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Abstract. This paper describes the rationale and the pro-
tocol of the first component of the third simulation round
of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP3a, http://www.isimip.org, last access: 2 Novem-
ber 2023) and the associated set of climate-related and di-
rect human forcing data (CRF and DHF, respectively). The
observation-based climate-related forcings for the first time
include high-resolution observational climate forcings de-
rived by orographic downscaling, monthly to hourly coastal
water levels, and wind fields associated with historical trop-
ical cyclones. The DHFs include land use patterns, pop-
ulation densities, information about water and agricultural
management, and fishing intensities. The ISIMIP3a im-
pact model simulations driven by these observation-based
climate-related and direct human forcings are designed to
test to what degree the impact models can explain observed
changes in natural and human systems. In a second set of
ISIMIP3a experiments the participating impact models are
forced by the same DHFs but a counterfactual set of at-
mospheric forcings and coastal water levels where observed
trends have been removed. These experiments are designed
to allow for the attribution of observed changes in natural,
human, and managed systems to climate change, rising CH4
and CO2 concentrations, and sea level rise according to the
definition of the Working Group II contribution to the IPCC
AR6.

1 Introduction

The Inter-Sectoral Impact Model Intercomparison Project
ISIMIP (http://www.isimip.org, last access: 2 Novem-
ber 2023) provides a common scenario framework for cross-
sectorally consistent climate impact simulations currently
covering the following sectors: agriculture (global, in coop-

eration with AgMIP’s Global Gridded Crop Model Intercom-
parison Project – GGCMI, water – global and regional, lakes
– global and regional, biomes – global, forest – regional, fish-
eries and marine ecosystems – global and regional, terrestrial
biodiversity – global, fire – global, permafrost – global, peat
– global, coastal systems – global, energy – global, health:
temperature-related mortality, waterborne diseases, vector-
borne diseases, and food security and nutrition – global and
local, labor productivity – global and local). The impact
model simulations are made freely available, allowing for
all types of follow-up analysis. The consistent design of the
simulations does allow for the comparison of climate impact
simulations within each sector. However, it also enables the
bottom-up integration of impacts across sectors. Thus, it pro-
vides a unique basis for the estimation of the effects of cli-
mate change on, e.g., the economy, displacement and migra-
tion, health, or water quality, resolving the mechanisms along
different impact channels and fully exploiting the process un-
derstanding represented in the biophysical impact models.

Initialized in 2012, ISIMIP is organized in individual mod-
eling rounds. The decision about their design and the devel-
opment of the associated simulation protocols has been de-
veloped into an iterative process between stakeholders and
users of ISIMIP data, the sectoral coordinators represent-
ing participating modeling teams, the Scientific Advisory
Board, and the Cross-Sectoral and Coordination Team at
PIK (ISIMIP Coordination Team, Sectoral Coordinators, Sci-
entific Advisory Board, 2018). Since its second round the
ISIMIP protocols has comprised an “a” part describing im-
pact model simulations that cover the historical period forced
by observational climate-related and direct human forcings
(evaluation setup) and a “b” part dedicated to impact simu-
lations based on simulated climate-related forcings includ-
ing future projections. This paper describes the ISIMIP3a
simulation framework only where the DHFs described here
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are also used for the historical simulations within ISIMIP3b.
Compared to ISIMIP2a the evaluation setup based on obser-
vational forcing data has been extended to now include ad-
ditional years up to 2021 and sensitivity experiments using
high-resolution historical climate forcing data to quantify as-
sociated improvements of impact simulations (see Sect. 3.1).
Besides, the set of historical observation-based direct human
forcings has been updated compared to previous ISIMIP sim-
ulation rounds (see Table 1). For the first time, and closely
connected to the evaluation setup, ISIMIP3a now also in-
cludes an “impact attribution” scenario setup designed to ad-
dress the following question: to what degree have observed
changes in the climate-related systems contributed to ob-
served changes in natural, human, or managed systems com-
pared to direct human influences? Here, changes in climate-
related systems mean climate change itself, changes in atmo-
spheric CO2 and CH4 concentration, and sea level changes.
The attribution question can refer to both the impacts of in-
dividual events (e.g., to what extent has long-term climate
change contributed to the observed extent of a specific river
flood?) and to long-term changes (e.g., to what extent have
long-term climate change and increasing CO2 fertilization
contributed to an observed change in crop yields?). The IPCC
AR5 (Cramer et al., 2014) and AR6 (O’Neill et al., 2022;
Hope et al., 2022) have established a framework for impact
attribution according to which an “observed impact of cli-
mate change or change in any other climate-related system”
is defined as the difference between the observed state of
the human, natural, or managed system and a counterfactual
baseline that characterizes the system’s behavior in the ab-
sence of changes in the climate-related systems. This coun-
terfactual baseline may be stationary or vary in response to
direct human influences such as changes in land use patterns,
agricultural or water management, or population distribution
and economic development affecting exposure and vulner-
ability to weather-related hazards. While the definition has
been established for about a decade, the number of studies
addressing impact attribution based on this basic definition is
still relatively small compared to the number of studies ad-
dressing climate attribution, i.e., the question of to what de-
gree anthropogenic emissions of climate forcers, in particular
greenhouse gases, have induced changes in climate-related
systems. While climate attribution is mainly confronted by
the challenge of separating anthropogenically forced changes
from the internal variability of climate-related systems, the
focus of climate impact attribution is on separating the im-
pacts of observed changes in these climate-related systems
from the effects of other direct (human) drivers of changes
in the considered natural, human, or managed systems. Use
of the phrase “observed changes in the climate-related sys-
tems” does not necessarily imply changes induced by anthro-
pogenic climate forcing but only means any long-term trend,
in line with the IPCC definition of climate change (see Glos-
sary of the AR5 – IPCC, 2014; AR6 – Matthews et al., 2021).

Impact attribution studies usually face the problem that the
counterfactual baseline assuming no long-term changes in
the climate-related systems cannot be observed (see Hansen
et al., 2016, for examples). However, impact models such
as the ones participating in ISIMIP are well suited to simu-
late this baseline. Impact models usually account not only for
changes in climate or climate-related systems but also for di-
rect human forcings such as land use and irrigation changes,
changes in water and agricultural management, and popu-
lation distributions (see Table 1 for a comprehensive list of
direct human forcings provided within ISIMIP3a); they are
ideal tools to address the attribution question: in line with
the IPCC definition it requires the comparison of a factual
simulation based on the observed variations in the climate-
related and direct human drivers to a counterfactual simu-
lation where only the climate-related forcings are replaced
by counterfactual versions from which long-term trends have
been removed. While the factual simulations correspond to
the evaluation runs within ISIMIP3a (see Sect. 2.1), the pro-
tocol now also includes counterfactual simulations based on
the newly generated counterfactual datasets derived from
observational data on climate and coastal water levels (see
Sect. 2.2 for the associated concept and scenario design and
Table 3 for a comprehensive list of the counterfactual climate
and sea level forcing data that are described in more detail in
Sect. 3.1 and 3.3, respectively). To allow for an attribution
of observed changes in natural, human, and managed sys-
tems in contrast to an attribution of simulated changes it has
to be demonstrated that the processes represented in the im-
pact model can explain the observed changes in the affected
system; i.e., it has to be shown that the model forced by ob-
served changes in the climate-related systems and accounting
for the historical development of direct (human) forcings is
able to reproduce the observed changes in the affected sys-
tem. In this way the attribution exercise is closely linked to
the ISIMIP3a evaluation exercise. Thereby, models can either
explicitly represent known changes in non-climate drivers
such as known adjustments of fertilizer input or growing sea-
sons (explicit accounting for non-climate drivers) or implic-
itly account for their potential contributions by, e.g., allowing
for non-climate-related temporal trends in empirical models
as often done in empirical approaches (implicitly accounting
for non-climate drivers).

While the default attribution experiment in ISIMIP3a is
designed for the attribution of observed changes in human,
natural, and managed systems to observed change in climate-
related systems in combination (in the current ISIMIP3a set-
ting this means changes in atmospheric climate forcing in
combination with changes in atmospheric CO2 and CH4 con-
centrations, see Table 3), the protocol also includes sensitiv-
ity experiments that allow for the quantification of the influ-
ence of increasing CO2 concentrations separately and for an
attribution of observed changes in natural, human, and man-
aged systems to historical changes in atmospheric CO2 con-
centrations only (see Sect. 2.1). Here, we consistently define
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an observed impact of a change in any component of the his-
torical forcing as the difference between the observed state
of the system to a counterfactual world where only this spe-
cific component of the forcing has not changed. So the ob-
served impact of increasing CO2 concentrations is approxi-
mated by the difference between a full forcing run and a run
where CO2 concentrations are held constant. This is different
from the CO2-only experiment considered within TRENDY
(Trends in the land carbon cycle – TRENDY; Sitch et al.,
2015 2023) where the pure effect of increasing CO2 concen-
trations on the terrestrial carbon cycle (e.g., net biome pro-
duction) is estimated by simulations where dynamic global
vegetation models (as participating in the biomes sector of
ISIMIP) are forced by the observed increases in CO2 con-
centrations but a time-invariant “pre-industrial” climate and
land use mask. In the above sense, other ISIMIP3a experi-
ments can also be considered counterfactual baseline exper-
iments that allow for the attribution of observed changes in
human, natural, or managed systems to changes in the di-
rect human forcings as a whole (DHF set to zero or fixed
at 1901 and 2015 levels) or to changes in individual com-
ponents such as changes in water management, irrigation
patterns, and riverine influx of nutrients into the ocean (see
Sect. 2.1 and Table 2). The attribution to changes in direct
human forcings is, e.g., similar to the comparison of the full
forcing run within TRENDY to the CO2- and climate-only
run where climate change and atmospheric CO2 concentra-
tions are prescribed according to observations but land use
changes are held constant to quantify the contribution of this
direct human forcing to observed changes in the carbon cy-
cle for the annual report of the Global Carbon Project (e.g.,
Friedlingstein et al., 2022). However, in this paper the term
impact attribution is used as a short form for attribution of
observed changes in natural, human, and managed systems
to observed changes in the climate-related systems, which
is the focus of the ISIMIP3a experiments. In other cases the
driver to which the changes are attributed is explicitly named.
In addition to ISIMIP3a, there are other model intercompar-
ison projects that address different kinds of attribution ques-
tions such as the Land Use Model Intercomparison Project
(LUMIP; Lawrence et al., 2016) and the Detection and Attri-
bution Model Intercomparison Project (DAMIP, Gillett et al.,
2016) embedded into the sixth phase of the Coupled Model
Intercomparison Project (CMIP6). While the phase 2 LUMIP
experiments include historical climate model simulations to
quantify the contribution of historical land use changes to ob-
served climate change, the AMIP protocol includes a coun-
terfactual “no anthropogenic climate forcing” baseline to at-
tribute observed changes in climate to anthropogenic climate
forcings.

The development of the protocol was coordinated by the
ISIMIP Cross-Sectoral Science Team (CSST) at the Potsdam
Institute for Climate Impact Research (PIK) and involved the
sectoral coordinators, participating modeling teams, and the
Scientific Advisory Board. The process was initiated by a

proposal for the main research questions to be addressed and
an associated scenario setup accounting for suggestions col-
lected in a stakeholder engagement process (Lejeune et al.,
2018). Following ISIMIP’s mission and implementation doc-
ument (ISIMIP Coordination Team, Sectoral Coordinators,
Scientific Advisory Board, 2018), the basic proposal was ap-
proved by the ISIMIP strategy group at the cross-sectoral
ISIMIP workshop in Potsdam in September 2018 (Outcomes
of the ISIMIP Strategy Group Meeting, 2023). Thereby the
CSST and the sectoral coordinators were tasked with trans-
lating the decisions into a cross-sectorally consistent simu-
lation protocol and with generating, pre-processing, or col-
lecting the required climate-related and direct human forcing
data. The provided forcing datasets (e.g., the climate vari-
ables or components of atmospheric composition or types
of land use) are very much demand-driven. The data we
describe here represent a core set that is sufficient for the
range of models participating so far (see ISIMIP the out-
put data table that also provides information about the in-
put data used by the individual models; ISIMIP Output Data
Table, 2023) but may be extended if there are further de-
mands. This paper presents the results of this process and
the motivation and reasoning behind the individual steps for
ISIMIP3a, while a follow-up paper will provide the same
information for ISIMIP3b dedicated to impact projections
based on climate model simulations (Frieler, 2024). It pro-
vides the point of reference for modeling teams interested
in participating in ISIMIP3a but also for users of the im-
pact simulation data, which will become freely accessible
according to the ISIMIP terms of use (ISIMIP terms of use,
2023). The paper is accompanied by a simulation protocol
(ISIMIP3 simulation protocol, 2023) providing all techni-
cal details such as file and variable naming conventions and
sector-specific lists of output variables to be reported by the
participating modeling teams. The ISIMIP3 simulation round
was officially started on 21 February 20201 with the release
of the associated protocol. Since then, the protocol has al-
ready received some updates through the addition of output
variables, correction of errors, and inclusion of new sectors.
This paper refers to the protocol version of 14 January 2023.
However, the protocol may still receive updates similar to the
ones mentioned above. Impact modelers interested in con-
tributing to ISIMIP should therefore refer to the ISIMIP3
simulation protocol (2023) for the most up-to-date version
for planned impact model simulations. The protocol land-
ing page (http://protocol.isimip.org, last access: 2 Novem-
ber 2023) includes a unique version identifier (the commit
hash) that links to the latest protocol version on GitHub for
traceability.

In the second round of ISIMIP the observation-based
model evaluation part (ISIMIP2a) was temporally sepa-
rate from the climate-model-based second part (ISIMIP2b,

1This was announced by email via the ISIMIP mailing list on
21 February 2020.
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(Frieler et al., 2017). This has led to inconsistencies in the
models and model versions contributing to ISIMIP2a and
ISIMIP2b. Also, not all models providing future projec-
tions within ISIMIP2b also provided model evaluation runs
for ISIMIP2a. To avoid this problem and ensure that each
model’s set of future projections is accompanied by asso-
ciated historical simulations allowing for model evaluation,
in the third simulation round (ISIMIP3), the ISMIP3a and
ISIMIP3b protocols were released together and participating
in ISIMIP3 means contributing to ISIMIP3a and ISIMIP3b
using the same impact model versions.

In the following Sect. 2 of this paper, we provide a compre-
hensive list of all ISIMIP3a model evaluation and sensitivity
experiments (see Table 2 within Sect. 2.1); the counterfactual
no-climate-change experiments (see Table 4 within Sect. 2.2)
describe the rationale behind the scenario setups. Detailed
descriptions of the climate-related forcing datasets (see CRF
section of Table 1 in Sect. 2.1 and Table 3 in Sect. 2.2) are
provided in the third section: atmospheric climate data (see
Sect. 3.1), tropical cyclone data (see Sect. 3.2), coastal water
levels (see Sect. 3.3), and ocean data (see Sect. 3.4). Sec-
tion 4 presents the ISIMIP3a direct human forcing datasets
(see DHF section of Table 1), comprising population data
(see Sect. 4.1), gross domestic product (see Sect. 4.2), land
use and irrigation patterns (see Sect. 4.3), fertilizer inputs
(see Sect. 4.4), land transformations (see Sect. 4.5), nitro-
gen deposition (see Sect. 4.6), crop calendar (see Sect. 4.7),
dams and reservoirs (see Sect. 4.8), fishing intensities (see
Sect. 4.9), regional forest management (see Sect. 4.10), and
desalination (see Sect. 4.11).

2 Experiments and underlying rationale

ISIMIP3a includes a core (“default”) set of experiments that
are specified by a specific set of underlying climate-related
forcings and direct human forcings that have to be indicated
in the file names when submitting simulation data to the
ISIMIP repository. In the following we first introduce these
default experiments by defining the combination of the two
types of forcing datasets. In the subheadings naming the ex-
periments the associated CRF and DHF specifiers to be used
in the file names are indicated in brackets where the third sen-
sitivity specifier is set to default (CRF specifier+DHF spec-
ifier; default). The different combinations of the default sets
of ISIMIP3a CRFs (obsclim, counterclim) and DHFs (hist-
soc, 2015soc, 1901soc, 1850soc, nat) are sketched in Fig. 1
and defined in more detail below (see Table 1 for the de-
fault obsclim CRF and the default DHFs and Table 3 for the
counterclim CRF). Some of the forcing datasets are manda-
tory: i.e., if impact models account for the forcing, the spec-
ified dataset must be used; if an alternative input dataset is
used instead, the run cannot be considered an ISIMIP sim-
ulation. We also provide “optional” forcing data that could
be used but are not “mandatory” in the above sense (see sec-

ond column of Tables 1 and 3). In addition, the protocol in-
cludes a set of sensitivity experiments that are described as
deviations from the default runs and labeled by the baseline
CRF and DHF settings, with the third specifier then indicat-
ing the deviation from this default setting instead of being
set to default. The ISIMIP3a sensitivity runs include experi-
ments with high-resolution climate forcing (30arcsec, 90arc-
sec, 300arcsec, or 1800arcsec), fixed levels of atmospheric
CO2 concentrations (1901co2), a scenario assuming no water
management (nowatermgt), simulations excluding the occur-
rence of wildfires (nofire), keeping irrigation patterns at 1901
levels (1901irr), and assuming fixed 1955 riverine inputs of
freshwater and nutrients into the ocean (1955-riverine-input)
(see Table 2). Tables 2 and 4 provide a comprehensive list
of all obsclim- and counterclim-based experiments, respec-
tively, and also indicate the priority of the experiments where
“first priority” means that modelers should focus on this set
of experiments if their capacities are limited and they want to
limit the set of experiments. However, this is just an indica-
tion trying to ensure the generation of a small set of experi-
ments that is covered by as many impact models as possible.
If an impact modeler can only do part of the first priority
setup or has to start from second-priority simulations these
fragmented datasets can also be submitted to the ISIMIP3a
repository.

