 6.2 −5.1–16.4 (0.5)

Temperature 5 cm Tmax micro 0.54 3.1 −15.4–8.0 (−4.0) 0.63 2.9 −21.1–15.2 (−4.4) 0.26 5.1 −34.9–24.9 (−3.3)
below ground Tmean micro 0.75 2.0 −7.5–9.1 (−0.9) 0.74 2.2 −13.4–17.0 (−1.2) 0.55 2.9 −10.9–17.6 (−0.5)

Tmin micro 0.78 1.9 −1.5–9.5 (2.9) 0.73 2.1 −9.5–16.7 (2.5) 0.56 2.8 −8.1–23.4 (3.1)
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Appendix E

Table E1. Comparison of model performance based on block cross-validation of microclimate models against macroclimate benchmark,
i.e. a model using macroclimate as the only predictor variable for microclimate. We thus report the performance of the benchmark models
(i.e. Macro) alongside the full microclimate models (i.e. Micro) using all predictor variables as explained in the main text. The numbers in
brackets show the results based on 5-fold cross-validation. All results are based on linear mixed-effect models.

Temperature 1 m above ground Temperature 5 cm above ground Temperature in topsoil 5 cm below ground

Macro Micro Macro Micro Macro Micro

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Tmax micro 0.92 (0.94) 1.78 (1.55) 0.92 (0.95) 1.72 (1.36) 0.65 (0.69) 3.91 (3.64) 0.73 (0.79) 3.43 (3.02) 0.52 (0.57) 3.19 (3.02) 0.54 (0.67) 3.13 (2.63)
Tmean micro 0.95 (0.95) 1.22 (1.13) 0.95 (0.96) 1.18 (1.05) 0.90 (0.91) 1.60 (1.52) 0.90 (0.92) 1.62 (1.40) 0.74 (0.78) 2.05 (1.90) 0.75 (0.81) 2.02 (1.73)
Tmin micro 0.91 (0.92) 1.55 (1.44) 0.92 (0.93) 1.48 (1.32) 0.86 (0.87) 1.91 (1.84) 0.88 (0.90) 1.77 (1.62) 0.78 (0.83) 1.87 (1.65) 0.78 (0.84) 1.86 (1.59)

Appendix F

Figure F1. Example of shielding experiment with aluminium foil to determine if the logger measurements were affected by direct sunlight
on the thermocouple. The thermocouple on the right pole was placed such that it was shaded throughout the day. The actual experiment
consisted of a paired design, where we placed two shielded and two unshielded thermocouples in each of three representative environments
for the field sampling (open, trees outside forests, and forest).
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Appendix G

Figure G1. Flowchart describing the data processing and modelling pipeline. We used daily macroclimate rasters and a digital terrain model
at 1 km resolutions to calculate daily lapse rate maps, which were resampled to 10 m resolution and used to apply a lapse rate correction
to our macroclimate layers. Together with other predictor variables we used the lapse-rate-corrected macroclimate layers to predict our
microclimate layers at different vertical heights. Please note that, for illustration purposes, all temperature maps show daily maximum
temperatures prevailing on 31 July 2018.
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