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A B S T R A C T   

The rapid expansion of tourism, transportation, energy, and agricultural infrastructure in mountain areas raises 
concerns about landscape fragmentation and impacts on aesthetic values. Effective delineation of these areas 
relies on negotiating various qualities that define them. In our study, we developed a collaborative consensus- 
building process with experts to map open spaces. Rather than collecting information on the factors charac-
terizing open spaces, we first obtained a consensus on their delineation using a Delphi survey, followed by 
machine learning to extract variables explaining the spatial extent of the open spaces. Results show that the 
Delphi survey allowed experts to get a collective understanding on the delineation of open spaces through a 
process of knowledge (de)construction. By applying machine learning on the consolidated outcomes, we were 
then able to predict open spaces not only defined by physical aspects, but also characterized by subjective el-
ements related to experts’ perceptions of the landscape. Such an approach cannot only serve as a decision- 
support tool for more sustainable management of mountain areas, but as a tool to produce legitimized maps 
integrating knowledge and perception of various stakeholders. By incorporating these diverse perspectives, this 
participative process also fosters understanding and acceptance for future spatial planning decisions.   

1. Introduction 

Mountain regions are experiencing growing infrastructure develop-
ment pressure to cover the needs of various sectors from tourism to 
energy, transportation, and agriculture (Boller et al., 2010; Donázar 
et al., 2018; Kareiva et al., 2007). Improved connectivity and growing 
economic interests have transformed these once remote and inaccessible 
areas into infrastructure-dominated landscapes (Kareiva et al., 2007; 
Radford et al., 2019; Venter et al., 2016). In particular, the urgent need 
for a transition to renewable energy sources, driven by the climate and 
energy dependency crises, has accelerated the installation of renewable 
energy infrastructures in mountain regions (Job et al., 2021; Kopf et al., 
2017; Spielhofer et al., 2023). However, these developments are raising 
questions about trade-offs with ecological and aesthetic landscape 
values (Liu et al., 2007; Nischik & Pütz, 2018; Schwick et al., 2018), and 
have called for actively negotiating conflicting interests to support 
sustainable development. 

Decision-makers have traditionally relied on a variety of maps to 
facilitate discussions and identify appropriate locations for infrastruc-
ture development or nature conservation efforts. Significant progress 

has been made in developing maps that delineate open spaces in 
mountain regions (Job et al., 2021; Kopf et al., 2017; Nischik & Pütz, 
2018; Plassmann & Coronado, 2021) or other related topics such as 
wilderness (Radford et al., 2019) or remoteness (Boller et al., 2010). 
Already during the 1970s, established instruments such as the Bavarian 
Alpenplan or the Tyrolean Ruhegebiete addressed the need to regulate 
the different demands in mountain regions by delimiting open spaces 
using existing and historical land uses, ecological information, as well as 
future development prospects (Hasslacher et al., 2018; Job et al., 2014). 
Numerous other studies followed, mostly focusing on land use infor-
mation and physical landscape attributes and relying on a pre-
determined quantification of the impact of infrastructures (Hasslacher 
et al., 2018). However, recent advancements in machine learning have 
the potential to facilitate a more explorative approach for assessing the 
influence of infrastructures in the delineation of open spaces. Indeed, 
spatial algorithms have demonstrated their effectiveness in mapping 
complex phenomena in various fields and quantifying unknown re-
lationships and patterns in the data (Casali et al., 2022; Chen, De Hoogh, 
et al., 2019; Sun et al., 2021; Zuo et al., 2021). However, landscapes 
cannot only be described by their physical characteristics (Cakci, 2012). 
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They are the products of the interplay between natural and anthropo-
genic factors (European Landscape Convention, 2004) and are subject to 
varying human perceptions (Hunziker et al., 2008). Mapping open 
spaces requires considering complex human-nature relationships 
involving various stakeholders and acknowledging their different views 
in decision-making processes (Vajjhala, 2006). 

Local knowledge and insights from stakeholders as well as experts 
have been used to varying degrees to improve and refine mapping 
outcomes (Clavel et al., 2011; Radford et al., 2019; Sadler, 2016). 
Active, iterative and collaborative processes of creating, sharing and 
using all forms of knowledge, including experience, values and beliefs, is 
known to increase the legitimation of knowledge generation (Grêt-Re-
gamey et al., 2013; Jacobs et al., 2015). Guided by digital cartography, 
such processes have found their ways into geodesign, an interdisci-
plinary approach that merges geographic information science with 
design theories to foster more holistic outcomes (Steinitz, 2012). 
Participatory GIS attempts to achieve this encompassing understanding 
by engaging communities, stakeholders and experts, and integrate their 
insights in the mapping and data collection process (Brown & Fager-
holm, 2015; Chambers, 2006; Sieber, 2006). 

Although the value and benefits of incorporating diverse perspec-
tives and stakeholders are widely acknowledged (Chambers, 2006; 
Sieber, 2006), unveiling the intricate relationships in complex phe-
nomena often requires expert knowledge (Brown & Fagerholm, 2015). 
Experts can better understand complex phenomena and unveil intricate 
relationships, contributing to a more nuanced understanding of the 
studied phenomenon. Additionally, focusing on expert knowledge helps 
to strengthen credibility, which supports an effective integration of the 
outcomes in decision-making (Brown & Fagerholm, 2015; Clavel et al., 
2011). In the context of open spaces in mountain regions, a solid 
background knowledge is essential due to the fuzziness surrounding the 
concept of open spaces and the required cartographic expertise. Previ-
ous research on open spaces has primarily utilized expert knowledge to 
predetermine the importance of specific factors (Nischik & Pütz, 2018), 
to validate final mapping results (Kopf et al., 2017), or to analyze and 
discuss individual case studies (Gurtner et al., 2009). However, expert 
knowledge has not yet been included as a pivotal element within the 
spatial modeling process, specifically as part of machine learning algo-
rithms. This combination of advanced extensive expert knowledge and 
computational capabilities forms a robust foundation for the collabo-
rative design of open spaces in mountainous areas. 

The goal of this study is to develop a collaborative consensus- 
building process among experts to map open spaces as decision- 
support for steering the development of new infrastructures. By inte-
grating expert knowledge into machine learning algorithms, the study 
shows how such a process can foster a collaborative consensus-building 
process that informs the identification of areas that are perceived 
differently by various stakeholders and thus difficult to delineate in 
space. The approach is illustrated in Switzerland’s mountain regions, 
which face increasing pressure, particularly from renewable infra-
structure development due to climate and energy crises (Spielhofer 
et al., 2023). After introducing the concept of open spaces, the paper 
outlines the methodological structure, comprising of a Delphi survey 
and a machine learning process. The subsequent results section presents 
the final map of open spaces in mountain regions, the machine learning 
algorithm used to develop it, as well as the insights of the surveys, 
highlighting the similarities and differences that emerged between the 
participants. The paper closes with an in-depth discussion on the rele-
vance of such an approach in addressing the challenges of open spaces 
management. 