2.1 Model evaluation and sensitivity experiments based
on observed CRFs (obsclim)

The experiments described in this section are all based on
observational (factual) climate data, coastal water levels, and
atmospheric CO2 as well as CH4 concentrations including
observed trends. The only exception are the sensitivity ex-
periments where CO2 concentrations are fixed at 1901 lev-
els (1901co2). However, as these experiments only deviate
in this one aspect from the factual CRF they are also de-
scribed by the obsclim CRF specifier but the 1901co2 sensi-
tivity specifier to indicate the deviation. So all experiments
described in this section share the common obsclim CRF
specifier in the file names. In contrast, all experiments de-
scribed in Sect. 2.2 can be identified by the counterclim spec-
ifier in the names of the output files containing the impact
model simulations.

2.1.1 Default evaluation experiments based on
observed CRFs (obsclim)

In this first part of Sect. 2.1 we describe the default ISIMIP3a
experiments (sensitivity specifier in the file names set to de-
fault) that are based on the standard observed climate-related
forcings (obsclim, see CRF part of Table 1) in combination
with different assumptions regarding direct human forcings
(histsoc, 2015soc, 1901soc, and nat) illustrated in Fig. 1.

Standard evaluation experiment (obsclim+ histsoc; de-
fault). The first set of observation-based simulations is ded-
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Figure 1. ISIMIP3a scenario design: illustration of the default ISIMIP3a forcing datasets. Each experiment is defined by a combination of
a CRF dataset with a DHF dataset. The considered combinations are listed in Tables 2 and 4, and the underlying rationale is described in
Sect. 2.1 (evaluation runs based on “obsclim” defined in Table 1) and Sect. 2.2 (attribution runs based on “counterclim” defined in Table 3).
Table 1 also lists all datasets defining the “histsoc” DHF. Solid lines indicate the part of the experiments that should be reported, while the
dashed lines illustrate the different spin-up procedures for the models that require a spin-up. Note that the oceanic climate-related forcing
for the marine ecosystems and fisheries sector is only available for obsclim and the period 1961–2010; i.e., the actual experiments only
start from the year 1961. The associated spin-up procedure and the simulation setup for a transition period are not illustrated in the figure
but are described below for the “obsclim+ histsoc; default”, “obsclim+ nat; default”, “obsclim+ histsoc; 60arcmin”, and “obsclim+ nat;
60arcmin” experiments considered in this sector.

icated to impact model evaluation, i.e., to test our ability to
reproduce and explain observed long-term changes or varia-
tions in impact indicators such as crop yields, river discharge,
changes in natural vegetation carbon, vegetation types, and
peatland moisture conditions. To this end, we provide the
climate-related (obsclim), direct human (histsoc), and static
geographical forcings listed in Table 1. They are described in
more detail in Sects. 3 and 4.

For impact model simulations that require a spin-up to,
e.g., balance carbon stocks, 100 years of climate data (spin-
clim) are provided that represent stable 1900 climate con-
ditions. The spinclim data are equivalent to the first 100
years of the counterfactual climate data that are described
in Sect. 3.1. If more than 100 years of spin-up are needed,
the spinclim data can be repeated as often as needed. For
the spin-up, CO2 concentrations and direct human forcing
should be kept constant at 1850 levels. To get to the histor-
ical reporting period starting in 1901, modelers should sim-
ulate a transition period from 1850 to 1900 using spinclim
climate data and the observed increase in CO2 concentra-
tions and historical changes in socioeconomic forcings (from
1850–1900).

The temporal coverage of the evaluation experiment is
limited to 1961–2010 in the marine ecosystems and fisheries
sector due to the availability of reanalysis-based oceanic
forcing data (Liu et al., 2021). As a spin-up+ transition pe-
riod for the “obsclim+ histsoc; default” experiments start-

ing in 1961 the models should be run through six cycles
of 1961–1980 1955-riverine-input CRFs (120 years, see Ta-
ble 1) assuming reconstructed fishing efforts from 1861–
1960 and constant 1861 levels before during 1841–1860 (see
Table 1 and Fig. 3 in Sect. 4.9). If more years of spin-up are
required, additional cycles of the 1961–1980 1955-riverine-
input CRFs should be added, assuming constant 1861 fishing
efforts.

Fixed 2015 direct human forcing (obsclim+ 2015soc; de-
fault). To allow for the quantification of the effect of histor-
ical changes in direct human forcings, ISIMIP3a also con-
tains an experiment where all direct human forcings are held
constant at 2015 levels. The difference between the evalu-
ation run described above and this baseline simulation can
be considered the impact of changes in direct human forc-
ings. In this sense the experiment allows for the attribution of
observed changes in the natural, human, and managed sys-
tems to changes in DHF after 2015. In addition, the sim-
ulated changes in models’ output variables can be consid-
ered the “pure effects of climate-related forcings”, condi-
tional on present-day socioeconomic conditions. The exper-
iment is also introduced because not all impact models can
account for varying direct human forcings but rather assume
fixed “present-day” conditions. All modeling teams are asked
to do this experiment even if they are able to account for vary-
ing direct human forcings to generate one set of impact sim-
ulations that can be integrated across all participating models
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Table 1. Climate-related, direct human, and static geographic forcing data provided for the model evaluation and sensitivity experiments
within ISIMIP3a. The CRFs are grouped according to the definition of the default obsclim CRF (30 arcmin for the atmospheric data and
15 arcmin for the oceanic data); the higher-resolution 30arcsec, 90arcsec, 300arcsec, and 1800arcsec atmospheric CRF; the lower-resolution
60arcmin oceanic CRF; and the 1955-riverine-input oceanic CRF for the sensitivity experiments. The listed set of DHFs defines the histsoc
setup.

Forcing Status Source, description

Climate-related forcings (obsclim)

Atmospheric forcings

Standard observation-based atmo-
spheric climate forcing

mandatory GSWP3-W5E5, 20CRv3-W5E5, 20CRv3-ERA5, 20CRv3, see Sect. 3.1

Local atmospheric climate forcing for
lake locations

mandatory Atmospheric data extracted from the datasets above for 72 lakes that have
been identified within the lake sector as locations (grid cells of the ISIMIP
0.5◦ grid) where models can be calibrated based on observed tempera-
ture profiles and hypsometry (Golub et al., 2022, https://protocol.isimip.org/
#43-sector-specific-identifiers, last access 21 December 2023)

Tropical cyclone tracks, as well as wind
and precipitation fields

mandatory Tracks from IBTrACS database (period 1950–2021; Knapp et al., 2010); wind
and precipitation fields calculated by Holland (Holland, 1980, 2008), see
Sect. 3.2

Lightning mandatory Satellite-based (1995–2014) climatology of monthly flash rates (number of
strokes km−2 d−1 on 0.5◦ grid (Cecil, 2006)

Oceanic forcings

Standard observation-based oceanic
forcing data

mandatory GFDL MOM6/COBALTv2 simulations driven by reanalysis-based atmospheric
forcing (Liu et al., 2021) see Sect. 3.4

Regional oceanic climate forcing for re-
gional marine ecosystems and fisheries
sector

mandatory Extraction from dataset above for 21 regional marine ecosystems associated
with the interests identified by the modeling groups (https://www.isimip.org/
gettingstarted/input-data-bias-adjustment/isimip3-ocean-regions/, last access:
21 December 2023); the extraction has been done for individual layers (ocean
surface or bottom) and a subset of the variables that have been integrated along
the ocean column (see Table 8)

Coastal water levels

Coastal water levels mandatory Hourly coastal water levels with long-term trends, see Sect. 3.3

Atmospheric composition

Atmospheric CO2 concentration mandatory 1850–2005: Meinshausen et al. (2011); 2006–2021: Global annual CO2 from
NOAA Global Monthly Mean CO2; (Lan et al., 2023; Büchner and Reyer, 2022)

Atmospheric CH4 concentration mandatory 1850–2014: Meinshausen et al. (2017); 2015–2021: Büchner and Reyer (2022),
Lan et al. (2023)

Climate-related forcings for sensitivity experiments (30arcsec, 90arcsec, 300arcsec, 1800arcsec, 60arcmin, and
1955-riverine-input), identical to obsclim except for

Atmospheric forcings (30, 90, 300, 1800 arcsec)

High-resolution observation-based at-
mospheric forcing data

mandatory see Sect. 3.1 for a description of the CHELSA method applied to downscale the
W5E5 observation-based atmospheric data to 30′′; the data are then upscaled
to 90′′ (∼ 3 km), 300′′ (∼ 10 km), and 1800′′ = 0.5◦ (∼ 60 km) to provide the
forcings for additional sensitivity experiments

Oceanic forcings (60 arcmin)

Low-resolution observation-based
oceanic forcing data

mandatory GFDL MOM6/COBALTv2 simulations (1961–2010) driven by reanalysis-
based atmospheric forcing (Liu et al., 2021) upscaled to 1◦, see Sect. 3.4
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Table 1. Continued.

Forcing Status Source, description

Oceanic forcings (1955-riverine-input)

Observation-based oceanic forcing data
but assuming climatological 1951 to
1958 levels of riverine input

mandatory GFDL MOM6/COBALTv2 simulations (1961–2010) driven by reanalysis-
based atmospheric forcing (Liu et al., 2021) but fixed climatological 1951 to
1958 levels of freshwater and nutrient inputs, see Sect. 3.4

Direct human forcing (histsoc)

Population data mandatory see Sect. 4.1

GDP data mandatory see Sect. 4.2

Land use and irrigation mandatory HYDE-based irrigated and rainfed cropland downscaled to up to 15 crops, man-
aged pasture and grassland, and urban areas, see Sect. 4.3

N-fertilizer inputs mandatory see Sect. 4.4

Wood harvest optional Historical annual country-level wood harvesting data based on the LUH v2 Har-
monization Data Set (del Valle et al., 2022; Hurtt et al., 2011, 2020; Land use
harmonization, 2023), see Sect. 4.5

Land transformation mandatory Historical annual land use transformation data based on the LUH v2 Harmo-
nization Data Set (Hurtt et al., 2011, 2020, Land use harmonization; 2023), see
Sect. 4.5

N-deposition optional (Yang and Tian, 2020; Tian et al., 2018)

Crop calendar optional Observation-based representation of recent average planting and maturity dates
not accounting for changes over time (Jägermeyr et al., 2021b), see Sect. 4.7

Dams and reservoirs optional see Sect. 4.8

Lake and reservoir surface area optional Total lake and reservoir area fractions (percentage of grid cell) calculated from
the HydroLAKES v1.0 (Messager et al., 2016) and GRanDv1.3 databases
(Lehner et al., 2011b) mapped to 0.5◦ resolution; areas increase with time be-
cause of the increasing number of reservoirs documented in GRanDv1.3, and
reservoirs from 2017 onwards are kept constant – this dataset differs from the
lake surface areas provided as static geographic forcing (see below) which de-
scribe the surface area of one representative lake per grid cell and does not
change over time

Water abstraction optional For modeling groups that do not have their own representation, we provide files
containing the multi-model mean of domestic and industrial water withdrawal
and consumption generated by the WaterGAP, PCR-GLOBWB, and H08 mod-
els (1850–2021); these data are based on ISIMIP2a “varsoc” simulations for
1901–2005 and extended by SSP2-based simulations from the Water Futures
and Solutions project up to 2021 (Wada et al., 2016a); years before 1901 have
been filled with the value for the year 1901

Marine fishing effort mandatory Observation-based reconstruction of fishing effort spanning 1841–2010
(Rousseau et al., 2022) based on Rousseau et al. (2024) – see Sect. 4.9;
the climate-related forcing for the marine ecosystems and fisheries sector is only
available for 1961–2010, but the spin-up procedure also requires fishing efforts
for the earlier years (see description of the procedure for the “obsclim+ histsoc;
default” scenario above)

Forest management mandatory Observed stem numbers, thinning type, planting numbers, and common man-
agement practices for nine forest sites in Europe (Reyer et al., 2020b, 2023),
see Sect. 4.10
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Table 1. Continued.

Forcing Status Source, description

Static geographic forcing

Lake volume at different depths optional The gridded dataset describes the volume at different depths of one hypotheti-
cal lake representing the typical characteristics of all real lakes in the grid cell
according to the GLOBathy (Khazaei et al., 2022; Messager et al., 2016) and
HydroLAKES v1.0 (Khazaei et al., 2022; Messager et al., 2016) datasets (Golub
et al., 2022) – each hypsographic curve consists of 11 data pairs, and the level
refers to the depth of the lake taking the lake bottom as the reference; volume is
the volume at the corresponding level

Lake area at different depths optional The gridded dataset describes the lake area at different depths of one hypothet-
ical lake representing the typical characteristics of all real lakes in the grid cell
according to the GLOBathy (Khazaei et al., 2022; Messager et al., 2016) and
HydroLAKES (Khazaei et al., 2022; Messager et al., 2016) datasets (Golub et
al., 2022) – each hypsographic curve consists of 11 data pairs, and level refers
to the depth of the lake taking the lake bottom as the reference

Lake elevation optional The gridded dataset provides the elevation above sea level for the representa-
tive lakes described above; the information is derived from HydroLAKES v1.0
(Messager et al., 2016)

Maximum lake depth optional Gridded dataset that provides the maximum depth for the representative lakes
described above and derived from GLOBathy (Khazaei et al., 2022) – we rec-
ommend using the area or volume hypsographic curves described above as in-
puts for your lake model; use this file only if your lake model does not accept a
full hypsographic curve as an input

Lake depth optional Gridded dataset that provides the mean depth for the representative lakes as
calculated from GLOBathy and HydroLAKES v1.0 (Khazaei et al., 2022; Mes-
sager et al., 2016) – we recommend using the area or volume hypsographic
curves described above as inputs for your lake model; use this file only if your
lake model does not accept a full hypsographic curve as an input

Lake volume optional Gridded dataset of volume (km3) for representative lakes described above as
calculated from GLOBathy and HydroLAKES v1.0 (Khazaei et al., 2022; Mes-
sager et al., 2016) – we recommend using the area or volume hypsographic
curves described above as inputs for your lake model; use this file only if your
lake model does not accept a full hypsographic curve as an input

Lake surface area optional Gridded dataset of surface area for the representative lakes described above as
calculated from GLOBathy and HydroLAKES v1.0 (Khazaei et al., 2022; Mes-
sager et al., 2016); as opposed to the “lake and reservoir surface area” listed
above under “direct human forcing”, this dataset refers to one specific lake as-
sociated with each grid cell, and the corresponding surface area does not change
over time
We recommend using the area or volume hypsographic curves described above
as inputs for your lake model; use this file only if your lake model does not
accept a full hypsographic curve as an input

HydroLAKES ID optional HydroLAKES reference to relate HydroLAKES and GLOBathy database fields
to the representative lakes described above; this dataset contains IDs of the
41 449 representative lakes used in ISIMIP, which are a subset of the ap-
proximately 1.4 million lakes contained in the HydroLAKES and GLOBathy
database

HydroLAKES IDs for big lakes optional This dataset is analogous to the one above but only contains IDs of 93 large
lakes; it can be used to produce global plots with conspicuous large lakes – to
be used together with the file storing the mask for big lakes
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Table 1. Continued.

Forcing Status Source, description

Big lake mask optional This dataset indicates the 0.5◦ grid cells actually occupied by each of the 93
large lakes, which can be larger than a single grid cell; it can be used to produce
global plots with conspicuous large lakes – to be used together with the big lake
IDs in the dataset above

Drainage direction map for river routing optional Includes for each grid cell a basin number, flow direction, and slope – source:
ISIMIPddm30 (Müller Schmied, 2022) based on DDM30 (Döll and Lehner,
2002)

Soil data optional Gridded soil characteristics have been generated within the Global Soil Wetness
Project (GSWP3) (Dirmeyer et al., 2006; van den Hurk et al., 2016; Global soil
wetness project phase 3 – GSWP3 documentation, 2023) and have already been
provided within ISIMIP2a
Alternatively, we also provide maps of the dominant soil types (i.e., the type
covering the largest fraction of the cell of the topmost soil layer) within each
ISIMIP grid cell and the dominant soil types on the agricultural land within each
ISIMIP grid cell; both maps were derived from the Harmonized World Soil
Database (Nachtergaele et al., 2009) assuming that soil types are evenly dis-
tributed within the ISIMIP grid cells – we have used version 1.12 of the HWSD
data at high resolution (30 arcsec), and information about the fraction of agricul-
tural land within each ISIMIP 0.5◦× 0.5◦ grid cell was taken from MIRCA2000
(Portmann et al., 2010); if there is no soil information for an ISIMIP grid cell,
e.g., due to differing land–sea masks, the information from neighboring cells is
used – for further details please see GGCMI-HWSD (2023)

Land–sea mask optional We provide the binary land–sea mask of the W5E5 dataset, which is a conser-
vative land mask where grid cells that in reality cover both land and ocean are
counted as ocean; thus, climate conditions over the land grid cells of this land–
sea mask can be safely assumed to represent climate conditions over land rather
than a mix of climate conditions over land and ocean – this refers to all climate
datasets based on W5E5, i.e., GSWP3-W5E5 and 20CRv3-W5E5 of ISIMIP3a
and the ISIMIP3b climate forcing that has been bias-adjusted using W5E5; the
mask is also provided in a version without Antarctica – in addition, the generic
land–sea mask from ISIMIP2b is provided to be used for global water simu-
lations in ISIMIP3, which marks more grid cells as land than the main mask
described above (Lange and Büchner, 2020)

Seafloor depth optional Grid-cell-level ocean depth in meters of GFDL-MOM6-COBALT2 data in 0.25
and 1◦ horizontal resolution

Binary country mask optional Binary country map on a 0.5◦× 0.5◦ latitude–longitude grid

Fractional country mask optional Fractional country map on the ISIMIP 0.5◦× 0.5◦ grid; this is the map that
has been used to calculate the national data for ISIpedia (http://isipedia.org, last
access: 21 December 2023) and to, e.g., prepare the national population and
GDP data provided within ISIMIP3 (see Sect. 4.1 and 4.2)

Large marine ecosystem masks mandatory Binary masks available at 0.25, 0.5, and 1◦ resolution (Sherman, 2017)

Regional marine ecosystem masks optional Binary masks describing the 21 ocean regions for the regional modeling activi-
ties in the fisheries and marine ecosystems available at 0.25◦ and 1◦ resolution;
these masks have been used for the ocean forcing data extractions (see CRF part
of this table)
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from different sectors or where all simulations from one sec-
tor can be compared. If a spin-up is required, it should be
based on the spinclim data as described above but fixed 2015
direct human forcings.

Fixed 1901 direct human forcing baseline (ob-
sclim+ 1901soc; default). Fixing direct human forcings at
1901 levels is an alternative approach to quantify (i) the
effects of direct human forcings when comparing these
baseline simulations to the evaluation run and (ii) the “pure
effect of observed change in climate-related systems”,
conditional on socioeconomic conditions observed before
the onset of this change. As such the experiment is the
counterfactual baseline when aiming for the attribution of
observed changes in natural, human, and managed systems
to observed changes in direct human forcings instead
of the attribution to observed changes in climate-related
systems based on the analogous “counterfactual+ histsoc;
default” experiment described in Sect. 2.2. Both experiments
consider changes in direct human forcings or climate-related
systems from 1901 levels, respectively. Because of the low
levels of direct human forcings in 1901, this experiment is
similar to the sector-specific “nat” experiment that includes
no direct human forcings whatsoever (see below). However,
while the fully naturalized nat run is suitable for dynamic
vegetation models from the biomes sector that simulate land
cover by vegetation on their own, models in other sectors
need land cover as an input. As this information is not
available for pristine conditions, we introduce the 1901soc
scenario such that models in the water sector can use land
cover data approximately representative of 1901 conditions
to describe a situation with minor human influences. If a
spin-up is required, it should be based on the spinclim data
as described above but fixed 1901 direct human forcings.

No direct human forcing baseline (obsclim+ nat; default).
To estimate the full effect of 2015 levels of DHF we also
introduce a baseline nat experiment that does not consider
any DHFs but a natural state of the world. Then the differ-
ence to the “obsclim+ 2015soc; default” experiment can be
considered the effect of 2015 levels of DHF. The compar-
ison to the “obsclim+ histsoc; default” experiment allows
for the attribution of observed changes in the natural, hu-
man, and managed systems to historical changes in the DHF.
Trends in the “obsclim+ nat; default” run only represent
the impacts historical changes in the climate-related forcings
would have had on an otherwise natural state of the world.
While the 1901soc conditions may be similar to nat condi-
tions, trends in the “obsclim+ 1901soc; default” run may
not only be induced by historical changes in the CRFs but
could also represent lagged responses to changes in DHFs
during the transition period. The nat experiment can also be
used to quantify the natural carbon sequestration potential
of natural vegetation without any management or land use
as an important counterfactual baseline to assess the addi-
tion of carbon sequestration measures. The nat experiment is
sector-specific for the biomes–peat and marine ecosystems–

fisheries sectors. If a spin-up is required in the biomes and
peat sector, it should be based on the spinclim data as de-
scribed above but assuming no direct human forcings. In the
marine ecosystems and fisheries sector the spin-up should be
based on the 1955-riverine-input CRF as described for the
“obsclim+ histsoc; default” section but assuming no DHF,
i.e., no fishing efforts.

2.1.2 Sensitivity experiments based on observed CRFs
(obsclim)

This second part of Sect. 2.1 is dedicated to the different sen-
sitivity experiments described as deviations from the default
cases described in Sect. 2.1.1. Instead of the default speci-
fier, all experiments described here are labeled by sensitivity
specifiers indicating their deviation from the default cases.
The experiments listed here are not explicitly depicted in
Fig. 1.

High- and low-resolution sensitivity experiments (ob-
sclim+ histsoc; 30arcsec, 90arcsec, 300arcsec, 1800arcsec,
and 60arcmin). To test whether high-resolution atmospheric
climate data improve the climate impact model simulations,
we also provide observational atmospheric forcing data at
30′′ (30arcsec), 90′′ (90arcsec), and 300′′ (300arcsec) resolu-
tion as well as atmospheric forcings at the original 1800′′ res-
olution but derived from the 30′′ (∼ 1 km) data (1800arcsec).
In addition, the oceanic data (original resolution of 0.25◦)
are upscaled to 1◦ to also test the sensitivity of the impact
simulations to this modification (60arcmin).

The 30′′ atmospheric data (1979–2016) are derived from
a topographic downscaling of the observational W5E5 data
(resolution of 0.5◦) that particularly corrects for system-
atic effects induced by orographic details not represented
in global reanalyses (CHELSA-W5E5, see Sect. 3.1). The
dataset comprises daily mean precipitation, daily mean sur-
face downwelling shortwave radiation, daily mean near-
surface air temperature, daily maximum near-surface air tem-
perature, and daily minimum near-surface air temperature
(see Table 5). We additionally provide simple approaches
to downscale surface downwelling longwave radiation, near-
surface relative humidity, air pressure, and near-surface wind
speed (see Sect. 3.1). Given the considerable storage ca-
pacities required by daily 1 km× 1 km data and constraints
on data handling and download, we also aggregate the
CHELSA-W5E5 data to 90′′ (∼ 3 km), 300′′ (∼ 10 km), and
1800′′ = 0.5◦ (∼ 60 km) to determine which resolution is re-
quired to improve the impact model simulations compared
to observed impact indicators. The evaluation of these his-
torical sensitivity experiments will inform future downscal-
ing activities for GCM climate forcing data including fu-
ture projections. The 1800arcsec experiment is included as
a reference, as the aggregated CHELSA-W5E5 data differ
from the standard W5E5 data at the same resolution (see
Sect. 3.1). So far the experiments have been added to the agri-
culture, lakes, global and regional water, regional forests, ter-
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restrial biodiversity, and labor protocol. However, they may
be added to other sectors, too. The inclusion of the experi-
ment is only constrained by the restricted set of variables in-
cluded in CHELSA-W5E5. We do not provide spin-up data
for the experiments. This means that models requiring a spin-
up currently cannot perform the experiments. We will work
on a solution on demand.

In contrast to the experiment testing the sensitivity of
the impact simulations to a higher resolution of the at-
mospheric CRFs, the associated sensitivity experiment for
the marine ecosystems and fisheries sector is not based on
higher- but on lower-resolution oceanic data. While the de-
fault obsclim oceanic forcing data are derived by interpolat-
ing the observation-based historical ocean simulations from
a tripolar 0.25◦ grid to a regular 0.25◦ grid (see Sect. 3.4), the
CRFs for the sensitivity experiment are derived by aggregat-
ing the default obsclim data to a regular 1.0◦ grid (60arcmin).
Evaluating the 1.0◦ resolution is of interest because this is
the resolution of the oceanic forcing data in ISIMIP3b. The
low-resolution simulations could either start from the end
of the simulations of the transition period of the associated
higher-resolution runs (“obsclim+ histsoc; default”) or start-
ing conditions could be newly generated by following the
spin-up+ transition procedure of the “obsclim+ histsoc; de-
fault” experiment but using the low-resolution 1955-riverine-
input CRF from the years 1961–1980.

The low-resolution sensitivity experiment (obsclim+ nat;
60arcmin) for the marine ecosystems and fisheries sector
is analogous to the “obsclim+ nat; default” experiment de-
scribed further above but using the lower-resolution oceanic
CRF (60arcmin). The difference between this experiment
and the “obsclim+ histsoc; 60arcmin” sensitivity experi-
ment can be considered the effect of the historical changes
in DHF as estimated using lower-resolution CRF, and com-
parison with the same difference in the default experiments
then indicates how the estimate of this effect depends on the
resolution of the oceanic forcing. The simulations could ei-
ther start from the end of the simulations of the transition pe-
riod of the associated higher-resolution runs (“obsclim+ nat;
default”) or starting conditions could be newly generated
by following the spin-up+ transition procedure of the “ob-
sclim+ nat; default” experiment but using the low-resolution
1955-riverine-input CRF from the years 1961–1980.

CO2 sensitivity experiments (obsclim+ histsoc, ob-
sclim+ 2015soc, or obsclim+ 1901soc; 1901co2). To quan-
tify the pure effect of the historical increase in atmospheric
CO2 concentrations on vegetation leaf gas exchange and
follow-on effects such as on carbon stocks, water use ef-
ficiency, and vegetation distribution, we introduced three
sensitivity experiments where atmospheric CO2 concentra-
tions are held constant at 1901 levels (296.13 ppm) in con-
trast to the default obsclim+ histsoc, obsclim+ 2015soc, or
obsclim+ 1901soc experiments, respectively, where atmo-
spheric CO2 concentrations are assumed to increase accord-
ing to observations. The effect is known as CO2 fertiliza-

tion through an increase in the photosynthesis rate of plants
and limited leaf transpiration (increase in water use effi-
ciency), enabling a more efficient uptake of carbon by the
plants. Comparing the “obsclim+ histsoc; default” experi-
ment to the “obsclim+ histsoc, 1901soc” experiment can be
considered attributing historical changes in natural, human,
and managed systems to historical changes in CO2 concen-
trations as a single component of the changes in climate-
related systems. The experiment is included in the protocols
of the sector for agriculture, terrestrial biodiversity, biomes,
fire, lakes (global and local), permafrost, and peat and water
(global and regional). A potentially required spin-up should
be identical to the spin-up for the associated default exper-
iments using the transition period 1850–1900 to reach the
1901 CO2 level.

Water management sensitivity experiment (ob-
sclim+ histsoc, obsclim+ 2015soc; nowatermgt). In
this “no water management” experiment, models are run
assuming no irrigation, no human water abstraction, no dams
or reservoirs, and no seawater desalination, while other di-
rect human forcings such as land use changes are considered
according to histsoc or 2015soc. By comparison to the de-
fault experiments, the simulations allow for a quantification
of the pure effects of dedicated water management measures
on, e.g., discharge. When comparing “obsclim+ histsoc,
nowatermgt” to “obsclim+ histsoc; default” this can be
considered attributing observed changes in natural, human,
or managed systems to (changes in) water management. The
sensitivity experiment has been introduced into the global
and regional water sector protocols. If a spin-up is required,
it should be done similar to the spin-up for the associated
default experiments but assuming no water management.

Irrigation sensitivity experiment (obsclim+ histsoc,
1901irr). In this “no irrigation expansion” experiment,
models are run assuming irrigation extent and irrigation
water use efficiencies fixed at the year 1901, while other
direct human forcings such as land use changes and water
management categories are considered according to histsoc
or 2015soc. By comparison to the default experiments, the
simulations allow for a quantification of the pure effects
of historical irrigation expansion (i.e., the attribution of
historical changes in natural, human, or managed systems
to changes in irrigation compared to 1901). The sensitivity
experiment has been introduced into the global water and
biome sector protocols. If a spin-up is required, it should
be done similar to the spin-up for the associated default
experiments but assuming no irrigation expansion. This ex-
periment is designed such that its outcomes are comparable
to those of the Irrigation Impacts Model Intercomparison
Project (IRRMIP; https://hydr.vub.be/projects/irrmip, last
access: 21 December 2023), in which Earth system models
simulate irrigation influences on the Earth system.

No-fire sensitivity experiment (obsclim+ histsoc; nofire).
In this “nofire” experiment, fire is switched off in the model
simulations. In comparison to the default obsclim+ histsoc
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simulations, the historical effects of fires on, e.g., carbon
fluxes and vegetation distributions can be determined. The
sensitivity experiment has been introduced into the fire,
biomes, permafrost, and peat protocols. The required spin-
up should be done similar to the spin-up for the associated
default experiments but assuming no fire activities.

Fixed 1955 riverine input into the ocean sensitivity ex-
periment (obsclim+ histsoc, obsclim+ nat; 1955-riverine-
input). In this 1955-riverine-input experiment, riverine in-
put into the ocean (amount of freshwater and nutrients)
is held constant at 1955 levels. In comparison to the de-
fault obsclim+ histsoc simulation, the experiment allows
for the quantification of the impacts of historical climate-
induced variations in freshwater influx in combination with
the climate- and directly human-induced changes in nutrient
inputs (attribution of observed changes in marine ecosystems
and fisheries to long-term changes in riverine freshwater and
nutrient inputs). The riverine inputs in the “obsclim+ nat;
1955-riverine-input” experiment are identical to the ones in
the “obsclim+ histsoc; 1955-riverine-input”; i.e., the river-
ine inputs also account for the human contribution to the nu-
trient influx due to land use changes and fertilizer inputs and
are not “naturalized”. Instead the nat specifier in the marine
ecosystems and fisheries sector only means no fishing efforts.
Thus, the comparison to the naturalized default experiment
(obsclim+ nat; default) not accounting for any fishing ef-
forts to the “obsclim+ nat; 1955-riverine-input” experiment
allows for a quantification of the contribution of climate-
induced changes in freshwater influx to the overall impacts
of climate change in combination with the contribution of the
effect of the human contribution to nutrient inputs at 1955
levels. The sensitivity experiment has been introduced into
the marine ecosystems and fisheries protocol. A potentially
required spin-up should be done similar to the spin-up for the
associated default experiments but assuming riverine inputs
fixed at 1955 levels.

2.2 Counterfactual baseline simulations for impact
attribution (counterclim)

The second set of impact model simulations within ISIMIP3a
is dedicated to the attribution of historical changes in nat-
ural, managed, and human systems to long-term changes
in climate-related systems, i.e., the atmosphere, ocean, and
cryosphere as physical or chemical systems (see Sect. 1).
In ISIMIP3a, we address attribution to changes in the cli-
mate system itself, e.g., trends in atmospheric temperature
and precipitation, as well as changes in coastal water levels
and atmospheric CO2 concentrations. The provided counter-
factual forcing data comprise daily atmospheric climate de-
rived from the ISIMIP observational climate datasets (see
Sect. 3.1), daily counterfactual coastal water levels derived
from the ISIMIP historical coastal water-level dataset (see
Sect. 3.3), and constant 1901 atmospheric CO2 and CH4 con-
centrations (see Table 3). So far, we have not addressed attri-

bution to long-term changes in (i) the ocean (e.g., tempera-
ture or ocean acidification changes), (ii) the cryosphere (e.g.,
glacier mass loss), and (iii) tropical cyclone characteristics
(e.g., trends in associated heavy precipitation or wind speeds)
other than the effects mediated through sea level rise. Ta-
ble 3 lists the climate-related forcings defining the counter-
clim experiments. The counterclim climate-related forcings
are combined with the observed direct human forcing to fa-
cilitate the attribution experiments listed in Table 4 and ex-
plained below.

Standard attribution experiment using counterfactual
climate-related forcings and observed variations of direct
human forcings (counterclim+ histsoc; default). This is the
twin experiment to the default obsclim+ histsoc evaluation
experiment. It uses the counterclim climate-related forcings
as described in Table 3, while all direct human forcings are
the same as the ones used in the evaluation experiment (hist-
soc). As the corresponding evaluation experiment aims to en-
sure that impact models can fully capture historical variations
including long-term trends, this experiment is best suited for
impact attribution. It is therefore the standard impact attribu-
tion experiment that each sector should strive to follow.

Fixed 2015 direct human forcing attribution experiment
(counterclim+ 2015soc; default). This is the twin experi-
ment to the obsclim+ 2015soc experiment. It uses the coun-
terclim climate-related forcings as described in Table 3 and
constant direct human forcings at 2015 levels (2015soc). Im-
pact attribution using this experiment has caveats because
the twin obsclim+ 2015soc experiment is not built to fully
explain the historical observations including its trends. Im-
pact attribution building on this experiment therefore needs
to find other means to ensure that the impact model correctly
captures the response to changes in climate-related systems.
It may, e.g., build on the assumption that fixed direct human
forcings do not change the models’ sensitivity to historical
climate change. The impact models that cannot account for
varying historical direct human forcings can take up the at-
tribution task through this experiment.

Fixed 1901 direct human forcing attribution experiment
(counterclim+ 1901soc; default). This is the twin experi-
ment to the obsclim+ 1901soc experiment. It allows for a
quantification of the combined effect of changes in all forc-
ings (climate-related and direct human) during the historical
period when compared to the default evaluation experiment
(obsclim+ histsoc). It also allows for a quantification of the
effect of varying direct human drivers when compared to the
counterclim+ histsoc experiment and the effect of the 2015
to 1901 difference in direct human forcing if compared to
the counterclim+ 2015soc experiment, conditional on coun-
terclim climate-related forcings.

No direct human forcing attribution experiment (counter-
clim+ nat; default). This is the twin experiment to the de-
fault obsclim+ nat experiment. It allows for a quantification
of the effect of climate change under conditions of absent di-
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Table 2. ISIMIP3a evaluation and sensitivity experiments.

Experiment Short description Period: historical
1901–2019

Model evaluation
histsoc
first priority

CRF: observed climate change, CO2 and CH4 levels, and coastal water levels obsclim

DHF: varying direct human influences according to observations histsoc

Model evaluation
2015soc
first priority

CRF: observed climate change, CO2 and CH4 levels, and coastal water levels obsclim

DHF: fixed 2015 levels of direct human forcing for the entire time period 2015soc

Model evaluation
1901soc
second priority

CRF: observed climate change, CO2 and CH4 levels, and coastal water levels obsclim

DHF: fixed 1901 levels of direct human forcing for the entire time period 1901soc

Model evaluation
nat
second priority

CRF: observed climate change, CO2 and CH4 levels, and coastal water levels obsclim

DHF: no direct human influences nat

CO2 sensitivity
histsoc
second priority

CRF: observed climate change, CH4 concentrations and coastal water levels,
fixed CO2 concentration at 1901 level

obsclim
Sensitivity experiment:
1901co2

DHF: varying direct human influences according to observations histsoc

CO2 sensitivity
2015soc
second priority

CF: observed climate change, CH4 concentrations and coastal water levels,
fixed CO2 concentration at 1901 level

obsclim
Sensitivity experiment:
1901co2

DHF: fixed 2015 levels of direct human forcing for the entire time period 2015soc

CO2 sensitivity
1901soc
second priority

CRF: observed climate change, CH4 concentrations and coastal water levels,
fixed CO2 concentration at 1901 level

obsclim
Sensitivity experiment:
1901co2

DHF: fixed 1901 levels of direct human forcing for the entire time period 1901soc

Water management
sensitivity
histsoc
second priority

CRF: observed climate change, coastal water levels, and CO2 and CH4 concen-
trations

obsclim

DHF: no accounting for water management but representation of other direct
human influences such as land use changes according to histsoc

histsoc
Sensitivity experiment:
nowatermgt

Water management
sensitivity
2015soc
second priority

CRF: observed climate change, coastal water levels, and CO2 and CH4 concen-
trations

obsclim

DHF: no accounting for water management but representation of other direct
human influences such as land use patterns according to 2015soc

2015soc
Sensitivity experiment:
nowatermgt

Irrigation sensitivity
histsoc
second priority

CRF: observed climate change, coastal water levels, and CO2 and CH4 concen-
trations

obsclim

DHF: fixed-year 1901 irrigation areas and water use efficiencies but represen-
tation of other direct human influences such as land use changes according to
histsoc

histsoc
Sensitivity experiment:
1901irr

No-fire sensitivity
histsoc
second priority

CRF: observed climate change, coastal water levels, CO2 and
CH4concentrations

obsclim

DHF: varying direct human influences according to observations histsoc
Sensitivity experiment:
nofire
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Table 2. Continued.