2. Background 

2.1. Defining open spaces in mountain regions 

Open spaces in mountain regions serve multiple purposes, providing 

essential ecosystem services, supporting ecological connectivity, miti-
gating landscape fragmentation and biodiversity loss, and preserving 
cultural values (Job et al., 2022; Nischik & Pütz, 2018). The term “open 
spaces” encompasses various meanings, including ecological, 
historical-cultural, economic, social, spatial-structural, and aesthetic 
aspects. Nevertheless, a clear and universally accepted definition is still 
lacking (Hartz, 2019). For the purpose of this study, a definition has 
been adopted based on expert knowledge and existing work such as the 
project OpenSpaceAlps (Job et al., 2022; Plassmann & Coronado, 2021). 
The proposed definition serves as a framework to guide the investigation 
and assessment of open spaces in mountain regions. Open spaces in 
mountain regions are characterized as high-altitude, contiguous areas or 
landscapes that are largely undeveloped and free of technical, spatially im-
pactful infrastructure. These regions can be used for agriculture, forestry, and 
hunting, and have a high recreational quality due to their acoustic and visual 
tranquility and closeness to nature. 

2.2. Mapping open spaces in mountain regions 

Qualitative mapping is a commonly used approach, in which experts 
and stakeholders collaborate to produce drawings and discuss possible 
interpretations of the mapping results. Through this process, a shared 
vision for the management and sustainable development of mountain 
landscapes can be developed and refined. Gurtner et al. (2009) show, for 
example, how participants have engaged in discussions to share their 
diverse perspectives on mountain regions, as the basis for the analog 
identification of open spaces. While these projects benefit from robust 
expert knowledge, the manual classification process confines the study 
area to limited sample regions, known by the experts. 

To address the limitations associated with qualitative approaches, 
researchers use quantitative mapping techniques to automate the iden-
tification of open spaces and extend it to larger areas. In the 1970s, at-
tempts were made to define concepts closely related to the idea of open 
spaces. The Bavarian Alpenplan, implemented in 1972, regulated the 
development of transportation infrastructure in the Bavarian Alps with 
the aim of preventing the overuse of nature and landscapes and reducing 
the risk of natural hazards. The regional plan divides the area into three 
institutionally regulated zones, demarcated according to cartographic 
fieldwork, land use, ecological sensitivity, and future development 
prospects (Hasslacher et al., 2018; Job et al., 2014, 2020). Between 1972 
and 1973, the Austrian region of Tyrol similarly attempted to define 
so-called quiet areas (i.e., Ruhegebiete), which were characterized by a 
minimal presence of disturbing infrastructure (Hasslacher et al., 2018; 
Job et al., 2020). Similar quantitative approaches to open spaces map-
ping followed, mostly focusing on demarcations based on infrastructure 
and human presence (Job et al., 2017). The Salzburg state identified 
alpine quiet areas (i.e., Alpine Ruhezonen) based on the compatibility or 
incompatibility of land uses and activities. This differentiation adheres 
to predetermined criteria and is influenced by comparable approaches, 
including the Alpenplan and the Tyrolean Ruhegebiete (Job et al., 
2017). A slightly different approach was introduced by Kopf et al. 
(2017), who mapped open spaces by identifying relevant infrastructures 
and then calculating the degree of infrastructure development, i.e., the 
proportion of the area occupied by infrastructure, at different spatial 
scales, such as administrative boundaries or hydrological catchments 
(Job et al., 2022). This approach was later adapted and implemented by 
Nischik and Pütz (2018), as well as in the context of the OpenSpaceAlps 
project (Job et al., 2021, 2022; Plassmann & Coronado, 2021). These 
studies slightly vary in the detailed settings and choices concerning the 
computation of the impact of infrastructures (e.g., employing different 
spatial buffers to represent the extent of their influence) as well as in the 
final spatial aggregation and representation choice. For instance, Nis-
chik and Pütz (2018) decided to group all the obtained watersheds into 
overarching alpine landscape types based on their level of infra-
structural accessibility, while other studies preferred to present the 
ungrouped outcomes. A thorough and comprehensive examination of 
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the most recent quantitative investigations of open spaces is provided by 
Job et al. (2022). On a related topic, Boller et al. (2010) have imple-
mented a similar methodology based on the degree of infrastructure 
development to delimit and define the concept of remoteness. Other 
studies have combined distance factors and on-site features like land 
cover or vegetation conditions using weighted and averaged sums for 
each location. This approach essentially creates a continuous represen-
tation rather than discrete, aggregated, statistical results (WWF Austria, 
2017). Radford et al. (2019) followed a similar methodology to assess 
the level of wilderness quality in Switzerland. An expert-weighted 
overlap of different spatial features influencing wilderness resulted in 
a spatially explicit wilderness quality index (Radford et al., 2019). These 
quantitative methods overcome the spatial constraints of qualitative 
approaches, but expert knowledge is only used to directly assess the 
importance of specific factors in the aggregation to an index (Job et al., 
2022; Nischik & Pütz, 2018) or to validate outcomes (Radford et al., 
2019). 

Current research reveals a lack of approaches that combine these 
qualitative and quantitative practices and draw on broader expert 
knowledge through efficient expert surveys. While qualitative methods 
provide valuable insights through the integration of expert knowledge, 
they often suffer from limitations in terms of generalizability and scal-
ability. In contrast, quantitative methods offer the ability to analyze 
large study areas, automate processes, and ensure statistical consistency, 
but they lack the nuanced understanding and context provided by 
qualitative methods (Jacobs et al., 2015; Queirós et al., 2017). To 
address these limitations and fill the existing research gaps, this study 
aims to introduce a comprehensive framework for modeling open spaces 
using machine learning techniques. By iteratively refining their under-
standing through training procedures, these models can explore and 
identify unknown interactions within the spatial data and use these in-
sights to predict new information (Casali et al., 2022; Chen, De Hoogh, 
et al., 2019; Sun et al., 2021; Zuo et al., 2021). This is in contrast with 
currently employed methods in open spaces mapping which often rely 

on predefined equations, hypothesis testing, and inferences based on 
known phenomena to draw conclusions (Job et al., 2022). This study 
exploits the flexibility of machine learning models to combine quanti-
tative and qualitative information, enabling the integration of expert 
knowledge alongside the robustness and automated generalization 
offered by quantitative methods. This methodological approach for 
effectively combining collaborative, consensus-based knowledge among 
experts (Bürgi et al., 2022; Burnett, 2023) with the scalability and 
robustness of quantitative methods is described in detail in the following 
section. 

3. Materials and methods 

The map of open spaces in Swiss mountain areas was developed 
through a consensus-building and machine learning process in which 
expert knowledge was gathered to determine the location of open spaces 
in the landscape. In a first part, the Delphi methodology facilitated a 
consensus-building process by collecting individual views (i.e., drawings 
of open spaces) and then sharing these views with all participants, while 
giving them the opportunity to adjust their own initial choices. To 
achieve this, rather than relying on specialized consensus-building 
software, we based our approach on a two-tiered online survey devel-
oped by our research team using high-quality background maps (swis-
stopo, 2023c, 2023b). The knowledge gathered through these surveys 
was then extracted and used as input data for the subsequent modeling 
procedure. In a second part, we used machine learning techniques to 
train a spatial model to predict and extrapolate the consensus-based 
knowledge to the entire assessed mountain regions. Fig. 1 illustrates 
the central steps of the methodology, emphasizing first the 
consensus-building process (1st and 2nd survey) and second the subse-
quent spatial modeling procedure driven by machine learning tech-
niques. The following sections provide a more detailed explanation of 
these different stages. 

Fig. 1. Graphical summary of the research methodology (own design). The process is divided in three main sections (1st survey, 2nd survey, and spatial modeling), 
feeding into each other at different points in time during the study. 
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3.1. Case study and sample regions 

This study focuses on the mountainous regions of Switzerland, i.e., 
the Jura mountains and the Alps. In order to create a comprehensive 
map encompassing the diversity of the mentioned mountain landscapes 
in the country, we adopted the delineation outlined by the Swiss Federal 
Statistical Office (GEOSTAT, 2021). By adopting this classification, the 
research ensures a comprehensive evaluation of open spaces within the 
varied mountain landscapes of the country. Due to the impracticality 
and inefficiency of identifying and delimiting open spaces with experts 
across the entire case study region, representative sample areas were 
strategically chosen for conducting the surveys and the subsequent 
spatial modeling. In an initial step, 80 sample areas were distributed 
inside mountain regions in Switzerland using a stratified random sam-
pling approach (Howell et al., 2020). This process involved dividing the 
case study region into three sub-regions (supplementary material A) 
based on the degree of infrastructure development (Nischik & Pütz, 
2018). Subsequently, sample zones were distributed within these 
sub-regions, assigning fewer samples to regions with extremely low or 
very high levels of infrastructure development. Conversely, a higher 
number of sample zones were allocated to the middle sub-region 
showing a more mixed pattern. Through this stratified sampling 
approach, the focus was placed on intermediate areas, which could not 
yet be clearly categorized as either open spaces or highly developed 
infrastructure regions. The entire procedure was conducted separately 
for the Alps and the Jura (66 and 14 sample areas respectively), and the 
resulting sample areas were then merged in a last step. This stratified 
random sampling approach minimized the occurrence of areas with 
extremely low or high probabilities of being classified as open spaces, 
and instead maximized areas where various spatial features interact and 
contribute to the delimitation of open spaces (supplementary material 
A). 

3.2. Delphi method 

The Delphi method is an iterative technique that aims to facilitate the 
transformation of individual opinions into a collective consensus (Turoff 
& Linstone, 1975). The process involves multiple rounds of survey and 
feedback, allowing participants to refine and align their views over time. 
In the initial round, participants provide their individual assessments 
based on their expertise while in the subsequent rounds, participants 
review and adjust their responses considering the collective input. 
Through this iterative process, the Delphi method encourages partici-
pants to reconsider their initial positions, contemplate alternative 
viewpoints, and converge towards a shared consensus (Geist, 2010). 

Our Delphi methodology included two online surveys. A total of 117 
people participated in the first survey, with 93 of them also completing 
the second iteration. The 24 participants who did not finish the second 
survey were excluded from subsequent analyses. These experts were 
recruited based on expertise or involvement in mountainous landscapes, 
for recreational or professional purposes. Here, the term expert simply 
refers to a person with considerable knowledge of mountain regions. 
Therefore, participants had diverse backgrounds, ranging from 

mountain guides, scientists, public sector employees to park managers, 
but with the common characteristic of having extensive knowledge of 
mountain regions (Fig. 2). 

In the first online survey round, experts were instructed to draw 
polygons representing open spaces in the randomly assigned sample 
areas based on their knowledge and personal interpretation. They were 
provided with general guidelines and with the proposed definition to 
ensure consistency in their assessments. During this mapping process, 
experts identified open areas by using both the topographic landscape 
model of Switzerland known as swissTLM3D (swisstopo, 2023c) and 
SWISSIMAGE, a composition of aerial photographs with resolution be-
tween 10 cm and 25 cm (swisstopo, 2023b). These background maps 
constitute the most reliable dataset in Switzerland and were kept un-
changed and consistent for all participants, as well as for the second 
online survey round. Participants were also given the option to omit 
drawing polygons in areas where they were unable to identify open 
spaces according to their considerations. This, combined with the ran-
domized allocation, resulted in different polygon counts across the 
sample areas. The collective coverage was considered satisfactory for the 
subsequent machine learning phase. 

In addition to mapping open spaces, during the first survey (sup-
plementary material B.1) experts were asked a series of questions to gain 
further insight into their involvement in open spaces, their area of 
expertise, and their familiarity with each specific sample area. In addi-
tion, participants were asked to evaluate their confidence level in the 
delineated open spaces. In other words, they were asked to indicate how 
confident they were about the correctness of their drawings. This pro-
vided a deeper understanding of the reliability and subjective in-
terpretations of open spaces, and served as a self-reflection opportunity 
for the participants, further strengthening the collaborative, consensus- 
based character of this mapping process. Furthermore, these questions 
also provided important insights for assessing changes between the re-
sponses given after the first and after the second survey. Overall, this 
initial phase aimed to capture a wide range of ideas, diverse in-
terpretations of the proposed broad definition, and perceptions of open 
spaces, profiting from the diverse backgrounds and expertise of the 
participants. 

During the second round of the online survey (supplementary ma-
terial B.2), the primary goal was to reach consensus and refine the 
mapping of open spaces in the sample regions. To facilitate this process, 
all experts were given access to the compiled responses from the first 
round, allowing them to review and compare their own assessments 
with those of their peers. This encouraged participants to consider 
different perspectives and integrate new information, allowing them to 
change their initial responses and align them with a more consensus- 
oriented view. Experts were asked to re-evaluate their confidence in 
the delineated open spaces, after having had the opportunity to examine 
the responses of other participants. Additionally, participants were 
asked to assess whether viewing other participants’ responses improved 
the quality of their own delineation of open spaces. Incorporating these 
additional elements into the survey provided a deeper understanding of 
participants’ shifts in perception and of the consensus-building process. 