Experiment Short description Period: historical
1901–2019

Riverine influx sensitiv-
ity
histsoc
second priority

CRF: observation-based oceanic forcing data, but with constant riverine nutrient
and freshwater influx

obsclim
Sensitivity experiment:
1955-riverine-input

DHF: varying direct human influences according to observations histsoc

Riverine influx sensitiv-
ity
nat
second priority

CRF: observation-based oceanic forcing data, but with constant riverine nutrient
and freshwater influx

obsclim
Sensitivity experiment:
1955-riverine-input

DHF: no direct human influences nat

High-resolution sensi-
tivity, 1km
histsoc
second priority

CRF: observed high-resolution climate forcing (30′′), coastal water levels, and
CO2 and CH4 concentrations. For this experiment only 1979–2016 is covered

obsclim
Sensitivity experiment:
30 arcsec

DHF: varying direct human influences according to observations histsoc

High-resolution sensi-
tivity, 3 km
histsoc
second priority

CRF: observed high-resolution climate forcing (90′′), coastal water levels, and
CO2 and CH4 concentrations. For this experiment only 1979–2016 is covered

obsclim
Sensitivity experiment:
90 arcsec

DHF: varying direct human influences according to observations histsoc

High-resolution sensi-
tivity, 12 km
histsoc
second priority

CRF: observed high-resolution climate forcing (360′′), coastal water levels, and
CO2 and CH4 concentrations. For this experiment only 1979–2016 is covered

obsclim
Sensitivity experiment:
360 arcsec

DHF: varying direct human influences according to observations histsoc

High-resolution sensi-
tivity, 60 km
histsoc
second priority

CRF: observed climate forcings aggregated from high-resolution data, coastal
water levels, CO2 and CH4 concentrations. For this experiment only 1979–2016
is covered

obsclim
Sensitivity experiment:
1800 arcsec

DHF: varying direct human influences according to observations histsoc

Low-resolution sensi-
tivity,
1◦ in the ocean
histsoc
second priority

CRF: observation-based oceanic forcing data obsclim
Sensitivity experiment:
60 arcmin

DHF: varying direct human influences according to observations histsoc

Low-resolution sensi-
tivity,
1◦ in the ocean
nat
second priority

CRF: observation-based oceanic forcing data obsclim
Sensitivity experiment:
60arcmin

DHF: no direct human influences nat

rect human forcings but a natural state of the world. The nat
experiment is included in the biomes sector protocol.

3 Climate-related forcing data

3.1 Observational atmospheric climate forcing data
(factual + counterfactual)

The datasets described in this section all contain the vari-
ables listed in Table 5 at the resolution indicated there. While
Sect. 3.1.1 described the standard atmospheric climate forc-
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Table 3. ISIMIP3a counterfactual climate-related forcings (counterclim).

Forcing Status Source, description

Climate-related forcings (counterclim)

Atmospheric forcings

Counterfactual no-climate-change at-
mospheric climate forcing

mandatory Detrended versions of the GSWP3-W5E5, 20CRv3-W5E5, 20CRv3-ERA5,
20CRv3 datasets derived by the Attrici method, see Sect. 3.1

Local atmospheric climate forcing for
lake location

mandatory Atmospheric data extracted from the datasets above for 72 lakes that have been
identified within the lake sector as locations (grid cells of the ISIMIP 0.5◦ grid)
where models can be calibrated based on observed temperature profiles and
hypsometry (depth and area)

Tropical cyclone tracks and wind fields mandatory We do not provide no-climate-change TC tracks and wind fields but the original
tracks from the IBTrACS database (Knapp et al., 2010; period 1841–2021);
wind fields calculated by Holland model (Holland, 2008, 1980) should be used
in combination with the counterfactual water levels to estimate the impacts of
sea level rise on TC induced damages, losses, or replacement, see Sect. 3.2

Lightning mandatory We do not provide no-climate-change lightning data; instead the original flash
rate monthly climatology (Cecil, 2006) should be used in the counterclim setup

Oceanic forcings

Oceanic forcing data – We do not provide any counterfactual oceanic forcings, i.e., there is no no-
climate-change experiment proposed for the marine ecosystems and fisheries
sector

Coastal water levels

Coastal water levels mandatory Counterfactual monthly (1901–1978) and hourly (1979–2015) coastal water
levels where long-term trends have been removed, see Sect. 3.3

Atmospheric composition or fluxes

Atmospheric CO2 concentration mandatory 1901 levels ([CO2]= 296.13 ppm) of observed atmospheric CO2 concentra-
tions according to Meinshausen et al. (2011)

Atmospheric CH4 concentration mandatory 1901 levels of atmospheric CH4 concentrations ([CH4]= 928.80 ppb), accord-
ing to (Meinshausen et al., 2017)

ing as one component of the default obsclim CRF used within
the evaluation experiments (see Sect. 2.1.1), Sect. 3.1.2 de-
scribes the derivation of the high-resolution data used within
the obsclim-based sensitivity experiments (see Sect. 2.1.2),
and Sect. 3.1.3 provides a description of the basic approach
and the references for the derivation of the counterfactual at-
mospheric climate forcings used for the counterclim experi-
ments described in Sect. 2.2.

3.1.1 Default factual data

As one component of the default obsclim CRFs, we pro-
vide four observational datasets specifically generated for
the evaluation experiments of ISIMIP3a: GSWP3-W5E5,
20CRv3-W5E5, 20CRv3-ERA5, and 20CRv3. All four
datasets have daily temporal and 0.5◦ spatial resolution and
cover the variables listed in Table 5. Their temporal cover-
age varies, with GSWP3-W5E5 and 20CRv3-W5E5 cover-

ing 1901–2019, while 20CRv3-ERA5 covers 1901–2021 and
20CRv3 covers 1901–2015. Instead of excluding datasets
that do not cover the most recent years, we focused on includ-
ing datasets that start in 1901 to allow for a common spin-up
procedure (described in Sect. 2.1 for the “obsclim+ histsoc;
default” experiment) in order to support models that need to
spin up, e.g., their carbon pools under stable climate-related
and direct human forcings before they can do the actual ex-
periments.

The GSWP3-W5E5 dataset is based on W5E5 v2.0 (Lange
et al., 2021), which is also used as the observational refer-
ence dataset for the bias adjustment of climate input data
for ISIMIP3b that will be described in an ISIMIP3b proto-
col paper (Frieler, 2024). W5E5 v2.0 combines WFDE5 v2.0
(Cucchi et al., 2020) with data from the latest version of the
European Reanalysis (ERA5; Hersbach et al., 2020) over the
ocean. WFDE5 v2.0 is generated with the WATCH forcing
data methodology that includes bias adjustment of all vari-
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Table 4. ISIMIP3a attribution experiments.

Experiment Short description Period: historical 1901–2019

Counterfactual climate
histsoc
first priority

CRF: detrended observational atmospheric climate
forcing, detrended observed coastal water-level forc-
ings, and other CRF as listed in Table 3

counterclim

DHF: varying direct human influences according to ob-
servations

histsoc

Counterfactual climate
2015soc
first priority

CRF: detrended observational atmospheric climate
forcing, detrended observed coastal water-level forc-
ings, and other CRF as listed in Table 3

counterclim

DHF: Fixed 2015 levels of direct human forcing for the
entire time period

2015soc

Counterfactual climate
1901soc
second priority

CRF: detrended observational atmospheric climate
forcing, detrended observed coastal water-level forc-
ings, and other CRF as listed in Table 3

counterclim

DHF: fixed 1901 levels of direct human forcing for the
entire time period

1901soc

Counterfactual climate
nat
second priority

CRF: detrended observational atmospheric climate
forcing, detrended observed coastal water-level forc-
ings, and other CRF as listed in Table 3

counterclim

DHF: no direct human influences nat

ables (Cucchi et al., 2020). Since W5E5 v2.0 only covers the
years 1979 to 2019, it was extended backward in time to the
year 1901. For this extension, we used version 1.09 of the
Global Soil Wetness Project phase 3 (GSWP3) dataset (Kim,
2017), bias-adjusted to W5E5 v2.0 in order to reduce discon-
tinuities at the 1978–1979 transition. The method used for
this bias adjustment was ISIMIP3BASD v2.5 (Lange, 2019,
2021). The GSWP3 dataset is a dynamically downscaled and
bias-adjusted version of the Twentieth Century Reanalysis
version 2 (20CRv2; Compo et al., 2011). For a detailed de-
scription of the GSWP3-W5E5 dataset and its constituents,
see Mengel et al. (2021).

Unfortunately, for some variables, GSWP3 shows discon-
tinuities at every turn of the month. The month-by-month
bias adjustment applied in its creation is responsible for this
artifact (Rust et al., 2015). In order to overcome this issue,
which also affects GSWP3-W5E5, we additionally provide
20CRv3-W5E5, a dataset where W5E5 v2.0 is backward-
extended using ensemble member 1 of the Twentieth Cen-
tury Reanalysis version 3 (20CRv3; Slivinski et al., 2019,
2021), interpolated to 0.5◦ and then bias-adjusted to W5E5
v2.0 using ISIMIP3BASD v2.5. The 20CRv3-W5E5 data are
continuous at every turn of the month thanks to the applica-
tion of ISIMIP3BASD v2.5 in running-window mode (see
Sect. 3.1). Since GSWP3 is based on 20CRv2, the 20CRv3-
W5E5 dataset can be considered an update of GSWP3-
W5E5.

Two more climate input datasets are provided in ISIMIP3a
in order to facilitate climate-input-data-related quantifica-
tions of uncertainty in the associated impact assessments.
Those datasets are not based on W5E5 to account for trend
and variability artifacts in W5E5 that are related to the cli-
matological infilling procedures used to deal with gaps in
the station observations employed for the bias adjustment
of ERA5 for the production of WFDE5 (for a detailed de-
scription of this caveat see https://data.isimip.org/caveats/
20/, last access: 21 December 2023). The first of the ad-
ditional ISIMIP3a climate input datasets is 20CRv3-ERA5,
which was created in the same way as 20CRv3-W5E5, but
using ERA5 instead of W5E5 for the time period 1979–2021,
and also as the bias adjustment target for the time period
1901–1978. Finally, we also provide the “raw” 20CRv3 data,
i.e., ensemble member 1 of 20CRv3, interpolated to 0.5◦

but not bias-adjusted to any other dataset. This dataset is in-
cluded since it was generated with only one method and did
not need to be combined with another dataset to fully cover
the 20th century.

3.1.2 High-resolution atmospheric factual data
(CHELSA-W5E5)

This dataset is provided to facilitate the high-resolution sen-
sitivity experiment described in Sect. 2.1.2. It covers the
global land area at 30′′ (∼ 1 km) horizontal and daily tem-
poral resolution from 1979 to 2016 for the variables precip-
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Table 5. Atmospheric climate variables provided as part of the climate-related forcing.

Variable Variable specifier Unit Resolution Datasets

Near-surface relative
humidity

hurs % 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901-2021), 20CRv3 (factual and
counterfactual, 1901–2015)

Near-surface specific
humidity

huss kg kg−1 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901-2015)

Precipitation (including
snowfall)

pr kg m−2 s−1 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

30′′ grid, 90′′ grid,
300′′ grid, 1800′′ grid;
daily

CHELSA-W5E5 (factual, 1979–2016)

Snowfall prsn kg m−2 s−1 0.5◦ grid, daily GSWP3-W5E5 (factual only, 1901–
2019, 0.5◦)

Surface air pressure ps Pa 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

Surface downwelling
longwave radiation

rlds W m−2 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

Surface downwelling
shortwave radiation

rsds W m−2 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

30′′ grid, 90′′ grid,
300′′ grid, 1800′′ grid;
daily

CHELSA-W5E5 (1979–2016)

Near-surface wind
speed

sfcwind m s−1 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)
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Table 5. Continued.

Variable Variable specifier Unit Resolution Datasets

Near-surface air tem-
perature

tas K 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

30′′ grid, 90′′ grid,
300′′ grid, 1800′′ grid;
daily

CHELSA-W5E5 (1979–2016)

Daily maximum near-
surface air temperature

tasmax K 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

30′′ grid, 90′′ grid,
300′′ grid, 1800′′ grid;
daily

CHELSA-W5E5 (factual and counter-
factual, 1979–2016)

Daily minimum near-
surface air temperature

tasmin K 0.5◦ grid, daily GSWP3-W5E5 (factual and counterfac-
tual, 1901–2019), 20CRv3-W5E5 (fac-
tual and counterfactual, 1901–2019),
20CRv3-ERA5 (factual and counterfac-
tual, 1901–2021), 20CRv3 (factual and
counterfactual, 1901–2015)

30′′ grid, 90′′ grid,
300′′ grid, 1800′′ grid;
daily

CHELSA-W5E5 (1979–2016)

itation (pr), surface downwelling shortwave radiation (rsds),
and daily mean, minimum, and maximum near-surface air
temperature (tas, tasmin, tasmax). CHELSA-W5E5 v1.0
(Karger et al., 2022) is a downscaled version of the W5E5
v1.0 dataset, where the downscaling is done with the Cli-
matologies at High resolution for the Earth’s Land Surface
Areas (CHELSA) v2.0 algorithm (Karger et al., 2017, 2021,
2023).

This algorithm applies topographic adjustments based on
surface altitude (orog) information from the Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010;
Danielson and Gesch, 2011). The algorithm is applied day
by day. CHELSA-W5E5 tas is obtained by applying a lapse-
rate adjustment to W5E5 tas using differences between
CHELSA-W5E5 orog and W5E5 orog in combination with
temperature lapse rates from ERA5. Those lapse rates are
calculated based on atmospheric temperature, T , at 950 and
850 hPa and the geopotential height, z, of those pressure lev-
els. The lapse rate used for the adjustment is calculated as the
daily mean of hourly values of (T _850− T _950)/(z_850−
z_950). The variables tasmax and tasmin are downscaled in
the same way using the same lapse-rate value.

Precipitation downscaling uses daily mean zonal and
meridional wind components from ERA5 to approximate
the orographic wind effect on small-scale precipitation pat-
terns (differences between windward and leeward precipita-
tion rates) and combines that with the height of the plane-
tary boundary layer to estimate the total orographic effect on
precipitation intensity. Using that, precipitation from W5E5
is downscaled such that precipitation fluxes are preserved at
the original 0.5◦ resolution of W5E5. More details are given
in Karger et al. (2021).

Surface downwelling shortwave radiation, rsds, at
30 arcsec resolution is strongly influenced by topographic
features such as aspect or terrain shadows, which are less
pronounced at 0.5◦ resolution. The downscaling algorithm
combines such geometric effects with orographic effects on
cloud cover for an orographic adjustment of rsds. Geometric
effects are considered by computing 30′′ clear-sky radiation
estimates using the method described in Karger et al. (2023)
and a simplified, uniform atmospheric transmittance of 80 %.
These effects include shadowing from surrounding terrain,
diffuse radiation, and terrain aspect. To include how oro-
graphic effects on cloud cover influence rsds, the clear-sky
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radiation estimates are adjusted using downscaled ERA5 to-
tal cloud cover. The cloud cover downscaling uses ERA5
cloud cover at all pressure levels and the orographic wind
field following the methods described in Brun et al. (2022b).
Finally, the clear-sky radiation estimates adjusted for cloud
cover are rescaled such that they match W5E5 rsds, B-spline-
interpolated to 30′′.

We provide the original CHELSA-W5E5 data with a hor-
izontal resolution of 30′′ = 0.5′ (∼ 1 km) as well as spatially
aggregated versions with resolutions of 1.5′ (∼ 3 km, aggre-
gation factor 3), 5.0′ (∼ 10 km, aggregation factor 10), and
30.0′ = 0.5◦ (∼ 60 km, aggregation factor 60). The aggre-
gation to 0.5◦ is necessary since the aggregated CHELSA-
W5E5 data differ from the default GSWP3-W5E5 and
20CRv3-W5E5 data provided in the obsclim setup for 1979–
2016. There are two reasons for this. First, the downscaled
data are based on W5E5 v1.0, whereas GSWP3-W5E5 and
20CRv3-W5E5 are based on W5E5 v2.0. Secondly, for all
variables except pr, the CHELSA downscaling algorithm
produces data that differ from the original data when up-
scaled (spatially aggregated) back to the original resolution.

We do not provide a counterfactual version of the high-
resolution climate forcing.

The CHELSA method is not yet available for all variables
included in the standard forcing data. Relative humidity, sur-
face wind, air pressure, and longwave radiation cannot yet
be downscaled by the approach. To allow modelers to al-
ready start the sensitivity experiments, we provide an alter-
native downscaling approach as described below. We use ob-
servational data with the required higher spatial resolution
but lower temporal resolution to generate the high-resolution
daily relative humidity and surface wind speeds. Air pressure
is derived by on orographic correction of the linearly interpo-
lated sea level pressure, and surface downwelling longwave
radiation is derived from high-resolution temperatures de-
rived by CHELSA and relative humidity. The code required
to generate the data is freely available (Malle, 2023).