Fig. 2. Background of participants of the two surveys (only participants who completed both surveys are considered). “Other occupation” is a category that includes 
all non-specified backgrounds that do not fall under the other categories. 
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3.3. Spatial modeling 

Once the surveys were completed, the consensus reached through 
the Delphi method on the spatial distribution of open spaces in mountain 
regions was incorporated into the machine learning process. To ensure 
consistency and comparability, the drawings were merged and the 
values normalized between 0 and 1 (0 for areas with no identified open 
spaces, 1 for areas that all experts categorized as open spaces). The 
resulting normalized values were then used as the dependent variable 
for the spatial model to learn and understand the relationships between 
expert survey responses and the predictors (Table 1) selected based on 
previous studies (Job et al., 2022; Nischik & Pütz, 2018; Plassmann & 
Coronado, 2021). 

Subsampling of input data is necessary to manage computational 
complexity, improve efficiency and avoid spatial biases (Getis, 2007). In 
this study, the subsampling process involved generating a point grid, 
where points were spaced apart by the computed autocorrelation dis-
tance threshold of the survey results. Calculating the autocorrelation 
distance threshold allows to identify the distance at which spatial sim-
ilarity between data points becomes significant (Getis, 2007). This 
method guarantees to effectively capture relevant spatial dependencies 
while managing the data size for more efficient spatial modeling. The 
resulting data were further divided into training and test sets, with 80% 
and 20% of the data, respectively. The train set is used to build and train 

the model by estimating parameters and finding the best fitting function. 
The test set is a separate subgroup of data that is not used during the 
training phase and is used to evaluate the performance of the model and 
its ability to generalize well to unseen data. Additionally, 
cross-validation was used to further fine-tune the spatial model (Bengio 
& Grandvalet, 2004; Sun et al., 2021). This statistical technique parti-
tions data into subsets (folds) to improve and evaluate model perfor-
mance and prevent overfitting. In this study, we used 10-fold 
cross-validation: the dataset was divided into ten equal folds and the 
model trained and evaluated ten times, with each fold being used as the 
validation set once while the other nine folds are used for training. 
Finally, the performance and findings are averaged across the folds to 
provide a more robust model. 

Spatial modeling was performed using the R programming language 
(R Core Team, 2023) and the RStudio environment (Posit team, 2023). 
To account for the non-normal distribution observed in the values 
extracted from the expert drawings, four non-parametric machine 
learning models were tested: Multivariate Adaptive Regression Splines 
(Friedman, 1991), eXtreme Gradient Boosting (T. Chen & Guestrin, 
2016), Random Forest (Breiman, 2001), and Generalized Boosted Model 
(Friedman, 2002). All models were implemented using the caret R 
package (Kuhn, 2008), which is a comprehensive tool for training and 
evaluating various machine learning models. The caret package pro-
vides a unified interface and streamlined workflows for model training, 
parameter tuning, cross-validation, and performance evaluation. Gen-
eral performance factors (Mean Absolute Error, Root Mean Square Error, 
and R squared) were evaluated for each model, and since no single 
model clearly outperformed the others, an ensemble model was con-
structed by combining the predictions of all four models (Caruana et al., 
2004). This ensemble model exploits the strengths of each model to 
provide a robust and reliable prediction of open spaces throughout the 
study area. The resulting maps were produced at 50 m and 100 m res-
olution. Detailed documentation of the models is provided in the sup-
plementary material, including training parameters and 
hyperparameters (supplementary material C1), as well as performance 
metrics (supplementary material C2). 

4. Results 

4.1. Open spaces in Swiss mountain regions 

The open spaces map (Fig. 3) classifies locations along a continuous 
spectrum ranging from “not open spaces” (represented as white) to 
“open spaces” (depicted as dark green). The distribution of open spaces 
in Swiss mountain regions is highly heterogeneous with large, unfrag-
mented open spaces present mainly in the Alps at high elevation, while 
the Prealps and the Jura mostly entail larger, more isolated open spaces 
areas of medium value (light green). In the Jura we find only around 3 
km2 of areas with values above 0.8, while in the Alps and Prealps around 
7′000 km2. Over the whole study area, valley bottoms are distinctly 
recognizable as non-open spaces, featuring a combination of buildings, 
transportation networks and various other infrastructures. This general 
trend is consistent with experts gathered comments (supplementary 
material D). 

A closer look reveals interesting findings about the impact of specific 
infrastructure, particularly in regions of medium to high open spaces 
values (supplementary material E). Specifically, roads have a substantial 
impact on the configuration of open spaces, while smaller paths have a 
more limited influence. This phenomenon is particularly noticeable in 
open spaces configuration of the Pre-Alps and the Jura, where the trails 
network predominantly consists of wide, drivable paths. In contrast, the 
alpine area encompasses numerous narrower trails, which, due to their 
relatively minor impact, contribute to elevated open spaces values and 
larger unfragmented areas. Cable cars and lifts, whether utilized for the 
transportation of materials or individuals, constitute another important 
aspect for the delineation of open spaces. Their influence is particularly 

Table 1 
Predictors for spatial modeling (based on Job et al., 2022; Nischik & Pütz, 2018; 
Plassmann & Coronado, 2021).  

Category Subgroup Data source Predictor 

Transportation Roads and paths (no 
tunnels) 

swisstopo 
(2023c) 

distance to large roads 
[m] 
distance to medium 
roads [m] 
distance to small 
roads [m] 
distance to large paths 
[m] 
distance to small paths 
[m] 

Railways (no tunnels) swisstopo 
(2023c) 

distance to all 
railways [m] 

Cable cars, lifts swisstopo 
(2023c) 

distance to person 
cable cars [m] 
distance to material 
cable cars [m] 

Airports FOCA (2023a) distance to airports 
[m] 

Helicopter landing 
sites 

FOCA (2023a, 
2023b) 

distance to heliports 
[m] 

Public transport 
stops 

swisstopo 
(2023c) 

distance to transport 
stops [m] 

Settlement Building footprint 
(filtered) 

swisstopo 
(2023c) 

distance to buildings 
[m] 

Leisure facilities swisstopo 
(2023c) 

distance to leisure 
facilities [m] 

Industrial facilities swisstopo 
(2023c) 

distance to industrial 
facilities [m] 

Utilities Reservoirs, dams swisstopo 
(2023c) 

distance to water 
infrastructure [m] 

Natural hazards 
protections 

swisstopo 
(2023c) 

distance to protection 
infr. [m] 

High-voltage lines swisstopo 
(2023c) 

distance to high- 
voltage lines [m] 

Communication 
antennas 

swisstopo 
(2023c) 

distance to antennas 
[m] 

Single features 
(fountain, …) 

swisstopo 
(2023c) 

distance to single 
objects [m] 

Environment Naturalness Price et al. 
(2021) 

naturalness [index] 

Digital elevation 
model 

swisstopo 
(2023a) 

slope [degree] 
ruggedness [index] 
elevation [m]  
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Fig. 3. Final modeling result showing open spaces in mountain regions in Switzerland displayed as a continuous index with values ranging from 0 (not open spaces at 
all) to 1 (clearly open spaces), at 50-m resolution. 

Fig. 4. Relative variable importance in modeling open spaces in mountain regions. For each predictor the minimum, maximum and mean importance scores derived 
from the four tested models and the ensemble model are displayed. Annotation: d = variable represents the Euclidean distance to the corresponding infrastructure, s 
= variable represents the feature on site. 
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noticeable when grouped together, as in ski and tourist resorts. 

4.2. Machine learning model 

The relative variable importance scores (Fig. 4) offer further valuable 
insights into the variables’ predictive power in identifying and deter-
mining open spaces in mountain regions. The utilized variables are 
ranked in descending order of importance, with distance to small roads 
emerging as the most influential predictor, followed by the distance to 
public transport stops, medium roads, heliports, cable cars, and eleva-
tion. The distance to single objects and the ruggedness index displayed 
lower importance values. The variation in importance scores across the 
models used to build the ensemble model (min, mean and max values in 
Fig. 4) did not change the overall ranking of the variables. This suggests 
that the ensemble model demonstrated stability and robustness, as the 
selection of different models for the ensemble did not result in sub-
stantial fluctuations in the rankings of variable importance. The most 
notable fluctuation was observed in the “small roads” variable, which 
consistently had the highest score across all models but showed high 
variability. This can be explained by the varied methodologies used by 
the models in computing variable importance scores (Grömping, 2015). 
In fact, while the caret R package (Kuhn, 2008) provided a unified 
interface for the machine learning models used, it still retained the 
inherent characteristics of each algorithm when it came to calculating 
variable importance. In Generalized Boosted Model (Friedman, 2002) 
and eXtreme Gradient Boosting (T. Chen & Guestrin, 2016), trees are 
constructed based on the strengths and weaknesses of the different 
variables identified in previous iterations, which in our study led to a 

more frequent inclusion of the variable “small roads” and thus to very 
high importance scores for this variable. Conversely, the Random Forest 
model (Breiman, 2001), with its randomized selection approach for 
testing variable importance, led to lower importance scores for the 
variable “small roads”. 

As previously mentioned, given that none of the selected models 
outperformed the others, an ensemble model was generated (Caruana 
et al., 2004). This final model displays sound performance metrics, with 
a Mean Absolute Error (MAE) of 0.14 and a Root Mean Square Error 
(RMSE) of 0.18. These values suggest that, on average, the model’s 
predictions are within a reasonably small margin of error from the actual 
values. Indeed, values of MAE and RMSE closer to 0 are indicative of 
better predictive accuracy. Regarding the R-squared (R2) value, the 
model demonstrates a strong ability to explain the variance in the 
training data, with an R2 of 0.75. This indicates that the ensemble model 
captures a substantial portion of the underlying patterns. The ensemble 
model holds a stable R2 value of 0.67 also when assessing its perfor-
mance on the test dataset. This signifies that the model’s predictive 
power extends to previously unseen data, explaining approximately 
67% of the variations. 

The reliable performance of the machine learning model is attrib-
uted, partly, to the quality of the underlying data, specifically the 
response variable derived from the survey responses. Fig. 5 shows a 
sample of the polygons drawn by the experts during the second round of 
the survey – employed in generating the mentioned response variable. 
The random assignment of sample areas to survey participants resulted 
in an average of 9 expert responses per area, with some sample areas 
having as many as 13 responses and others having as few as 5. These 

Fig. 5. Extract of polygons sketched in the second survey. Drawings are overlapped, not yet masked nor normalized.  
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polygons depict how various experts have interpreted the proposed 
definition, especially regarding the understanding of terms like “largely 
undeveloped” and “free of technical, spatially impactful infrastructure”. 
Across all sampled areas, a consensus among experts emerges in iden-
tifying at least one region as falling under the classification of open 
spaces (dark green shade), while certain parts of the landscape are 
unanimously deemed as entirely non-open spaces (white areas without 
polygons). Nonetheless, a closer examination shows that differences 
occur, as certain experts demarcated broader and more generalized open 
spaces, while others opted for more precise differentiations guided by 
specific infrastructural elements identified on the map. 

4.3. Qualitative survey questions 

Interesting findings also arise from the qualitative questions. Out-
comes from both surveys reveal a significant decrease in experts’ con-
fidence scores regarding their delineation of open spaces (Fig. 6, above). 
In the first survey, 61% of participants expressed a high level of confi-
dence in their drawings (ranging from “moderately confident” to “very 
much confident”), while the remaining 39% expressed low level of 
confidence (from “only slightly confident” to “not confident at all”). The 
second survey yielded opposing results: 59% of the participants indi-
cated a low confidence level, while 41% reported a high confidence 
level. Interestingly, despite this decline in self-assessed confidence, 
participants perceived an improvement in their drawings through the 
process of comparing their views with those of their peers (Fig. 6, 
below). Indeed, in the second survey, most participants (68%) reported 
that their evaluations of their own drawings had improved significantly 
(ranging from “moderately improved” to “very much improved”). This 
development of the experts’ judgements on the delineation of open 
spaces could be summarized in three steps: construction, deconstruc-
tion, and consolidation. In the first survey, participants drew open 
spaces and on average they expressed a high level of confidence in their 
drawings – the construction phase. In the second survey, after having 
had the possibility to adapt their drawings by comparing them with the 
ones of their peers, the confidence scores of the participants significantly 
decreased – the deconstruction phase. However, this decrease in confi-
dence was accompanied by a perceived improvement in the 

participants’ drawings thanks to the possibility of observing those of 
their peers. The stage of critical examination and deconstruction was 
thus followed by a period of reconstruction and consolidation, which 
contributed to an overall improved delineation of open spaces. 

After each individual mapping task, participants were asked to 
evaluate their knowledge of the assessed sample area. 53% of the time, 
participants were already familiar with the given location (either 
familiar or had already visited the region), while the other 47% of the 
time the mapping exercise was completed with no explicitly good 
knowledge of the sample area. For the confidence scores, participants 
with no location-knowledge did not substantially vary their self- 
assessments between the first and the second survey (Fig. 6, above). In 
this case, the previously discussed process sees a two parts development 
with the construction phase directly followed by the consolidation. 
Participants without place knowledge were already more open to 
questioning their delineation of open spaces – based solely on the 
mapping exercise. Their confidence scores were relatively low already in 
the first survey and hence they experienced only a minimal adjustment. 
On the contrary, experts with location knowledge had to reconsider their 
personal interpretation to adapt to the more generalized understanding 
of open spaces. Their initial very high confidence scores were driven 
both by the understanding of landscape characteristics on the map as 
well as by individual experiences. The latter were very valuable insights 
which led to diversified delineation of open spaces that underwent a 
deconstruction phase before consolidating in a final, consensus-based 
outcome. In terms of perceived improvement following the second 
survey, no significant differences were observed between participants 
with and without location knowledge (Fig. 6, below), hinting to a suc-
cessful and effective consolidation phase across all experts. 