For daily mean near-surface relative humidity (hurs)
the provided downscaling algorithm combines monthly
30′′ CHELSA-BIOCLIM+ data (Brun et al., 2022a, b)
with daily W5E5 data. In a first step we regrid daily
0.5◦ W5E5 hurs to the target grid (30′′) by bilin-
ear interpolation. We assume relative humidity to fol-
low a beta distribution and logit-transform both regridded
monthly averaged W5E5 (hursW5E5

mon ) and monthly CHELSA-
BIOCLIM+ (hursCHELSA

mon ) relative humidity data. The differ-
ence (1hursmon) is then added to daily regridded and logit-
transformed W5E5 hurs of the respective month, and the final
raster is obtained by back-transforming the sum:

hursdly =
1

(1+ exp−h )
, (1)

where

h= log

(
hursW5E5

dly

1− hursW5E5
dly

)
+1hursmon, (2)

1hursmon = log

(
hursCHELSA

mon

1− hursCHELSA
mon

)

− log

(
hursW5E5

mon

1− hursW5E5
mon

)
. (3)

To include orographic effects in daily mean near-surface
wind speed (sfcwind) we follow the approach of Brun et
al. (2022b) and use an aggregation of the Global Wind Atlas
3.0 data (Davis et al., 2023) from the Technical University
of Denmark (Davis et al., 2023) in combination with daily
0.5◦ sfcwind from W5E5. We first regrid both the Global
Wind Atlas data and the W5E5 sfcwind data to the target
grid of 30′′ using bilinear interpolation. The Global Wind
Atlas data product (sfcWindGWA

cli ) represents average wind
speeds for 2008 to 2017. We therefore average daily regrid-
ded W5E5 data over this time period (sfcWindW5E5

cli ). We
assume surface wind speeds follows a Weibull distribution
and log-transform both datasets before computing the differ-
ence 1sfcWindcli, whereby a small positive constant (c) was
added to all data points before applying the transformation
to avoid the problem that log(0) is undefined. We add this
difference layer (1sfcWindcli) to each log-transformed daily
W5E5 raster and back-transform the sum to obtain the final
daily mean near-surface wind speed raster:

sfcWinddly = exp(log(sfcWindW5E5
dly +c)+1sfcWindcli)

− c, (4)

where

1sfcWindcli = log(sfcWindGWA
cli + c)

− log(sfcWindW5E5
cli + c). (5)

Daily mean surface air pressure (ps) is calculated using the
barometric formula:

psdly = pslW5E5
dly × exp−(g×orog×M)/(T0×R), (6)

with pslW5E5
dly being the regridded 0.5◦ W5E5 daily

mean sea level pressure (bilinear interpolation to 30′′),
g the gravitational acceleration constant (9.80665 m s−2),
“orog” the altitude at which air pressure is calculated
(CHELSA-W5E5 orog, m), M the molar mass of dry
air (0.02896968 kg mol−1), R the universal gas constant
(8.314462618 J (mol K)−1), and T0 the sea level standard
temperature (288.16 K).

For surface downwelling longwave radiation (rlds) we fol-
low Fiddes and Gruber (2014) as well as Konzelmann et
al. (1994) and account for orographic effects by reducing the
clear-sky component of all-sky emissivity with elevation. We
assume cloud emissivity remains unchanged when moving
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Figure 2. Tropical cyclone storm track (a, b, line with arrows), derived maximum wind speeds (a, colored shades), and accumulated rainfall
totals (b, colored shades) of Hurricane Harvey that made landfall in Texas (USA) in August 2017. The wind speeds are according to the
Holland wind profile (Holland, 1980, 2008), and the rainfall is according to the TCR model (Zhu et al., 2013). The coloring in (b) follows
the tropical cyclone severity scale (Bloemendaal et al., 2021).

from coarse to fine resolution. First, we compute clear-sky
emissivity components for both the 0.5◦ W5E5 grid and the
target 30′′ grid (εW5E5

clear , εhighres
clear , respectively):

ε
highres/W5E5
clear = 0.23+ x1(pV highres/W5E5

dly /tashighres/W5E5
dly )1/x2 , (7)

where x1= 0.43, x2= 5.7, and pV highres/W5E5
dly is water va-

por pressure as a function of relative humidity at the respec-
tive resolution (see Fiddes and Gruber, 2014). By using 0.5◦

W5E5 rlds and tas data and inverting the Stefan–Boltzmann
equation we obtain all-sky emissivity:

εW5E5
allsky = rldsW5E5

dly /(σ × (tasW5E5
dly )4), (8)

with σ being the Stefan–Boltzmann constant (5.67×
10−8 J s−1 m−2 K−4). In a next step, the cloud-based compo-

nent of emissivity (1εW5E5
dly ) can be estimated as the differ-

ence between all-sky and clear-sky emissivity, which is then
regridded to the target grid via bilinear interpolation.

1εW5E5
dly = εW5E5

allsky − ε
W5E5
clear (9)

In a last step we obtain elevation-corrected longwave radia-
tion (rldsdly) by adding 1εW5E5

dly to the high-resolution clear-

sky emissivity (εhighres
clear ) and applying the Stefan–Boltzmann

law again:

rldsdly = (ε
highres
clear +1ε

W5E5
dly )× σ × (tashighres

dly )4. (10)

As soon as the CHELSA approach is extended to also cover
the missing variable we plan to provide these data and test the

https://doi.org/10.5194/gmd-17-1-2024 Geosci. Model Dev., 17, 1–51, 2024



22 K. Frieler et al.: Scenario setup and forcing data for impact model evaluation and impact attribution

sensitivity of the impact simulations to these two alternative
downscaling methods.

3.1.3 Default counterfactual data

To simulate the baseline no-climate-change state of a hu-
man or natural system that is required for impact attribution,
we provide a detrended version of the observational factual
forcing data using the ATTRICI approach (ATTRIbuting Cli-
mate Impacts, Mengel et al., 2021). The method identifies the
long-term shifts in the factual daily climate variables that are
correlated with global mean temperature change assuming a
smooth annual cycle of the associated scaling coefficients for
each day of the year. The observed trends since 1901 are then
removed from the observational data by projecting the ob-
served data onto the estimated distributions assuming a fixed
1901 level of global warming. The projection is done through
quantile mapping, a method borrowed from the bias adjust-
ment literature. In this way we preserve the internal variabil-
ity of the observed data in the sense that factual and coun-
terfactual data for a given day have the same rank in their
respective statistical distributions. The impact model simu-
lations forced by the counterfactual climate inputs therefore
allow for quantifying the contribution of the observed cli-
mate change (no matter from where the trends originate) to
observed long-term changes in impact indicators but also for
quantifying the contribution of the observed trend in climate
to the magnitude of individual impact events.

3.2 Tropical cyclone (TC) data (factual)

As additional CRF, we provide historical TC tracks (infor-
mation about the observed location of minimal pressure),
with associated gridded wind and rain fields (see variable
names and units in Table 6 and the maps of maximum wind
speed and accumulated rainfall totals for the example of Hur-
ricane Harvey in Fig. 2). In addition to this purely climate-
related forcing, we also provide wind exposure in terms of
(i) shares of national territory affected by extreme winds
speeds, (ii) national shares of people exposed to extreme
winds speeds, and (iii) national shares of economic assets
affected by extreme winds speeds as derived from the esti-
mated wind fields and historical population and GDP distri-
butions (see below). Table 6 provides a comprehensive list
of all variables, with their meaning and resolution as well as
their source.

TC tracks include the position of storm center, cen-
tral pressure, environmental pressure, radius of maximum
wind speed, and the outermost closed isobar. We provide
processed track information of historical TCs from 1950
to 2021. The information is derived from IBTrACS, the
most comprehensive global dataset of historical TC activity
(Knapp et al., 2010) that provides information about the loca-
tion of the storm center, the pressure at the center and at the
outermost closed isobar, and the maximum 1 min sustained

wind speed as reported by the WMO Regional Specialized
Meteorological Centers (RSMCs) and by agencies in Shang-
hai and Hong Kong. For recent events and most reporting
agencies, IBTrACS also contains observational information
about the radius from the center where maximum wind speed
is attained and the radius of the outermost closed isobar. In-
formation is provided in at least 6-hourly time steps. Usu-
ally temporal resolution reaches 3 h or even less. The latest
version (v04r00) of IBTrACS is continuously updated with
near-real-time data taken from regional meteorological agen-
cies. The data are marked as provisional before they are re-
placed by the so-called best track data up to 2 years after
the events. IBTrACS contains data from 1842 to present, but
coverage by the WMO RSMCs starts much later for some of
the basins (around 1850 for the North Atlantic and south-
ern Indian Ocean, in 1905 for the South Pacific, in 1950
for the North Pacific, and in 1990 for the northern Indian
basin). Data quality is globally consistent starting from the
mid-1970s when satellite observations became available.

The dataset we provide uses best track data from 1950
to 2021. For each TC in IBTrACS, we merge the data of
different reporting agencies into a single track dataset with
information about the following variables: time, location of
the storm center, ocean basin, central pressure, maximum
1 min sustained wind speed, environmental pressure, radius
of maximum wind speeds, and radius of the outermost closed
isobar (see Table 8). Several processing steps are applied
to ensure consistency and completeness of the data. For
each storm, the variables that are not reported by the of-
ficially responsible WMO RSMC for this storm are taken
from the next agency in the following list that did report
this variable for this storm: the US agencies (NHC, JTWC,
CPHC), Japanese Meteorological Agency, Indian Meteoro-
logical Department, MeteoFrance (La Réunion), Bureau of
Meteorology (Australia), Fiji Meteorological Service, New
Zealand MetService, Chinese Meteorological Administra-
tion, and Hong Kong Observatory. Thus, for different storms,
the same variable might be taken from different agencies. As
sustained wind speeds are reported at different averaging in-
tervals by different agencies, we use multiplicative factors
to rescale all wind speeds to 1 min sustained winds (Knapp
and Kruk, 2010). All variables are extracted at the highest
temporal resolution where time and location information is
available in IBTrACS. Temporal reporting gaps within a vari-
able are linearly interpolated so that the temporal resolution
is at least 3-hourly. After interpolation, time steps where nei-
ther central pressure nor maximum wind speeds are avail-
able are discarded. Tracks with fewer than two valid time
steps are discarded. If at least central pressure or maximum
wind speed is available, one variable is estimated from the
other using statistical wind–pressure relationships. Missing
RMW and ROCI values are estimated from the central pres-
sure using statistical relationships. Finally, missing environ-
mental pressure values are filled with basin-specific defaults
(1010 hPa for the Atlantic and eastern Pacific, 1005 hPa for
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Table 6. Tropical cyclone information provided as part of the ISIMIP3a climate-related forcing.

Variable Variable speci-
fier

Unit Resolution Datasets

Time associated with a given
location of the storm center

time hours since
1 Jan 1950,
00:00

along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Latitudinal coordinate of storm
center (as defined by the report-
ing agencies)

lat degrees north along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Longitudinal coordinate of
storm center (as defined by the
reporting agencies)

long degrees east along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Ocean basin: NA/SA (North/-
South Atlantic), EP/WP/SP
(eastern/western/South Pa-
cific), NI/SI (northern/southern
Indian Ocean)

basin two-letter
abbreviation

along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Central pressure pres hPa along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Environmental pressure (pres-
sure of the outermost closed
isobar)

penv mbar along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Maximum 1 min sustained
wind speed

windspatialmax knots (kt) along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Radius of maximum wind
speeds

rmw nautical miles along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Radius of the outermost closed
isobar

roci nautical miles along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Wind speed on the 850 hPa
pressure level

u850
v850

m s−1 along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

Temperature on the 600 hPa
pressure level

t600 K along-track, at
least 3-hourly

IBTrACS (1950–2021, post-processed)

1 min sustained wind speed wind m s−1 hourly on a
300 arcsec
(∼ 10 km) grid

according to the Holland wind profile
(Holland, 1980, 2008)
and the Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011)

Gridded lifetime maximum
1 min sustained wind speed

windlifetimemax m s−1 per storm on
a 300 arcsec (∼
10 km) grid

according to the Holland wind pro-
file (Holland, 1980, 2008) and the
Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011)

National territory exposed to
wind speeds of at least 34, 48,
64, 96 kt

34 knarea
48 knarea
64 knarea
96 knarea

km2 per storm and
country

according to the Holland wind pro-
file (Holland, 1980, 2008) and to
the Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011)

Number of people exposed to
wind speeds of at least 34, 48,
64, 96 kt

34 knpop
48 knpop
64 knpop
96 knpop

count per storm and
country

according to the Holland wind pro-
file (Holland, 1980, 2008) and to
the Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011) and as-
suming temporally varying (histsoc) or
fixed 2015 (2015soc) population distri-
butions (see Sect. 4.1)
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Table 6. Continued.

Variable Variable speci-
fier

Unit Resolution Datasets

Economic assets exposed to
wind speeds of at least 34, 48,
64, 96 kt

34 knassets
48 knassets
64 knassets
96 knassets

Int$ PPP 2005 per storm and
country

wind fields according to the Holland
wind profile (Holland, 1980, 2008)
and Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011) and as-
suming temporally varying (histsoc) or
fixed 2015 (2015soc) asset distributions
(see Sect. 4.2)

Total rainfall rain mm hourly on a
300 arcsec
(∼ 10 km) grid

according to the Holland wind pro-
file (Holland, 1980, 2008) and to
the Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011)

Maximum 24-hourly rainfall
total during the whole storm du-
ration

max_rain mm per storm on
a 300 arcsec (∼
10 km) grid

according to the Holland wind pro-
file (Holland, 1980, 2008) and to
the Emanuel–Rotunno wind profile
(Emanuel and Rotunno, 2011)

the Indian Ocean and western Pacific, and 1004 hPa for the
South Pacific).

We provide two additional along-track variables that are
taken from the European Reanalysis (ERA5; Hersbach et al.,
2020) and that are needed for the computation of precipita-
tion (see below): the temperature at the storm center on the
600 hPa pressure level and the wind speed on the 850 hPa
pressure level averaged over the 200–500 km annulus around
the storm center.

For gridded maps of (maximum) wind speeds, we derive
two different gridded wind field products from an extrapo-
lation of the observed TC track information to gridded es-
timates of surface wind speeds (1 min sustained winds at
10 m above ground) at a spatial resolution of 300 arcsec (ap-
proximately 10 km). The two products are based on circu-
lar wind fields from different radial wind profiles. The first
is a semiempirical model that estimates the full wind pro-
file from the central pressure variable based on the gradient
wind balance assumption (Holland, 1980, 2008). The sec-
ond more physics-based model uses the less reliable maxi-
mum wind speed variable to derive the wind profile from the
boundary layer angular momentum balance (Emanuel and
Rotunno, 2011). This wind profile represents the storm’s in-
ner core very well but tails off too sharply in the outer region
(Chavas and Lin, 2016). However, for high-impact events,
the core is the most relevant storm region, and outer wind
profiles are not analytically solvable, incurring considerable
computational expense when applied to a large track set.

In both cases, the circular wind fields are combined with
translational wind vectors that arise from the TC movement,
assuming that the influence of translational wind decreases
with distance from the TC center (Cyclone Database Man-
ager, 2023). We use the highest available temporal resolution

(up to 3-hourly) provided in IBTrACS and interpolate it to 1-
hourly resolution before applying the parametric wind field
models. In a post-processing step, we also calculate the max-
imum value of wind speeds over the duration of the TC event
(max_wind).

The approach by Holland has been successfully applied
in socioeconomic risk and impact analyses (Peduzzi et
al., 2012; Geiger et al., 2018; Eberenz et al., 2021). The
Emanuel–Rotunno approach has been used for storm surge
simulations (Krien et al., 2017; Marsooli et al., 2019; Gori et
al., 2020; Yang et al., 2021) and as the basis for the rain field
model that we describe below (Feldmann et al., 2019).

In terms of wind exposure, as an extension of the tropical
cyclone exposure dataset TCE-DAT (Geiger et al., 2018), we
provide national shares of people and economic assets ex-
posed to 1 min sustained winds above 34, 48, 64, and 96 kt
for each storm. In addition to that, shares of national terri-
tory affected by 1 min sustained winds above 34, 48, 64, and
96 kt are provided. To estimate the exposed population and
assets we use the histsoc population and GDP distributions
described in Sect. 4.1 and 4.2, respectively. The GDP val-
ues are converted to assets by applying the decadal (2010–
2019) mean of national capital stock to GDP ratios from the
Penn World Table version 10.0 (Feenstra et al., 2015). We
also provide exposed population and assets assuming fixed
2015 population and asset distributions.

For precipitation, we are also planning to provide rainfall
fields, following a physics-based model that simulates con-
vective TC rainfall by relating the precipitation rate to the to-
tal upward velocity within the TC vortex (Zhu et al., 2013).
The approach has been successfully applied in rainfall risk
assessments in the US (Feldmann et al., 2019; Gori et al.,
2022). The rain rate will be simulated for all events in the IB-
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Figure 3. Observed and reconstructed coastal relative water lev-
els at New York, USA. The counterfactual baseline represents wa-
ter levels without long-term trend since 1900. Water levels are ag-
gregated to monthly means in panel (a) and daily means in the
year 2011 in panel (b), while panel (c) shows some of the data at
hourly resolution. The reconstructed water levels are available as
monthly mean values from 1901 to 1978 and as hourly mean values
from 1979 to 2015.

TrACS database at 0.5-hourly temporal and 300 arcsec (ap-
proximately 10 km) spatial resolution within a 1500 km ra-
dius around the storm center. We provide the derived rainfall
totals at hourly resolution as well as the maximum 24-hourly
rainfall total during the entire storm duration since this vari-
able is frequently used for rainfall risk assessment studies
(Fagnant et al., 2020).