The distribution of the normalized response values across sample 
areas between the first and second surveys shows increased polarization 
and more homogeneous outcomes, suggesting an enhanced agreement 
among experts (Fig. 7, left). In fact, the analysis of all overlapped 
polygons shows more areas with values close to 0 or 1, meaning that 
participants were more inclined to agree on (not) defining a specific area 
as open spaces, while there are fewer mountain regions where the open 
spaces drawings of experts do not match. This difference in values dis-
tribution between the two surveys is statistically significant (p-value 

Fig. 6. Perceived confidence in own drawings for the first survey and the second survey (above) and perceived improvement of own drawings after the revision 
possibility in the second survey (below). The results shown are grouped according to location knowledge as well as for whole surveys. Each observation (n) is a 
unique answer to a mapping of a sample area. 

M. Riva et al.                                                                                                                                                                                                                                    



Applied Geography 165 (2024) 103237

9

≤0.01) and supports the machine learning process by providing clearer 
information to be used as response variable for the model. A further 
interesting distinction in normalized open spaces values emerges when 
comparing responses based on location-knowledge (Fig. 7, right). There 
is a statistically significant difference in the distribution (p-value ≤0.01) 
between participants that knew the assessed sample area and partici-
pants that had no previous knowledge of the region. The formers show a 
more heterogenous pattern, while experts that did not have specific 
knowledge about the assessed area have a more polarized understanding 
of open spaces in mountain regions. This suggests that, when possible, 
experts tend to include their personal interpretation in the definition of 
open spaces, leading to a more faceted result. 

5. Discussion 

5.1. Distribution of open spaces in the landscape 

Landscapes can be delineated based on both objective features and 
subjective factors such as aesthetic, cultural, and emotional values 
(Cakci, 2012). However, previous efforts to delineate open spaces have 
mostly focused on investigating the spatially disruptive impacts of 
selected infrastructure (Job et al., 2022; Nischik & Pütz, 2018), without 
accounting for the diverse interpretations of individuals. This research 
has shown how to address this methodological gap by incorporating 
expert views directly into the spatial modeling process. We adopted a 
collaborative consensus-building approach among experts to explore 
both qualitative and quantitative factors that influence open spaces in 
mountain regions. A Delphi survey (Turoff & Linstone, 1975) was used 
to elicit, discuss, and ultimately refine expert perspectives towards a 
consensus-based delineation of open spaces. The revised expert opinions 
were then integrated into a machine learning model and used to produce 
a more holistic and legitimized open spaces map. 

The distribution of open spaces on the map shows significant dif-
ferences both between and within the different mountain regions. In 
general, the findings are consistent with previous studies (Job et al., 
2022; Nischik & Pütz, 2018; Plassmann & Coronado, 2021), indicating a 
higher concentration of open spaces at higher altitudes and in remote 
alpine regions, and a lower concentration in fragmented landscapes such 
as the Prealps or the Jura. The definition of open spaces adopted for 
mountain regions and presented to the survey participants, though 

hinting to a high-altitude character, could potentially contribute to 
creating this dichotomy. Nonetheless, while acknowledging this contrast 
is essential for depicting open spaces in mountain regions, smaller or 
lower-valued open spaces are also of considerable importance, 
depending on their location. Previous studies have revealed limitations 
in providing such precise information at regional and local scales, 
mainly due to the inconsistent availability of data (Job et al., 2022; 
Plassmann & Coronado, 2021) or conceptual preferences for other 
mapping methods (Kopf et al., 2017; Nischik & Pütz, 2018). In contrast, 
our novel map accounts for a detailed delineation by showing a 
continuous open spaces index without aggregating the information into 
larger areas. As depicted in Fig. 8, Nischik and Pütz (2018) delineated 
water catchment zones to offer a comprehensible summary of how open 
spaces are distributed on a larger scale, but this aggregation conceals 
information at the local level. In contrast, our map of open spaces clearly 
displays this information, allowing us to investigate not only prominent 
open spaces regions, but also local or regional differences. The absence 
of clear boundaries could improve interpretation and understanding on 
a small scale but it could also hinder seamless integration into spatial 
planning tools. Nonetheless, it is crucial to recognize that the Swiss 
federal structure requires a comprehensive understanding across scales - 
from the local plot owner to national policies and strategies. In this 
context, the map of open spaces acts as a dataset for supporting de-
cisions, with the potential for later aggregation at various spatial levels. 

5.2. Factors shaping open spaces delineation 

The obtained detailed visualization also supports the understanding 
of the underlying effects of different infrastructures on open spaces 
delineation. This visual interpretation is also facilitated by the machine 
learning model, which summarizes these findings in variable impor-
tance scores (Kuhn, 2008). Importance scores are indicative of the as-
sessments made by experts involved in the collaborative 
consensus-building process. Therefore, exploring the diverse meanings 
assigned to different features provides insights into the opinions of these 
experts (Wei et al., 2015), and this understanding can improve the 
interpretation of identified open spaces. Transportation infrastructure 
such as small and medium sized roads, public transportation stops, and 
large trails show high importance scores. This reinforces the findings of 
previous studies showing that transportation networks have a strong 

Fig. 7. Density plots of open spaces values extracted from participants’ drawings and normalized (0–1). The two plots represent open spaces values difference 
between the first and second survey (left), and open spaces values from the second survey according to knowledge of the sample area (right). 
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influence on landscape conditions (Balkenhol & Waits, 2009; Doyle & 
Havlick, 2009; Van Der Ree et al., 2011). In line with previous studies, 
cable cars for material and people also show relatively high importance 
scores in determining the location and distribution of open spaces (Job 
et al., 2022; Plassmann & Coronado, 2021). Especially for groups of 
cable cars, such as those found in ski resorts, the visual prominence as 
man-made landscape features likely contribute to the high importance 
scores (Hedblom et al., 2020). As already suggested by Radford et al. 
(2019) while assessing wilderness quality, elevation is an important 
proxy for the open spaces index due to the fact that it is highly correlated 
with many causal factors. Other predictors based on on-site character-
istics, such as naturalness, slope, and ruggedness, have lower impor-
tance scores. Contrary to elevation, these factors are simply less visually 
recognizable on the map, thus explaining the lower importance scores. 
Similarly, single objects and small paths have low importance scores due 
to their reduced impact on the assessment of open spaces (Nischik & 
Pütz, 2018). Dams or antennas also have lower importance scores, but 
their importance in the model could be low not because of actual lack of 
impact – these features arguably have a significant visual influence in 
the landscape (Ioannidis et al., 2022) – but because roads and other 
predictors already partially capture and explain some of their effects 
(Kutner, 2005). Thus, while these features still contribute to the final 
predictions of the model, they have a less decisive impact on the open 
spaces delineations made by experts during the surveys. In general, this 
distribution of importance scores is also affected by the methodology of 
the study. During the mapping exercise, experts delineated open spaces 
using topographic maps or satellite imagery. This data basis remained 
consistent across all participants and across both surveys, but the quality 
and level of detail of the background map might have impacted the 
obtained importance scores. Easily recognizable transportation infra-
structure – visual clues to landscape fragmentation – could have influ-
enced experts’ perceptions in their assessment (Cakci, 2012). On the 
contrary, features that were less distinguishable on these background 
maps (e.g., steepness, naturalness, individual human-made elements) 
did not receive the same level of attention from experts delineating open 
spaces. As a result, their importance in influencing the final model was 
relatively lower. Nonetheless, it is crucial to highlight that regardless of 
their importance scores, all predictors provide valuable information 
about their contribution to the model’s estimates and offer insights into 
the underlying phenomenon. The importance of a predictor should be 
viewed in relation to others incorporated into the model, rather than as 
an absolute measure (Wei et al., 2015). 

5.3. Multifaceted influence of expert knowledge 

The use of expert knowledge is fundamental to scientific inquiry in 
various fields, as it promotes evidence-based decision-making and im-
proves the accuracy and reliability of models and assessments (Drescher 
et al., 2013; Jacobs et al., 2015; O’Hagan, 2019). Elicitation procedures 
play a crucial role in gathering and transferring expert knowledge into 
quantitative information for model integration and decision-making 
(Drescher et al., 2013; Martin et al., 2012). Rigorous methods are 
required in collecting and incorporating expert knowledge into 
decision-making processes, which ultimately enhances the validity of 
the outcomes (Drescher et al., 2013; Jacobs et al., 2015). Our study 
proposes such a structured integration by incorporating expert repre-
sentations of open spaces as response variables into the modeling pro-
cess. This allows the machine learning algorithm not only to use, but to 
directly reproduce expert knowledge, providing a simple, efficient, and 
transparent way to openly account for expert understanding. By 
exploiting the insights and awareness of experts, the model can help 
discover intricate patterns that may be difficult to identify when 
analyzing the underlying data alone (O’Hagan, 2019). Stakeholders can 
follow and interpret the reasoning behind the map, namely that the 
model simply replicates the experts’ drawings of open spaces. This 
stringent use of expert knowledge increases transparency and inter-
pretability (Drescher et al., 2013), providing more accurate and con-
textually relevant results, and making the map a valuable tool for open 
spaces management. Yet, the direct incorporation of expert knowledge 
into machine learning algorithms poses a potential bias risk, as experts 
introduce subjective perspectives that clearly influence the results (Ja-
cobs et al., 2015). In this research, experts were encouraged to express 
their perspectives, confront them with those of their peers, and ulti-
mately arrive at a consensual result. This redefinition, facilitated by 
Delphi methodological approach, homogenizes the opinions of the ex-
perts, thus reducing potential subjective bias (Beiderbeck et al., 2021; 
Geist, 2010). However, group biases or overconfidence (Martin et al., 
2012) may persist and would require further investigation. 

Delphi surveys require the involvement of experts for their domain- 
specific expertise and perceptive insights (Beiderbeck et al., 2021; Geist, 
2010). Formulating reasoned results is made possible by their deep 
understanding of trends and underlying mechanisms. Our study places a 
particular value on expert guidance because, while the concept of open 
spaces has clear boundaries, it also provides room for diverse in-
terpretations. It is essential for participants in our Delphi study to have a 
strong common base of understanding (Hasson et al., 2000). This shared 
baseline is key to facilitating an unbiased approach to exploring and 

Fig. 8. Extract of (left) our open spaces map with water catchments and (right) map of Nischik and Pütz (2018).  
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debating different interpretations of the issue, whether to build 
consensus or highlight differences (Beiderbeck et al., 2021; Geist, 2010; 
Hussler et al., 2011). Our study showed that using the Delphi method to 
guide a collaborative consensus-building process among experts led to a 
convergence of opinions on the definition of open spaces. Specifically, 
there was a higher level of consensus between the first and second 
survey rounds as to whether an area was classified as open spaces or not, 
resulting in a generally accepted outcome. These evaluations rely on 
expert knowledge, but like all forms of knowledge, they inherently carry 
a certain level of uncertainty (Martin et al., 2012). This uncertainty can 
be mitigated through the acquisition of additional information. There-
fore, it is crucial not only to determine the consensus among participants 
but also to inspect the level of confidence they have in their responses 
(Rowe et al., 2005; Turoff & Linstone, 1975). Our study demonstrated an 
overall decline in confidence regarding experts’ definition of open 
spaces. However, lower confidence does not necessarily indicate con-
cerning outcomes, as experts who change their answers are more likely 
to then make accurate predictions (Rowe et al., 2005). Our study con-
firms this observation by demonstrating a perceived improvement in the 
experts’ answers after the Delphi survey. The observed changes along 
the process of construction, deconstruction, and consolidation of 
knowledge highlight a transformative experience for participants in 
which their initial beliefs and confidence in their delineation of open 
spaces were challenged, and through the exchange of diverse perspec-
tives, they ultimately achieved improved results with higher consensus 
among experts. The consensus achieved reflects a wide range of values 
shared by the experts, thus validating and legitimizing the findings to 
support the development of a well-considered and collaborative strategy 
for decision-makers (Dell’Ovo et al., 2020). 

This study further revealed significant differences in the drawings of 
open spaces and confidence measures between experts familiar with the 
sample area being evaluated and those without this location knowledge. 
Our findings indicate that experts with location knowledge experienced 
a greater adjustment in confidence in their open spaces drawings. This 
pattern is supported by the so-called confirmation bias, a cognitive 
predisposition that occurs when people tend to search for, interpret, and 
remember information in a way that confirms their preexisting beliefs 
(Nickerson, 1998). In our case, experts who were familiar with the 
assessed region were possibly biased by this prior location knowledge. 
They then had to reassess their beliefs, which resulted in a significant 
decrease in their previously high confidence level. However, this 
adjustment did not affect their results, which were still perceived to have 
improved in response to their peers’ feedback. Despite this realignment 
process, experts with location knowledge still tend to provide more 
varied and multifaceted results while identifying open spaces. 