Different TC wind profiles can be used as an input for the
rain field model (Lu et al., 2018; Xi et al., 2020). We will
provide the rainfall fields for the two wind profile models by
Holland and Emanuel–Rotunno that we also use for the wind
fields described above.

3.3 Coastal water levels (factual + counterfactual)

To enable the quantification of impacts of historical relative
sea level rise on coastal systems we provide observation-
based coastal water levels building on the HCC dataset
(hourly coastal water levels with counterfactual; Treu et al.,
2023). In contrast to absolute sea levels, relative sea lev-
els are measured against a land-based reference frame (tide
gauge measurements). This means that they are determined

not only by thermal expansion, loss of land ice, or dynamical
processes influenced by climate change, but also by vertical
land movements (Wöppelmann and Marcos, 2016) induced
by, e.g., glacial isostatic adjustments (Caron et al., 2018;
Whitehouse, 2018) or human interventions such as ground-
water abstraction (Wada et al., 2016b). HCC encompasses
factual and counterfactual coastal water levels along global
coastlines from 1901 to 1978 at monthly resolution and from
1979 to 2015 at hourly resolution (see Fig. 3). The coun-
terfactual coastal water levels are derived from the factual
dataset by removing the trend in relative sea level since 1900.
The detrending preserves the timing of historical extreme sea
level events similar to the counterfactual atmospheric climate
forcing described in Sect. 3.1 (see Fig. 3b). Hence, the data
can be used for an event-based attribution of, e.g., observed
flooding to observed relative sea level rise with pairs of im-
pact simulations driven with the factual and counterfactual
datasets. It is important to highlight that “attribution to ob-
served changes in relative water levels” does not imply at-
tribution to anthropogenic climate forcing because such ob-
served changes may include trends that are not driven by hu-
man greenhouse gas emissions. Important sources for such
trends are the ongoing adjustments of ice sheets, glaciers,
and the Earth’s crust to climate conditions before industrial-
ization (Slangen et al., 2016) and the land subsidence due to
water, gas, and oil extraction (Nicholls et al., 2021). In the
following the derivation of the data is described in more de-
tail.

Default factual data. To capture the impacts of extreme
water levels we provide hourly observation-based coastal wa-
ter levels as forcing data. To this end we combine the Coastal
Dataset for the Evaluation of Climate Impact (CoDEC)
dataset (Muis et al., 2020) that describes high-frequency vari-
ation of sea level along global coastlines with a recent recon-
struction of observed long-term sea level rise (Dangendorf et
al., 2019). The CoDEC hourly data build on a shallow-water
model with fixed ocean density driven by ERA5 wind and
atmospheric pressure fields. The CoDEC data thus start only
in the year 1979 and do not include variations due to ocean
density changes and multiyear trends from observed sea level
rise or vertical land movement. In contrast, the hybrid recon-
struction (HR) dataset from Dangendorf et al. (2019) repre-
sents sea level change since 1900 on a monthly timescale,
including density variations and multiyear trends. Long-term
sea level change in HR is based on fitting theoretically known
and modeled spatial–temporal fields of individual contribut-
ing factors of sea level change to a set of observations of sea
level change from tide gauges. The individual contributing
factors are theoretically known cryospheric fingerprints from
two ice sheets, 18 major glacier regions, glacial isostatic ad-
justment from 161 Earth rheological models, and dynamic
changes in sea surface height modeled by six global climate
models. Short-term sea level variations are represented in HR
by extending the spatiotemporal patterns from satellite al-
timetry back to the year 1900 using tide gauge records. We
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Table 7. Information about coastal water levels provided as ISIMIP3a climate-related forcing.

Variable Variable specifier Unit Resolution Datasets

Coastal water levels cwl m custom coastal grid;
monthly from 1901 to
1978 and hourly from
1979 to 2015

HCC obsclim and
counterclim (Treu et
al., 2023)

create the HCC dataset by low-pass-filtering the HR dataset
and high-pass-filtering the CoDEC dataset before summing
them. Vertical land motion is subsequently added to yield
relative changes in water levels along global coastlines. HCC
shows improved agreement with tide gauge records on hourly
to monthly timescales when compared to CoDEC due to the
inclusion of density variations. This is most apparent for
lower latitudes. The performance on inter-annual timescales
is equal to Dangendorf et al. (2019).

Default counterfactual data. To estimate the effects of his-
torical sea level rise on coastal systems, we provide a coun-
terfactual sea level dataset as forcing for coastal impact mod-
els (Treu et al., 2023). To this end the long-term trend in the
HCC data (1900–2015) was identified by a simple quadratic
model in time and subtracted from the factual HCC data.
The quadratic model assumes a constant acceleration of sea
level rise over time. Analysis of sea level rise acceleration
shows variation throughout the last century with an accelera-
tion phase in the early century followed by a deceleration and
then again acceleration until today (Dangendorf et al., 2019).
By design, this variation is not included in our quadratic trend
estimate. In general, we expect our trend estimation to largely
exclude natural variability from the trend due to the low di-
mensionality of the trend model and the long data period.
This is a desired outcome and preserves the natural variabil-
ity in the counterfactual. Extreme sea level events have the
same timing in the counterfactual and the factual dataset, fa-
cilitating event-based impact attribution.

3.4 Ocean data (factual)

Default factual data. For the fisheries and marine ecosystem
models, we provide a number of physical and biogeochem-
ical variables for the period 1961 to 2010 at different depth
levels in the ocean (see Table 8). Since direct measurements
of these variables are very scarce (Sarmiento and Gruber,
2006; WOCE Atlas, 2023), the only way to obtain a globally
(or even regionally) complete and consistent forcing dataset
is to use numerical models. Global ocean models, which also
serve as oceanic components of Earth system models, often
simulate many or all of the required variables. To let ob-
servations at least indirectly enter the oceanic forcing data
for ISIMIP3a, we provide outputs from an ocean model run
that is forced by an observation-based reanalysis product
of atmospheric forcing (Liu et al., 2021). Compared to the
oceanic forcing (Stock et al., 2014) provided to generate the

ISIMIP2a simulations for the marine ecosystems and fish-
eries sector (Tittensor et al., 2018), this new dataset is based
on the latest GFDL-MOM6 and COBALTv2 physical and
biogeochemical ocean models running on a tripolar 0.25◦

grid and using the JRA-55 reanalysis (Tsujino et al., 2018)
as the surface forcing, in contrast to the inter-annual forcing
dataset of Large and Yeager (2009), which was previously
used to drive GFDL-MOM4. The simulations also account
for dynamic, time-varying river freshwater and nitrogen in-
puts that were simulated based on GFDL’s land–watershed
model LM3-TAN (Land Model version 3 with Terrestrial and
Aquatic Nitrogen; Lee et al., 2019), adjusted using obser-
vations from the Global Nutrient Export from WaterSheds
(NEWS) database (Seitzinger et al., 2006). To create the de-
fault obsclim climate-related forcings for the fisheries and
marine ecosystem models these ocean model simulation data
have been interpolated to a regular 0.25◦ grid while vertical
resolution is preserved. In contrast to the atmospheric data,
oceanic CRFs are provided at monthly temporal resolution.

Low-resolution factual data. To test to what degree a lower
spatial resolution of the climate-related forcings affects the
impact model simulations, the oceanic climate-related forc-
ings have also been aggregated to 1◦ resolution as input for
the “obsclim+ histsoc, 60arcmin” sensitivity experiment.

CRF for the 1955-riverine-input sensitivity experiment.
The 1955-riverine-input sensitivity experiment builds on the
0.25◦ GFDL-COBALT2 simulation forced by the JRA-55 re-
analysis but without time-varying riverine inputs. Instead the
influxes of freshwater and nutrients are fixed at mean 1951 to
1958 levels as described in the “control run” introduced by
Liu et al. (2021). The data are interpolated to a regular 0.25◦

grid in the same way as the default obsclim CRFs.
We currently do not provide counterfactual versions of the

ocean data forcing, though options are being explored.

4 Direct human forcings

4.1 Population data

For ISIMIP3a we provide consistent gridded and national
population data (see Table 9) by rescaling the gridded data to
match the national aggregates. Figure 4 shows the temporal
evolution of total and urban population for different conti-
nents.
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Table 8. ISIMIP3a oceanic climate-related forcing. Variables with suffixes -bot, -surf, and -vint were obtained from the seafloor, the top layer
of the ocean, and vertical integration, respectively.

Variable Variable specifier Unit Resolution Datasets

Mass concentration of
total phytoplankton ex-
pressed as chlorophyll

chl kg m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face), monthly

GFDL-COBALT2 simulation forced by
the JRA-55 reanalysis, accounting for
climate-driven changes in riverine in-
puts (default) or assuming fixed lev-
els of riverine inputs (1955-riverine-
input); standard saltwater density of
1035 kg m−3 applied when converting
from mass to volumetric units, i.e.,
µgkg−1 to kg m−3

Downward flux of
organic particles ex-
pressed as organic
carbon at ocean bottom

expc-bot mol m−2 s−1 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by
the JRA-55 reanalysis, accounting for
climate-driven changes in riverine in-
puts (default) or assuming fixed levels
of riverine inputs (1955-riverine-input);
derived from nitrogen detritus flux at
ocean bottom (fndet_btm) by multiply-
ing with fixed N–C ratio of 6.625;
extractions for individual grid cells
available in ASCII format for regional
models (see Table 1)

Particulate organic car-
bon content in the upper
100 m

intpoc kg m−2 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by
the JRA-55 reanalysis, accounting for
climate-driven changes in riverine in-
puts (default) or assuming fixed levels
of riverine inputs (1955-riverine-input);
derived by aggregating bacterial, de-
tritus, diazotroph, large+ small phyto-
plankton, and large+medium+ small
zooplankton nitrogen biomass and mul-
tiplying by a fixed N–C ratio of 6.625;
extractions for individual grid cells
available in ASCII format for regional
models (see Table 1)

Net primary organic
carbon production by
all types of phyto-
plankton in grid cell
column

intpp mol m−2 s−1 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by
the JRA-55 reanalysis, accounting for
climate-driven changes in riverine in-
puts (default) or assuming fixed levels
of riverine inputs (1955-riverine-input);
derived by aggregating net primary pro-
ductions by diatoms, diazotrophs, and
picophytoplankton and under the as-
sumption of a fixed N–C ratio of 6.625;
extractions for individual grid cells
available in ASCII format for regional
models (see Table 1)
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Table 8. Continued.

Variable Variable specifier Unit Resolution Datasets

Net primary organic
carbon production by
diatoms in grid cell
column

intppdiat mol m−2 s−1 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input); derived under the as-
sumption of a fixed N–C ratio of 6.625;
extractions for individual grid cells avail-
able in ASCII format for regional models
(see Table 1)

Net primary organic
carbon production of
carbon by diazotrophs
in grid cell column

intppdiaz mol m−2 s−1 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input); derived under the as-
sumption of a fixed N–C ratio of 6.625;
extractions for individual grid cells avail-
able in ASCII format for regional models
(see Table 1)

Net primary mole
productivity of carbon
by picophytoplankton
in grid cell column

intpppico mol m−2 s−1 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input); derived under the as-
sumption of a fixed N–C ratio of 6.625

Mixed layer ocean
thickness defined by a
sigma–theta difference
(density difference)
of 0.125 kg m−3 com-
pared to the surface

mlotst-0125 m 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input)

Dissolved oxygen con-
centration; vertically
resolved, at the bot-
tom or at the surface,
respectively

o2, o2-bot, o2-surf mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face), monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input);
extractions for individual grid cells of the
bottom and surface layer available in ASCII
format for regional models (see Table 1)

pH; vertically resolved,
at the bottom or at the
surface, respectively

ph, ph-bot, ph-surf 1 0.25 and 1◦ grid, 35
levels (m from the sur-
face), ocean bottom and
surface fields, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (de-
fault) or assuming fixed levels of river-
ine inputs (1955-riverine-input) where pH
is derived from ion concentrations H+ as
pH=−log10(H+);
extractions for individual grid cells of the
bottom and surface layer available in ASCII
format for regional models (see Table 1)
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Table 8. Continued.

Variable Variable specifier Unit Resolution Datasets

Total phytoplankton
carbon concentration;
vertically resolved
or integrated over
the grid cell column,
respectively

phyc, phyc-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input); aggregated from di-
atoms, diazotrophs, and picophytoplankton;
standard saltwater density of 1035 kg m−3

and fixed N–C ratio of 6.625 applied when
converting from mass to volumetric units,
i.e., mol kg−1 to mol m−3;
extractions for individual grid cells of the
vertically integrated dataset are available in
ASCII format for regional models (see Ta-
ble 1)

Concentration of di-
atoms expressed as
carbon in seawater;
vertically resolved
or integrated over
the grid cell column,
respectively

phydiat, phydiat-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input); standard saltwa-
ter density of 1035 kg m−3 and fixed N–C
ratio of 6.625 applied when converting from
mass to volumetric units, i.e., mol kg−1 to
mol m−3;
extractions for individual grid cells of the
vertically integrated dataset are available in
ASCII format for regional models (see Ta-
ble 1)

Concentration of dia-
zotrophs expressed as
carbon in seawater; ver-
tically resolved or inte-
grated over the grid cell
column, respectively

phydiaz, phydiaz-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input); standard saltwa-
ter density of 1035 kg m−3 and fixed N–C
ratio of 6.625 applied when converting from
mass to volumetric units, i.e., mol kg−1 to
mol m−3

Mole concentration
of picophytoplankton
expressed as carbon
in seawater; vertically
resolved or integrated
over the grid cell
column, respectively

phypico, phypico-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input); standard saltwa-
ter density of 1035 kg m−3 and fixed N–C
ratio of 6.625 applied when converting from
mass to volumetric units, i.e., mol kg−1 to
mol m−3

Net downward short-
wave radiation at sea-
water surface

rsntds W m−2 0.25 and 1◦ grid,
monthly

From JRA-55 reanalysis

Sea ice area fraction siconc % 0.25 and 1◦ grid,
monthly

From JRA-55 reanalysis
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Table 8. Continued.

Variable Variable specifier Unit Resolution Datasets

Seawater salinity; ver-
tically resolved, at the
bottom, or at the sur-
face, respectively

so, so-bot, so-surf g kg−1 0.25 and 1◦ grid, 35
levels (m from the sur-
face), ocean bottom and
surface fields, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input);
extractions for individual grid cells of the
surface and bottom layer are available in
ASCII format for regional models (see Ta-
ble 1)

Seawater potential tem-
perature

thetao ◦C 0.25 and 1◦ grid, 35
levels (m from the sur-
face), monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input)

Ocean model cell thick-
ness

thkcello m 0.25 and 1◦ grid, 35
levels (m from the sur-
face), constant

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input)

Seawater potential
temperature at seafloor
(bottom)

tob ◦C 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input); extractions for indi-
vidual grid cells are available in ASCII for-
mat for regional models (see Table 1)

Sea surface temperature tos ◦C 0.25 and 1◦ grid,
monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input), extracted from
uppermost ocean layers potential tempera-
tures; extractions for individual grid cells
are available in ASCII format for regional
models (see Table 1)

Seawater zonal velocity uo m s−1 0.25 and 1◦ grid, 35
levels (m from the sur-
face), monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input)

Seawater meridional
velocity

vo m s−1 0.25 and 1◦ grid, 35
levels (m from the sur-
face), monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine inputs
(1955-riverine-input)
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Table 8. Continued.

Variable Variable specifier Unit Resolution Datasets

Concentration of zoo-
plankton of meso size
expressed as carbon
in seawater; vertically
resolved or integrated
over the grid cell
column, respectively

zmeso, zmeso-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input); aggregated from
large and medium zooplankton; standard
saltwater density of 1035 kg m−3 and fixed
N–C ratio of 6.625 applied when convert-
ing from mass to volumetric units, i.e.,
mol kg−1 to mol m−3;
extractions for individual grid cells of the
vertically integrated dataset are available in
ASCII format for regional models (see Ta-
ble 1)

Concentration of zoo-
plankton of micro-scale
expressed as carbon
in seawater; vertically
resolved or integrated
over the grid cell
column, respectively.

zmicro, zmicro-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input); standard saltwa-
ter density of 1035 kg m−3 and fixed N–C
ratio of 6.625 applied when converting from
mass to volumetric units, i.e., mol kg−1 to
mol m−3;
extractions for individual grid cells of the
vertically integrated dataset are available in
ASCII format for regional models (see Ta-
ble 1)

Total zooplankton car-
bon concentration; ver-
tically resolved or inte-
grated over the grid cell
column, respectively

zooc, zooc-vint mol m−3 0.25 and 1◦ grid, 35
levels (m from the sur-
face) and vertically in-
tegrated, monthly

GFDL-COBALT2 simulation forced by the
JRA-55 reanalysis, accounting for climate-
driven changes in riverine inputs (default)
or assuming fixed levels of riverine in-
puts (1955-riverine-input), aggregated from
large, medium, and micro-zooplankton;
standard saltwater density of 1035 kg m−3

and fixed N–C ratio of 6.625 applied when
converting from mass to volumetric units,
i.e., mol kg−1 to mol m−3;
extractions for individual grid cells of the
vertically integrated dataset are available in
ASCII format for regional models (see Ta-
ble 1)

National data. Annual national population data are taken
from the 2019 UN World Population Prospects (WPP)
database for the period from 1950–2021 (United Nations,
2019). The 2019 revision of the WPP provides census-based
population numbers from 1950 through 2020. For the year
2021, we use the “medium variant” of the probabilistic fore-
cast also provided by the WPP. The forecast accounts for the
past experience of each country, while reflecting uncertainty
about future changes based on the past experience of other
countries under similar conditions (see United Nations, 2019,

for details). For countries not covered in the database, esti-
mates are taken from the MissingIslands dataset (Arujo et al.,
2021) to finally provide population data for 249 countries.

Gridded data. We provide gridded population data that are
based on HYDE v3.3 (Kees Klein Goldewijk, personal com-
munication, 2022). Just like the original dataset we provide
total, rural, and urban population per grid cell. The original
HYDE 3.3 data were on a 1/12◦× 1/12◦ grid and have been
interpolated to ISIMIP’s 0.5◦× 0.5◦ grid. Furthermore, the
land–sea distinction was modified to comply with the ISIMIP
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Figure 4. Historical evaluation of population for different continents. Total number of people living in the region (a) and the urban population
as a fraction of the total population per region (b).

Table 9. Population data provided as part of the ISIMIP3a direct human forcing.

Variable Variable specifier Unit Resolution Datasets

National popu-
lation

pop Number of people in
millions

annual UN 2019 WPP database (2023):
census-based from 1950 to 2020 +
“medium-variant” forecast provided for
2021

Gridded total
population

total population Number of people 0.5◦× 0.5◦, annual HYDE3.3 data for 1950–2020 con-
stantly extended to 2021 and adjusted
to match the national UN numbers de-
scribed above (see text below)

Gridded rural
population

rural population Number of people 0.5◦× 0.5◦, annual HYDE3.3 data for 1950–2020 con-
stantly extended to 2021 and rescaled
by the same national scaling factors as
the total population

Gridded urban
population

urban population Number of people 0.5◦× 0.5◦, annual HYDE3.3 data for 1950–2020 con-
stantly extended to 2021 and rescaled
by the same national scaling factors as
the total population

country mask (see Table 1). Before the year 1950 HYDE pro-
vides data every 10 years, and the intermediate years have
been filled by linear interpolation. Also, the original HYDE
data end in 2020. So to cover the whole ISIMIP3a time frame
the final year 2020 has been duplicated as 2021. In this way
annual coverage for 1850 to 2021 has been achieved.

Data for all grid cells of a country, as defined by the
ISIMIP 0.5◦× 0.5◦ fractional country map (see Table 1),
have been rescaled such that the country’s total population
matches the numbers provided in the national population
data. Since the national data only start in 1950, all years prior
to 1950 have been rescaled by the national scaling factors of
1950. The urban and rural populations have been rescaled by
the same national scaling factors as the total population. Figure 5. Aggregated GDP (Int$ PPP 2005) for different continents.
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Table 10. GDP data provided as part of the ISIMIP3a direct human forcing.

Variable Variable specifier Unit Resolution Datasets

National gross domes-
tic product

gdp Int$ PPP 2005 annual World Bank’s World Development Indi-
cator database (Anon, 2008)

Gridded gross domestic
product

gridded-gdp Int$ PPP 2005 annual National GDP data downscaled to the
0.5◦ grid according to Wang and Sun
(2022)

4.2 Gross domestic product (GDP)

Similar to the population data we also provide gridded and
national GDP data (see Table 10). The downscaling of the
national numbers is based on population and nightlight data
(see below). In contrast to ISIMIP2a the gridded GDP and
population data are now consistent such that previous arti-
facts in the derived GDP per capita could be eliminated (see
below). Figure 5 shows the historical increase in GDP for
different continents.

National GDP data. Time series of per capita GDP for
the time period 1960–2021 are taken from the World Bank’s
World Development Indicator database (WDI) (Anon, 2008)
and converted into constant 2005 Int$PPP using deflators and
PPP conversion factors from WDI. For countries not covered
in the WDI database, data from the MissingIslands dataset
(Arujo et al., 2021) are used to allow covering 249 coun-
tries. Following a method developed by Koch and Leim-
bach (2023), the values for the year 2021 are derived from
the IMF’s World Economic Outlook short-term estimates of
GDP per capita growth (International Monetary Fund, 2021)
that comprise estimates of the growth impacts of the Covid-
19 shock.

Gridded GDP data. Gridded GDP data at 0.5◦ resolution
are derived from the national GDP time series by apply-
ing the LitPop method (Zhao et al., 2017; Eberenz et al.,
2019), which uses the ISIMIP3a gridded population based
on HYDE v.3.3 and nighttime light (NTL) data to downscale
national GDP data for the period 1960–2021 to the ISIMIP
0.5◦× 0.5◦ grid.

As the disaggregation of GDP is not only based on popula-
tion but also uses the NTL GDP per capita, it is not constant
within different countries. Deriving the gridded GDP data
from the gridded population data provided within ISIMIP3a
ensures that the both datasets can be combined such that the
associated GDP per capita no longer shows the artifacts that
have been found in the ISIMIP2a GDP per capita (ISIMIP2a,
2023).

4.3 Land use and irrigation patterns

Historical land use and irrigation patterns for ISIMIP3a sim-
ulations are taken from LUH v2 (Hurtt et al., 2020; Land use
harmonization, 2023). The dataset is, up to 2018, identical to

Figure 6. Share of global land area excluding Antarctica covered
by rainfed cropland (green), irrigated cropland (blue), and pasture
(orange) [%]. The information is from the LUH v2 dataset provided
as direct human forcing for ISIMIP3a (see details below).

the data provided with ISIMIP2b. The data are based on the
HYDE 3.2 land use dataset (Klein Goldewijk et al., 2017)
and have been constantly extended up to 2021, i.e., by copy-
ing the 2018 patterns into 2019, 2020, and 2021.

The original HYDE 3.2 data distinguish four categories of
land use: rainfed and irrigated cropland, managed pastures,
and more extensively managed rangelands (see Table 11).
The latter two categories are combined into grazing lands
(ISIMIP variable pastures, see Fig. 6). In LUH v2 the crop
land information is further downscaled to five crop types: C3
annual plants, C3 perennial plants, C3 nitrogen-fixing plants,
C4 annual plants, and C4 perennial plants (see global aggre-
gates in Fig. 7). In the same vein as the HYDE case, the LUH
v2 dataset distinguishes between rainfed and irrigated crop-
lands. For the purpose of driving the ISIMIP impact mod-
els, the LUH v2 data were interpolated from the original
0.25◦× 0.25◦ to the standard ISIMIP 0.5◦× 0.5◦ global grid.
In a further downscaling step the land use data for five crops
have been downscaled even further to 15 crop types (see
global aggregates in Fig. 7). For this purpose the Monfreda
land use dataset (Monfreda et al., 2008) has been used. It de-
scribes the crop land areas of 175 crops in the year 2000, and
we use this to downscale the five crop categories into land
use areas of 15 more specific crop types (maize, groundnut,
rapeseed, soybeans, sunflower, rice, sugarcane, pulses, tem-
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Table 11. Historical land use and irrigation patterns provided as part of the ISIMIP3a direct human forcing.

Variable Variable specifier Unit Resolution Datasets

Total crop land, rain-
fed cropland, irrigated
cropland

cropland_total, cropland_rainfed,
cropland_irrigated

unitless (share of area
in a grid cell)

0.5◦× 0.5◦, annual LUH2 v2 (Hurtt et al., 2020; Land use
harmonization, 2023)

Pastures pastures unitless (share of area
in a grid cell)

0.5◦× 0.5◦, annual sum of managed_pastures and range-
land from HYDE 3.2 (see below)

Managed pastures managed_pastures 1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual first subcategory of pastures from
HYDE 3.2 (see above)

Rangeland rangeland 1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual second subcategory of pastures from
HYDE 3.2, more extensive manage-
ment than managed pastures (see
above)

C3 annual rainfed crop-
land, C3 annual irri-
gated cropland

c3ann_irrigated, c3ann_rainfed 1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual LUH v2, for the disaggregation we
consider C3 annual to be rapeseed,
rice, temperate cereals, temperate roots,
tropical roots, sunflower, other C3 an-
nual (see below)

C3 perennial cropland c3per_irrigated,
c3per_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual LUH v2 (this variable appears in the file
only distinguishing 5 land use types and
in the file with the downscaled 15 land
use types; the provided values are iden-
tical)

C3 nitrogen-fixing
rainfed cropland,
C3 nitrogen-fixing
irrigated cropland

c3nfx_irrigated,
c3nfx_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual LUH v2 for the disaggregation we con-
sider C3 nitrogen-fixing plants to be
groundnut, pulses, soybean, other C3
nitrogen-fixing (see below)

C4 annual rainfed crop-
land, C4 annual irri-
gated cropland

c4ann_irrigated, c4ann_rainfed 1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual LUH v2, for the disaggregation we con-
sider C4 annual plants to be maize, trop-
ical cereals (see below)

C4 perennial rainfed
cropland, C4 perennial
irrigated cropland

c4per_irrigated,
c4per_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual LUH v2 (this variable appears in the file
only distinguishing 5 land use types and
in the file with the downscaled 15 land
use types; the provided values are iden-
tical), in the file with the 15 crops C4
perennial is considered to be sugarcane

Fraction of grid cell
where maize is grown
(rainfed and irrigated)

maize_irrigated, maize_rainfed 1 (share of area in a grid
cell)

0.5◦× 0.5◦ annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where groundnut is
grown (rainfed and
irrigated)

oil_crops_groundnut_irrigated,
oil_crops_groundnut_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦ annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where rapeseed is
grown (rainfed and
irrigated)

oil_crops_rapeseed_irrigated,
oil_crops_rapeseed_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where soybean is grown
(rainfed and irrigated)

oil_crops_soybean_irrigated,
oil_crops_soybean_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where sunflower is
grown (rainfed and
irrigated)

oil_crops_sunflower_irrigated,
oil_crops_sunflower_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)
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Table 11. Continued.

Variable Variable specifier Unit Resolution Datasets

Fraction of grid cell
where pulses are grown
(rainfed and irrigated)

pulses_irrigated,
pulses_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where rice is grown
(rainfed and irrigated)

rice_irrigated,
rice_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where temperate cere-
als are grown (rainfed
and irrigated)

temperate_cereals_irrigated,
temperate_cereals_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where temperate roots
are grown (rainfed and
irrigated)

temperate_roots_irrigated,
temperate_roots_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where tropical cereals
are grown (rainfed and
irrigated)

tropical_cereals_irrigated,
tropical_cereals_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where tropical roots are
grown (rainfed and irri-
gated)

tropical_roots_irrigated,
tropical_roots_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where C3 annual crops
other than rapeseed,
rice, temperate cereals,
temperate roots, tropi-
cal roots, and sunflower
are grown (rainfed and
irrigated)

others_c3ann_irrigated,
others_c3ann_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Fraction of grid cell
where nitrogen-fixing
C3 crops other than
groundnut, pulses, and
soybean are grown
(rainfed and irrigated)

others_c3nfx_irrigated,
others_c3nfx_rainfed

1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual downscaled from LUH v2 data based on
the crop distribution from Monfreda et
al. (2008); the method is described in
Frieler et al. (2017)

Urban areas urbanareas 1 (share of area in a grid
cell)

0.5◦× 0.5◦, annual LUH v2

perate cereals including wheat, temperate roots, tropical ce-
reals, tropical roots, other annual, other perennial, and other
N-fixing). The ratios determined from the year 2000 numbers
have then been applied to all years. For further details please
refer to Frieler et al. (2017).

The area outside of the specified agricultural and urban
land is considered “natural vegetation” and not prescribed
further to not constrain the dynamical vegetation models.

4.4 Fertilizer input

The LUH v2 dataset also includes national application rates
of industrial nitrogen fertilizer (Hurtt et al., 2020). This does
not include manure. The fertilizer data are not based on
HYDE but were derived from other sources. The data for the

years 1915–1960 are based on Smil (2001); those for 1961–
2011 are based on a compilation by Zhang et al. (2015),
which in turn is based on FAOSTAT (FAO, 2016), and data
for 2012–2015 are based on a projection by the International
Fertilizer Association (IFASTAT, 2015). For the pure crop
runs within ISIMIP, where the considered crops are assumed
to be grown everywhere without a land use specification, the
LUH v2 national fertilizer inputs are assumed to be applied
everywhere within the country. To calculate crop production,
the LUH2 v2 land use patterns are applied in post-processing,
i.e., by multiplying the crop yields from the pure crop run
with the land use patterns (fraction of the grid cell where the
crop has been grown).
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Table 12. Fertilizer inputs provided as part of the ISIMIP3a direct human forcing.

Variable Variable specifier Unit Resolution Datasets

Mineral N-fertilizer
input for annual C3
crops C4 annual, C4
perennial, C3 nitrogen-
fixing)

fertl_c3ann kg ha−1 yr−1 (crop season) 0.5◦× 0.5◦, annual LUH v2 (Hurtt et al.,
2020)

Mineral N-fertilizer in-
put for perennial C3
crops

fertl_c3per kg ha−1 yr−1 (crop season) 0.5◦× 0.5◦, annual LUH v2 (Hurtt et al.,
2020)

Mineral N-fertilizer in-
put for annual C4 crops

fertl_c4ann kg ha−1 yr−1 (crop season) 0.5◦× 0.5◦, annual LUH v2 (Hurtt et al.,
2020)

Mineral N-fertilizer in-
put for perennial C4
crops

fertl_c4per kg ha−1 yr−1 (crop season) 0.5◦× 0.5◦, annual LUH v2 (Hurtt et al.,
2020)

Mineral N-fertilizer in-
put for nitrogen-fixing
C3 crops

fertl_c3nfx kg ha−1 yr−1 (crop season) 0.5◦× 0.5◦, annual LUH v2 (Hurtt et al.,
2020)

4.5 Land transformation

These datasets are based on the LUH v2 Harmonization
Data Set covering 850 to 2015 (Hurtt et al., 2020; Land
use harmonization, 2023). The wood harvest data were ob-
tained by aggregating from the original LUH v2 grid to the
ISIMIP 0.5◦× 0.5◦ grid (first-order conservative remapping)
and then aggregating to the national sums. Wood harvesting
data are used in the vegetation models to mimic wood re-
moval as part of forest management and clearing and have
a strong influence on the carbon balance. National data are
provided so that models can use their internal routines to
distribute the harvesting within a country’s forest area. The
gridded land transformation data were obtained by aggregat-
ing from the original LUH v2 grid to the ISIMIP 0.5◦× 0.5◦

grid; these data always end a year earlier than all other land
use data because a year in these datasets actually describes
the changes from the current to the next year. The data have
been extended up to 2021 by copying the 2015 data into the
following years (files end in 2020).

4.6 Nitrogen deposition

Reduced nitrogen deposition and oxidized nitrogen de-
position (NHx , NOy) are based on simulations by the
NCAR Chemistry–Climate Model Initiative during 1850–
2014 (Tian et al., 2018). Nitrogen deposition data were inter-
polated to 0.5◦ by 0.5◦ using the nearest grid point method.
Data in 2015–2021 are assumed to be the same as those in
2014.

4.7 Crop calendar

Unfortunately, there is no global dataset describing changes
in growing seasons across the historical period. Instead we
provide a static crop calendar that has been developed within
the AgMIP Global Gridded Crop Model Intercomparison
GGCMI and merges information from various observational
data sources (Jägermeyr et al., 2021a). It provides planting
and maturity days for 18 different crops on the ISIMIP stan-
dard 0.5◦ grid. Grid cells outside of currently cultivated ar-
eas are spatially extrapolated (details below). For wheat and
rice two growing seasons are provided, while for all other
crops the calendar only specifies one main growing season.
The reported growing seasons should not be considered the
growing seasons for one specific year but as “representative
growing season” across recent years. Within the crop models
different crop varieties are represented by different heat units
required to reach physiological maturity. The crop calendar
should be implemented by adjusting the required heat units
to the average of the annual sums of heat units between the
specified planting and maturity date over all growing seasons
between 1979 and 2010.

If modelers use a temporal adjustment of cultivars by vary-
ing required heat units in response to socioeconomic devel-
opment or historical climate change this is certainly allowed
within the histsoc setup. If cultivars are fixed according to the
method described above this simulation will be considered
a 2015soc simulation as long as other direct human drivers
are also held constant at 2015 levels. However, if, e.g., fertil-
izer inputs are varied over time according to provided forcing
data (see Sect. 4.4), the run will be considered a histsoc run.
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Table 13. Land transformation and wood harvest provided as part of the ISIMIP3a direct human forcing.

Variable Variable specifier Unit Resolution Datasets

Wood harvest area from
primary forest land

primf-harv Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et
al., 2022; Land use
harmonization, 2023)

Wood harvest area from
primary non-forest land

primn-harv Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest area from
secondary mature for-
est land

secmf-harv Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest area from
secondary young forest
land

secyf-harv Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest area from
secondary non-forest
land

secnf-harv Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest biomass
carbon from primary
forest land

primf-bioh Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest biomass
carbon from primary
non-forest land

primn-bioh Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest biomass
carbon from secondary
mature forest land

secmf-bioh Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest biomass
carbon from secondary
young forest land

secyf-bioh Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)

Wood harvest biomass
carbon from secondary
non-forest land

secnf-bioh Fraction of the national
land area, kg in the case
of biomass

Annual, national sum Based on LUH v2 v2h
(Hurtt et al., 2011,
2020; del Valle et al.,
2022)
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Table 13. Continued.

Variable Variable specifier Unit Resolution Datasets

Non-forest-related land
transformations
All transitions from one
type of land use to an-
other

〈type 1〉 _to_ 〈type 2〉,
with type 1 and type 2
from the following list:
secdf (potentially
forested secondary
land),
secdn (potentially
non-forested secondary
land),
urban (urban land),
c3ann (C3 annual
crops),
c4ann (C4 annual
crops),
c3per (C3 perennial
crops),
c4per (C4 perennial
crops),
c3nfx (C3 nitrogen-
fixing crops),
pastr (managed pas-
ture),
range (rangeland)

Fraction of the grid cell Annual Based on LUH v2h
(Hurtt et al., 2011,
2020; Land use harmo-
nization, 2023);
land is considered
to be “potentially
forested” if the above-
ground biomass density
(kg C m−2) of the
potential vegetation
as estimated by the
Miami-LU model ac-
counting for changes in
cropland and grazing
land is > 2 kg C m−2

(Hurtt et al., 2020)

Table 14. Nitrogen deposition provided as part of the ISIMIP3a direct human forcing.

Variable Variable specifier Unit Resolution Datasets

Reduced nitrogen deposition nhx g N m−2 mon−1 monthly based on simulations
from Tian et al. (2018)

Oxidized nitrogen deposition noy g N m−2 mon−1 monthly based on simulations
from Tian et al. (2018)

GGCMI is currently working on a temporally resolved
global crop calendar at the same spatial resolution based on
various new data sources including agricultural ministries,
census reports, phenological data bases, and experimental
sites. This dataset will be published separately and could then
be used to inform histsoc simulations.