A variety of experts, including scientists, mountain guides, public 
sector employees and park managers, participated in this research’s 
Delphi survey. No notable distinctions in the delineation of open spaces 
nor in their self-assessment could be observed among these various 
groups. Although investigating intergroup disparities was not the cen-
tral focus of this research, it is important to acknowledge that the lack of 
variability observed can only be partially explained by actual unifor-
mity. The uneven distribution of participants across expert groups or a 
lack of difference-oriented questions might have contributed to the 
absence of significant differences between the experts’ groups. There-
fore, there is a need to broaden the scope of this research to explore the 
complex interactions between different mountain experts and to expand 
the investigation to include experts from other disciplines and land-
scapes. Notably, as already mentioned above, this study did not delve 
deeply into the spatial-functional dynamics between mountain regions 
and valley bottoms. Various aspects, such as tourism, agriculture, or 
land requirements for renewable energy, have influenced the distribu-
tion of open spaces in the past and could further drive future de-
velopments (Meyer et al., 2022). This research is limited and focused on 
the delineation of open spaces in mountain regions. Future efforts must 
combine this renewed and collaborative knowledge on open spaces with 

other demands on land to manage the resulting trade-offs, which are 
essential when discussing sectoral and spatial planning strategies aimed 
at the sustainable development of these ecologically sensitive regions. In 
this regard, the collaborative methodology used in this research has the 
potential to facilitate a harmonious connection between highlands and 
lowlands, contributing to a more comprehensive and nuanced under-
standing of open spaces and their interactions with the surrounding 
environment. Additionally, efforts to democratize planning processes 
would further benefit from the inclusion of laypeople. Indeed, an addi-
tional limitation of this study is that it focuses solely on experts, even 
though the management solutions implemented must be comprehended 
and approved by a range of other stakeholders (Dell’Ovo et al., 2020) 
who may not have this level of expertise. Comparing the delineation of 
open spaces in mountain areas between experts and non-experts there-
fore has the potential to provide interesting new insights and offers the 
opportunity to identify limitations and gaps within the reached expert 
consensus and to stimulate inventive ideas for managing these areas 
(Hussler et al., 2011). 

6. Conclusion 

In this study, we developed a collaborative consensus-building pro-
cess for integrating expert knowledge into machine learning algorithms 
to map open spaces and provide decision support for new infrastructure 
development in mountain regions. The Delphi approach used in the 
study favored the alignment of perspectives on the definition and 
delineation of open spaces. Initially, in a construction phase, partici-
pants drew open spaces and generally expressed a high level of confi-
dence in their drawings. Then, in a deconstruction phase, experts 
experienced a decrease in confidence as a result of comparing their in-
terpretations with those of their peers. This confidence loss was 
accompanied by a perceived improvement in the quality of the experts’ 
drawings, indicating a final phase of reconstruction and consolidation. 
The survey also revealed that experts familiar with the sample area 
being evaluated provided more diverse and varied results. These are also 
the experts who experienced the greater adjustment in confidence level 
throughout the surveys, but this adjustment did not affect the quality of 
their results, which were still perceived to have improved in response to 
their peers’ feedback. The results of the surveys proved to be suitable 
and effective for guiding the machine learning process to finally map 
open spaces in Swiss mountain regions. The resulting open spaces map 
provides a detailed and continuous index that allows the study of large 
open spaces regions as well as the exploration of local or regional dif-
ferences. In addition, we were able to demonstrate the impact of 
different infrastructures on the distribution of open spaces, providing 
insights into landscape elements that exhibited a stronger or weaker 
influence. 

In summary, this study presents a legitimized open spaces map to 
support decision-makers in managing open spaces in mountain regions. 
This approach can specifically assit in identifying areas that are 
perceived differently by different stakeholders and are therefore difficult 
to delineate. Landscape fragmentation and loss of aesthetic values are 
critical developments that spatial planning needs to address. This novel 
map does not provide a ready-to-use solution, but rather an instrument 
to guide practitioners in tackling these pressing issues. It also provides a 
way to discuss and potentially mitigate issues that require consideration 
and realignment of different and possibly competing stakeholder per-
spectives, offering an effective and valuable process for collaborative 
consensus-building that can foster acceptance of future planning de-
cisions and collaboration with decision-makers. 
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Donázar, J. A., Ceballos, O., & Cortés-Avizanda, A. (2018). Tourism in protected areas: 
Disentangling road and traffic effects on intra-guild scavenging processes. Science of 
The Total Environment, 630, 600–608. https://doi.org/10.1016/j. 
scitotenv.2018.02.186 

Doyle, M. W., & Havlick, D. G. (2009). Infrastructure and the environment. Annual 
Review of Environment and Resources, 34(1), 349–373. https://doi.org/10.1146/ 
annurev.environ.022108.180216 

Drescher, M., Perera, A. H., Johnson, C. J., Buse, L. J., Drew, C. A., & Burgman, M. A. 
(2013). Toward rigorous use of expert knowledge in ecological research. Ecosphere, 4 
(7), art83. https://doi.org/10.1890/ES12-00415.1 

European Landscape Convention. (2004). ETS No. 176. 20.X.2000. https://www.coe.int 
/en/web/conventions/full-list?module=treaty-detail&treatynum=176. 

Federal Office of Civil Aviation. (2023a). Civil and military aerodromes. https://data. 
geo.admin.ch/browser/index.html#/collections/ch.bazl.flugplaetze-heliports/it 
ems/flugplaetze-heliports. 

Federal Office of Civil Aviation. (2023b). Mountain landing sites. https://data.geo.admin 
.ch/browser/index.html#/collections/ch.bazl.gebirgslandeplaetze/items/gebirgslan 
deplaetze. 

Friedman, J. H. (1991). Multivariate adaptive regression Splines. Annals of Statistics, 19 
(1), 1–67. 

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data 
Analysis, 38(4), 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2 

Geist, M. R. (2010). Using the Delphi method to engage stakeholders: A comparison of 
two studies. Evaluation and Program Planning, 33(2), 147–154. https://doi.org/ 
10.1016/j.evalprogplan.2009.06.006 

GEOSTAT. (2021). Land use statistics based on the standard nomenclature NOAS04. https 
://opendata.swiss/fr/dataset/arealstatistik-nach-standardnomenklatur-noas04. 

Getis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban 
Economics, 37(4), 491–496. https://doi.org/10.1016/j.regsciurbeco.2007.04.005 

Grêt-Regamey, A., Brunner, S. H., Altwegg, J., Christen, M., & Bebi, P. (2013). 
Integrating expert knowledge into mapping ecosystem services trade-offs for 
sustainable forest management. Ecology and Society, 18(3), art34. https://doi.org/ 
10.5751/ES-05800-180334 
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