4.8 Dams and reservoirs

In order to offer a consistent and common source of informa-
tion about reservoirs and associated dams for climate impact
modelers (see Table 16), we joined the Global Reservoir and
Dam Database of the Global Water System Project (GRanD
v1.3; (Lehner et al., 2011a, b) with a subset of the Georefer-
enced global Dams And Reservoirs (GeoDAR v1.2) database
(Wang et al., 2022), developed at Kansas State University
(KSU) and provided by Jida Wang ahead of publication, so
that it could be provided when launching ISIMIP3 in 2020.
These additional dams have construction or projected final-

ization dates between 2016 and 2025, while GRanD v1.3 in-
cludes dams constructed up until 2017. In total, the combined
database now includes 7331 dams whose construction will
be finished by 2025. It includes dams that were constructed
before the simulation period but still exist (the first reported
dam was finished in the year 286). For the simulations de-
scribed here, dams with (projected) construction dates af-
ter 2020 are not considered; these will become relevant in
the ISIMIP3b simulations, with the exception of the Grand
Ethiopian Renaissance Dam, which we decided to include
since its reservoir reached the first stage of filling of 4.9 km3

in July 2020 (BBC news: Nile dam row, 2020; Tractebel,
2020).

The original GRanDv1.3 dam locations were mapped to
the global 30 min drainage direction map (ISIMIPddm30,
(Müller Schmied, 2022) based on DDM30 (Döll and Lehner,
2002) by applying the following algorithm.

Firstly, the locations have been rounded to the closest
0.5◦ grid cell center. Then, the area of the upstream catch-
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Table 15. Crop calendar provided as an optional representation of agricultural management. The information is given for 18 crop types.

Variable Variable specifier Unit Resolution Datasets

Planting day, separated
for rainfed and irrigated
crops where applicable

planting_day day of year 0.5◦, time average, no
variation in time

Jägermeyr et
al. (2021a)

Maturity day, separated
for rainfed and irrigated
crops where applicable

maturity_day day of year 0.5◦, time average, no
variation in time

Jägermeyr et
al. (2021a)

Figure 7. (a) Share of global land area excluding Antarctica cov-
ered by different groups of crops (C3 annual – blue, C3 perennial –
orange, C4 annual – green, C4 perennial – red, C3 nitrogen-fixing
– purple). (b) Fraction of irrigated land for the different groups of
crops. The information is from the LUH v2 dataset (see details on
further disaggregation of the LUH v2 groups below).

ment draining into the GRanD reservoirs (previous version of
GRanDv1.3) in the ISIMIPddm30 map has been calculated
and compared against the ones reported in GRanD. All dams
with an upstream area bigger than 10 000 km2 in GRanD and
more than 50 % deviation from the GRanD upstream area
have been shifted to the eight possible neighboring cells. If
any of these shifts resulted in a smaller deviation from the
GRanD upstream areas, the dam was moved to the grid cell
resulting in the smallest deviation in the upstream area.

Figure 8. Mean mineral N-fertilizer input averaged across the land
areas where the considered crop groups are grown.

Figure 9. Cumulative reservoir storage capacity between 1900 and
2020. Reservoirs that were active before the year 1901 have been
assigned to the year 1900. The horizontal axis shows the year of
construction, completion, or commissioning, reflecting ambiguity
in available data.

Additionally, a visual validation and, where appropriate,
manual relocation were applied with the aim of finding the
best-fitting grid cell from a hydrological perspective. Due to
the low resolution of the model grid, reservoirs might get
wrongly assigned to, e.g., the main stream (either before or
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Table 16. Information about dams and reservoirs.

Variable Variable specifier Unit Resolution Datasets

Unique ID for each
point representing a
dam and its associated
reservoir

ID unitless numbers: 1–
7320 from GRanD and
J3-J26 from GeoDAR
v1.2

per dam Global Reservoir
and Dam Database
(GRanDv1.3, data
up to 2016; Lehner
et al., 2011a, b) and
GeoDAR v1.2 (Wang
et al., 2022) covering
the period 2016–2020

Name of the dam struc-
ture

DAM_NAME unitless per dam GRanDv1.3, Geo-
DARv1.2

Original latitudinal lo-
cation of the dam

LON_ORIG degree (◦) per dam GRanDv1.3, Geo-
DARv1.2

Original longitudinal
location of the dam

LAT_ORIG degree (◦) per dam GRanDv1.3, Geo-
DARv1.2

Longitude, adjusted to
the ISIMIPddm30 0.5◦

grid cell centers

LON_DDM30 degree (◦) per dam Adjustment of origi-
nal GRanDv1.3, Geo-
DARv1.2 data

Latitude, adjusted to
the ISIMIPddm30 0.5◦

grid cell centers

LAT_DDM30 degree (◦) per dam Adjustment of origi-
nal GRanDv1.3, Geo-
DARv1.2 data

Upstream area draining
into the reservoir using
ISIMIPddm30

CATCH_SKM_DDM30 km2 per dam Derived from dam
location and the
ISIMIPddm30 drainage
map

Upstream area draining
into the reservoir acc. to
GRanD [km2]

CATCH_SKM_GRanD km2 per dam GRanDv1.3

Representative maxi-
mum storage capacity
of reservoir

CAP_MCM 106 m3 per dam GRanDv1.3, Geo-
DARv1.2

Year of construction,
completion, com-
missioning, etc. (not
specified)

YEAR year per dam GRanDv1.3, Geo-
DARv1.2 + comple-
mented by internet
research

Alternative year (may
indicate multiyear
construction, secondary
dam, etc.)

ALT_YEAR year per dam GRanD

Original, rounded
location has been
shifted with au-
tomatic mapping
(FLAG_CORR=1)
If visual check or
manual relocation
has been applied
(FLAG_CORR=2)

FLAG_CORR Unitless labels: 1 or 2 per dam Introduced when ad-
justing the locations to
the ISIMIPddm30 0.5◦

grid
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Table 16. Continued.

Variable Variable specifier Unit Resolution Datasets

Name of the river
which the dam im-
pounds

RIVER unitless per dam GeoDARv1.2 – for
GRanD records, it can
be found in the GRanD
database

Country where the dam
is located

COUNTRY unitless per dam GeoDARv1.2 – for
GRanD records, it can
be found in the GRanD
database

Height of the dam;
if multiple heights are
available, the founda-
tion height was used

D_Hght_m m per dam GeoDARv1.2 – for
GRanD
records, it can be found
in the GRanD database

Maximum inundation
area of the reservoir

R_Area_km2 km2 per dam GeoDARv1.2 – for
GRanD
records, it can be found
in the GRanD database

Maximum inundation
length of the reservoir

R_Lgth_km km per dam GeoDARv1.2 – for
GRanD
records, it can be found
in the GRanD database

Main purpose(s) of the
dam

PURPOSE no units per dam GeoDARv1.2 – for
GRanD records, it can
be found in the GRanD
database

Sources used to collect
this dam’s information

SOURCE no units per dam GeoDARv1.2 – for
GRanD records, it
can be found in the
GRanD database; if
filled out for GeoDAR
records, it corresponds
to the source for the
year of construction or
commissioning

Other notes related
to the mapping or
relocation of dams to
ISIMIPddm30

COMMENTS no units per dam

after the confluence of two rivers), even though the dam is
located in a particular tributary according to the database.

In those cases, and based on visual GIS inspection, the
best location was searched, e.g., by moving the dam loca-
tion one cell upstream to preserve the routing order and
to avoid a different or highly deviating river basin in the
ISIMIPddm30 stream network. In the case that a dam is not
assigned to any river basin in the ISIMIPddm30 (which can
happen due to the difference in spatial resolution), the most
suitable location according to the observed upstream area
was selected. Because of limited capacity, this visual valida-

tion procedure was applied only for dams present in the ear-
lier GranDv1.1 version that have a maximum storage capac-
ity greater than 0.5 km3 (1108 dams), as well as for all 458
additional dams in GRanDv1.3 and the 11 dams (excluding
post-2020 dams) added from GeoDAR v1.2 but not for sev-
eral thousand smaller dams present in GranDv1.1. In total the
reported dams have a global cumulative storage capacity of
approximately 6932 km3 (Fig. 9).
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Table 17. Information about historical fishing intensities provided as DHF within ISIMIP3a. For the spin-up + transition period required by
models within the marine ecosystems and fisheries sector the forcing is provided for 1841–2010, although the “obsclim+ histoc; default”
experiment only starts in 1961.

Variable Variable specifier Unit Resolution Datasets

Total nominal active
fishing effort (i.e.,
accounting for total
power of the fleet but
not including changes
in the efficiency of
fishing technology)
separated by fishing
sector, fleet, and target
functional groups

NomActive kW d
(kilowatts of fleet
power times days at
sea)

annual data spatially
grouped by exclusive
economic zones (EEZs)
(Sea Around Us area
parameters and defini-
tions) and nested within
large marine ecosys-
tems; masks for the
latter are provided as
static geographic infor-
mation (see Table 1)
(Pauly et al., 2020;
Claus et al., 2014)

Reconstruction based
on historical yearbook
and FAO compilations
(Rousseau et al., 2022)
based on Rousseau et
al. (2024); the recon-
structions have been
extended backwards to
1841 by constant 1861
values to cover the
120 years of spin-up
required for the ma-
rine ecosystems and
fisheries models

Figure 10. Evolution of historical nominal active fishing effort (No-
mActive) as provided for the spin-up, transition period, and “ob-
sclim+ histoc; default” ISIMIP3a experiment, separated by target
functional group. The groups represent an aggregation of 29 even
finer categories covered by the dataset (see Table 17).

4.9 Fishing intensities

The dataset of reconstructed historical fishing efforts
(Rousseau et al., 2022) serves as the DHF for the marine
ecosystems and fisheries sector. The efforts are quantified
separately for the artisanal and industrial fishing (sector),
66 large marine ecosystems (LMEs), 187 national exclusive
economic zones (EEZs) and “high seas”, 244 country iden-
tifiers from the Sea Around Us Project (SAUP), 16 different
categories of applied gear (e.g., bottom trawls, long lines, and
purse seines), and 29 target functional groups (see nominal
active fishing effort for five aggregated categories in Fig. 10).

The original annual time series spanning 1950–2015 were
further extrapolated into the past to 1861 using generalized
additive models (Rousseau et al., 2024; see Fig. 10). To

cover the spin-up+ transition period from 1841–1960 the
dataset has been extended backwards by 1861 values. Forc-
ing with this dataset allows for a comparison of simulated
catches against the congruent (Watson, 2019) reconstruction
of historical fishery catches (spanning the period 1869–2015;
(Watson and Tidd, 2018). To permit integration into ma-
rine ecosystem models that capture different fishing sectors,
fleets, and functional groups these data include nominal ac-
tive fishing effort disaggregated by location (exclusive eco-
nomic zone, high seas, and large marine ecosystem), fishing
country, fishing gear, targeted functional group, and fishing
sector (coastal artisanal and industrial). Impact modelers are
allowed to distribute this effort across space and time, as well
as to target organisms in any method compatible with their
models’ structure. The fishing effort data do not include any
information about changes in the efficiency of fishing tech-
nology over time (technological creep). Assumptions about
these efficiencies are left to the individual modelers and usu-
ally determined in model calibration.

4.10 Forest management for the regional forest sector

For the regional forest sector, forest management is defined
for nine forest sites in Europe, four of them in Germany
(Peitz, KROOF, Solling beech, Solling spruce) and one each
in the Czech Republic (Bily Kriz), Denmark (Sorø), France
(Le Bray), Italy (Collelongo), and Finland (Hyytiälä) (Reyer
et al., 2020b).

Additionally, a set of forest-site-specific management
rules and planting numbers based on historical standard man-
agement practices of the area where the forest sites are lo-
cated is defined and spelled out in concrete management
schedules to enable modelers to simulate 2015soc conditions
(Reyer et al., 2023). The regional forest management data
have not been harmonized to the global gridded wood har-
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Table 18. Information about historical forest management provided as DHF for the regional forest sector within ISIMIP3a.

Variable Variable specifier Unit Resolution Datasets

Silvicultural system sysi n/a stand Reyer et al. (2023)

Tree species species n/a stand Reyer et al. (2023)

Harvest type harvtype n/a stand Reyer et al. (2023)

Thinning type thintype % of basal area stand Reyer et al. (2023)

Rotation length rotlength year stand Reyer et al. (2023)

Thinning frequency thinfrequ year stand Reyer et al. (2023)

Year of management intervention manyear year stand Reyer et al. (2023)

Type of management intervention mantype n/a stand Reyer et al. (2023)

Regeneration species regen n/a stand Reyer et al. (2023)

Planting density plantdens n/a stand Reyer et al. (2023)

Planting age plantage year stand Reyer et al. (2023)

Planting seedling height planthei m stand Reyer et al. (2023)

Planting diameter at breast height plantdbh cm stand Reyer et al. (2023)

Age when diameter at breast height is reached dbhage year stand Reyer et al. (2023)

Stem number stemno n/a stand Reyer et al. (2020a)
based on Reyer et
al. (2020b)

n/a: not applicable.

vest data provided for the biomes sector because the data are
very site-specific and the variation not resolved in the global
dataset.

5 Conclusion

The first part of the third simulation round of the Inter-
Sectoral Impact Model Intercomparison Project ISIMIP
(ISIMIP3a) is intended to facilitate impact model evaluation
and impact attribution experiments to significantly move for-
ward our understanding of observed changes in natural and
human systems and their respective drivers. Impact models
participating in ISIMIP encode our process knowledge on
how several drivers (climate-related ones as well as direct hu-
man influences) come together to generate observed changes.
As such, they are ideal tools for this task. The new ISIMIP3a
simulation framework, including the provision of the relevant
forcing data, is intended to unleash the power of a wide range
of models from different sectors to quantify the contribution
of observed changes in climate-related systems to observed
environmental or societal changes.

As a first step towards impact attribution, the ISIMIP3a
evaluation experiments will help to clarify how well the
current generation of impact models can explain observed
changes in impacted systems based on provided information

about the different forcings. The performance of the models
in reproducing observed variations and long-term changes
in the impacted systems certainly does not depend only on
the models themselves but also on the availability and un-
certainties associated with the climate-related and direct hu-
man forcings (see Table 1). We capture some of this uncer-
tainty by providing four different observational atmospheric
climate forcing data and associated counterfactual forcings
(see Sect. 2.1) as well as TC wind fields derived from two dif-
ferent modeling approaches (see Sect. 3.2). Uncertainties in
the direct human forcings are represented to the degree that
the forcing datasets considered to be “optional” vary from
model to model. In addition, the multi-model framework of
ISIMIP allows for testing to what degree different process-
representations may be better suited to explain the observa-
tions than others.

High explanatory power is then a prerequisite for im-
pact attribution through the ISIMIP3a attribution experi-
ments based on counterfactual climate-related forcings fol-
lowing the IPCC definition (O’Neill et al., 2022).

The setup is the first that allows easily and broadly ad-
dressing impact attribution across many impact categories.
This will fill an important gap as only few process-based im-
pact models have been used in this field despite their gen-
eral suitability. The presented work can thus lay the founda-
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tion for urgently necessary works to inform climate litigation
(Burger et al., 2020; Burger and Tigre, 2023), the loss and
damage debate (Mechler et al., 2018; Wyns, 2023), and last
but not least also decisions about short-term adaptation mea-
sures. It will ultimately help to carve out the sensitivity of our
ecosystems and human societies to historical climate change,
which is a precondition for robustly projecting future climate
impacts.

This paper aims to give an overview of the ISIMIP3a ex-
periments and the provided climate-related and direct human
forcing datasets. It is intended to work as a catalogue where
modelers can find all relevant information about the datasets
they need for the impact model simulations within ISIMIP3a.
As a community-driven initiative across multiple disciplines
the selection of the best available forcing data for ISIMIP
builds on the expertise within the different sectoral commu-
nities.

We would like to improve or complement these datasets
in a continuous process wherever possible. So this paper can
also be read as a call for contributing additional data that
could (i) be provided within the current round (ISIMIP3) as
optional data (see explanation in the Introduction) that are
not harmonized within or across sectors or (ii) as mandatory
forcing for an upcoming simulation round. In particular, we
aim for temporally resolved historical growing seasons that
have been shown to be critical to reproduce observed crop
yields (Jägermeyr and Frieler, 2018), counterfactual oceanic
climate-related forcings, counterfactual TC-related precipita-
tion (Risser and Wehner, 2017; van Oldenborgh et al., 2017;
Wang et al., 2018; Patricola and Wehner, 2018), temporally
resolved lightning data for the full set of considered climate
model simulations, and temporally resolved human drainage
and restoration activities in peatlands as one of the key con-
trols over global peatland greenhouse gas emissions (Loisel
et al., 2020).

Code and data availability. All input data described are available
for participating modelers with a respective account from the DKRZ
server. Data will be made publicly available, and most data are
already publicly available at https://data.isimip.org/ (ISIMIP data
repository, 2023). Availability is documented at https://www.isimip.
org/gettingstarted/input-data-bias-adjustment/ (ISIMIP Input data
table, 2023) where the way to access the data is described as well.
Model output is already partly available at https://data.isimip.org/
(ISIMIP data repository, 2023).

The ISIMIP repository fulfills the archive standards as stated
in the “GMD code and data policy”. The repository is hosted and
maintained by the Potsdam Institute for Climate Impact Research
(PIK). Data can only be published or removed from the repository
by the ISIMIP data team, which is monitored by the ISIMIP steer-
ing committee according to the organizational structure of ISIMIP
(ISIMIP organigram, 2020). DOIs are used to refer to datasets in a
persistent way. Whenever a dataset is replaced for any reason a copy
is kept on tape, and a new DOI is issued, while the old DOI is kept
online with information on how to retrieve the archived data. De-

tailed information can be found in the ISIMIP terms of use (ISIMIP
terms of use, 2023).
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